Contents

Preface .. 4
1 Overview .. 7
2 Asynchronous External Memory Interface (EMIF) .. 8
3 Audio Serial Port (ASP) ... 8
4 DDR2 Memory Controller ... 9
5 Enhanced Direct Memory Access (EDMA) Controller ... 9
6 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module ... 10
7 General-Purpose Input/Output (GPIO) ... 10
8 Host Port Interface (HPI) .. 10
9 Inter-Integrated Circuit (I2C) Module .. 11
10 Interrupt Controller (AINTC) ... 11
11 Multimedia Card (MMC)/Secure Digital (SD) Card Controller 12
12 Phase-Locked Loop Controller (PLLC) ... 12
13 Power and Sleep Controller (PSC) ... 12
14 Pulse-Width Modulator (PWM) .. 13
15 Serial Peripheral Interface (SPI) .. 13
16 64-Bit Timer .. 14
17 Universal Asynchronous Receiver/Transmitter (UART) ... 14
18 Universal Serial Bus (USB) .. 15
19 Video Processing Back End (VPBE) ... 15
 19.1 On-Screen Display (OSD) Module .. 15
 19.2 Video Encoder (VENC) ... 15
 19.3 Digital LCD Controller (DLCDC) .. 16
20 Video Processing Front End (VPFE) .. 16
 20.1 CCD Controller (CCDC) .. 16
 20.2 Preview Engine .. 16
 20.3 Resizer .. 16
 20.4 Hardware 3A (H3A) .. 17
 20.5 Histogram ... 17
About This Manual

This document provides an overview and briefly describes the peripherals available on the TMD320DM357 Digital Media System-on-Chip (DMSoC).

Related Documentation From Texas Instruments

The following documents describe the TMS320DM357 Digital Media System-on-Chip (DMSoC). Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

- **SPRUG06 — TMS320DM357 DMSoC Video Processing Back End (VPBE) User’s Guide.** Describes the video processing back end (VPBE) in the TMS320DM357 Digital Media System-on-Chip (DMSoC) video processing subsystem. Included in the VPBE is the video encoder, on-screen display, and digital LCD controller.

- **SPRUG25 — TMS320DM357 DMSoC ARM Subsystem Reference Guide.** Describes the ARM subsystem in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The ARM subsystem is designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is responsible for configuration and control of the device; including the video processing subsystem, and a majority of the peripherals and external memories.

- **SPRUG26 — TMS320DM357 DMSoC Universal Asynchronous Receiver/Transmitter (UART) User's Guide.** This document describes the universal asynchronous receiver/transmitter (UART) peripheral in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The UART peripheral performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data received from the CPU.

- **SPRUG27 — TMS320DM357 DMSoC Inter-Integrated Circuit (I2C) Peripheral User’s Guide.** Describes the inter-integrated circuit (I2C) peripheral in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The I2C peripheral provides an interface between the DMSoC and other devices compliant with the I2C-bus specification and connected by way of an I2C-bus. External components attached to this 2-wire serial bus can transmit and receive up to 8-bit wide data to and from the DMSoC through the I2C peripheral. This document assumes the reader is familiar with the I2C-bus specification.

- **SPRUG28 — TMS320DM357 DMSoC 64-Bit Timer User’s Guide.** Describes the operation of the software-programmable 64-bit timer in the TMS320DM357 Digital Media System-on-Chip (DMSoC). Timer 0 and Timer 1 are used as general-purpose (GP) timers and can be programmed in 64-bit mode, dual 32-bit unchained mode, or dual 32-bit chained mode; Timer 2 is used only as a watchdog timer. The GP timer modes can be used to generate periodic interrupts or enhanced direct memory access (EDMA) synchronization events. The watchdog timer mode is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop.
SPRUG29 — TMS320DM357 DMSoC Serial Peripheral Interface (SPI) User’s Guide. Describes the serial peripheral interface (SPI) in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is normally used for communication between the DMSoC and external peripherals. Typical applications include an interface to external I/O or peripheral expansion via devices such as shift registers, display drivers, SPI EPROMs and analog-to-digital converters.

SPRUG30 — TMS320DM357 DMSoC Host Port Interface (HPI) Reference Guide. This document describes the host port interface in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The HPI provides a parallel port interface through which an external host processor can directly access the TMS320DM357 DMSoC processor’s resources (configuration and program/data memories).

SPRUG31 — TMS320DM357 DMSoC General-Purpose Input/Output (GPIO) User’s Guide. Describes the general-purpose input/output (GPIO) peripheral in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an input, you can detect the state of the input by reading the state of an internal register. When configured as an output, you can write to an internal register to control the state driven on the output pin.

SPRUG32 — TMS320DM357 DMSoC Multimedia Card (MMC)/Secure Digital (SD) Card Controller User’s Guide. Describes the multimedia card (MMC)/secure digital (SD) card controller in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The MMC/SD card is used in a number of applications to provide removable data storage. The MMC/SD controller provides an interface to external MMC and SD cards. The communication between the MMC/SD controller and MMC/SD card(s) is performed by the MMC/SD protocol.

SPRUG33 — TMS320DM357 DMSoC Asynchronous External Memory Interface (EMIF) User’s Guide. Describes the asynchronous external memory interface (EMIF) in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The EMIF supports a glueless interface to a variety of external devices.

SPRUG34 — TMS320DM357 DMSoC Enhanced Direct Memory Access (EDMA) Controller User’s Guide. Describes the operation of the enhanced direct memory access (EDMA3) controller in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The EDMA3 controller’s primary purpose is to service user-programmed data transfers between two memory-mapped slave endpoints on the DMSoC.

SPRUG35 — TMS320DM357 DMSoC Audio Serial Port (ASP) User’s Guide. Describes the operation of the audio serial port (ASP) audio interface in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The primary audio modes that are supported by the ASP are the AC97 and IIS modes. In addition to the primary audio modes, the ASP supports general serial port receive and transmit operation, but is not intended to be used as a high-speed interface.

SPRUG36 — TMS320DM357 DMSoC Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module User’s Guide. Discusses the ethernet media access controller (EMAC) and physical layer (PHY) device management data input/output (MDIO) module in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The EMAC controls the flow of packet data from the DMSoC to the PHY. The MDIO module controls PHY configuration and status monitoring.

SPRUG37 — TMS320DM357 DMSoC Pulse-Width Modulator (PWM) Peripheral User’s Guide. Describes the pulse-width modulator (PWM) peripheral in the TMS320DM357 Digital Media System-on-Chip (DMSoC).

SPRUG38 — TMS320DM357 DMSoC DDR2 Memory Controller User’s Guide. Describes the DDR2 memory controller in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The DDR2 memory controller is used to interface with JESD79D-2A standard compliant DDR2 SDRAM devices.
About This Manual

SPRUG39 — TMS320DM357 DMSoC Video Processing Front End (VPFE) User’s Guide. Describes the video processing front end (VPFE) in the TMS320DM357 Digital Media System-on-Chip (DMSoC) video processing subsystem. Included in the VPFE is the preview engine, CCD controller, resizer, histogram, and hardware 3A (H3A) statistic generator.

SPRUGH2 — TMS320DM357 DMSoC Peripherals Overview Reference Guide. This document provides an overview of the peripherals in the TMS320DM357 Digital Media System-on-Chip (DMSoC).

SPRUGH3 — TMS320DM357 DMSoC Universal Serial Bus Controller User’s Guide. This document describes the universal serial bus (USB) controller in the TMS320DM357 Digital Media System-on-Chip (DMSoC). The USB controller supports data throughput rates up to 480 Mbps. It provides a mechanism for data transfer between USB devices and also supports host negotiation.

Trademarks
1 Overview

The TMD320DM357 Digital Media System-on-Chip (DMSoC) is a highly-integrated hardware and software platform, designed to meet the application processing needs of next-generation embedded devices. The DM357 DMSoC enables OEMs and ODMs to quickly bring to market devices featuring rich user interfaces, high-processing performance, and long battery life through the maximum flexibility of a fully-integrated mixed-processor solution.

The DM357 DMSoC has a reduced instruction set computer (RISC) processor ARM926EJ-S core.

The user-accessible peripherals available on the DM357 DMSoC are configured using a set of memory-mapped control registers. The peripheral bus controller performs the arbitration for accesses of on-chip peripherals. Peripherals available on the DM357 DMSoC and their associated literature numbers are listed in Table 1.

<table>
<thead>
<tr>
<th>Peripheral/Module</th>
<th>Acronym</th>
<th>Lit #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous External Memory Interface</td>
<td>EMIF</td>
<td>SPRUG33</td>
</tr>
<tr>
<td>Audio Serial Port</td>
<td>ASP</td>
<td>SPRUG35</td>
</tr>
<tr>
<td>DDR2 Memory Controller</td>
<td>DDR2</td>
<td>SPRUG38</td>
</tr>
<tr>
<td>Enhanced Direct Memory Access Controller</td>
<td>EDMA</td>
<td>SPRUG34</td>
</tr>
<tr>
<td>Ethernet Media Access Controller/Management Data Input/Output Module</td>
<td>EMAC/MDIO</td>
<td>SPRUG36</td>
</tr>
<tr>
<td>General-Purpose Input/Output</td>
<td>GPIO</td>
<td>SPRUG31</td>
</tr>
<tr>
<td>Host Port Interface</td>
<td>HPI</td>
<td>SPRUG30</td>
</tr>
<tr>
<td>Inter-Integrated Circuit Module</td>
<td>I2C</td>
<td>SPRUG27</td>
</tr>
<tr>
<td>Interrupt Controller</td>
<td>INTC</td>
<td>SPRUG25</td>
</tr>
<tr>
<td>Multimedia Card/Secure Digital Card Controller</td>
<td>MMC/SD</td>
<td>SPRUG32</td>
</tr>
<tr>
<td>Phase-Locked Loop Controller</td>
<td>PLLC</td>
<td>SPRUG25</td>
</tr>
<tr>
<td>Power and Sleep Controller</td>
<td>PSC</td>
<td>SPRUG25</td>
</tr>
<tr>
<td>Pulse-Width Modulator</td>
<td>PWM</td>
<td>SPRUG37</td>
</tr>
<tr>
<td>Serial Peripheral Interface</td>
<td>SPI</td>
<td>SPRUG29</td>
</tr>
<tr>
<td>64-Bit Timer</td>
<td>Timer</td>
<td>SPRUG28</td>
</tr>
<tr>
<td>Universal Asynchronous Receiver/Transmitter</td>
<td>UART</td>
<td>SPRUG26</td>
</tr>
<tr>
<td>Universal Serial Bus</td>
<td>USB</td>
<td>SPRUGH3</td>
</tr>
<tr>
<td>Video Processing Back End</td>
<td>VPBE</td>
<td>SPRUG39</td>
</tr>
<tr>
<td>Video Processing Front End</td>
<td>VPFE</td>
<td>SPRUG06</td>
</tr>
</tbody>
</table>
2 Asynchronous External Memory Interface (EMIF)

The asynchronous external memory interface (EMIF) provides a means to connect to a variety of external devices including:

- NAND Flash
- Asynchronous devices including Flash and SRAM
- Host processor interfaces such as the host port interface (HPI) on a Texas Instruments DSP

The most common use for the EMIF is to interface with both Flash devices and SRAM devices. The EMIF includes many features to enhance the ease and flexibility of connecting to external asynchronous devices. The EMIF features include:

- Four addressable chip select spaces of up to 32MB each
- 8-bit and 16-bit data bus widths
- Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time
- Select strobe mode
- Extended Wait mode
- NAND Flash ECC generation
- Connecting as a host to a TI DSP HPI interface
- Data Bus Parking

3 Audio Serial Port (ASP)

The audio serial port (ASP) is used for audio interface purposes. The primary audio modes that are supported by the ASP are the AC97 and IIS modes. In addition to the primary audio modes, the ASP supports general serial port receive and transmit operation, but is not intended to be used as a high-speed interface. The ASP can be controlled by the ARM CPU.

The ASP provides the following functions:

- Full-duplex communication
- Double-buffered data registers, which allow a continuous data stream
- Independent framing and clocking for receive and transmit
- Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially connected analog-to-digital (A/D) and digital-to-analog (D/A) devices
- External shift clock or an internal, programmable frequency shift clock for data transfer

In addition, the ASP has the following capabilities:

- Direct interface to:
 - AC97 compliant devices (the necessary multiphase frame synchronization capability is provided)
 - IIS compliant devices
- A wide selection of data sizes, including 8, 12, 16, 20, 24, and 32 bits
- μ-Law and A-Law companding
- 8-bit data transfers with the option of LSB or MSB first
- Programmable polarity for both frame synchronization and data clocks
- Highly programmable internal clock and frame generation
4 DDR2 Memory Controller

The DDR2 memory controller is used to interface with JESD79D-2A standard compliant DDR2 SDRAM devices. The DDR2 memory controller is the major memory location for program and data storage.

The DDR2 memory controller supports the following features:
- JESD79D-2A standard compliant DDR2 SDRAM
- 256M-byte memory space
- Data bus width of 32 or 16 bits
- CAS latencies: 2, 3, 4, and 5
- Internal banks: 1, 2, 4, and 8
- Burst length: 8
- Burst type: sequential
- One CS signal
- Page sizes: 256, 512, 1024, and 2048
- SDRAM autoinitialization
- Self-refresh mode
- Prioritized refresh
- Programmable refresh rate and backlog counter
- Programmable timing parameters
- Little-endian mode

5 Enhanced Direct Memory Access (EDMA) Controller

The enhanced direct memory access (EDMA) controller handles all user-programmed data transfers between two slave endpoints on the device. The EDMA enables movement of data to/from any addressable memory spaces (internal/external), slave peripherals. The EDMA on the TMD320DM357 DMSoC has a different architecture from previous EDMA controllers on the devices, it includes several enhancements over the previous EDMA controller and provides enhanced debug visibility and error reporting.

The EDMA controller has two principal blocks:
- EDMA channel controller
- EDMA transfer controller(s)

The EDMA channel controller primarily serves as the user interface for the EDMA controller. It also serves as event interface for the EDMA controller and is responsible for event latch-up, event prioritization, queue management, and transfer request (TR) submission to the EDMA transfer controllers. The EDMA transfer controllers are primarily responsible for data movement. The transfer controller is responsible for issuing read/write commands to the slaves.
6 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module

The ethernet media access controller (EMAC) and physical layer (PHY) device management data input/output (MDIO) module is used to move data between the TMS320DM357 DMSoC and another host connected to the same network, in compliance with the Ethernet protocol. The EMAC is controlled by the ARM CPU of the device. The EMAC controls the flow of packet data from the system to the PHY and the MDIO module controls PHY configuration and status monitoring.

The EMAC supports 10/100 Mb/s mode.

7 General-Purpose Input/Output (GPIO)

The general-purpose input/output (GPIO) peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an output, you can write to an internal register to control the state driven on the output pin. When configured as an input, you can detect the state of the input by reading the state of an internal register.

The GPIO peripheral has the following features:

- Output set/clear functionality through separate data set and clear registers allows multiple software processes to control GPIO signals without critical section protection.
- Set/clear functionality through writing to a single output data register is also supported.
- Separate input/output registers:
 - Output register can be read to reflect output drive status.
 - Input register can be read to reflect pin status.
- Some GPIO signals can be used as interrupt sources with configurable edge detection.

8 Host Port Interface (HPI)

The host port interface (HPI) provides a parallel port interface through which an external host processor can directly access the TMD320DM357 DMSoC processor's resources (configuration and program/data memories). The external host device is asynchronous to the CPU clock and functions as a master to the HPI interface. The HPI enables a host device and the DM357 DMSoC processor to exchange information via internal or external memory. Dedicated address (HPIA) and data (HPID) registers within the HPI provide the data path between the external host interface and the processor resources. An HPI control register (HPIC) is available to the host and the CPU for various configuration and interrupt functions.
9 Inter-Integrated Circuit (I2C) Module

The inter-integrated circuit (I2C) module provides an interface between the TMD320DM357 DMSoC and other devices compliant with the I2C-bus specification and connected by way of an I2C-bus. External components attached to this 2-wire serial bus can transmit and receive up to 8-bit wide data to and from the DM357 DMSoC through the I2C module.

The I2C module has the following features:

- Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
 - Support for byte format transfer
 - 7-bit and 10-bit addressing modes
 - General call
 - START byte mode
 - Support for multiple master-transmitters and slave-receivers mode
 - Support for multiple slave-transmitters and master-receivers mode
 - Combined master transmit/receive and receive/transmit mode
 - I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate)
- 2- to 7-bit format transfer
- Free data format mode
- One read DMA event and one write DMA event that can be used by the DMA
- Seven interrupts that can be used by the CPU
- Module enable/disable capability

10 Interrupt Controller (AINTC)

The TMD320DM357 DMSoC ARM interrupt controller (AINTC) has the following features:

- Supports up to 64 interrupt channels (16 external channels)
- Interrupt mask for each channel
- Each interrupt channel is mappable to a Fast Interrupt Request (FIQ) or to an Interrupt Request (IRQ) type of interrupt.
- Hardware prioritization of simultaneous interrupts
- Configurable interrupt priority (2 levels of FIQ and 6 levels of IRQ)
- Configurable interrupt entry table (FIQ and IRQ priority table entry) to reduce interrupt processing time

The ARM core supports two interrupt types: FIQ and IRQ. See the ARM926EJ Technical Reference Manual for detailed information about the ARM’s FIQ and IRQ interrupts. Each interrupt channel is mappable to an FIQ or to an IRQ type of interrupt, and each channel can be enabled or disabled. The AINTC supports user-configurable interrupt-priority and interrupt entry addresses. Entry addresses minimize the time spent jumping to interrupt service routines (ISRs). When an interrupt occurs, the corresponding highest priority ISR’s address is stored in the AINTC’s ENTRY register. The IRQ or FIQ interrupt routine can read the ENTRY register and jump to the corresponding ISR directly. Thus, the ARM does not require a software dispatcher to determine the asserted interrupt.

The ARM interrupt controller (AINTC) is described in the TMS320DM357 DMSoC ARM Subsystem Reference Guide (SPRUG25).
11 Multimedia Card (MMC)/Secure Digital (SD) Card Controller

The multimedia card (MMC)/secure digital (SD) card is used in a number of applications to provide removable data storage. The MMC/SD card controller provides an interface to external MMC and SD cards. The communication between the MMC/SD card controller and MMC/SD card(s) is performed by the MMC/SD protocol.

The MMC/SD card controller has the following features:
- Supports interface to multimedia cards (MMC)
- Supports interface to Secure Digital (SD) memory cards
- Ability to use the MMC/SD protocol and Secure Digital Input Output (SDIO) protocol
- Programmable frequency of the clock that controls the timing of transfers between the MMC/SD card controller and memory card
- 256-bit read/write FIFO to lower system overhead
- Signaling to support enhanced direct memory access (EDMA) transfers (slave)
- 50 MHZ maximum clock to SD (specification version 1.1)

12 Phase-Locked Loop Controller (PLLC)

The TMD320DM357 DMSoC has two PLL controllers that provide clocks to different parts of the system. PLL1 provides clocks (though various dividers) to most of the components of the DM357 DMSoC. PLL2 is dedicated to the DDR2 port and components for the VPSS. The reference clock is the 27 MHZ crystal, as mentioned in the data manual.

The PLL controller provides the following:
- Glitch-Free Transitions (on changing clock settings)
- Domain Clocks Alignment
- Clock Gating
- PLL power down

The various clock outputs given by the controller are as follows:
- Domain Clocks: SYSCLK[1:n]
- Auxiliary Clock from reference clock source: AUXCLK
- Bypass Domain clock: SYSCLKBP

Various dividers that can be used are as follows:
- Post-PLL Divider: POSTDIV
- SYSCLK Dividers: D1, ... Dn
- SYSCLKBP Dividers: BPDIV

Various other controls supported are as follows:
- PLL Multiplier Control: PLLM
- Software-programmable PLL Bypass: PLLEN

The PLL controller (PLLC) is described in the *TMS320DM357 DMSoC ARM Subsystem Reference Guide (SPRUG25)*.

13 Power and Sleep Controller (PSC)

The power and sleep controller (PSC) provides a standard method for controlling device power by gating clocks to individual modules. The PSC is described in the *TMS320DM357 DMSoC ARM Subsystem Reference Guide (SPRUG25)*.
14 Pulse-Width Modulator (PWM)

The pulse-width modulator (PWM) peripheral is very common in embedded systems. It provides a way to generate a pulse periodic waveform for motor control or can act as a digital-to-analog converter with some external components. This PWM peripheral is basically a timer with a period counter and a first-phase duration comparator, where bit width of the period and first-phase duration are both programmable.

The PWM peripheral has the following features:

- 32-bit period counter
- 32-bit first-phase duration counter
- 8-bit repeat counter for one-shot operation. One-shot operation will produce $N + 1$ periods of the waveform, where N is the repeat counter value.
- Configurable to operate in either one-shot or continuous mode.
- One-shot operation can be triggered by the CCD VSYNC output of the video processing subsystem to allow any of the PWM instantiations to be used as a CCD timer.
- Configurable PWM output pin inactive state.
- Interrupt and enhanced direct memory access (EDMA) synchronization events.

15 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the TMD320DM357 DMSoC at a programmed bit-transfer rate. The SPI is normally used for communication between the DMSoC and external peripherals. Typical applications include an interface to external I/O or peripheral expansion via devices such as shift registers, display drivers, SPI EPROMs and analog-to-digital converters.

The SPI allows serial communication with other SPI devices through a 3-pin or 4-pin mode interface. The DM357 DMSoC implementation supports multichip-select operation for up to two SPI slave devices. The SPI operates as a master SPI device only.

The SPI has the following features:

- 16-bit shift register
- Receive buffer register
- 8-bit clock prescaler
- Programmable SPI clock frequency range
- Programmable character length (2 to 16 bits)
- Programmable clock phase (delay or no delay)
- Programmable clock polarity (high or low)
16 64-Bit Timer

The TMD320DM357 DMSoC processor contains three software-programmable 64-bit timers (Timer 0, Timer 1, and Timer 2) that can be operated by the ARM. Timer 0 and Timer 1 are used as general-purpose timers and can be programmed in 64-bit mode, dual 32-bit unchained mode, or dual 32-bit chained mode; Timer 2 is used only as a watchdog timer. The watchdog timer mode is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop.

The 64-bit timer has the following features:

- 64-bit count-up counter
- Timer modes:
 - 64-bit general-purpose timer mode
 - Dual 32-bit general-purpose timer mode
 - Watchdog timer mode
- Two possible clock sources:
 - Internal clock
 - External clock input via timer input pin TIN0 (Timer 0 only)
- Two possible operation modes:
 - One-time operation (timer runs for one period then stops)
 - Continuous operation (timer automatically resets after each period)
- Generates periodic interrupts to the ARM CPU
- Generates synchronization event to EDMA

17 Universal Asynchronous Receiver/Transmitter (UART)

This universal asynchronous receiver/transmitter (UART) peripheral performs serial-to-parallel conversion on data received from a peripheral device or modem, and parallel-to-serial conversion on data received from the TMD320DM357 DMSoC processor CPU or DMA. The CPU can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link.

The UART peripheral has the following features:

- Programmable baud rates (frequency pre-scale values from 1 to 65535)
- Fully programmable serial interface characteristics:
 - 5-, 6-, 7-, or 8-bit characters
 - Even, odd, or no PARITY bit generation and detection
 - 1, 1.5, or 2 STOP bit generation
- 16-byte depth transmitter and receiver FIFOs:
 - The UART can be operated with or without the FIFOs
 - 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
- DMA signaling capability for both received and transmitted data
- CPU interrupt capability for both received and transmitted data
- False START bit detection
- Line break generation and detection
- Internal diagnostic capabilities:
 - Loopback controls for communications link fault isolation
 - Break, parity, overrun, and framing error simulation
- Programmable autoflow control using RTS and CTS signals for UART2
- Modem control functions (CTS, RTS) for UART2. No Modem control functions are available for UART0 and UART1.
18 Universal Serial Bus (USB)

The universal serial bus (USB) controller in the TMD320DM357 DMSoC supports high-speed USB device mode and high-speed limited host mode operations. The USB controller can be operated by the ARM through the memory-mapped registers.

The USB has the following features:
- Supports USB 2.0 peripheral at high speed (480 Mbps) and full speed (12 Mbps)
- Supports USB 2.0 host at high speed (480 Mbps), full speed (12 Mbps), and low speed (1.5 Mbps)
- Supports USB 2.0 OTG
- Supports four simultaneous transmit (TX) and four receive (RX) endpoints, more can be supported by dynamically switching
- Each endpoint can support all transfer types (control, bulk, interrupt, and isochronous)
- Supports USB extensions for session request (SRP) and host negotiation (HNP)
- Includes a 4K endpoint FIFO RAM, and supports programmable FIFO sizes
- External 5V power supply for VBUS can be controlled through I2C or GPIO
- Includes a DMA controller that supports four transmit (TX) and four receive (RX) DMA channels
- Includes RNDIS mode of DMA for accelerating RNDIS-type protocols using short packet termination over USB

19 Video Processing Back End (VPBE)

The video processing back end (VPBE) in the video processing subsystem consists of the on-screen display (OSD) module, video encoder (VENC), and digital LCD controller (DLCD).

19.1 On-Screen Display (OSD) Module

The major function of the on-screen display (OSD) module is to gather and blend video data and display/bitmap data before feeding it to the video encoder (VENC) in YCbCr format. The video and display data is read from an external memory, typically DDR2. The OSD is programmed via control and parameter registers. The OSD has the following features:
- Simultaneous display of two video windows and two OSD windows.
- Support for a rectangular cursor window and a programmable background color selection.
- Support for attenuation of the YCbCr values for the REC601 standard.

19.2 Video Encoder (VENC)

The video encoder (VENC) generates analog video output. The VENC supports the following features:
- Master Clock Input - 27 MHz (×2 Up-sampling)
- SDTV support
- HDTV support
- Four 10-bit over-sampling D/A converters
- Optional 7.5% pedestal
- 16-235/0-255 input amplitude selectable
- Programmable luma delay
- Master/slave operation
- Internal color bar generation (100%/75%)
19.3 **Digital LCD Controller (DLCDC)**

The digital LCD controller (DLCDC) generates digital RGB/YCbCr data output and timing signals. The DLCDC supports the following features:

- Programmable DCLK
- Various output formats:
 - YCbCr 16bit
 - YCbCr 8bit
 - ITU-R BT. 656
 - Parallel RGB 24bit
 - Serial RGB
 - DisplayTech QVGA (MicroDisplay)
 - STN
- Low-pass filter for digital RGB output
- Programmable timing generator
- Built-in timing generators for EPSON/CASIO1G LCD panels
- Master/slave operation
- Internal color bar generation (100%/75%)

20 **Video Processing Front End (VPFE)**

The video processing front end (VPFE) in the video processing subsystem consists of the CCD controller (CCDC), preview engine, resizer, hardware 3A (H3A) statistic generator and histogram modules. Together these modules provide a powerful and flexible front-end interface. These modules are briefly described below:

20.1 **CCD Controller (CCDC)**

The CCD controller (CCDC) provides an interface to image sensors and digital video sources. The CCDC receives raw image/video data from sensors (CMOS or CCD) or YUV video data in numerous formats from video decoder devices. The CCDC output requires additional image processing to transform raw input images to final processed images. This processing can be done either on-the-fly in the preview engine or in software on the ARM and image coprocessor subsystem. Simultaneously, while processing, raw data input to the CCDC can be used for computing various statistics (H3A and histogram) for use in control of image/video tuning parameters.

20.2 **Preview Engine**

The preview engine is an image processing module that is configurable for various sensor types, image quality, and video frame rates for digital still camera preview and video recording. The preview engine transforms raw unprocessed image/video data from a sensor (CMOS or CCD) into YCbCr 422 data. The output of the preview engine is used for both video compression and external display devices such as an NTSC/PAL analog encoder or a digital LCD.

20.3 **Resizer**

The resizer module resizes the input image data to the desired display or video encoding resolution, including the ability to zoom up to 10×. The resizer module can accept input image/video data from either the preview engine or DDR2. The output of the resizer module is sent to DDR2.
20.4 **Hardware 3A (H3A)**

The hardware 3A (H3A) module provides control loops for auto focus (AF), auto white balance (AWB) and auto exposure (AE). There are 2 main components of the H3A module:

- Auto focus (AF) engine
- Auto exposure (AE) and auto white balance (AWB) engine

The AF engine extracts and filters the red, green, and blue data from the input image/video data and provides either the accumulation or peaks of the data in a specified region. The specified region is a two-dimensional block of data and is referred to as a “paxel” for the case of AF.

The AE/AWB engine accumulates the values and checks for saturated values in a sub-sampling of the video data. In the case of the AE/AWB, the two-dimensional block of data is referred to as a “window”. Thus, other than referring to them by different names, a paxel and a window are essentially the same thing. However, the number, dimensions, and starting position of the AF paxels and the AE/AWB windows are separately programmable.

20.5 **Histogram**

The histogram module accepts raw image/video data (either 3 or 4 colors) and bins input color pixels, depending on the amplitude value and color, and provides statistics required to implement various hardware 3A (AF and AE/AWB) algorithms and tune the final image/video output. The value of the pixel is not stored, but each bin contains the number of pixels that are within the appropriate set range. The source of the raw data for the histogram is typically a CCD/CMOS sensor (via the CCD controller) or optionally from DDR2.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- RF/I/F and ZigBee® Solutions: www.ti.com/jrf

Applications

- Audio: www.ti.com/audio
- Automotive: www.ti.com/automotive
- Broadband: www.ti.com/broadband
- Digital Control: www.ti.com/digitalcontrol
- Medical: www.ti.com/medical
- Military: www.ti.com/military
- Optical Networking: www.ti.com/opticalnetwork
- Security: www.ti.com/security
- Telephony: www.ti.com/telephony
- Video & Imaging: www.ti.com/video
- Wireless: www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated