LM5175 Synchronous 4-Switch Buck-Boost Converter

TI reference design number: PMP10698 REV A

Input: 9V to 42V DC
Output: Selectable 5V, 12V or 20V @ 5A

DC – DC Test Results
Table of Contents

1. Test Specifications .. 3
2. Circuit Description .. 3
3. Board Photos .. 3
4. Efficiency .. 5
 4.1 12V Output Efficiency Results ... 5
 4.2 12V Output Efficiency Data .. 5
 4.3 20V Output Efficiency Results ... 7
 4.4 20V Output Efficiency Data .. 8
 4.5 5V Output Efficiency Results .. 10
 4.6 5V Output Efficiency Data .. 10
5. Thermal .. 13
 5.1 9V Input, 20V at 4A Output .. 13
 5.2 12V Input, 20V at 5A Output ... 13
 5.3 16V Input, 20V at 5A Output ... 14
 5.4 42V Input, 20V at 5A Output ... 14
6. Startup .. 15
 6.1 Startup from EN .. 15
7. Switching and Ripple Voltage .. 16
 7.1 9V Input .. 16
 7.2 12V Input .. 17
 7.3 16V Input .. 18
 7.4 42V Input .. 19
8. Output Voltage Control .. 20
 8.1 5V to 12V Output .. 20
 8.2 12V to 20V Output .. 21
 8.3 5V to 20V Output .. 22
9. Load Transient Response .. 23
 9.1 9V Input .. 23
 9.2 12V Input .. 24
 9.3 16V Input .. 25
 9.4 42V Input .. 26
10. Frequency Response ... 27
 10.1 9V Input .. 27
 10.2 12V Input .. 28
 10.3 16V Input .. 29
 10.4 42V Input .. 30
11. Short Circuit Tests ... 31
 11.1 Output Short Circuit ... 31
 11.2 Output Short Circuit Recovery .. 32
1 Test Specifications

<table>
<thead>
<tr>
<th>Vin min</th>
<th>9V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin max</td>
<td>42V</td>
</tr>
<tr>
<td>Vout</td>
<td>Selectable 5V, 12V or 20V</td>
</tr>
<tr>
<td>Iout</td>
<td>5A</td>
</tr>
</tbody>
</table>

2 Circuit Description

PMP10698 is a synchronous 4-switch buck-boost converter which utilizes the LM5175 controller for USB type C applications. The output voltage can be selected for 5V, 12V or 20V at 5A using jumpers or open drain control switches. The LM5175 average current loop sets a maximum output current of 6.25A. Additional pulse-by-pulse current limiting is inherent in the current-mode controller. The board includes enable, synchronization and power good functions.

3 Board Photos

The design is built on PMP10624 Rev A printed circuit board. This is a 4-layer PCB with 1 oz. copper on external layers and 0.5 oz. copper on internal layers. PCB dimensions are 2.85 x 2.60 inch.
4 Efficiency

4.1 12V Output Efficiency Results

The output current is increased above the maximum value to test current limit.

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.003</td>
<td>0.03</td>
<td>12.022</td>
<td>0</td>
<td>0.27</td>
<td>0.00</td>
<td>0.27</td>
<td>0</td>
</tr>
<tr>
<td>9.003</td>
<td>0.285</td>
<td>12.022</td>
<td>0.18</td>
<td>2.57</td>
<td>2.16</td>
<td>0.40</td>
<td>84.337</td>
</tr>
<tr>
<td>9.003</td>
<td>0.625</td>
<td>12.021</td>
<td>0.42</td>
<td>5.63</td>
<td>5.05</td>
<td>0.58</td>
<td>89.727</td>
</tr>
<tr>
<td>9.003</td>
<td>0.96</td>
<td>12.021</td>
<td>0.68</td>
<td>8.64</td>
<td>8.17</td>
<td>0.47</td>
<td>94.578</td>
</tr>
<tr>
<td>9.003</td>
<td>1.3</td>
<td>12.021</td>
<td>0.92</td>
<td>11.70</td>
<td>11.06</td>
<td>0.64</td>
<td>94.493</td>
</tr>
<tr>
<td>9.003</td>
<td>1.98</td>
<td>12.021</td>
<td>1.42</td>
<td>17.83</td>
<td>17.07</td>
<td>0.76</td>
<td>95.758</td>
</tr>
<tr>
<td>9.003</td>
<td>2.66</td>
<td>12.021</td>
<td>1.92</td>
<td>23.95</td>
<td>23.08</td>
<td>0.87</td>
<td>96.377</td>
</tr>
<tr>
<td>9.003</td>
<td>3.345</td>
<td>12.021</td>
<td>2.42</td>
<td>30.12</td>
<td>29.09</td>
<td>1.02</td>
<td>96.599</td>
</tr>
<tr>
<td>9.003</td>
<td>4.03</td>
<td>12.02</td>
<td>2.92</td>
<td>36.28</td>
<td>35.10</td>
<td>1.18</td>
<td>96.738</td>
</tr>
<tr>
<td>9.002</td>
<td>4.72</td>
<td>12.02</td>
<td>3.42</td>
<td>42.49</td>
<td>41.11</td>
<td>1.38</td>
<td>96.75</td>
</tr>
<tr>
<td>9.002</td>
<td>5.42</td>
<td>12.02</td>
<td>3.94</td>
<td>48.79</td>
<td>47.36</td>
<td>1.43</td>
<td>97.065</td>
</tr>
<tr>
<td>9.002</td>
<td>6.115</td>
<td>12.02</td>
<td>4.44</td>
<td>55.05</td>
<td>53.37</td>
<td>1.68</td>
<td>96.951</td>
</tr>
<tr>
<td>9.002</td>
<td>6.815</td>
<td>12.02</td>
<td>4.94</td>
<td>61.35</td>
<td>59.38</td>
<td>1.97</td>
<td>96.789</td>
</tr>
<tr>
<td>9.002</td>
<td>7.515</td>
<td>12.019</td>
<td>5.44</td>
<td>67.65</td>
<td>65.38</td>
<td>2.27</td>
<td>96.649</td>
</tr>
<tr>
<td>9.002</td>
<td>8.18</td>
<td>11.95</td>
<td>5.94</td>
<td>73.64</td>
<td>70.98</td>
<td>2.65</td>
<td>96.397</td>
</tr>
<tr>
<td>9.002</td>
<td>0.855</td>
<td>0.889</td>
<td>6.44</td>
<td>7.70</td>
<td>5.73</td>
<td>1.97</td>
<td>74.385</td>
</tr>
<tr>
<td>9.002</td>
<td>0.59</td>
<td>0.431</td>
<td>6.94</td>
<td>5.31</td>
<td>2.99</td>
<td>2.32</td>
<td>56.318</td>
</tr>
<tr>
<td>9.002</td>
<td>0.525</td>
<td>0.284</td>
<td>7.44</td>
<td>4.73</td>
<td>2.11</td>
<td>2.61</td>
<td>44.709</td>
</tr>
<tr>
<td>9.002</td>
<td>0.505</td>
<td>0.214</td>
<td>7.88</td>
<td>4.55</td>
<td>1.69</td>
<td>2.86</td>
<td>37.095</td>
</tr>
</tbody>
</table>
PMP10698 Test Results

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.003</td>
<td>0.025</td>
<td>12.014</td>
<td>0</td>
<td>0.30</td>
<td>0.00</td>
<td>0.30</td>
<td>0</td>
</tr>
<tr>
<td>12.003</td>
<td>0.215</td>
<td>12.015</td>
<td>0.18</td>
<td>2.58</td>
<td>2.16</td>
<td>0.42</td>
<td>83.805</td>
</tr>
<tr>
<td>12.003</td>
<td>0.47</td>
<td>12.015</td>
<td>0.42</td>
<td>5.64</td>
<td>5.05</td>
<td>0.60</td>
<td>89.451</td>
</tr>
<tr>
<td>12.003</td>
<td>0.725</td>
<td>12.015</td>
<td>0.68</td>
<td>8.70</td>
<td>8.17</td>
<td>0.53</td>
<td>93.887</td>
</tr>
<tr>
<td>12.003</td>
<td>0.975</td>
<td>12.015</td>
<td>0.92</td>
<td>11.70</td>
<td>11.05</td>
<td>0.65</td>
<td>94.453</td>
</tr>
<tr>
<td>12.003</td>
<td>1.48</td>
<td>12.015</td>
<td>1.42</td>
<td>17.76</td>
<td>17.06</td>
<td>0.70</td>
<td>96.042</td>
</tr>
<tr>
<td>12.003</td>
<td>1.99</td>
<td>12.016</td>
<td>1.92</td>
<td>23.89</td>
<td>23.07</td>
<td>0.82</td>
<td>96.587</td>
</tr>
<tr>
<td>12.003</td>
<td>2.495</td>
<td>12.016</td>
<td>2.42</td>
<td>29.95</td>
<td>29.08</td>
<td>0.87</td>
<td>97.099</td>
</tr>
<tr>
<td>12.003</td>
<td>3.005</td>
<td>12.015</td>
<td>2.92</td>
<td>36.07</td>
<td>35.08</td>
<td>0.99</td>
<td>97.269</td>
</tr>
<tr>
<td>12.003</td>
<td>3.52</td>
<td>12.015</td>
<td>3.42</td>
<td>42.25</td>
<td>41.09</td>
<td>1.16</td>
<td>97.256</td>
</tr>
<tr>
<td>12.003</td>
<td>4.035</td>
<td>12.015</td>
<td>3.94</td>
<td>48.43</td>
<td>47.34</td>
<td>1.09</td>
<td>97.743</td>
</tr>
<tr>
<td>12.003</td>
<td>4.55</td>
<td>12.015</td>
<td>4.44</td>
<td>54.61</td>
<td>53.35</td>
<td>1.27</td>
<td>97.68</td>
</tr>
<tr>
<td>12.002</td>
<td>5.065</td>
<td>12.015</td>
<td>4.94</td>
<td>60.79</td>
<td>59.35</td>
<td>1.44</td>
<td>97.638</td>
</tr>
<tr>
<td>12.002</td>
<td>5.585</td>
<td>12.015</td>
<td>5.44</td>
<td>67.03</td>
<td>65.36</td>
<td>1.67</td>
<td>97.509</td>
</tr>
<tr>
<td>12.002</td>
<td>6.075</td>
<td>11.953</td>
<td>5.94</td>
<td>72.91</td>
<td>71.00</td>
<td>1.91</td>
<td>97.379</td>
</tr>
<tr>
<td>12.002</td>
<td>0.665</td>
<td>0.896</td>
<td>6.44</td>
<td>7.98</td>
<td>5.77</td>
<td>2.21</td>
<td>72.297</td>
</tr>
<tr>
<td>12.002</td>
<td>0.46</td>
<td>0.438</td>
<td>6.94</td>
<td>5.52</td>
<td>3.04</td>
<td>2.48</td>
<td>55.058</td>
</tr>
<tr>
<td>12.002</td>
<td>0.4</td>
<td>0.285</td>
<td>7.44</td>
<td>4.80</td>
<td>2.12</td>
<td>2.68</td>
<td>44.168</td>
</tr>
<tr>
<td>12.002</td>
<td>0.38</td>
<td>0.214</td>
<td>7.88</td>
<td>4.56</td>
<td>1.69</td>
<td>2.87</td>
<td>36.975</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01</td>
<td>0.16</td>
<td>12.015</td>
<td>0.18</td>
<td>2.56</td>
<td>2.16</td>
<td>0.40</td>
<td>84.428</td>
</tr>
<tr>
<td>16.01</td>
<td>0.35</td>
<td>12.015</td>
<td>0.42</td>
<td>5.60</td>
<td>5.05</td>
<td>0.56</td>
<td>90.056</td>
</tr>
<tr>
<td>16.01</td>
<td>0.545</td>
<td>12.016</td>
<td>0.68</td>
<td>8.73</td>
<td>8.17</td>
<td>0.55</td>
<td>93.644</td>
</tr>
<tr>
<td>16.009</td>
<td>0.735</td>
<td>12.016</td>
<td>0.92</td>
<td>11.77</td>
<td>11.05</td>
<td>0.71</td>
<td>93.95</td>
</tr>
<tr>
<td>16.01</td>
<td>1.115</td>
<td>12.016</td>
<td>1.42</td>
<td>17.85</td>
<td>17.06</td>
<td>0.79</td>
<td>95.583</td>
</tr>
<tr>
<td>16.009</td>
<td>1.5</td>
<td>12.016</td>
<td>1.92</td>
<td>24.01</td>
<td>23.07</td>
<td>0.94</td>
<td>96.074</td>
</tr>
<tr>
<td>16.009</td>
<td>1.88</td>
<td>12.016</td>
<td>2.42</td>
<td>30.10</td>
<td>29.08</td>
<td>1.02</td>
<td>96.617</td>
</tr>
<tr>
<td>16.009</td>
<td>2.26</td>
<td>12.016</td>
<td>2.92</td>
<td>36.18</td>
<td>35.09</td>
<td>1.09</td>
<td>96.977</td>
</tr>
<tr>
<td>16.009</td>
<td>2.645</td>
<td>12.016</td>
<td>3.42</td>
<td>42.34</td>
<td>41.09</td>
<td>1.25</td>
<td>97.05</td>
</tr>
<tr>
<td>16.009</td>
<td>3.03</td>
<td>12.016</td>
<td>3.92</td>
<td>48.51</td>
<td>47.10</td>
<td>1.40</td>
<td>97.104</td>
</tr>
<tr>
<td>16.008</td>
<td>3.42</td>
<td>12.016</td>
<td>4.44</td>
<td>54.75</td>
<td>53.35</td>
<td>1.40</td>
<td>97.45</td>
</tr>
<tr>
<td>16.008</td>
<td>3.805</td>
<td>12.016</td>
<td>4.92</td>
<td>60.91</td>
<td>59.12</td>
<td>1.79</td>
<td>97.058</td>
</tr>
<tr>
<td>16.008</td>
<td>4.195</td>
<td>12.015</td>
<td>5.44</td>
<td>67.15</td>
<td>65.36</td>
<td>1.79</td>
<td>97.332</td>
</tr>
<tr>
<td>16.008</td>
<td>4.56</td>
<td>11.961</td>
<td>5.92</td>
<td>73.00</td>
<td>70.81</td>
<td>2.19</td>
<td>97.003</td>
</tr>
<tr>
<td>16.009</td>
<td>0.52</td>
<td>0.906</td>
<td>6.44</td>
<td>8.32</td>
<td>5.83</td>
<td>2.49</td>
<td>70.088</td>
</tr>
<tr>
<td>16.009</td>
<td>0.35</td>
<td>0.44</td>
<td>6.94</td>
<td>5.60</td>
<td>3.05</td>
<td>2.55</td>
<td>54.498</td>
</tr>
<tr>
<td>16.009</td>
<td>0.305</td>
<td>0.285</td>
<td>7.44</td>
<td>4.88</td>
<td>2.12</td>
<td>2.76</td>
<td>43.426</td>
</tr>
<tr>
<td>16.01</td>
<td>0.29</td>
<td>0.214</td>
<td>7.88</td>
<td>4.64</td>
<td>1.69</td>
<td>2.96</td>
<td>36.32</td>
</tr>
</tbody>
</table>
PMP10698 Test Results

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.017</td>
<td>0.04</td>
<td>12.035</td>
<td>0</td>
<td>1.68</td>
<td>0.00</td>
<td>1.68</td>
<td>0</td>
</tr>
<tr>
<td>42.017</td>
<td>0.09</td>
<td>12.034</td>
<td>0.16</td>
<td>3.78</td>
<td>1.93</td>
<td>1.86</td>
<td>50.917</td>
</tr>
<tr>
<td>42.017</td>
<td>0.16</td>
<td>12.034</td>
<td>0.42</td>
<td>6.72</td>
<td>5.05</td>
<td>1.67</td>
<td>75.182</td>
</tr>
<tr>
<td>42.017</td>
<td>0.235</td>
<td>12.033</td>
<td>0.66</td>
<td>9.87</td>
<td>7.94</td>
<td>1.93</td>
<td>80.431</td>
</tr>
<tr>
<td>42.016</td>
<td>0.305</td>
<td>12.032</td>
<td>0.92</td>
<td>12.81</td>
<td>11.07</td>
<td>1.75</td>
<td>86.38</td>
</tr>
<tr>
<td>42.016</td>
<td>0.45</td>
<td>12.031</td>
<td>1.42</td>
<td>18.91</td>
<td>17.08</td>
<td>1.82</td>
<td>90.357</td>
</tr>
<tr>
<td>42.015</td>
<td>0.6</td>
<td>12.029</td>
<td>1.92</td>
<td>25.21</td>
<td>23.10</td>
<td>2.11</td>
<td>91.617</td>
</tr>
<tr>
<td>42.015</td>
<td>0.755</td>
<td>12.026</td>
<td>2.42</td>
<td>31.72</td>
<td>29.10</td>
<td>2.62</td>
<td>91.746</td>
</tr>
<tr>
<td>42.014</td>
<td>0.905</td>
<td>12.025</td>
<td>2.92</td>
<td>38.02</td>
<td>35.11</td>
<td>2.91</td>
<td>92.348</td>
</tr>
<tr>
<td>42.013</td>
<td>1.055</td>
<td>12.023</td>
<td>3.42</td>
<td>44.32</td>
<td>41.12</td>
<td>3.21</td>
<td>92.769</td>
</tr>
<tr>
<td>42.012</td>
<td>1.205</td>
<td>12.022</td>
<td>3.94</td>
<td>50.62</td>
<td>47.37</td>
<td>3.26</td>
<td>93.565</td>
</tr>
<tr>
<td>42.011</td>
<td>1.355</td>
<td>12.021</td>
<td>4.44</td>
<td>56.92</td>
<td>53.37</td>
<td>3.55</td>
<td>93.761</td>
</tr>
<tr>
<td>42.009</td>
<td>1.505</td>
<td>12.02</td>
<td>4.94</td>
<td>63.22</td>
<td>59.38</td>
<td>3.84</td>
<td>93.919</td>
</tr>
<tr>
<td>42.008</td>
<td>1.655</td>
<td>12.018</td>
<td>5.44</td>
<td>69.52</td>
<td>65.38</td>
<td>4.15</td>
<td>94.038</td>
</tr>
<tr>
<td>42.006</td>
<td>1.795</td>
<td>11.945</td>
<td>5.94</td>
<td>75.40</td>
<td>70.95</td>
<td>4.45</td>
<td>94.102</td>
</tr>
<tr>
<td>42.017</td>
<td>0.23</td>
<td>0.92</td>
<td>6.42</td>
<td>9.66</td>
<td>5.91</td>
<td>3.76</td>
<td>61.118</td>
</tr>
<tr>
<td>42.017</td>
<td>0.17</td>
<td>0.529</td>
<td>6.94</td>
<td>7.14</td>
<td>3.67</td>
<td>3.47</td>
<td>51.397</td>
</tr>
<tr>
<td>42.016</td>
<td>0.16</td>
<td>0.401</td>
<td>7.44</td>
<td>6.72</td>
<td>2.98</td>
<td>3.74</td>
<td>44.38</td>
</tr>
<tr>
<td>42.017</td>
<td>0.125</td>
<td>0.198</td>
<td>7.28</td>
<td>5.25</td>
<td>1.44</td>
<td>3.81</td>
<td>27.445</td>
</tr>
</tbody>
</table>

4.3 20V Output Efficiency Results

![PMP10698 20V Output Efficiency](image)
4.4 20V Output Efficiency Data

The output current is increased above the maximum value to test current limit.

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.002</td>
<td>0.49</td>
<td>20.064</td>
<td>0.18</td>
<td>4.41</td>
<td>3.61</td>
<td>0.80</td>
<td>81.876</td>
</tr>
<tr>
<td>9.002</td>
<td>1.065</td>
<td>20.064</td>
<td>0.42</td>
<td>9.59</td>
<td>8.43</td>
<td>1.16</td>
<td>87.898</td>
</tr>
<tr>
<td>9.002</td>
<td>1.645</td>
<td>20.062</td>
<td>0.68</td>
<td>14.81</td>
<td>13.64</td>
<td>1.17</td>
<td>92.125</td>
</tr>
<tr>
<td>9.002</td>
<td>2.215</td>
<td>20.062</td>
<td>0.92</td>
<td>19.94</td>
<td>18.46</td>
<td>1.48</td>
<td>92.566</td>
</tr>
<tr>
<td>9.002</td>
<td>4.51</td>
<td>20.06</td>
<td>1.92</td>
<td>40.60</td>
<td>38.52</td>
<td>2.08</td>
<td>94.867</td>
</tr>
<tr>
<td>9.002</td>
<td>5.67</td>
<td>20.06</td>
<td>2.42</td>
<td>51.04</td>
<td>48.55</td>
<td>2.50</td>
<td>95.11</td>
</tr>
<tr>
<td>9.002</td>
<td>6.845</td>
<td>20.06</td>
<td>2.92</td>
<td>61.62</td>
<td>58.58</td>
<td>3.04</td>
<td>95.061</td>
</tr>
<tr>
<td>9.002</td>
<td>8.03</td>
<td>20.06</td>
<td>3.44</td>
<td>72.29</td>
<td>69.01</td>
<td>3.28</td>
<td>95.463</td>
</tr>
<tr>
<td>9.002</td>
<td>10.46</td>
<td>20.061</td>
<td>4.44</td>
<td>94.16</td>
<td>89.07</td>
<td>5.09</td>
<td>94.594</td>
</tr>
<tr>
<td>9.002</td>
<td>12.925</td>
<td>20.046</td>
<td>5.44</td>
<td>116.35</td>
<td>109.05</td>
<td>7.30</td>
<td>93.725</td>
</tr>
<tr>
<td>9.002</td>
<td>7.175</td>
<td>10.482</td>
<td>5.94</td>
<td>64.59</td>
<td>62.26</td>
<td>2.33</td>
<td>96.398</td>
</tr>
<tr>
<td>9.001</td>
<td>1.035</td>
<td>1.129</td>
<td>6.44</td>
<td>9.32</td>
<td>7.27</td>
<td>2.05</td>
<td>78.046</td>
</tr>
<tr>
<td>9.001</td>
<td>0.82</td>
<td>0.725</td>
<td>6.94</td>
<td>7.38</td>
<td>5.03</td>
<td>2.35</td>
<td>68.17</td>
</tr>
<tr>
<td>9.002</td>
<td>0.695</td>
<td>0.481</td>
<td>7.44</td>
<td>6.26</td>
<td>3.58</td>
<td>2.68</td>
<td>57.2</td>
</tr>
<tr>
<td>9.002</td>
<td>0.645</td>
<td>0.355</td>
<td>7.94</td>
<td>5.81</td>
<td>2.82</td>
<td>2.99</td>
<td>48.546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.002</td>
<td>0.06</td>
<td>20.064</td>
<td>0</td>
<td>0.72</td>
<td>0.00</td>
<td>0.72</td>
<td>0</td>
</tr>
<tr>
<td>12.002</td>
<td>0.365</td>
<td>20.064</td>
<td>0.18</td>
<td>4.38</td>
<td>3.61</td>
<td>0.77</td>
<td>82.441</td>
</tr>
<tr>
<td>12.002</td>
<td>0.79</td>
<td>20.063</td>
<td>0.42</td>
<td>9.48</td>
<td>8.43</td>
<td>1.06</td>
<td>88.872</td>
</tr>
<tr>
<td>12.002</td>
<td>1.22</td>
<td>20.062</td>
<td>0.68</td>
<td>14.64</td>
<td>13.64</td>
<td>1.00</td>
<td>93.169</td>
</tr>
<tr>
<td>12.002</td>
<td>1.65</td>
<td>20.062</td>
<td>0.92</td>
<td>19.80</td>
<td>18.46</td>
<td>1.35</td>
<td>93.202</td>
</tr>
<tr>
<td>12.002</td>
<td>2.495</td>
<td>20.061</td>
<td>1.42</td>
<td>29.94</td>
<td>28.49</td>
<td>1.46</td>
<td>95.13</td>
</tr>
<tr>
<td>12.002</td>
<td>3.355</td>
<td>20.06</td>
<td>1.92</td>
<td>40.27</td>
<td>38.52</td>
<td>1.75</td>
<td>95.65</td>
</tr>
<tr>
<td>12.002</td>
<td>4.21</td>
<td>20.059</td>
<td>2.42</td>
<td>50.53</td>
<td>48.54</td>
<td>1.99</td>
<td>96.07</td>
</tr>
<tr>
<td>12.002</td>
<td>5.075</td>
<td>20.059</td>
<td>2.92</td>
<td>60.91</td>
<td>58.57</td>
<td>2.34</td>
<td>96.162</td>
</tr>
<tr>
<td>12.002</td>
<td>5.94</td>
<td>20.058</td>
<td>3.44</td>
<td>71.29</td>
<td>69.00</td>
<td>2.29</td>
<td>96.785</td>
</tr>
<tr>
<td>12.002</td>
<td>6.81</td>
<td>20.058</td>
<td>3.94</td>
<td>81.73</td>
<td>79.03</td>
<td>2.71</td>
<td>96.69</td>
</tr>
<tr>
<td>12.002</td>
<td>7.685</td>
<td>20.057</td>
<td>4.44</td>
<td>92.24</td>
<td>89.05</td>
<td>3.18</td>
<td>96.55</td>
</tr>
<tr>
<td>12.002</td>
<td>8.565</td>
<td>20.057</td>
<td>4.94</td>
<td>102.80</td>
<td>99.08</td>
<td>3.72</td>
<td>96.386</td>
</tr>
<tr>
<td>12.002</td>
<td>9.45</td>
<td>20.052</td>
<td>5.44</td>
<td>113.42</td>
<td>109.08</td>
<td>4.34</td>
<td>96.177</td>
</tr>
<tr>
<td>12.002</td>
<td>8.61</td>
<td>16.854</td>
<td>5.94</td>
<td>103.34</td>
<td>100.11</td>
<td>3.22</td>
<td>96.88</td>
</tr>
<tr>
<td>12.002</td>
<td>0.795</td>
<td>1.134</td>
<td>6.44</td>
<td>9.54</td>
<td>7.30</td>
<td>2.24</td>
<td>76.538</td>
</tr>
<tr>
<td>12.002</td>
<td>0.63</td>
<td>0.725</td>
<td>6.94</td>
<td>7.56</td>
<td>5.03</td>
<td>2.53</td>
<td>66.543</td>
</tr>
<tr>
<td>12.002</td>
<td>0.54</td>
<td>0.483</td>
<td>7.44</td>
<td>6.48</td>
<td>3.59</td>
<td>2.89</td>
<td>55.446</td>
</tr>
</tbody>
</table>
PMP10698 Test Results

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01</td>
<td>0.07</td>
<td>20.059</td>
<td>0</td>
<td>1.12</td>
<td>0.00</td>
<td>1.12</td>
<td>0</td>
</tr>
<tr>
<td>16.01</td>
<td>0.305</td>
<td>20.059</td>
<td>0.18</td>
<td>4.88</td>
<td>3.61</td>
<td>1.27</td>
<td>73.942</td>
</tr>
<tr>
<td>16.01</td>
<td>0.62</td>
<td>20.058</td>
<td>0.42</td>
<td>9.93</td>
<td>8.42</td>
<td>1.50</td>
<td>84.87</td>
</tr>
<tr>
<td>16.01</td>
<td>0.935</td>
<td>20.058</td>
<td>0.68</td>
<td>14.97</td>
<td>13.64</td>
<td>1.33</td>
<td>91.116</td>
</tr>
<tr>
<td>16.01</td>
<td>1.255</td>
<td>20.058</td>
<td>0.92</td>
<td>20.09</td>
<td>18.45</td>
<td>1.64</td>
<td>91.842</td>
</tr>
<tr>
<td>16.01</td>
<td>1.88</td>
<td>20.06</td>
<td>1.44</td>
<td>30.10</td>
<td>28.89</td>
<td>1.21</td>
<td>95.972</td>
</tr>
<tr>
<td>16.01</td>
<td>2.495</td>
<td>20.058</td>
<td>1.92</td>
<td>39.94</td>
<td>38.51</td>
<td>1.43</td>
<td>96.411</td>
</tr>
<tr>
<td>16.01</td>
<td>3.13</td>
<td>20.057</td>
<td>2.44</td>
<td>50.11</td>
<td>48.94</td>
<td>1.17</td>
<td>97.661</td>
</tr>
<tr>
<td>16.009</td>
<td>3.765</td>
<td>20.056</td>
<td>2.92</td>
<td>60.27</td>
<td>58.56</td>
<td>1.71</td>
<td>97.162</td>
</tr>
<tr>
<td>16.01</td>
<td>4.405</td>
<td>20.056</td>
<td>3.44</td>
<td>70.52</td>
<td>68.99</td>
<td>1.53</td>
<td>97.829</td>
</tr>
<tr>
<td>16.01</td>
<td>5.05</td>
<td>20.055</td>
<td>3.94</td>
<td>80.85</td>
<td>79.02</td>
<td>1.83</td>
<td>97.732</td>
</tr>
<tr>
<td>16.01</td>
<td>5.695</td>
<td>20.054</td>
<td>4.44</td>
<td>91.18</td>
<td>89.04</td>
<td>2.14</td>
<td>97.656</td>
</tr>
<tr>
<td>16.01</td>
<td>6.34</td>
<td>20.053</td>
<td>4.94</td>
<td>101.50</td>
<td>99.06</td>
<td>2.44</td>
<td>97.595</td>
</tr>
<tr>
<td>16.009</td>
<td>6.985</td>
<td>20.05</td>
<td>5.44</td>
<td>111.82</td>
<td>109.07</td>
<td>2.75</td>
<td>97.54</td>
</tr>
<tr>
<td>16.009</td>
<td>7.495</td>
<td>19.66</td>
<td>5.94</td>
<td>119.99</td>
<td>116.78</td>
<td>3.21</td>
<td>97.327</td>
</tr>
<tr>
<td>16.009</td>
<td>0.62</td>
<td>1.151</td>
<td>6.44</td>
<td>9.93</td>
<td>7.41</td>
<td>2.51</td>
<td>74.68</td>
</tr>
<tr>
<td>16.009</td>
<td>0.495</td>
<td>0.736</td>
<td>6.94</td>
<td>7.92</td>
<td>5.11</td>
<td>2.82</td>
<td>64.457</td>
</tr>
<tr>
<td>16.009</td>
<td>0.415</td>
<td>0.487</td>
<td>7.44</td>
<td>6.64</td>
<td>3.62</td>
<td>3.02</td>
<td>54.537</td>
</tr>
<tr>
<td>16.009</td>
<td>0.41</td>
<td>0.486</td>
<td>7.44</td>
<td>6.56</td>
<td>3.62</td>
<td>2.95</td>
<td>55.089</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.015</td>
<td>0.055</td>
<td>20.052</td>
<td>0</td>
<td>2.31</td>
<td>0.00</td>
<td>2.31</td>
<td>0</td>
</tr>
<tr>
<td>42.015</td>
<td>0.145</td>
<td>20.051</td>
<td>0.18</td>
<td>6.09</td>
<td>3.61</td>
<td>2.48</td>
<td>59.243</td>
</tr>
<tr>
<td>42.015</td>
<td>0.265</td>
<td>20.05</td>
<td>0.42</td>
<td>11.13</td>
<td>8.42</td>
<td>2.71</td>
<td>75.633</td>
</tr>
<tr>
<td>42.015</td>
<td>0.38</td>
<td>20.05</td>
<td>0.68</td>
<td>15.97</td>
<td>13.63</td>
<td>2.33</td>
<td>85.396</td>
</tr>
<tr>
<td>42.015</td>
<td>0.5</td>
<td>20.049</td>
<td>0.92</td>
<td>21.01</td>
<td>18.45</td>
<td>2.56</td>
<td>87.802</td>
</tr>
<tr>
<td>42.015</td>
<td>0.74</td>
<td>20.048</td>
<td>1.42</td>
<td>31.09</td>
<td>28.47</td>
<td>2.62</td>
<td>91.564</td>
</tr>
<tr>
<td>42.015</td>
<td>0.98</td>
<td>20.046</td>
<td>1.92</td>
<td>41.17</td>
<td>38.49</td>
<td>2.69</td>
<td>93.476</td>
</tr>
<tr>
<td>42.015</td>
<td>1.23</td>
<td>20.044</td>
<td>2.42</td>
<td>51.68</td>
<td>48.51</td>
<td>3.17</td>
<td>93.862</td>
</tr>
<tr>
<td>42.015</td>
<td>1.48</td>
<td>20.041</td>
<td>2.92</td>
<td>62.18</td>
<td>58.52</td>
<td>3.66</td>
<td>94.11</td>
</tr>
<tr>
<td>42.015</td>
<td>1.72</td>
<td>20.039</td>
<td>3.42</td>
<td>72.27</td>
<td>68.53</td>
<td>3.73</td>
<td>94.835</td>
</tr>
<tr>
<td>42.015</td>
<td>1.97</td>
<td>20.038</td>
<td>3.92</td>
<td>82.77</td>
<td>78.55</td>
<td>4.22</td>
<td>94.901</td>
</tr>
<tr>
<td>42.015</td>
<td>2.215</td>
<td>20.036</td>
<td>4.44</td>
<td>93.06</td>
<td>88.96</td>
<td>4.10</td>
<td>95.591</td>
</tr>
<tr>
<td>42.015</td>
<td>2.46</td>
<td>20.036</td>
<td>4.92</td>
<td>103.36</td>
<td>98.58</td>
<td>4.78</td>
<td>95.375</td>
</tr>
<tr>
<td>42.015</td>
<td>2.705</td>
<td>20.032</td>
<td>5.44</td>
<td>113.65</td>
<td>108.97</td>
<td>4.68</td>
<td>95.885</td>
</tr>
<tr>
<td>42.015</td>
<td>2.93</td>
<td>19.852</td>
<td>5.92</td>
<td>123.10</td>
<td>117.52</td>
<td>5.58</td>
<td>95.467</td>
</tr>
<tr>
<td>42.016</td>
<td>0.295</td>
<td>1.32</td>
<td>6.44</td>
<td>12.39</td>
<td>8.50</td>
<td>3.89</td>
<td>68.584</td>
</tr>
<tr>
<td>42.016</td>
<td>0.235</td>
<td>0.88</td>
<td>6.94</td>
<td>9.87</td>
<td>6.11</td>
<td>3.77</td>
<td>61.853</td>
</tr>
<tr>
<td>42.016</td>
<td>0.205</td>
<td>0.626</td>
<td>7.44</td>
<td>8.61</td>
<td>4.66</td>
<td>3.96</td>
<td>54.073</td>
</tr>
</tbody>
</table>
4.5 5V Output Efficiency Results

The output current is increased above the maximum value to test current limit.

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.025</td>
<td>4.98</td>
<td>0</td>
<td>0.23</td>
<td>0.00</td>
<td>0.23</td>
<td>0</td>
</tr>
<tr>
<td>8.999</td>
<td>0.13</td>
<td>4.98</td>
<td>0.18</td>
<td>1.17</td>
<td>0.90</td>
<td>0.27</td>
<td>76.624</td>
</tr>
<tr>
<td>9</td>
<td>0.275</td>
<td>4.98</td>
<td>0.44</td>
<td>2.48</td>
<td>2.19</td>
<td>0.28</td>
<td>88.533</td>
</tr>
<tr>
<td>9</td>
<td>0.415</td>
<td>4.98</td>
<td>0.68</td>
<td>3.74</td>
<td>3.39</td>
<td>0.35</td>
<td>90.667</td>
</tr>
<tr>
<td>9</td>
<td>0.56</td>
<td>4.98</td>
<td>0.94</td>
<td>5.04</td>
<td>4.68</td>
<td>0.36</td>
<td>92.881</td>
</tr>
<tr>
<td>8.999</td>
<td>0.845</td>
<td>4.981</td>
<td>1.44</td>
<td>7.60</td>
<td>7.17</td>
<td>0.43</td>
<td>94.325</td>
</tr>
<tr>
<td>9</td>
<td>1.13</td>
<td>4.981</td>
<td>1.94</td>
<td>10.17</td>
<td>9.66</td>
<td>0.51</td>
<td>95.016</td>
</tr>
<tr>
<td>9</td>
<td>1.415</td>
<td>4.982</td>
<td>2.44</td>
<td>12.74</td>
<td>12.16</td>
<td>0.58</td>
<td>95.454</td>
</tr>
<tr>
<td>9</td>
<td>1.705</td>
<td>4.982</td>
<td>2.94</td>
<td>15.35</td>
<td>14.65</td>
<td>0.70</td>
<td>95.452</td>
</tr>
<tr>
<td>8.999</td>
<td>2</td>
<td>4.982</td>
<td>3.44</td>
<td>18.00</td>
<td>17.14</td>
<td>0.86</td>
<td>95.222</td>
</tr>
<tr>
<td>8.999</td>
<td>2.29</td>
<td>4.982</td>
<td>3.94</td>
<td>20.61</td>
<td>19.63</td>
<td>0.98</td>
<td>95.251</td>
</tr>
<tr>
<td>9</td>
<td>2.585</td>
<td>4.983</td>
<td>4.44</td>
<td>23.27</td>
<td>22.12</td>
<td>1.14</td>
<td>95.098</td>
</tr>
<tr>
<td>8.999</td>
<td>2.885</td>
<td>4.983</td>
<td>4.94</td>
<td>25.96</td>
<td>24.62</td>
<td>1.35</td>
<td>94.815</td>
</tr>
<tr>
<td>8.999</td>
<td>3.18</td>
<td>4.983</td>
<td>5.44</td>
<td>28.62</td>
<td>27.11</td>
<td>1.51</td>
<td>94.726</td>
</tr>
<tr>
<td>8.999</td>
<td>3.475</td>
<td>4.967</td>
<td>5.94</td>
<td>31.27</td>
<td>29.50</td>
<td>1.77</td>
<td>94.348</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
<td>0.384</td>
<td>6.44</td>
<td>4.50</td>
<td>2.47</td>
<td>2.03</td>
<td>54.955</td>
</tr>
<tr>
<td>9</td>
<td>0.385</td>
<td>0.188</td>
<td>6.88</td>
<td>3.47</td>
<td>1.29</td>
<td>2.17</td>
<td>37.329</td>
</tr>
<tr>
<td>9</td>
<td>0.385</td>
<td>0.188</td>
<td>6.88</td>
<td>3.47</td>
<td>1.29</td>
<td>2.17</td>
<td>37.329</td>
</tr>
<tr>
<td>9</td>
<td>0.385</td>
<td>0.188</td>
<td>6.88</td>
<td>3.47</td>
<td>1.29</td>
<td>2.17</td>
<td>37.329</td>
</tr>
</tbody>
</table>
Power Management Solutions

Test Results

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.03</td>
<td>4.98</td>
<td>0</td>
<td>0.36</td>
<td>0.00</td>
<td>0.36</td>
<td>0</td>
</tr>
<tr>
<td>12.001</td>
<td>0.11</td>
<td>4.98</td>
<td>0.18</td>
<td>1.32</td>
<td>0.90</td>
<td>0.42</td>
<td>67.903</td>
</tr>
<tr>
<td>12.001</td>
<td>0.215</td>
<td>4.98</td>
<td>0.44</td>
<td>2.58</td>
<td>2.19</td>
<td>0.39</td>
<td>84.923</td>
</tr>
<tr>
<td>12.001</td>
<td>0.325</td>
<td>4.98</td>
<td>0.68</td>
<td>3.90</td>
<td>3.39</td>
<td>0.51</td>
<td>86.824</td>
</tr>
<tr>
<td>12.001</td>
<td>0.43</td>
<td>4.98</td>
<td>0.94</td>
<td>5.16</td>
<td>4.68</td>
<td>0.48</td>
<td>90.713</td>
</tr>
<tr>
<td>12.001</td>
<td>0.645</td>
<td>4.98</td>
<td>1.44</td>
<td>7.74</td>
<td>7.17</td>
<td>0.57</td>
<td>92.643</td>
</tr>
<tr>
<td>12.001</td>
<td>0.86</td>
<td>4.98</td>
<td>1.94</td>
<td>10.32</td>
<td>9.66</td>
<td>0.66</td>
<td>93.608</td>
</tr>
<tr>
<td>12.001</td>
<td>1.08</td>
<td>4.981</td>
<td>2.44</td>
<td>12.96</td>
<td>12.15</td>
<td>0.81</td>
<td>93.77</td>
</tr>
<tr>
<td>12.001</td>
<td>1.295</td>
<td>4.981</td>
<td>2.94</td>
<td>15.54</td>
<td>14.64</td>
<td>0.90</td>
<td>94.227</td>
</tr>
<tr>
<td>12.001</td>
<td>1.515</td>
<td>4.981</td>
<td>3.44</td>
<td>18.18</td>
<td>17.13</td>
<td>1.05</td>
<td>94.242</td>
</tr>
<tr>
<td>12.001</td>
<td>1.74</td>
<td>4.981</td>
<td>3.94</td>
<td>20.88</td>
<td>19.63</td>
<td>1.26</td>
<td>93.982</td>
</tr>
<tr>
<td>12.001</td>
<td>1.96</td>
<td>4.981</td>
<td>4.44</td>
<td>23.52</td>
<td>22.12</td>
<td>1.41</td>
<td>94.021</td>
</tr>
<tr>
<td>12.001</td>
<td>2.18</td>
<td>4.981</td>
<td>4.94</td>
<td>26.16</td>
<td>24.61</td>
<td>1.56</td>
<td>94.052</td>
</tr>
<tr>
<td>12.001</td>
<td>2.405</td>
<td>4.982</td>
<td>5.44</td>
<td>28.86</td>
<td>27.10</td>
<td>1.76</td>
<td>93.901</td>
</tr>
<tr>
<td>12.001</td>
<td>2.625</td>
<td>4.965</td>
<td>5.94</td>
<td>31.50</td>
<td>29.49</td>
<td>2.01</td>
<td>93.618</td>
</tr>
<tr>
<td>12.001</td>
<td>0.39</td>
<td>0.387</td>
<td>6.44</td>
<td>4.68</td>
<td>2.49</td>
<td>2.19</td>
<td>53.249</td>
</tr>
<tr>
<td>12.001</td>
<td>0.295</td>
<td>0.187</td>
<td>6.88</td>
<td>3.54</td>
<td>1.29</td>
<td>2.25</td>
<td>36.34</td>
</tr>
<tr>
<td>12.002</td>
<td>0.295</td>
<td>0.187</td>
<td>6.88</td>
<td>3.54</td>
<td>1.29</td>
<td>2.25</td>
<td>36.337</td>
</tr>
<tr>
<td>12.002</td>
<td>0.295</td>
<td>0.187</td>
<td>6.88</td>
<td>3.54</td>
<td>1.29</td>
<td>2.25</td>
<td>36.337</td>
</tr>
</tbody>
</table>

- **Vin (V):** Voltage input
- **Iin (A):** Current input
- **Vout (V):** Voltage output
- **Iout (A):** Current output
- **Pin (W):** Input power
- **Pout (W):** Output power
- **Pdis (W):** Dissipated power
- **Efficiency (%):** Efficiency percentage

The table above shows the test results for different input voltages, currents, and efficiencies. Each row represents a test condition with the corresponding power values and efficiency percentage.
PMP10698 Test Results

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pin (W)</th>
<th>Pout (W)</th>
<th>Pdis (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.018</td>
<td>0.03</td>
<td>5.007</td>
<td>0</td>
<td>1.26</td>
<td>0.00</td>
<td>1.26</td>
<td>0</td>
</tr>
<tr>
<td>42.018</td>
<td>0.05</td>
<td>5.006</td>
<td>0.18</td>
<td>2.10</td>
<td>0.90</td>
<td>1.20</td>
<td>42.89</td>
</tr>
<tr>
<td>42.018</td>
<td>0.085</td>
<td>5.006</td>
<td>0.44</td>
<td>3.57</td>
<td>2.20</td>
<td>1.37</td>
<td>61.672</td>
</tr>
<tr>
<td>42.018</td>
<td>0.115</td>
<td>5.005</td>
<td>0.68</td>
<td>4.83</td>
<td>3.40</td>
<td>1.43</td>
<td>70.434</td>
</tr>
<tr>
<td>42.018</td>
<td>0.15</td>
<td>5.005</td>
<td>0.94</td>
<td>6.30</td>
<td>4.70</td>
<td>1.60</td>
<td>74.646</td>
</tr>
<tr>
<td>42.018</td>
<td>0.22</td>
<td>5.003</td>
<td>1.44</td>
<td>9.24</td>
<td>7.20</td>
<td>2.04</td>
<td>77.935</td>
</tr>
<tr>
<td>42.017</td>
<td>0.28</td>
<td>5.003</td>
<td>1.94</td>
<td>11.76</td>
<td>9.71</td>
<td>2.06</td>
<td>82.499</td>
</tr>
<tr>
<td>42.017</td>
<td>0.345</td>
<td>5.002</td>
<td>2.44</td>
<td>14.50</td>
<td>12.20</td>
<td>2.29</td>
<td>84.196</td>
</tr>
<tr>
<td>42.017</td>
<td>0.41</td>
<td>5.001</td>
<td>2.94</td>
<td>17.23</td>
<td>14.70</td>
<td>2.52</td>
<td>85.348</td>
</tr>
<tr>
<td>42.016</td>
<td>0.475</td>
<td>5.001</td>
<td>3.44</td>
<td>19.96</td>
<td>17.20</td>
<td>2.75</td>
<td>86.2</td>
</tr>
<tr>
<td>42.015</td>
<td>0.54</td>
<td>5</td>
<td>3.94</td>
<td>22.69</td>
<td>19.70</td>
<td>2.99</td>
<td>86.83</td>
</tr>
<tr>
<td>42.015</td>
<td>0.61</td>
<td>5</td>
<td>4.44</td>
<td>25.63</td>
<td>22.20</td>
<td>3.43</td>
<td>86.62</td>
</tr>
<tr>
<td>42.014</td>
<td>0.675</td>
<td>5</td>
<td>4.94</td>
<td>28.36</td>
<td>24.70</td>
<td>3.66</td>
<td>87.096</td>
</tr>
<tr>
<td>42.013</td>
<td>0.74</td>
<td>4.999</td>
<td>5.44</td>
<td>31.09</td>
<td>27.19</td>
<td>3.90</td>
<td>87.472</td>
</tr>
<tr>
<td>42.012</td>
<td>0.805</td>
<td>4.97</td>
<td>5.94</td>
<td>33.82</td>
<td>29.52</td>
<td>4.30</td>
<td>87.292</td>
</tr>
<tr>
<td>42.018</td>
<td>0.135</td>
<td>0.415</td>
<td>6.44</td>
<td>5.67</td>
<td>2.67</td>
<td>3.00</td>
<td>47.116</td>
</tr>
<tr>
<td>42.018</td>
<td>0.125</td>
<td>0.258</td>
<td>6.94</td>
<td>5.25</td>
<td>1.79</td>
<td>3.46</td>
<td>34.091</td>
</tr>
<tr>
<td>42.017</td>
<td>0.13</td>
<td>0.223</td>
<td>7.44</td>
<td>5.46</td>
<td>1.66</td>
<td>3.80</td>
<td>30.375</td>
</tr>
<tr>
<td>42.018</td>
<td>0.12</td>
<td>0.199</td>
<td>7.3</td>
<td>5.04</td>
<td>1.45</td>
<td>3.59</td>
<td>28.811</td>
</tr>
</tbody>
</table>
5 Thermal

5.1 9V Input, 20V at 4A Output

5.2 12V Input, 20V at 5A Output
5.3 16V Input, 20V at 5A Output

5.4 42V Input, 20V at 5A Output
6 Startup

6.1 Startup from EN

EN VOUT IIN Startup 9Vin 12Vout 0A
EN VOUT IIN Startup 9Vin 12Vout 5A

EN VOUT IIN Startup 12Vin 12Vout 0A
EN VOUT IIN Startup 12Vin 12Vout 5A

EN VOUT IIN Startup 16Vin 12Vout 0A
EN VOUT IIN Startup 16Vin 12Vout 5A

Page 15 of 32
7 Switching and Ripple Voltage

7.1 9V Input

VOUT BUCKSW BOOSTSW Switching 9Vin 5Vout 5A

VOUT BUCKSW BOOSTSW Switching 9Vin 12Vout 5A 0.1uF

VOUT BUCKSW BOOSTSW Switching 9Vin 20Vout 0A 0.1uF
7.2 12V Input

VOUT BUCKSW BOOSTSW Switching 12Vin 5Vout 5A 0.1uF

VOUT BUCKSW BOOSTSW Switching 12Vin 12Vout 5A 0.1uF

VOUT BUCKSW BOOSTSW Switching 12Vin 20Vout 5A 0.1uF
7.3 16V Input

![Diagram of 16V Input test results](image-url)
7.4 42V Input

VOUT BUCKSW BOOSTSW Switching 42Vin 5Vout 5A 0.1uF

VOUT BUCKSW BOOSTSW Switching 42Vin 12Vout 5A 0.1uF

VOUT BUCKSW BOOSTSW Switching 42Vin 20Vout 5A 0.1uF
8 Output Voltage Control
All tests were performed at 12V input.

8.1 5V to 12V Output

CTL1 CTL2 VOUT Output Voltage Control 12Vin 5Vout to 12Vout 5A
CTL1 CTL2 VOUT Output Voltage Control 12Vin 5Vout to 12Vout 0A

CTL1 CTL2 VOUT Output Voltage Control 12Vin 12Vout to 5Vout 5A
CTL1 CTL2 VOUT Output Voltage Control 12Vin 12Vout to 5Vout 0A
8.2 12V to 20V Output
8.3 5V to 20V Output

CTL1 CTL2 VOUT Output Voltage Control 12Vin 5Vout to 20Vout 5A
CTL1 CTL2 VOUT Output Voltage Control 12Vin 5Vout to 20Vout 0A

CTL1 CTL2 VOUT Output Voltage Control 12Vin 20Vout to 5Vout 5A
CTL1 CTL2 VOUT Output Voltage Control 12Vin 20Vout to 5Vout 0A
9 Load Transient Response

9.1 9V Input

VOUT IOUT Transient Response 9Vin 5Vout 2.5A to 5A load step
VOUT IOUT Transient Response 9Vin 12Vout 2.5A to 5A load step
VOUT IOUT Transient Response 9Vin 20Vout 2.5A to 5A load step
9.2 12V Input

VOUT IOUT Transient Response 12Vin 5Vout 2.5A to 5A load step

VOUT IOUT Transient Response 12Vin 12Vout 2.5A to 5A load step

VOUT IOUT Transient Response 12Vin 20Vout 2.5A to 5A load step
9.3 16V Input

VOUT IOUT Transient Response 16Vin 5Vout 2.5A to 5A load step

VOUT IOUT Transient Response 16Vin 12Vout 2.5A to 5A load step

VOUT IOUT Transient Response 16Vin 20Vout 2.5A to 5A load step
9.4 42V Input

VOUT IOUT Transient Response 42Vin 5Vout 2.5A to 5A load step

VOUT IOUT Transient Response 42Vin 12Vout 2.5A to 5A load step

VOUT IOUT Transient Response 42Vin 20Vout 2.5A to 5A load step
10 Frequency Response

10.1 9V Input

Control Loop 9Vin 5Vout 5A CC load

Control Loop 9Vin 12Vout 5A CC load

Control Loop 9Vin 20Vout 5A CC load
10.2 12V Input

Control Loop 12Vin 5Vout 5A CC load

Control Loop 12Vin 12Vout 5A CC load

Control Loop 12Vin 20Vout 5A CC load
10.3 16V Input

Control Loop 16Vin 5Vout 5A CC load

Control Loop 16Vin 12Vout 5A CC load

Control Loop 16Vin 20Vout 5A CC load
10.4 42V Input

Control Loop 42Vin 5Vout 5A CC load

Control Loop 42Vin 12Vout 5A CC load

Control Loop 42Vin 20Vout 5A CC load
11 Short Circuit Tests

11.1 Output Short Circuit

![Graphs showing short circuit tests for different voltage inputs and currents.](image-url)
11.2 Output Short Circuit Recovery

- **PGOOD IOUT VOUT short circuit recovery 9Vin 12Vout 0A**
- **PGOOD IOUT VOUT short circuit recovery 9Vin 12Vout 5A**
- **PGOOD IOUT VOUT short circuit recovery 12Vin 12Vout 0A**
- **PGOOD IOUT VOUT short circuit recovery 12Vin 12Vout 5A**
- **PGOOD IOUT VOUT short circuit recovery 16Vin 12Vout 0A**
- **PGOOD IOUT VOUT short circuit recovery 16Vin 12Vout 5A**
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI anticipates dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use. Only those TI components that have specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.