
InstaSPIN-FOC™ and
InstaSPIN-MOTION™

User’s Guide

Literature Number: SPRUHJ1I
JANUARY 2013 – REVISED OCTOBER 2021

https://www.ti.com/lit/pdf/SPRUHJ1

Read This First...19
Glossary... 20
Support Resources.. 20
Trademarks.. 20

1 Introduction...21
1.1 An Overview of InstaSPIN-FOC™ and FAST™...22

1.1.1 FAST™ Estimator Features...23
1.1.2 InstaSPIN-FOC™ Solution Features...23
1.1.3 InstaSPIN-FOC™ Block Diagrams..24
1.1.4 Comparing FAST™ Estimator to Typical Solutions... 26
1.1.5 FAST™ Provides Sensorless FOC Performance.. 27

1.2 An Overview of InstaSPIN-MOTION™ and SpinTAC™...29
1.2.1 InstaSPIN-MOTION™ Key Capabilities and Benefits... 31
1.2.2 InstaSPIN-MOTION™ Block Diagrams... 35
1.2.3 Application Examples.. 39

2 Quick Start Kits - TI Provided Software and Hardware... 45
2.1 Overview.. 46
2.2 Evaluating InstaSPIN-FOC™ and InstaSPIN-MOTION™... 48

3 InstaSPIN™ and MotorWare™...53
3.1 Overview.. 54
3.2 MotorWare™ Directory Structure... 55

3.2.1 MotorWare™ – drivers...56
3.2.2 MotorWare™ – ide...57
3.2.3 MotorWare™ – modules..58
3.2.4 MotorWare™ – solutions... 59

3.3 MotorWare™ Object-Oriented Design... 60
3.3.1 Objects.. 61
3.3.2 Methods...61

3.4 InstaSPIN-FOC™ API..62
3.4.1 Controller API Functions – ctrl.c, ctrl.h, CTRL_obj.h... 65
3.4.2 Estimator API Functions – FAST™ Library – est.h, est_states.h.. 99
3.4.3 Hardware Abstraction Layer (HAL) API Functions – hal.c, hal.h, hal_obj.h.. 140
3.4.4 User Settings – user.c, user.h, userParams.h... 157
3.4.5 Miscellaneous Functions... 164

3.5 InstaSPIN-MOTION™ and the SpinTAC™ API... 165
3.5.1 Header Files, Public Library, and ROM Library... 168
3.5.2 Version Information..168
3.5.3 SpinTAC™ Structure Names...170
3.5.4 SpinTAC™ Variables... 171

3.6 SpinTAC™ API...172
3.6.1 SpinTAC™ Velocity Control...172
3.6.2 SpinTAC™ Velocity Move..175
3.6.3 SpinTAC™ Velocity Plan... 179
3.6.4 SpinTAC™ Velocity Identify...183
3.6.5 SpinTAC™ Position Convert..185
3.6.6 SpinTAC™ Position Control...188
3.6.7 SpinTAC™ Position Move... 191
3.6.8 SpinTAC™ Position Plan...195
3.6.9 SpinTAC™ Functions.. 198

4 User Parameters (user.h)..211

Table of Contents

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.1 Currents and Voltages..212
4.1.1 USER_IQ_FULL_SCALE_FREQ_Hz..212
4.1.2 USER_IQ_FULL_SCALE_VOLTAGE_V... 212
4.1.3 USER_ADC_FULL_SCALE_VOLTAGE_V..212
4.1.4 USER_VOLTAGE_SF..212
4.1.5 USER_IQ_FULL_SCALE_CURRENT_A.. 213
4.1.6 USER_ADC_FULL_SCALE_CURRENT_A.. 213
4.1.7 USER_CURRENT_SF.. 213
4.1.8 USER_NUM_CURRENT_SENSORS... 213
4.1.9 USER_NUM_VOLTAGE_SENSORS.. 213
4.1.10 I_A_offset , I_B_offset , I_C_offset.. 213
4.1.11 V_A_offset , V_B_offset , V_C_offset.. 214

4.2 Clocks and Timers..214
4.2.1 USER_SYSTEM_FREQ_MHz.. 214
4.2.2 USER_PWM_FREQ_kHz..214
4.2.3 USER_MAX_VS_MAG_PU...214
4.2.4 USER_PWM_PERIOD_usec.. 215
4.2.5 USER_ISR_FREQ_Hz.. 215
4.2.6 USER_ISR_PERIOD_usec... 215

4.3 Decimation... 215
4.3.1 USER_NUM_PWM_TICKS_PER_ISR_TICK... 215
4.3.2 USER_NUM_ISR_TICKS_PER_CTRL_TICK...215
4.3.3 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK... 215
4.3.4 USER_NUM_CTRL_TICKS_PER_EST_TICK..216
4.3.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK...216
4.3.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK..216
4.3.7 USER_CTRL_FREQ_Hz...216
4.3.8 USER_EST_FREQ_Hz... 216
4.3.9 USER_TRAJ_FREQ_Hz... 216
4.3.10 USER_CTRL_PERIOD_usec..216
4.3.11 USER_CTRL_PERIOD_sec.. 216

4.4 Limits..217
4.4.1 USER_MAX_NEGATIVE_ID_REF_CURRENT_A.. 217
4.4.2 USER_ZEROSPEEDLIMIT... 217
4.4.3 USER_FORCE_ANGLE_FREQ_Hz... 217
4.4.4 USER_MAX_CURRENT_SLOPE_POWERWARP... 217
4.4.5 USER_MAX_ACCEL_Hzps...217
4.4.6 USER_MAX_ACCEL_EST_Hzps..218
4.4.7 USER_MAX_CURRENT_SLOPE... 218
4.4.8 USER_IDRATED_FRACTION_FOR_RATED_FLUX.. 218
4.4.9 USER_IDRATED_FRACTION_FOR_L_IDENT.. 218
4.4.10 USER_IDRATED_DELTA.. 218
4.4.11 USER_SPEEDMAX_FRACTION_FOR_L_IDENT.. 218
4.4.12 USER_FLUX_FRACTION... 218
4.4.13 USER_POWERWARP_GAIN..218
4.4.14 USER_R_OVER_L_EST_FREQ_Hz.. 218

4.5 Poles.. 219
4.5.1 USER_VOLTAGE_FILTER_POLE_Hz.. 219
4.5.2 USER_VOLTAGE_FILTER_POLE_rps... 219
4.5.3 USER_OFFSET_POLE_rps..219
4.5.4 USER_FLUX_POLE_rps...219
4.5.5 USER_DIRECTION_POLE_rps.. 219
4.5.6 USER_SPEED_POLE_rps..219
4.5.7 USER_DCBUS_POLE_rps... 219
4.5.8 USER_EST_KAPPAQ... 219

4.6 User Motor and ID Settings..220
4.6.1 USER_MOTOR_TYPE..220
4.6.2 USER_MOTOR_NUM_POLE_PAIRS... 220
4.6.3 USER_MOTOR_Rr..220
4.6.4 USER_MOTOR_Rs...220
4.6.5 USER_MOTOR_Ls_d..220

Table of Contents www.ti.com

4 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.6.6 USER_MOTOR_Ls_q..220
4.6.7 USER_MOTOR_RATED_FLUX.. 220
4.6.8 USER_MOTOR_MAGNETIZING_CURRENT...220
4.6.9 USER_MOTOR_RES_EST_CURRENT... 220
4.6.10 USER_MOTOR_IND_EST_CURRENT...220
4.6.11 USER_MOTOR_MAX_CURRENT.. 221
4.6.12 USER_MOTOR_FLUX_EST_FREQ_Hz...221
4.6.13 USER_MOTOR_ENCODER_LINES (InstaSPIN-MOTION™ Only)..221
4.6.14 USER_MOTOR_MAX_SPEED_KRPM (InstaSPIN-MOTION™ Only)..221
4.6.15 USER_SYSTEM_INERTIA (InstaSPIN-MOTION™ Only)...221
4.6.16 USER_SYSTEM_FRICTION (InstaSPIN-MOTION™ Only)..221
4.6.17 USER_SYSTEM_BANDWIDTH_SCALE (InstaSPIN-MOTION™ Only)... 221

4.7 SpinTAC™ Parameters (spintac_velocity.h and spintac_position.h)..222
4.7.1 Macro Definitions...222
4.7.2 Type Definitions... 223
4.7.3 Functions... 224

4.8 Setting ACIM Motor Parameters in user.h..226
4.8.1 Getting Parameters From an ACIM Datasheet..226

5 Managing Motor Signals.. 231
5.1 Software Prerequisites... 232

5.1.1 IQ Full-Scale Frequency..232
5.1.2 IQ Full-Scale Voltage...232
5.1.3 IQ Full-Scale Current...234
5.1.4 Max Current...234
5.1.5 Decimation Rates.. 235
5.1.6 System Frequency...235
5.1.7 PWM Frequency..236
5.1.8 Max Voltage Vector..236

5.2 Hardware Prerequisites..237
5.2.1 Current Feedback Gain... 237
5.2.2 Current Feedback Polarity...239
5.2.3 Voltage Feedback..241
5.2.4 Voltage Filter Pole... 243
5.2.5 Number of Shunt Resistors... 244
5.2.6 Dead-Time Configuration...245
5.2.7 Analog Inputs Configuration.. 246
5.2.8 PWM Outputs Configuration..247

6 Motor Identification and State Diagrams..249
6.1 Overview.. 250
6.2 InstaSPIN™ Motor Identification.. 251
6.3 Motor Identification Process Overview...254

6.3.1 Controller (CTRL) State Machine.. 254
6.3.2 Estimator (EST) State Machine... 256
6.3.3 Controller (CTRL) and Estimator (EST) State Machine Dependencies...258

6.4 Differences between PMSM and ACIM Identification Process...259
6.5 Prerequisites.. 260

6.5.1 Mechanical Prerequisites.. 260
6.5.2 Hardware Prerequisites... 260
6.5.3 Software Prerequisites.. 260
6.5.4 Software Configuration for PMSM Motor Identification..260
6.5.5 Software Configuration for ACIM Motor Identification... 262

6.6 Full Identification of PMSM Motors.. 263
6.6.1 CTRL_State_Idle and EST_State_Idle..264
6.6.2 CTRL_State_OffLine and EST_State_Idle (Hardware Offsets Calibrated)... 264
6.6.3 CTRL_State_OnLine and EST_State_RoverL.. 266
6.6.4 CTRL_State_OnLine and EST_State_Rs... 269
6.6.5 CTRL_State_OnLine and EST_State_RampUp..271
6.6.6 CTRL_State_OnLine and EST_State_RatedFlux... 273
6.6.7 CTRL_State_OnLine and EST_State_Ls.. 275
6.6.8 CTRL_State_OnLine and EST_State_RampDown... 277
6.6.9 CTRL_State_OnLine and EST_State_MotorIdentified.. 278

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.10 CTRL_State_Idle and EST_State_Idle..279
6.7 Full Identification of ACIM Motors.. 279

6.7.1 CTRL_State_Idle and EST_State_Idle..281
6.7.2 CTRL_State_OffLine and EST_State_Idle.. 281
6.7.3 CTRL_State_OnLine and EST_State_RoverL.. 281
6.7.4 CTRL_State_OnLine and EST_State_Rs... 281
6.7.5 CTRL_State_OnLine and EST_State_RampUp..281
6.7.6 CTRL_State_OnLine and EST_State_IdRated... 282
6.7.7 CTRL_State_OnLine and EST_State_RatedFlux... 285
6.7.8 CTRL_State_OnLine and EST_State_RampDown... 286
6.7.9 CTRL_State_Idle and EST_State_LockRotor... 288
6.7.10 CTRL_State_OnLine and EST_State_Ls.. 288
6.7.11 CTRL_State_OnLine and EST_State_Rr.. 290
6.7.12 CTRL_State_OnLine and EST_State_RampDown... 291
6.7.13 CTRL_State_OnLine and EST_State_MotorIdentified.. 292
6.7.14 CTRL_State_Idle and EST_State_Idle..294

6.8 Recalibration of PMSM and ACIM Motor Identification.. 294
6.8.1 Recalibration of PMSM and ACIM Motors After Full Identification.. 294
6.8.2 Recalibration of PMSM and ACIM Motors after Using Parameters from user.h..300

6.9 Setting PMSM Motor Parameters in user.h..301
6.9.1 Getting Parameters from a PMSM Datasheet... 301

6.10 Troubleshooting Motor Identification.. 304
6.10.1 Troubleshooting PMSM Motor Identification..304
6.10.2 Troubleshooting ACIM Motor Identification..309

7 Inertia Identification..311
7.1 Overview.. 312
7.2 InstaSPIN-MOTION™ Inertia Identification..313
7.3 Inertia Identification Process Overview.. 315
7.4 Software Configuration for SpinTAC™ Velocity Identify...317

7.4.1 Include the Header File... 317
7.4.2 Declare the Global Variables... 317
7.4.3 Initialize the Configuration Variables..318
7.4.4 Call SpinTAC™ Velocity Identify..319

7.5 Troubleshooting Inertia Identification... 320
7.5.1 ERR_ID... 320
7.5.2 2003 Error..320
7.5.3 2004 Error..320
7.5.4 2006 Error..321

7.6 Difficult Applications for Inertia Identification..321
7.6.1 Automotive Pumps (Large-Cogging Force / Large Friction).. 321
7.6.2 Direct Drive Washing Machines (Low-Rated Speed and Large Back EMF)..323
7.6.3 Compressors (Large Start-Up Current)... 325

8 MCU Considerations...327
8.1 Overview.. 328
8.2 InstaSPIN-Enabled Devices...328

8.2.1 softwareUpdate1p6() - Function is Required in User Code...329
8.3 ROM and User Memory Overview... 330

8.3.1 InstaSPIN-FOC™ Full Implementation in ROM.. 330
8.3.2 InstaSPIN-FOC™ Minimum Implementation in ROM..331
8.3.3 InstaSPIN-MOTION™ in ROM.. 332

8.4 Details on CPU Load and Memory Footprint Measurements...333
8.4.1 CPU Utilization Measurement Details... 333
8.4.2 Memory Allocation Measurement Details.. 334
8.4.3 IQ Math Built in ROM...335
8.4.4 Stack Utilization Measurement Details.. 335
8.4.5 InstaSPIN™ Main Interrupt..336
8.4.6 Clock Rate... 336

8.5 Memory Footprint... 336
8.5.1 Device Memory Map..337
8.5.2 InstaSPIN™ Memory Footprint..339
8.5.3 Memory Wait-States.. 340

Table of Contents www.ti.com

6 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.5.4 Flash Configuration Required Even for RAM-Only Execution... 340
8.5.5 Debug (IDE) of EXE-Only Memory..341

8.6 CPU Load...341
8.6.1 F2806xF Devices...341
8.6.2 F2806xM Devices..350
8.6.3 F805xF Devices...360
8.6.4 F2805xM Devices..362
8.6.5 F2802xF Devices...364

8.7 Digital and Analog Pins.. 366
8.7.1 Pin Utilization...366
8.7.2 F2805x Analog Front-End (AFE)... 366

9 Real-Time Structure..371
9.1 InstaSPIN™ Software Execution Clock Tree... 372
9.2 Decimating in Software for Real-Time Scheduling...375

9.2.1 USER_NUM_ISR_TICKS_PER_CTRL_TICK...375
9.2.2 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK... 381
9.2.3 USER_NUM_CTRL_TICKS_PER_EST_TICK..382
9.2.4 Practical Example..382
9.2.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK...387
9.2.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK..387

9.3 Decimating in Hardware...390
10 Managing Startup Time.. 395

10.1 Startup with Offsets and Rs Recalibration..396
10.2 Startup with Only Offsets Recalibration..397
10.3 Startup with Rs Recalibration...398
10.4 Startup with No Recalibration...400
10.5 Bypassing Inertia Estimation..401

11 Tuning Regulators...403
11.1 PI Controllers Introduction..404
11.2 PI Design for Current Controllers... 406
11.3 PI Design for Speed Controllers...410
11.4 Calculating PI Gains Based On Stability and Bandwidth..412
11.5 Calculating Speed and Current PI Gains Based on Damping Factor...415
11.6 Considerations When Adding Poles to the Speed Loop...419
11.7 Speed PI Controller Considerations: Current Limits, Clamping and Inertia..421
11.8 Considerations When Designing PI Controllers for FOC Systems...424

11.8.1 FOC Differences Between Motor Types.. 425
11.8.2 Coupling Between Q-Axis and D-Axis... 425

11.9 Sampling and Digital Systems Considerations...429
11.9.1 Sampling Period Considerations in the Integral Gain.. 432
11.9.2 Number Format Considerations...432
11.9.3 PI Coefficients Scaling Considerations..433

12 InstaSPIN-MOTION™ Controllers..435
12.1 Overview.. 436
12.2 Stability...437

12.2.1 Quantifying Stability...437
12.2.2 Performance.. 439
12.2.3 Trade-Off Between Stability and Performance.. 441
12.2.4 Tuning the SpinTAC™ Controller.. 441

12.3 Software Configuration for the SpinTAC™ Velocity Control...444
12.3.1 Include the Header File... 444
12.3.2 Declare the Global Structure... 444
12.3.3 Initialize the Configuration Variables..444
12.3.4 Call SpinTAC™ Velocity Control..445
12.3.5 Troubleshooting SpinTAC™ Velocity Control.. 445

12.4 Optimal Performance in Speed Control... 446
12.4.1 Introduction..446
12.4.2 Comparing Speed Controllers... 446
12.4.3 Disturbance Rejection... 446
12.4.4 Profile Tracking..448
12.4.5 InstaSPIN-MOTION™ Velocity Control Advantage... 450

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.5 Software Configuration for SpinTAC™ Position Control.. 456
12.5.1 Include the Header File... 456
12.5.2 Declare the Global Structure... 456
12.5.3 Initialize the Configuration Variables..457
12.5.4 Call SpinTAC™ Position Control... 458
12.5.5 Troubleshooting SpinTAC™ Position Control..459

12.6 Optimal Performance in Position Control... 459
12.6.1 Introduction..459
12.6.2 Comparing Position Controllers...459
12.6.3 Disturbance Rejection... 459
12.6.4 Profile Tracking..461
12.6.5 InstaSPIN-MOTION™ Position Control Advantage...463

13 Trajectory Planning.. 469
13.1 InstaSPIN-MOTION™ Profile Generation..470

13.1.1 Jerk Impact on System Performance.. 471
13.2 Software Configuration for SpinTAC™ Velocity Move..472

13.2.1 Include the Header File... 472
13.2.2 Declare the Global Structure... 472
13.2.3 Initialize the Configuration Variables..472
13.2.4 Call SpinTAC™ Velocity Move...473
13.2.5 Troubleshooting SpinTAC™ Velocity Move... 473

13.3 Software Configuration for SpinTAC™ Position Move... 474
13.3.1 Include the Header File... 474
13.3.2 Declare the Global Structure... 474
13.3.3 Initialize the Configuration Variables..474
13.3.4 Call SpinTAC™ Position Move.. 475
13.3.5 Troubleshooting SpinTAC™ Position Move...475

13.4 InstaSPIN-MOTION™ Sequence Planning..477
13.4.1 SpinTAC™ Velocity Plan Elements... 477
13.4.2 SpinTAC™ Velocity Plan Element Limits...478
13.4.3 SpinTAC™ Velocity Plan Example: Washing Machine Agitation...479
13.4.4 SpinTAC™ Velocity Plan Example: Garage Door..480
13.4.5 SpinTAC™ Velocity Plan Example: Washing Machine..481
13.4.6 SpinTAC™ Position Plan Example: Vending Machine.. 483

13.5 Software Configuration for SpinTAC™ Velocity Plan... 483
13.5.1 Include the Header File... 484
13.5.2 Define the Size of the Configuration Array.. 484
13.5.3 Declare the Global Structure... 484
13.5.4 Initialize the Configuration Variables..484
13.5.5 Call SpinTAC™ Velocity Plan.. 486
13.5.6 Call SpinTAC™ Velocity Plan Tick...486
13.5.7 Update SpinTAC™ Velocity Plan with SpinTAC™ Velocity Move Status.. 487

13.6 Troubleshooting SpinTAC™ Velocity Plan... 487
13.6.1 ERR_ID... 487
13.6.2 Configuration Errors.. 488

13.7 Software Configuration for SpinTAC™ Position Plan...489
13.7.1 Include the Header File... 489
13.7.2 Define the Size of the Configuration Array.. 489
13.7.3 Declare the Global Structure... 489
13.7.4 Initialize the Configuration Variables..490
13.7.5 Call SpinTAC™ Position Plan..491
13.7.6 Call SpinTAC™ Position Plan Tick.. 492
13.7.7 Update SpinTAC™ Position Plan with SpinTAC™ Position Move Status... 492

13.8 Troubleshooting SpinTAC™ Position Plan...493
13.8.1 ERR_ID... 493
13.8.2 Configuration Errors.. 494

13.9 Conclusion... 495
14 Managing Full Load at Startup, Low-Speed, and Speed Reversal...497

14.1 Overview.. 498
14.2 Low-Speed Operation with Full Load... 500

14.2.1 Low Speed with Full Load Considerations.. 500

Table of Contents www.ti.com

8 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.2.2 Low Speed With Full Load Transient Examples..502
14.3 Speed Reversal with Full Load...511

14.3.1 Low Speed with Full Load Speed Reversal Considerations.. 511
14.3.2 Low Speed with Full Load Speed Reversal Examples.. 511

14.4 Motor Startup with Full Load.. 518
14.4.1 Motor Startup with Full Load Considerations...518
14.4.2 Motor Startup with Full Load Examples...520

14.5 Rapid Acceleration from Standstill With Full Load... 527
14.5.1 Fastest Motor Startup with Full Load without Motor Alignment Considerations.. 527
14.5.2 Fastest Motor Startup with Full Load with Motor Alignment Considerations... 531

14.6 Overloading and Motor Overheating.. 536
14.6.1 Overloading and Motor Overheating Considerations.. 536
14.6.2 Overloading and Motor Overheating Example.. 537

14.7 InstaSPIN-MOTION™ and Low-Speed Considerations...541
15 Rs Online Recalibration... 543

15.1 Overview.. 544
15.2 Resistance vs. Temperature...545
15.3 Accurate Rs Knowledge Needed at Low Speeds Including Startup.. 545
15.4 Introduction to Rs Online Recalibration..545
15.5 Rs Online vs. Rs Offline... 548
15.6 Enabling Rs Online Recalibration.. 550
15.7 Disabling Rs Online Recalibration..552
15.8 Modifying Rs Online Parameters... 552

15.8.1 Adjusting Injected Current Magnitude... 552
15.8.2 Adjusting Slow Rotating Angle.. 555
15.8.3 Adjusting Delta Increments and Decrements of the Rs Online Value..557
15.8.4 Adjusting Filter Parameters... 558

15.9 Monitoring Rs Online Resistance Value...560
15.9.1 Rs Online Floating Point Value..560
15.9.2 Rs Online Fixed Point Value..560

15.10 Using the Rs Online Feature as a Temperature Sensor.. 561
15.11 Rs Online Related State Diagrams (CTRL and EST)...561

16 PowerWarp™...563
16.1 Overview.. 564
16.2 Enabling PowerWarp™ Software...565
16.3 PowerWarp™ Current Slopes..566
16.4 Practical Example.. 567
16.5 Case Study...569

17 Shunt Current Measurements... 571
17.1 Introduction.. 572
17.2 Signals... 572
17.3 1-Shunt...573
17.4 2-Shunt...576
17.5 3-Shunt...578
17.6 Development Kits... 579

17.6.1 DRV8312 Kit..579
17.6.2 DRV8301 Kit..579

17.7 Conclusion... 579
18 Sensored Systems..581

18.1 Hardware Configuration for Quadrature Encoder.. 582
18.1.1 Pin Usage.. 582

18.2 Software Configuration for Quadrature Encoder..582
18.2.1 Configure Motor for EQEP Operation..582
18.2.2 Initialize EQEP Handle.. 582
18.2.3 Set Digital IO to Connect to QEP Peripheral... 583
18.2.4 Enable Clock to eQEP...583
18.2.5 Initialize ENC Module.. 583
18.2.6 Set Up ENC Module.. 583
18.2.7 Call eQEP Function... 583
18.2.8 Provide eQEP Angle to FOC... 584

18.3 InstaSPIN-MOTION™ Position Convert.. 584

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

18.3.1 Software Configuration for SpinTAC™ Position Convert...584
18.3.2 Troubleshooting SpinTAC™ Position Convert...585

A Definition of Terms and Acronyms...587
Revision History.. 589

List of Figures
Figure 1-1. FAST™ - Estimating Flux, Angle, Speed, Torque - Automatic Motor Identification...22
Figure 1-2. Block Diagram of Entire InstaSPIN-FOC™ Package in ROM (except F2802xF devices)...................................... 24
Figure 1-3. Block Diagram of InstaSPIN-FOC™ in User Memory, with Exception of FAST™ in ROM..................................... 25
Figure 1-4. Sensored FOC System... 27
Figure 1-5. InstaSPIN-MOTION™ = C2000 Microcontroller + FAST™ Software Sensor (optional) + Auto-Tuned Inner

Torque Controller + SpinTAC™ Motion Control Suite.. 30
Figure 1-6. SpinTAC™ Motion Control Suite Components..31
Figure 1-7. Simple Tuning Interface...33
Figure 1-8. Curves Available in SpinTAC Move...34
Figure 1-9. State Transition Map for a Washing Machine..34
Figure 1-10. State Transition Map for a Garage Door System.. 35
Figure 1-11. InstaSPIN-MOTION™ in User Memory, with Exception of FAST™ and SpinTAC™ in ROM............................... 36
Figure 1-12. InstaSPIN-MOTION™ in ROM..37
Figure 1-13. InstaSPIN-MOTION™ Speed Control with a Mechanical Sensor... 38
Figure 1-14. InstaSPIN-MOTION™ Position Control with Mechanical Sensor and Redundant FAST™ Software Sensor.......39
Figure 1-15. Washing Machine Profile...40
Figure 1-16. InstaSPIN-MOTION™ Minimizes Error... 41
Figure 1-17. First Spin Cycle - 500 rpm...42
Figure 1-18. Second Spin Cycle - 2000 rpm..43
Figure 2-1. InstaSPIN-MOTION™ GUI Using Motor Identification Tab... 48
Figure 2-2. InstaSPIN-MOTION™ GUI Using Speed or Torque Tab... 49
Figure 2-3. InstaSPIN-MOTION™ GUI Using SpinTAC 1:Startup Tab..50
Figure 2-4. InstaSPIN-MOTION™ GUI SpinTAC 2:Tuning Tab... 51
Figure 2-5. InstaSPIN-MOTION™ GUI Using SpinTAC 3:Motion Tab...52
Figure 3-1. Block Diagram of InstaSPIN-FOC™ in User Memory, with Exception of FAST™ in ROM..................................... 64
Figure 3-2. InstaSPIN-MOTION™ Velocity Control... 165
Figure 3-3. InstaSPIN-MOTION™ Position Control...166
Figure 3-4. SpinTAC™ Module Directory Structure...167
Figure 3-5. SpinTAC™ Velocity Control Interfaces..172
Figure 3-6. SpinTAC™ Velocity Control State Transition Map...174
Figure 3-7. SpinTAC™ Velocity Move Interfaces...175
Figure 3-8. SpinTAC™ Velocity Move State Transition Map... 177
Figure 3-9. SpinTAC™ Velocity Plan Interfaces.. 179
Figure 3-10. SpinTAC™ Velocity Plan State Transition Map... 180
Figure 3-11. SpinTAC™ Velocity Identify Interfaces.. 183
Figure 3-12. SpinTAC™ Velocity Identify State Transition Map...184
Figure 3-13. SpinTAC™ Position Convert Interfaces...186
Figure 3-14. SpinTAC™ Position Convert State Transition Map... 187
Figure 3-15. SpinTAC™ Position Control Interfaces..188
Figure 3-16. SpinTAC™ Position Control State Transition Map.. 190
Figure 3-17. SpinTAC™ Position Move Interfaces.. 191
Figure 3-18. SpinTAC™ Position Move State Transition Map... 193
Figure 3-19. SpinTAC™ Position Plan Interfaces..195
Figure 4-1. Example ACIM Motor Datasheet...227
Figure 5-1. USER_MOTOR_MAX_CURRENT in InstaSPIN™... 235
Figure 5-2. 1.65-V Reference from 3.3-V Input Circuit Example... 238
Figure 5-3. Typical Differential Amplifier Circuit...238
Figure 5-4. Calculated Resistance Values Circuit..239
Figure 5-5. Positive Feedback... 239
Figure 5-6. Negative Feedback... 240
Figure 5-7. Voltage Feedback Circuit.. 241
Figure 5-8. Voltage Feedback Circuit.. 242
Figure 5-9. BOOSTXL-DRV8305 EVM HALF-BRIDGES & BACK-EMF SENSE Circuit...243
Figure 5-10. Shunt Resistors... 244
Figure 5-11. Dead-Time Configuration...245

Table of Contents www.ti.com

10 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 5-12. Analog Connections.. 246
Figure 5-13. PWM Pin Configuration... 247
Figure 6-1. InstaSPIN™ Motor Identification Components..251
Figure 6-2. Full Implementation of InstaSPIN-FOC™ (F2805xF, F2805xM, F2806xF, and F2806xM Devices)......................252
Figure 6-3. Minimum Implementation of InstaSPIN-FOC™ (F2802xF, F2805xF, F2805xM, F2806xF, and F2806xM

Devices)... 253
Figure 6-4. Controller (CTRL) State Diagram.. 254
Figure 6-5. Estimator (EST) State Diagram...256
Figure 6-6. Controller and Estimator State Diagrams - Dependency Shown.. 258
Figure 6-7. PMSM and ACIM States in EST State Diagram..259
Figure 6-8. Full PMSM Identification - CTRL and EST Sequence of States..263
Figure 6-9. CCStudio Watch Window after Offset Calibration... 264
Figure 6-10. 50% PWM Duty for Offset Calculation...265
Figure 6-11. RoverL EST State..266
Figure 6-12. Injected Current for Measuring RoverL EST State..267
Figure 6-13. Internal Code that Sets Kp and Ki Initial Gains for Current Controllers...267
Figure 6-14. Rs EST State...269
Figure 6-15. Phase Current During Rs Identification EST State..270
Figure 6-16. Ramp-Up EST State..271
Figure 6-17. Ramp-Up Timing... 272
Figure 6-18. Phase Current During RampUp EST State... 272
Figure 6-19. RampUp Timing with change in Acceleration and Final Speed...273
Figure 6-20. PMSM Rated Flux EST State..273
Figure 6-21. Phase Current During Rated Flux EST State..274
Figure 6-22. Stator Inductance EST State...275
Figure 6-23. Injected Current for Ls Identification..276
Figure 6-24. Current Ramp for Ls Identification...277
Figure 6-25. Complete PMSM Motor ID Process in EST State Diagram...278
Figure 6-26. Phase Current Measurement of Entire PMSM Motor ID Process... 279
Figure 6-27. Full ACIM Identification - CTRL and EST Sequence of States... 280
Figure 6-28. Ramp-Up EST State..281
Figure 6-29. Oscilloscope Plot of ACIM RampUp Acceleration...282
Figure 6-30. ACIM Id Rated EST State... 282
Figure 6-31. Oscilloscope Plot of Phase Current During Id Rated EST State... 283
Figure 6-32. Phase Current Oscillation During Id Rated Measurement.. 284
Figure 6-33. Reduced Phase Current Oscillation During Id Rated Measurement... 284
Figure 6-34. ACIM Rated Flux EST State..285
Figure 6-35. Phase Current During Id Rated EST State..286
Figure 6-36. ACIM Ramp Down EST State... 287
Figure 6-37. Ramp Down of ACIM Phase Current Prior to LockRotor State... 287
Figure 6-38. ACIM Lock Rotor EST State..288
Figure 6-39. ACIM Stator Inductance EST State...289
Figure 6-40. ACIM Current for the Stator Inductance EST State...289
Figure 6-41. Rotor Resistance EST State... 290
Figure 6-42. Injected Current for Rr Identification..291
Figure 6-43. ACIM Ramp Down EST State after Completing Rr... 291
Figure 6-44. ACIM Current During Rr and RampDown... 292
Figure 6-45. Complete ACIM Motor ID Process in EST State Diagram.. 293
Figure 6-46. Phase Current of Entire ACIM Motor ID Process.. 293
Figure 6-47. PMSM and ACIM Recalibration - CTRL and EST Sequence of States...294
Figure 6-48. Motor Recalibration EST States.. 295
Figure 6-49. Phase Current during Offset Recalibration..296
Figure 6-50. Phase Current Showing Rs Recalibration Timing... 297
Figure 6-51. Transitioning to Online from EST Rs...298
Figure 6-52. Phase Current Transitioning from EST Rs to Online...298
Figure 6-53. Transitioning to Online from EST Idle..299
Figure 6-54. Phase Current Transitioning from EST Idle to Online... 299
Figure 6-55. Timing of Complete Recalibration... 300
Figure 6-56. Example PMSM Motor Datasheet... 302
Figure 6-57. Determining Motor Flux from Phase Voltage of Motor in Generator Mode... 303
Figure 6-58. RampUp Timing with change in Acceleration..306

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 6-59. PMSM RampUp Acceleration..306
Figure 7-1. Example of Identifying Inertia in a Simple Motion System.. 312
Figure 7-2. Histogram of 100 Inertia Identification Trials... 313
Figure 7-3. SpinTAC™ Speed Controller Inertia Tolerance... 314
Figure 7-4. Flowchart for SpinTAC™ Velocity Identify Process...315
Figure 7-5. SpinTAC™ Velocity Identify Torque Reference... 316
Figure 7-6. SpinTAC™ Velocity Identify Speed Feedback...317
Figure 7-7. Speed Feedback for Inertia Identification for an Automotive Pump.. 322
Figure 7-8. Speed Feedback for Inertia Identification for a Direct Drive Washing Machine.. 323
Figure 7-9. DC Bus Voltage for Inertia Identification for a Direct Drive Washing Machine.. 324
Figure 7-10. Speed Feedback for Inertia Identification for a Compressor... 325
Figure 8-1. InstaSPIN-FOC™ Full Implementation in ROM.. 330
Figure 8-2. InstaSPIN-FOC™ Minimum Implementation in ROM... 331
Figure 8-3. InstaSPIN-MOTION™ in ROM..332
Figure 8-4. InstaSPIN™ Software Execution Clock Tree.. 334
Figure 8-5. Function Calls from the Main ISR..336
Figure 8-6. F2806xF and F2806xM Allocated Memory for InstaSPIN-FOC™ and SpinTAC™ Library...................................337
Figure 8-7. F2805xF and F2805xM Allocated Memory for InstaSPIN-FOC™ and SpinTAC™ Library...................................338
Figure 8-8. F2802xF Allocated Memory for InstaSPIN-FOC™ Library..338
Figure 8-9. SpinTAC™ Velocity Plan Example.. 356
Figure 8-10. Current Signal Routing Directly to PGAs With Single-Ended Connections...367
Figure 8-11. Feedback of Phase Currents Using External Differential Amplifiers..368
Figure 8-12. Using the AFE's Built-In Voltage Reference For Measuring a Bipolar Signal..369
Figure 9-1. Clock Timing - CPU to ISR Generation... 373
Figure 9-2. Software Execution Clock Tree... 374
Figure 9-3. Real-Time Scheduling Tick Rates... 375
Figure 9-4. Tick Counter Flowchart..375
Figure 9-5. InstaSPIN™ Timing...376
Figure 9-6. InstaSPIN™ Timing Software Execution Clock Tree...376
Figure 9-7. InstaSPIN™ Timing Completes Execution with No ISR Overrun.. 377
Figure 9-8. InstaSPIN™ Timing Software Execution Clock Tree - No ISR Overrun..377
Figure 9-9. InstaSPIN™ Timing with a Higher PWM Frequency... 377
Figure 9-10. Interrupt Overrun without Decimation Timing.. 378
Figure 9-11. Interrupt Overrun without Decimation Software Execution Clock Tree..378
Figure 9-12. Interrupt Overrun with Decimation Timing... 379
Figure 9-13. Interrupt Overrun with Decimation Software Execution Clock Tree.. 379
Figure 9-14. ISR Frequency Waveforms... 380
Figure 9-15. Software Execution Clock Tree for ISR Waveforms..380
Figure 9-16. Tick Rate Timing..381
Figure 9-17. Tick Rate Software Execution Clock Tree... 381
Figure 9-18. FAST™ Estimator Tick Rate Timing..382
Figure 9-19. FAST™ Estimator Tick Rate Software Execution Clock Tree... 382
Figure 9-20. Tick Rates Timing..383
Figure 9-21. Tick Rates Software Execution Clock Tree... 383
Figure 9-22. CTRL vs. EST Timing - Tick Rate = 2... 384
Figure 9-23. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 2...384
Figure 9-24. CTRL vs. EST Timing - Tick Rate = 3... 385
Figure 9-25. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 3...385
Figure 9-26. ISR vs. CTRL Timing - Tick Rate = 2.. 386
Figure 9-27. ISR vs. CTRL Software Execution Clock Tree - Tick Rate = 2..386
Figure 9-28. Speed Controller Timing - Tick Rate = 10... 387
Figure 9-29. Speed Controller Software Execution Clock Tree - Tick Rate = 10...387
Figure 9-30. CTRL vs TRAJ Tick Rate Timing...388
Figure 9-31. CTRL vs TRAJ Tick Rate Software Execution Clock Tree.. 388
Figure 9-32. All Tick Rates and Dependencies Timing..389
Figure 9-33. All Tick Rates and Dependencies Software Execution Clock Tree... 389
Figure 9-34. Hardware Decimation Software Execution Clock Tree..390
Figure 9-35. SOC Event Timing...391
Figure 9-36. SOC Event Software Execution Clock Tree.. 391
Figure 9-37. PWM Conversions on Every Second PWM Cycle Timing...392
Figure 9-38. PWM Conversions on Every Second PWM Cycle Software Execution Clock Tree.. 392

Table of Contents www.ti.com

12 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-39. PWM Conversions on Every Third PWM Cycle Timing...393
Figure 9-40. PWM Conversions on Every Third PWM Cycle Software Execution Clock Tree.. 393
Figure 10-1. Startup with Offsets and Rs Recalibration...396
Figure 10-2. Current and Output Voltage for Each State...396
Figure 10-3. Startup with Only Offsets Recalibration...397
Figure 10-4. Offset State Current and Output Voltage...398
Figure 10-5. Startup with Rs Recalibration.. 399
Figure 10-6. Rs Recalibration Current and Output Voltage... 399
Figure 10-7. Startup with No Recalibration..400
Figure 10-8. Rs Recalibration Bypass Current and Output Voltage.. 400
Figure 11-1. USS New Mexico Around the Time it was Retrofitted with PID Control.. 404
Figure 11-2. Parallel Path Topology...405
Figure 11-3. Series Topology... 406
Figure 11-4. Frequency Response...407
Figure 11-5. PI Controller in a Current Controller.. 407
Figure 11-6. Cascaded Speed Control Loop..410
Figure 11-7. Bode Plot... 413
Figure 11-8. Speed Controller Open Loop Magnitude and Phase Response as a Function of δ.. 415
Figure 11-9. Speed Controller Closed Loop Bandwidth as a Function of δ... 416
Figure 11-10. Step Response of Speed Controller as a Function of δ...417
Figure 11-11. Simulated Step Response of Speed Controller Design from the Above Example...419
Figure 11-12. Speed Controller with Filtered Speed Feedback... 419
Figure 11-13. Step Response of a System with Variable Damping and Pole Placement.. 421
Figure 11-14. PI Controller with Static Integrator Clamping...422
Figure 11-15. PI Controller with Dynamic Integrator Clamping..422
Figure 11-16. Example Comparison of Integrator Clamping Techniques...423
Figure 11-17. Average Motor Torque Readings...424
Figure 11-18. Typical FOC Speed Control of a PMSM.. 424
Figure 11-19. Decoupled PI Controllers for a PMSM...426
Figure 11-20. Simulated Effectiveness of Current Regulator Decoupling..427
Figure 11-21. Compensation Block Used for Axis Decoupling with ACIMs... 428
Figure 11-22. Digital Field-Oriented Control System for a PMSM... 429
Figure 11-23. Magnitude and Phase Plots for a Sample-and-Hold..430
Figure 11-24. Effect of Viscous Damping (kv) on the Load Bode Plot... 431
Figure 11-25. Typical Implementation of a Digital Integrator..432
Figure 12-1. Typical Step Responses of Stable and Unstable Systems..437
Figure 12-2. Typical Open Loop Bode of SpinTAC™ Velocity Control.. 438
Figure 12-3. Typical Open Loop Bode of SpinTAC™ Position Control..439
Figure 12-4. Typical Performance Bode of SpinTAC™ Velocity Control..440
Figure 12-5. Typical Performance Bode of SpinTAC™ Position Control... 440
Figure 12-6. Comparison of Bandwidths for SpinTAC™ Velocity Control..442
Figure 12-7. Comparison of Bandwidths for SpinTAC™ Position Control... 443
Figure 12-8. Velocity Tuning Comparison for Applied Torque Disturbance... 447
Figure 12-9. Velocity Tuning Comparison for Removed Torque Disturbance.. 448
Figure 12-10. Velocity Tuning Comparison for Profile Tracking...449
Figure 12-11. PI and SpinTAC™ Comparison for Applied Torque Disturbance Velocity Control...451
Figure 12-12. PI and SpinTAC™ Comparison for Removed Torque Disturbance Velocity Control... 452
Figure 12-13. PI and SpinTAC™ Comparison for Feedforward Impact on Velocity Profile Tracking...................................... 453
Figure 12-14. PI and SpinTAC™ Comparison for Integrator Windup During Disturbance Rejection Velocity Control............ 454
Figure 12-15. PI and SpinTAC™ Comparison for Step Response Velocity Control.. 455
Figure 12-16. Position Tuning Comparison for Applied Torque Disturbance...460
Figure 12-17. Position Tuning Comparison for Removed Torque Disturbance..461
Figure 12-18. Position Tuning Comparison for Profile Tracking.. 462
Figure 12-19. PI and SpinTAC™ Position Control Comparison for Applied Torque Disturbance.. 464
Figure 12-20. PI and SpinTAC™ Position Control Comparison for Removed Torque Disturbance...465
Figure 12-21. PI and SpinTAC™ Comparison for Feedforward Impact on Position Profile Tracking...................................... 466
Figure 12-22. PI and SpinTAC™ Comparison for Low Speed Position Profile Tracking... 467
Figure 12-23. PI and SpinTAC™ Position Control Comparison for Step Response..468
Figure 13-1. Comparison of Curves Provided by SpinTAC™ Position Move.. 470
Figure 13-2. Impact of Jerk on Iq Reference... 471
Figure 13-3. State Transition Map of Example Washing Machine Agitation..479

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 13-4. State Transition Map of Example Garage Door...480
Figure 13-5. State Transition Map of Example Washing Machine...481
Figure 13-6. Velocity Profile During Example Washing Machine...482
Figure 13-7. State Transition Map of Example Vending Machine..483
Figure 14-1. Photograph of Test Fixture.. 499
Figure 14-2. Voltage Feedback Circuit of High-Voltage Kit (TMDSHVMTRPFCKIT).. 501
Figure 14-3. 4-Hz, No-Load to Full-Load Transient Plot..503
Figure 14-4. Flux Plot.. 503
Figure 14-5. Angle Plot.. 504
Figure 14-6. Zoom-in on Angle Plot - Motor Loaded... 504
Figure 14-7. Zoom-in on Angle Plot - Load Removed... 505
Figure 14-8. Speed Plot...505
Figure 14-9. Torque Plot.. 506
Figure 14-10. Iq Current Plot... 506
Figure 14-11. 2-Hz, No-Load to Full-Load Transient Plot.. 507
Figure 14-12. Flux Plot.. 507
Figure 14-13. Angle Plot.. 508
Figure 14-14. Zoom-in on Angle Plot - Increased Motor Load...508
Figure 14-15. Zoom-in on Angle Plot - Decreased Motor Load... 509
Figure 14-16. Speed Plot...509
Figure 14-17. Torque Plot.. 510
Figure 14-18. Iq Current Plot... 510
Figure 14-19. -4 to +4 Hz with Full Load Plot...511
Figure 14-20. Flux Plot.. 512
Figure 14-21. Angle Plot.. 512
Figure 14-22. Zoom-in on Angle Plot...513
Figure 14-23. Speed Plot...513
Figure 14-24. Torque Plot.. 514
Figure 14-25. Iq Current Plot... 514
Figure 14-26. -2 to +2 Hz with Full Load Plot.. 515
Figure 14-27. Flux Plot.. 515
Figure 14-28. Angle Plot.. 516
Figure 14-29. Zoom-in on Angle Plot...516
Figure 14-30. Speed Plot...517
Figure 14-31. Torque Plot.. 517
Figure 14-32. Iq Current Plot... 518
Figure 14-33. Enable Forced Angle...519
Figure 14-34. Standstill to 4 Hz with Full Load Plot... 520
Figure 14-35. Speed Controller Cycle... 520
Figure 14-36. Flux Plot.. 521
Figure 14-37. Angle Plot.. 521
Figure 14-38. Zoom-in on Angle Plot...522
Figure 14-39. Speed Plot...522
Figure 14-40. Torque Plot.. 523
Figure 14-41. Iq Current Plot... 523
Figure 14-42. Standstill to 2 Hz with Full Load Plot... 524
Figure 14-43. Flux Plot.. 524
Figure 14-44. Angle Plot.. 525
Figure 14-45. Zoom-in on Angle Plot...525
Figure 14-46. Speed Plot...526
Figure 14-47. Torque Plot.. 526
Figure 14-48. Iq Current Plot... 527
Figure 14-49. Fast Acceleration Without Alignment Plot... 528
Figure 14-50. Flux Plot.. 529
Figure 14-51. Angle Plot.. 529
Figure 14-52. Zoom-in on Angle Plot...530
Figure 14-53. Speed Plot...530
Figure 14-54. Torque Plot.. 531
Figure 14-55. Iq Current Plot... 531
Figure 14-56. Fastest Motor Startup with Full Load with Motor Alignment Plot...532
Figure 14-57. Zoom-in on the Current Plot.. 533

Table of Contents www.ti.com

14 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 14-58. Flux Plot.. 534
Figure 14-59. Angle Plot.. 534
Figure 14-60. Zoom-in on Angle Plot...535
Figure 14-61. Speed Plot...535
Figure 14-62. Torque Plot.. 536
Figure 14-63. Iq Current Plot... 536
Figure 14-64. Overloading and Motor Overheating Plot.. 537
Figure 14-65. Zoom-in on Overloading and Motor Overheating Plot...537
Figure 14-66. Stator Resistance Plot...538
Figure 14-67. Flux Plot.. 538
Figure 14-68. Angle Plot.. 539
Figure 14-69. Zoom-in on Angle Plot...539
Figure 14-70. Speed Plot...540
Figure 14-71. Torque Plot.. 540
Figure 14-72. Iq Current Plot... 541
Figure 15-1. FAST™ Estimator - Rs Online Highlighted..544
Figure 15-2. Rs Online Recalibration...546
Figure 15-3. Phase Currents at Light Loads - Rs Online Disabled..547
Figure 15-4. Phase Currents at Light Loads - Rs Online Enabled...547
Figure 15-5. Phase Currents with Mechanical Load - Rs Online Disabled..547
Figure 15-6. Phase Currents with Mechanical Load - Rs Online Enabled...548
Figure 15-7. Rs Online and Rs Offline Flowchart.. 549
Figure 15-8. Result of Adding 0.25 A for Rs Online...553
Figure 15-9. Result of Increasing Load for Rs Online..553
Figure 15-10. Maximum Current With Rs Online Enabled...554
Figure 15-11. 2.2-A Motor With an Rs Online Current of 5%...555
Figure 15-12. Current Shape Changes When Frequency Equals Slow Rotating Angle Frequency..556
Figure 15-13. Result of RsOnLine_Angle_Delta_pu..557
Figure 15-14. Resistance Response to Initial Value Difference...558
Figure 15-15. Delta Values Changed to Double Default Value..558
Figure 15-16. Rs Online Varies Depending on Cut-Off Frequency..559
Figure 16-1. FAST™ Estimator with PowerWarp™ Software..564
Figure 16-2. InstaSPIN™ Controller Flowchart - PowerWarp™ Software Executed in Closed Loop......................................565
Figure 16-3. FAST™ Estimator State Machine Flowchart - PowerWarp™ Software Executed in Closed Loop..................... 566
Figure 16-4. PowerWarp™ Software Improves Motor Efficiency...567
Figure 16-5. Current Reduced When PowerWarp™ Software Enabled.. 568
Figure 16-6. Current Slopes When PowerWarp™ Software Disabled...568
Figure 16-7. PowerWarp™ Algorithm Enabled vs. TRIAC Control of Induction Motor.. 569
Figure 16-8. InstaSPIN-FOC™ with PowerWarp™ Software Enabled vs. InstaSPIN-FOC™ with PowerWarp™ Software

Disabled... 570
Figure 17-1. Typical SVM Waveform Sampled by Counter... 572
Figure 17-2. Single-Shunt Current Measurement Circuit With Inverter... 573
Figure 17-3. Single-Shunt Current Measurement When Sampling Times are Long Enough.. 574
Figure 17-4. SVM and Regions Where Current Measurement is Not Allowed.. 574
Figure 17-5. Example of When Current Sampling Window Disappears.. 575
Figure 17-6. Phase Shifting the PWMs to Allow for a Large Enough Current Measurement Window.................................... 575
Figure 17-7. Two-Shunt Measurement Circuit With Inverter..576
Figure 17-8. Sampling Current When Using Two-Shunt Measurement Technique... 577
Figure 17-9. Three-Shunt Measurement Circuit With Inverter...578
Figure 17-10. Using Three-Shunt Current Sampling Technique..578

List of Tables
Table 1-1. FAST™ Estimator vs. Typical Solutions..26
Table 1-2. InstaSPIN-MOTION™ Application Examples... 30
Table 3-1. User Code Header Files... 168
Table 3-2. SpinTAC™ Version Structure..168
Table 3-3. SpinTAC™ Structure Names.. 170
Table 3-4. SpinTAC™ Variables...171
Table 3-5. SpinTAC™ Velocity Control Interface Parameters..173
Table 3-6. SpinTAC™ Velocity Control State Transition.. 174
Table 3-7. SpinTAC™ Velocity Move Interfaces.. 175

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-8. SpinTAC™ Velocity Move State Transition... 178
Table 3-9. SpinTAC™ Velocity Plan Interfaces..179
Table 3-10. SpinTAC™ Velocity Plan State Transition...181
Table 3-11. SpinTAC™ Velocity Plan Additional Functions..182
Table 3-12. SpinTAC™ Velocity Identify Interfaces and Parameters...183
Table 3-13. SpinTAC™ Velocity Identify State Transition.. 185
Table 3-14. SpinTAC™ Position Convert Interfaces and Parameters..186
Table 3-15. SpinTAC™ Position Convert State Transition...187
Table 3-16. SpinTAC™ Position Control Interface Parameters... 188
Table 3-17. SpinTAC™ Position Control State Transition..190
Table 3-18. SpinTAC™ Position Move Interfaces..191
Table 3-19. SpinTAC™ Position Move State Transition...193
Table 3-20. SpinTAC™ Position Plan Interfaces..195
Table 3-21. SpinTAC™ Position Plan State Transition.. 196
Table 3-22. SpinTAC™ Position Plan Additional Functions...197
Table 4-1. ACIM Motor Parameters in user.h...226
Table 5-1. hal.c Configuring the PLL..236
Table 5-2. Maximum SVM Input Ranges... 237
Table 6-1. Controller (CTRL) States.. 254
Table 6-2. State Transitions for Controller (CTRL) State Diagram...255
Table 6-3. Estimator (EST) States... 256
Table 6-4. State Transitions for Estimator (EST) State Diagram... 257
Table 6-5. Listing of PMSM and ACIM EST States..259
Table 6-6. PMSM Motor Parameters in user.h...301
Table 7-1. SpinTAC™ Velocity Identify Error Code..320
Table 8-1. InstaSPIN-Enabled Devices..328
Table 8-2. Allocated Memory for InstaSPIN-FOC™ Library.. 336
Table 8-3. ROM Table Addresses.. 337
Table 8-4. Total Memory Usage of InstaSPIN-FOC™ for F2806xF and F2805xF Devices... 339
Table 8-5. Total Memory Usage of InstaSPIN-FOC™ for F2802xF Devices... 339
Table 8-6. Code Size and RAM Usage for SpinTAC™ Components...339
Table 8-7. Stack Utilization of SpinTAC™ Components + InstaSPIN-FOC™..339
Table 8-8. CPU Execution Time Wait States (F2806xF and F2806xM Devices)... 340
Table 8-9. CPU Execution Time Wait States (F2805xF and F2805xM Devices)... 340
Table 8-10. CPU Execution Time Wait States (F2802xF Devices).. 340
Table 8-11. Full Implementation Memory Usage Executing in RAM..342
Table 8-12. Full Implementation Executing in RAM... 342
Table 8-13. Minimum Implementation Memory Usage Executing in RAM...343
Table 8-14. Minimum Implementation Executing in RAM.. 343
Table 8-15. Full Implementation Memory Usage Executing in FLASH.. 344
Table 8-16. Full Implementation Executing in FLASH... 344
Table 8-17. Minimum Implementation Memory Usage Executing in FLASH... 345
Table 8-18. Minimum Implementation Executing in FLASH...345
Table 8-19. Full Implementation Executing from ROM and FLASH...346
Table 8-20. Minimum Implementation Executing from ROM and FLASH..346
Table 8-21. Full Implementation Executing from ROM and FLASH...347
Table 8-22. Minimum Implementation Executing from ROM and FLASH..347
Table 8-23. CPU Cycle Utilization for SpinTAC™ with Library Executing in RAM on F2806xM Devices................................ 350
Table 8-24. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2806xM Devices.......................................352
Table 8-25. Full Implementation Executing from ROM and FLASH...360
Table 8-26. Full Implementation Executing from ROM and FLASH...361
Table 8-27. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2805xM Device...362
Table 8-28. Minimum Implementation Memory Usage Executing in FLASH... 364
Table 8-29. Minimum Implementation Executing in FLASH...364
Table 8-30. Minimum Implementation Executing from ROM, RAM, and FLASH...365
Table 8-31. Minimum Implementation Executing from ROM, RAM and FLASH..365
Table 8-32. Pin Utilization Per Motor... 366
Table 12-1. Time Domain Common Criteria...441
Table 12-2. SpinTAC™ Velocity Control ERR_ID Code...445
Table 12-3. SpinTAC™ Position Control ERR_ID Code.. 459
Table 12-4. InstaSPIN-MOTION™ Position Control Advantage.. 463

Table of Contents www.ti.com

16 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 13-1. SpinTAC™ Velocity Move ERR_ID Code... 473
Table 13-2. SpinTAC™ Position Move ERR_ID Code...476
Table 13-3. Memory Requirements for SpinTAC™ Velocity Plan Elements.. 478
Table 13-4. SpinTAC™ Velocity Plan ERR_ID...487
Table 13-5. SpinTAC™ Velocity Plan ERR_code.. 488
Table 13-6. SpinTAC™ Position Plan ERR_ID.. 493
Table 13-7. SpinTAC ™Position Plan ERR_code..494
Table 15-1. Temperature Sensor Implementation Values.. 561
Table 17-1. The Eight SVM Switching States.. 573
Table 17-2. Current and Voltage Ratings for TI Development Kits.. 579
Table 17-3. Recommended Op-Amp Slew Rates for Corresponding Number of Sense Resistors... 579
Table 18-1. Pins Required to Connect Quadrature Encoder to eQEP Module.. 582
Table 18-2. SpinTAC™ Position Convert ERR_ID Code... 585

www.ti.com Table of Contents

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table of Contents www.ti.com

18 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

About This Manual
C2000™ InstaSPIN™ Device Guide

Device Families InstaSPIN Library
Version

Solution
Support Software Package User's Guide

TMS320F2806xF V1p6 InstaSPIN-FOC MotorWare This Guide

TMS320F2086xM V1p6 InstaSPIN-
MOTION MotorWare This Guide

TMS320F2802xF V1p7 InstaSPIN-FOC MotorWare This Guide

TMS320F2805xF V1p7 InstaSPIN-FOC MotorWare This Guide

TMS320F2805xM V1p7 InstaSPIN-
MOTION MotorWare This Guide

TMS320F28004xC V2p0 InstaSPIN-FOC C2000Ware MotorControl SDK Found within C2000Ware
MotorControl SDK

Welcome and thank you for selecting Texas Instrument's InstaSPIN™ solutions. This document will guide you
through the technical details of InstaSPIN software enabling you to integrate this solution into your application.
The structure of this document can be summarized as:

• Introduction to
– InstaSPIN-FOC™ and FAST™

– InstaSPIN-MOTION™ and SpinTAC™

• Running a motor immediately with TI hardware and software
• Understand software details, from reviewing API function calls to state diagrams and tuning the speed and

position control loops
• Understanding hardware aspects that directly impact InstaSPIN's performance.

All of the above are provided to help you develop a successful product using InstaSPIN-FOC or InstaSPIN-
MOTION software. Example projects (labs) are a key part of this success and are designed to relate specifically
with the topics in this document. They are intended for you to not only experiment with InstaSPIN but to also use
as reference for your design. The most up-to-date InstaSPIN-FOC and InstaSPIN-MOTION solutions and design
resources, along with practical videos, can be found at: TI InstaSPIN™ motor control solutions.

Definition of terms that are used throughout this document can be found in Appendix A. The most common terms
used are the following:

• FOC:
– Field-Oriented Control

• InstaSPIN-FOC:
– Complete sensorless FOC solution provided by TI on-chip in ROM on select devices (FAST observer,

FOC, speed and current loops), efficiently controlling your motor without the use of any mechanical rotor
sensors.

Preface
Read This First

www.ti.com Read This First

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

19

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/MOTORWARE
http://www.ti.com/tool/MOTORWARE
http://www.ti.com/tool/MOTORWARE
http://www.ti.com/tool/MOTORWARE
http://www.ti.com/tool/MOTORWARE
http://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
http://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
http://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/applications/instaspin.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

• FAST
– Unified observer structure which exploits the similarities between all motors that use magnetic flux for

energy transduction, automatically identifying required motor parameters and providing motor feedback
signals: Flux, flux Angle, motor shaft Speed, and Torque.

• SpinTAC Motion Control Suite:
– Includes an advanced speed and position controller, a motion engine, and a motion sequence planner.

The SpinTAC disturbance-rejecting speed controller proactively estimates and compensates for system
disturbances in real-time, improving overall product performance. The SpinTAC motion engine calculates
the ideal reference signal (with feed forward) based on user-defined parameters. SpinTAC supports the
standard industry curves, and LineStream's proprietary “smooth trajectory” curve. The SpinTAC motion
sequence planner operates user-defined state transition maps, making it easy to design complex motion
sequences.

• InstaSPIN-MOTION:
– A comprehensive sensorless or sensored FOC solution for motor-, motion-, speed-, and position-control.

This solution delivers robust system performance at the highest efficiency for motor applications that
operate in various motion state transitions. InstaSPIN-MOTION includes the FAST unified software
observer, combined with SpinTAC Motion Control Suite from LineStream Technologies.

– InstaSPIN-MOTION, or specifically, the SpinTAC Motion Control Suite, is no longer recommended for new
designs and will not have application support. For motion control solutions please see the latest examples
released in MotorControl software development kit (SDK) for C2000™ MCUs.

• MotorWare™ software:
– TI supplied scalable software architecture for motor control, of which InstaSPIN-FOC is a part.

The InstaSPIN-FOC and InstaSPIN-MOTION software is available on the TMS320F2806xF, TMS320F2086xM,
TMS320F2802xF, TMS320F2805xF, and TMS320F2805xM device families with plans to release on more
devices in the future.

For more details, see the device-specific data sheets and the device-specific technical reference manuals
(TRMs). The InstaSPIN TRMs have the latest performance data resulting from tests conducted by TI motor labs.
This document differs in that it is a functional "How-To" guide for using InstaSPIN-FOC or InstaSPIN-MOTION in
your application.

Whether you are using TI supplied inverters and motors or using your own, this document helps you learn about
this new and empowering solution from TI.

Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.

Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.

Trademarks
InstaSPIN™, InstaSPIN-FOC™, FAST™, InstaSPIN-MOTION™, C2000™, MotorWare™, TI E2E™, PowerWarp™,
NexFET™, Code Composer Studio™, controlSUITE™, are trademarks of Texas Instruments.
SpinTAC™ is a trademark of LineStream Technologies.
All trademarks are the property of their respective owners.

Read This First www.ti.com

20 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.linestream.com/
https://www.ti.com/tool/C2000WARE-MOTORCONTROL-SDK
https://www.ti.com/lit/pdf/SLYZ022
https://e2e.ti.com
https://www.ti.com/corp/docs/legal/termsofuse.shtml
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

This chapter provides an overview of the InstaSPIN-FOC and FAST estimator and InstaSPIN-MOTION and
SpinTAC motion control suite solutions.

1.1 An Overview of InstaSPIN-FOC™ and FAST™.. 22
1.2 An Overview of InstaSPIN-MOTION™ and SpinTAC™..29

Chapter 1
Introduction

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

21

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1 An Overview of InstaSPIN-FOC™ and FAST™
TMS320F2806xF (69F, 68F, and 62F — 80- or 100-pin packages), TMS320F2802xF (26F and 27F — 48-pin
package), and TMS320F2805xF (54F and 52F, — 80-pin packages) devices are the first from Texas Instruments
that include the FAST (Figure 1-1) estimator and additional motor control functions needed for cascaded speed
and torque loops for efficient three-phase field-oriented motor control (FOC).

Together — with F2806xF, F2805xF, and F2802xF peripheral drivers in user code — they enable a sensorless
(also known as self-sensing) InstaSPIN-FOC solution that can identify, tune the torque controller and efficiently
control your motor in minutes, without the use of any mechanical rotor sensors. This entire package is called
InstaSPIN-FOC, which is made available in ROM. For the F2806xF devices, the ROM contains the FAST
estimator and the FOC blocks; for the F2802xF devices, only the FAST estimator is in ROM; and for the
F2805xF devices, the ROM contains the FAST estimator and the FOC blocks. In the case of the F2806xF
devices, the user also has the option of executing all FOC functions in user memory (FLASH or RAM), which
makes calls to the proprietary FAST estimator firmware in ROM. In the case of the F2805xF devices, the user
also has the option of executing all FOC functions in user memory (FLASH or RAM), which makes calls to the
proprietary FAST estimator firmware in ROM. In the case of the F2802xF devices, all the FOC blocks are loaded
and executed from user's memory (FLASH or RAM) while the estimator is run from ROM.InstaSPIN-FOC was
designed for flexibility, to accommodate a range of system software architectures. The range of this flexibility is
shown in Figure 1-2 and Figure 1-3.

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

Vbus

Vr_in

Vt_in

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM

Rs

a

Rr

a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a

Enable Force Angle Startup

Motor Phase

Currents

Motor Phase

Voltages

Bus Voltage

Figure 1-1. FAST™ - Estimating Flux, Angle, Speed, Torque - Automatic Motor Identification

Introduction www.ti.com

22 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1.1 FAST™ Estimator Features

• Unified observer structure which exploits the similarities between all motors that use magnetic flux for energy
transduction
– Both synchronous (BLDC, SPM, IPM), and asynchronous (ACIM) control are possible
– Salient compensation for Interior Permanent Magnet motors: observer tracks rotor flux and angle correctly

when Ls-d and Ls-q are provided
• Unique, high quality motor feedback signals for use in control systems

– High-quality Flux signal for stable flux monitoring and field weakening
– Superior rotor flux Angle estimation accuracy over wider speed range compared to traditional observer

techniques (independent of all rotor parameters for ACIM)
– Real-time low-noise motor shaft Speed signal
– Accurate high bandwidth Torque signal for load monitoring and imbalance detection

• Angle estimator converges within first cycle of the applied waveform, regardless of speed
• Stable operation in all power quadrants, including generator quadrants
• Accurate angle estimation at steady state speeds below 1 Hz (typ.) with full torque
• Angle integrity maintained even during slow speed reversals through zero speed
• Angle integrity maintained during stall conditions, enabling smooth stall recovery
• Motor Identification process measures required electrical motor parameters of unloaded motor in under 2

minutes (typ.)
• “On-the-fly” stator resistance recalibration (online Rs) tracks stator resistance changes in real time, resulting

in robust operation over temperature. This feature can also be used as a temperature sensor of the motor's
windings (basepoint calibration required)

• Superior transient response of rotor flux angle tracking compared to traditional observers
• PowerWarp™ software adaptively reduces current consumption to minimize the combined (rotor and stator)

copper losses without compromising ACIM output power levels

1.1.2 InstaSPIN-FOC™ Solution Features

• Includes FAST estimator to measure rotor flux (magnitude and angle) in a sensorless FOC system
• Automatic torque (current) loop tuning, with option for user adjustments
• Automatic configuration of speed loop gains (Kp and Ki) provides stable operation for most applications, user

adjustments required for optimum transient response
• Automatic or manual field weakening and field boosting
• Bus Voltage compensation
• Automatic offset calibration insures quality samples of feedback signals

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

23

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1.3 InstaSPIN-FOC™ Block Diagrams

HAL_readAdcData

User_SpdRef

User_IqRef

User_IdRef

Angle

Speed

Flux

Torque

Enable Motor Identification

�v��o��W}Á��t���¡�

Motor Type

Enable Rs Online Recalibration

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

Enable Force Angle Startup

Torque

Mode

HAL_acqAdcInt

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

CTRL_run

+
+

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

EST_run

ROM ROM

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

CTRL_setup

PWM

Driver

ADC

Driver

HAL_run

FLASH/RAM

FLASH/RAM

Figure 1-2. Block Diagram of Entire InstaSPIN-FOC™ Package in ROM (except F2802xF devices)

Introduction www.ti.com

24 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

HAL_acqAdcInt

CTRL_run

CTRL_setup

Figure 1-3. Block Diagram of InstaSPIN-FOC™ in User Memory, with Exception of FAST™ in ROM

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

25

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1.4 Comparing FAST™ Estimator to Typical Solutions

Table 1-1. FAST™ Estimator vs. Typical Solutions

Topic
Typical Software Sensors and
FOC Solutions FAST Estimator and InstaSPIN-FOC Solution

Electrical Motor
Parameters

Motor-model based observers heavily
dependent on motor parameters

Relies on fewer motor parameters. Off-line parameter identification
of motor – no data sheet required. On-line parameter monitoring and
re-estimation of stator resistance.

Estimator Tuning Complex observer tuning done multiple times
for speed/loads for each motor

No estimator tuning required. Once motor parameters are identified,
it works the same way every time across speed/torque dynamics.

Estimator Accuracy Angle-tracking performance is typically only
good at over 5-10Hz with challenges at
higher speeds and compensation for field
weakening; Dynamic performance influenced
by hand tuning of observer; Motor stalls
typically crash observer

FAST provides reliable angle tracking that converges within one
electrical cycle of the applied waveform, and can track at less
than 1-Hz frequency (dependent on quality and resolution of analog
sensing). Angle tracking exhibits excellent transient response (even
with sudden load transients that can stall the motor, thus enabling a
controlled restart with full torque).

Start-up Difficult or impossible to start from zero
speedObserver feedback at zero speed is not
stable, resulting in poor rotor angle accuracy
and speed feedback

InstaSPIN-FOC includes:
• Zero Speed start with forced-angle
• 100% torque at start-up
• FAST rotor flux angle tracking converges within one electrical

cycle

FAST is completely stable through zero speed, providing accurate
speed and angle estimation.

Current Loop Tuning FOC current control is challenging –
especially for novices

Automatically sets the initial tuning of current controllers based
on the parameters identified. User may update gains or use own
controllers if desired. The identification process to fully tune the
observer and torque controller takes less than 2 minutes.

Feedback Signals System offsets and drifts are not managed FAST includes automatic hardware/software calibration and offset
compensation. FAST requires 2-phase currents (3 for 100%
and over-modulation), 3-phase voltages to support full dynamic
performance, DCbus voltage for ripple compensation in current
controllers FAST includes an on-line stator resistance tracking
algorithm.

Motor Types Multiple techniques for multiple motors:
standard back-EMF, Sliding Mode, Saliency
tracking, induction flux estimators, or “mixed
mode” observers

FAST works with all 3-phase motor types, synchronous and
asynchronous, regardless of load dynamics. Supports salient IPM
motors with different Ls-d and Ls-qIncludes PowerWarp for induction
motors = energy savings.

Field-Weakening Field-weakening region challenging for
observers – as Back-EMF signals grow too
large, tracking and stability effected

FAST estimator allows easy field weakening or field boosting
applications due to the stability of the flux estimation in a wide range.

Motor Temperature Angle tracking degrades with stator
temperature changes

Angle estimation accuracy is improved from online stator resistance
recalibration.

Speed Estimation Poor speed estimation causes efficiency
losses in the FOC system and less stable
dynamic operation

High quality low noise Speed estimator, includes slip calculation for
induction motors.

Torque Estimation Torque and vibration sensors typically
required

High bandwidth motor Torque estimator.

Introduction www.ti.com

26 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1.5 FAST™ Provides Sensorless FOC Performance
1.1.5.1 FAST Estimator Replaces Mechanical Sensor

Field Oriented Control (FOC) of an electric motor results in superior torque control, lower torque ripple, and in
many cases, improved efficiency compared to traditional AC control techniques. For best dynamic response,
rotor flux referenced control algorithms are preferred to stator flux referenced techniques. To function correctly,
these systems need to know the spacial angle of the rotor flux with respect to a fixed point on the stator frame
(typically the magnetic axis of the phase A stator coil). This has traditionally been accomplished by a mechanical
sensor (for example, encoder or resolver) mounted to the shaft of the motor. These sensors provide excellent
angle feedback, but inflict a heavy toll on the system design.

There are six major system impacts resulting from sensored angle feedback, illustrated in Figure 1-4:
1. The sensor itself is very expensive (often over $2500 for a good resolver and several dollars for high volume

integrated encoders)
2. The installation of the sensor requires skilled assembly, which increases labor costs
3. The sensor often requires separate power supplies, which increases system costs and reduces reliability
4. The sensor is the most delicate component of the system, which impacts system reliability, especially in

harsh real-world applications
5. The sensor feedback signals are brought back to the controller board via connectors, which also increases

system costs and can significantly reduce reliability, depending on the type of connector
6. The cabling required to bring the sensor signals back to the controller creates multiple challenges for the

system designer:
• Additional costs for the cable, especially if there is a substantial distance between the motor and

controller
• Susceptibility to sources of noise, which requires adding expense to the cable with special shielding or

twisted pairs
• The sensor and associated cabling must be earth grounded for safety reasons. This often adds additional

cost to isolate these signals, especially if the processor which processes the sensor signals is not earth
grounded

Texas Instruments

Dave ¶s
Motor Control

Center

Texas Instruments

Dave ¶s
Motor Control

Center

+V sensor

Noise SusceptibilityNoise Susceptibility

Sensor IssuesSensor Issues

Sensor CablingSensor Cabling

Sensor ConnectorSensor Connector

Sensor Power SuppliesSensor Power Supplies-V sensor

Figure 1-4. Sensored FOC System

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

27

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

In some applications where the motor is enclosed (for example, compressors), a sensored solution is impractical
due to the cost of getting the feedback wires through the casing. For these reasons, designers of FOC systems
are highly motivated to eliminate the sensor altogether, and obtain the rotor flux angle information by processing
signals which are already available on the controller circuit board. For synchronous machines, most techniques
involve executing software models of the motor being controlled to estimate the back-EMF waveforms (rotor
flux), and then processing these sensed waveforms to extract an estimation of the rotor shaft angle, and a
derivation of its speed. For asynchronous machines the process is a bit more complicated, as this software
model (observer) must also account for the slip which exists between the rotor and rotor flux.

However, in both cases, performance suffers at lower speeds due to the amplitude of the back-EMF waveforms
being directly proportional to the speed of the motor (assuming no flux weakening). As the back-EMF amplitude
sinks into the noise floor, or if the ADC resolution cannot faithfully reproduce the small back-EMF signal, the
angle estimation falls apart, and the motor drive performance suffers.

To solve the low-speed challenge, techniques have been created that rely on high frequency injection to
measure the magnetic irregularities as a function of angle (that is, magnetic saliency) to allow accurate angle
reconstruction down to zero speed. However, this introduces another set of control problems. First, the saliency
signal is non-existent for asynchronous motors and very small for most synchronous machines (especially
those with surface mount rotor magnets). For the motors that do exhibit a strong saliency signal (for example,
IPM motors), the signal often shifts with respect to the rotor angle as a function of loading, which must be
compensated. Finally, this angle measurement technique only works at lower speeds where the fundamental
motor frequency does not interfere with the interrogation frequency. The control system has to create a
mixed-control strategy, using high-frequency injection tracking at low speed, then move into Back-EMF based
observers at nominal and high speeds.

With any technique, the process of producing a stable software sensor is also extremely challenging, as this
motor model (observer) is essentially its own control system that needs to be tuned per motor across the range
of use. This tuning must be done with a stable forward control loop. Needed is a stable torque (and usually
speed) loop to tune the observer, but how do you pre-tune your forward control without a functioning observer?
One option is to use a mechanical sensor for feedback to create stable current and speed loops, and then tune
your software sensor in parallel to the mechanical sensor. However, the use of a mechanical sensor is often not
practical. This problem has delayed market use of software sensors for sensorless FOC control. 

In summary, these existing solutions all suffer from various maladies including:
• Poor low speed performance (back-EMF and SMO)
• Poor high speed performance (saliency observers)
• Poor dynamic response
• Calculation intensive (multi-modal observers)
• Parameter sensitivity
• Requirement for observer tuning

The most recent innovation in the evolution of sensorless control is InstaSPIN-FOC. Available as a C-callable
library embedded in on-chip ROM on several TI processors, InstaSPIN-FOC was created to solve all of these
challenges, and more. It reduces system cost and development time, while improving performance of three-
phase variable speed motor systems. This is achieved primarily through the replacement of mechanical sensors
with the proprietary FAST estimator. FAST is an estimator that:
• Works efficiently with all three phase motors, taking into account the differences between synchronous/

asynchronous, salient/non-salient, and permanent/non-permanent/induced magnets
• Dramatically improves performance and stability across the entire operating frequency and load range for a

variety of applications
• Removes the manual tuning challenge of traditional FOC systems:

– observers and estimators, completely removes required tuning
– current loop regulators, dramatically reduces required tuning

• Eliminates or reduces motor parameter variation effects
• Automatically designs a stable and functional control system for most motors in under two minutes.

Introduction www.ti.com

28 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.1.5.2 Rotor Angle Accuracy Critical for Performance

Why has the need for a precise estimation of the rotor flux angle driven many to use mechanical sensors?

For efficient control of three-phase motors, the objective is to create a rotating flux vector on the stator aligned to
an ideal orientation with respect to the rotor in such a way that the rotor field follows the stator field while creating
necessary torque and using the minimum amount of current.

• Stator: stationary portion of the motor connected to the microprocessor-controlled inverter
• Ideal Orientation: 90 degrees for non-salient synchronous; slightly more for salient machines, and slightly less

in asynchronous machines since part of the current vector is also used to produce rotor flux
• Rotor: rotating portion of the motor, produces torque on the shaft to do work

To achieve this, you need to extract the following information from the motor:
• Current being consumed by each phase
• Precise relative angle of the rotor flux magnetic field (usually within ±3 electrical degrees), so you can orient

your stator field correctly
• For speed loops, you also need to know rotor speed.

1.2 An Overview of InstaSPIN-MOTION™ and SpinTAC™
InstaSPIN-MOTION [TMS320F2806xM (69M and 68M — 80- or 100-pin packages) and TMS320F2805xM (54M
and 52M, — 80-pin packages)] is the first offering from Texas Instruments to combine TI's 32-bit C2000™

microcontrollers with comprehensive motor-, motion-, speed-, and position-control software. InstaSPIN-MOTION
delivers robust velocity and position control at the highest efficiency for motor applications that operate in various
motion state transitions. InstaSPIN-MOTION is your own motion control expert, on a single chip.

InstaSPIN-MOTION is a sensorless or sensored FOC solution that can identify, tune, and control your motor
in minutes. InstaSPIN-MOTION features the FAST premium software sensor and the SpinTAC Motion Control
Suite (Figure 1-5). The core algorithms are embedded in the read-only-memory (ROM) on TI's 32-bit C2000
microcontrollers (MCUs).

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

29

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

^�]vd��¡�

Velocity

Control

^�]vd��¡�

Velocity

Move

Z
a

ROM

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡�

Software Encoder

Rotor Flux Observer
Motor Parameters ID

HAL_ run

+
+

User_IqRef

User_IdRef

Vq

Vd

Vr_ out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ ref

Id

Zref

Id

Iq

Ir_in

It_ in

Angle

S peed

Flux

T orque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_ run

ROM FLASH / RAM

FLASH / RAM

Rs

a

Rr
a

I rated

a
\rated
a

Lsd

a

Lsq
a

T
a

Za

Wa

\a

Wa

Za

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH / RAM
HAL_ readAdcData

HAL_ acqAdcInt

CTRL_run

CTRL_ setup

ROM

STVELMOVE _run STVELCTL _run

^�]vd��¡�D}�]}v�

Control Suite

^�]vd��¡�

Velocity

Plan

Motion

Sequence

ZSP

FLASH / RAM

^�]vd��¡�

Velocity
Identify

ROM

STVELID _ run

Zlim

..
Zlim

.

Velocity Mode

STVELPLAN _ run

User_SpdRef
User_ SpdRef

Zref

Zref
.

InstaSPIN¡ -FOC

InstaSPIN¡ -MOTION

PWM

Driver

ADC

Driver

Figure 1-5. InstaSPIN-MOTION™ = C2000 Microcontroller + FAST™ Software Sensor (optional) + Auto-
Tuned Inner Torque Controller + SpinTAC™ Motion Control Suite

InstaSPIN-MOTION is ideal for applications that require accurate speed and position control, minimal
disturbance, or undergo multiple state transitions or experience dynamic speed or load changes.

Table 1-2 provides examples of applications that will most benefit from InstaSPIN-MOTION.

Table 1-2. InstaSPIN-MOTION™ Application Examples
Application Characteristics Examples
Accurate speed control Industrial fans

Conveyor systems
Elevators/escalators
Automotive body parts (electric windows, sunroofs)
Optical disc drives/hard drives
Medical mixing

Accurate position control Surveillance systems
Packaging systems
Medical robots
Gimbal systems
Textile/Sewing machines

Minimal disturbance Dental tools
Power tools
Security gates and doors

Introduction www.ti.com

30 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 1-2. InstaSPIN-MOTION™ Application Examples (continued)
Application Characteristics Examples
Undergoes multiple state
transitions/dynamic changes

HVAC pumps, fans and blowers
Generators
Air conditioning compressors
Washing machines
Exercise equipment
Medical pumps

1.2.1 InstaSPIN-MOTION™ Key Capabilities and Benefits

InstaSPIN-MOTION replaces inefficient, older design techniques with a solution that maximizes system
performance and minimizes design effort. By embedding the motor expertise on the chip, InstaSPIN-MOTION
enables users to focus on optimizing their application rather than struggling with motion control.

InstaSPIN-MOTION provides the following core capabilities:
• The FAST unified software observer, which exploits the similarities between all motors that use magnetic flux

for energy transduction. The FAST estimator measures rotor flux (magnitude, angle, and speed) as well as
shaft torque in a sensorless FOC system.

• Motor parameter identification, used to tune the FAST software observer and initialize the innermost current
(torque) PI controllers for Iq and Id control of the FOC system.

• SpinTAC, a comprehensive motion control suite (see Figure 1-6) from LineStream Technologies, simplifies
tuning and ensures optimal performance across dynamic speed and position ranges.

SpinTAC Motion

Control Suite

SpinTAC

Plan

SpinTAC

Move

SpinTAC

Control

SpinTAC

Identify

Motion

System

Iq

Reference

Figure 1-6. SpinTAC™ Motion Control Suite Components

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

31

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.2.1.1 The FAST Unified Software Observer

The FAST unified observer structure exploits the similarities between all motors that use magnetic flux for energy
transduction:
• Supports both synchronous (BLDC, SPM, IPM), and asynchronous (ACIM) control.
• Provides salient compensation for interior permanent magnet motors: observer tracks rotor flux and angle

correctly when Ls-d and Ls-q are provided.

FAST offers unique, high-quality motor feedback signals for control systems:
• High-quality Flux signal for stable flux monitoring and field weakening.
• Superior rotor flux Angle estimation accuracy over wider speed range compared to traditional observer

techniques independent of all rotor parameters for ACIM.
• Real-time low-noise motor shaft Speed signal.
• Accurate high-bandwidth Torque signal for load monitoring and imbalance detection.

FAST replaces mechanical encoders and resolvers and accelerates control system design:
• Angle estimator converges within first cycle of the applied waveform, regardless of speed.
• Stable operation in all power quadrants, including generator quadrants.
• Accurate angle estimation at steady state speeds below 1 Hz (typ) with full torque.
• Angle integrity maintained even during slow speed reversals through zero speed.
• Angle integrity maintained during stall conditions, enabling smooth stall recovery.
• Motor identification measures required electrical motor parameters of unloaded motor in under 2 minutes

(typ).
• On-the-fly stator resistance recalibration (online Rs) tracks stator resistance changes in real time, resulting

in robust operation over temperature. This feature can also be used as a temperature sensor of the motor's
windings (basepoint calibration required).

• Superior transient response of rotor flux angle tracking compared to traditional observers.
• PowerWarp™ software adaptively reduces current consumption to minimize the combined (rotor and stator)

copper losses to the lowest, without compromising ACIM output power levels.

1.2.1.2 The SpinTAC Motion Control Suite

SpinTAC minimizes the time you spend defining how you want your motor to spin and ensures that your motor
runs at its optimal level for ideal performance. Key benefits include:

• Simplified Tuning - Tune your system for the entire position and speed operating range with a single,
easy-to-evaluate parameter.

• Intuitive Trajectory Planning - Easily design and execute complex motion sequences.
• Mechanically Sound Movement - Optimize your transitions between speeds based on your system's

mechanical limitations.
• Ideal Control - Benefit from the most accurate speed and position control on the market, based on

LineStream's patented Active Disturbance Rejection Control.

There are four components that comprise the SpinTAC Motion Control Suite: Identify, Control, Move, and Plan.
Each of these components exist for both the Velocity and Position solution.

1.2.1.2.1 IDENTIFY

SpinTAC Identify estimates inertia (the resistance of an object to rotational acceleration around an axis).
The greater the system inertia, the greater the torque needed to accelerate or decelerate the motor. The
SpinTAC controller uses the system's inertia value to provide the most accurate system control. SpinTAC Identify
automatically measures system inertia by spinning the motor in the application and measuring the feedback.

1.2.1.2.2 CONTROL

SpinTAC Control is an advanced speed and position controller featuring Active Disturbance Rejection
Control (ADRC), which proactively estimates and compensates for system disturbance, in real time. SpinTAC
automatically compensates for undesired system behavior caused by:
• Uncertainties (for example, resonant mode)
• Nonlinear friction

Introduction www.ti.com

32 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

• Changing loads
• Environmental changes

SpinTAC Control presents better disturbance rejection and trajectory tracking performance than a PI controller
and can tolerate a wide range of inertia change. This means that SpinTAC improves accuracy and system
performance and minimizes mechanical system duress.

With single coefficient tuning, the SpinTAC controller allows users to quickly test and tune their velocity and
position control from soft to stiff response. This single gain (bandwidth) typically works across the entire variable
speed, position and load range of an application, reducing complexity and system tuning time typical in multi-
variable PI-based systems. A single parameter controls both position and speed. These systems often require a
dozen or more tuned coefficient sets to handle all possible dynamic conditions.

The InstaSPIN-MOTION (F2805xM and F2806xM) GUI (see Figure 1-7), in conjunction with the InstaSPIN-
MOTION Quick Start Guide, allow users to quickly evaluate InstaSPIN-MOTION (speed control) using TI's
evaluation kits, the TI provided motors, or their own motor. The GUI is designed to quickly guide you through
the InstaSPIN-MOTION evaluation process. You can obtain the GUI, free of charge, from Motor Kit Application
Software for TMDSCNCD28069MISO controlCARDs. Once you determine that InstaSPIN-MOTION is right for
your application, use the MotorWare-based projects, in conjunction with this document to design your project
and conduct performance testing.

Figure 1-7. Simple Tuning Interface

1.2.1.2.3 MOVE

SpinTAC Move provides an easy way to smoothly transition from one speed or position to another by computing
the fastest path between Point A and Point B. SpinTAC Move generates a profile based on starting velocity or
position, desired velocity or position, and configured system limitations for acceleration and jerk. Jerk represents
the rate of change of acceleration. A larger jerk will increase the acceleration at a faster rate. Steps, or sharp
movement between two points, can cause systems to oscillate. The bigger the step, the greater this tendency.
Control over jerk can round the velocity corners, reducing oscillation. As a result, acceleration can be set higher.
Controlling the jerk in your system will lead to less mechanical stress on your system components and can lead
to better reliability and less failing parts.

As opposed to pre-defined lookup tables, SpinTAC Move runs on the processor, consuming less memory than
traditional solutions. Besides the industry standard trapezoidal curve and s-Curve, SpinTAC also provides a
proprietary st-Curve, which is even smoother than s-Curve and allows users to limit the jerk of the motion.

Figure 1-8 describes the curves that are available for use in SpinTAC Move. The LineStream proprietary
st-Curve provides the smoothest motion by smoothing out the acceleration of the profile. For most applications
the st-Curve represents the best motion profile.

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

33

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/motorkitscncd69miso
http://www.ti.com/tool/motorkitscncd69miso
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 1-8. Curves Available in SpinTAC Move

1.2.1.2.4 PLAN

SpinTAC Plan provides easy design and execution of complex motion sequences. The trajectory planning
feature allows users to quickly build various states of motion (point A to point B) and tie them together with
state based logic. SpinTAC Plan can be used to implement a motion sequence for nearly any application. Figure
1-9 displays the motion sequence for a washing machine and Figure 1-10 displays the motion sequence for
a garage door. Both of these were easily designed using SpinTAC Plan. Once designed, the trajectories are
directly embedded into the C code on the microcontroller.

Wash Stage

Fill Stage

Drain Stage

Dry Stage

Agitation

State 1

Agitation

State 2

Dry

State

Drain

State

Fill

State

Agitation

Counter > 0

Drain_Flag == 0

Drain_Flag == 1

Fill_Flag == 0

Agitation

Counter

decreases by 1

Idle Stage

Idle

State

Start Button not

pushed

Start

Button

pushed

Agitation

Counter <= 0

Set Agitation

Counter Fill_Valve

Open

Fill_Valve

Closed

Drain_Valve

Open

Drain_Valve

Closed

Fill_Flag == 1

A Variable

Transition

State

Action

Condition

Figure 1-9. State Transition Map for a Washing Machine

Introduction www.ti.com

34 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Down Stage

Down

State

Idle Stage

Idle

State
Button == 1

&&

Up Sensor == 1

A Variable

Transition

State

Action

Condition

Up Stage

Up State
Button == 1

Down Sensor == 1

Up Sensor == 1
Button == 1

&&

Down Sensor == 1

Button == 1

Figure 1-10. State Transition Map for a Garage Door System

1.2.1.3 Additional InstaSPIN-MOTION Features

• Automatic torque (current) loop tuning with option for user adjustments
• Automatic or manual field weakening and field boosting
• Bus voltage compensation
• Automatic offset calibration ensures quality samples of feedback signals  

1.2.2 InstaSPIN-MOTION™ Block Diagrams

InstaSPIN-MOTION is designed in a modular structure. Customers can determine which functions will be
included in their system. The FAST Observer resides in ROM. The core control algorithms of the SpinTAC
library reside in ROM, and these functions are accessed by application program interface (API) from the user
code.

InstaSPIN-MOTION supports a wide array of system designs. InstaSPIN-MOTION uses the FAST software
encoder for sensorless FOC systems (for additional information, see the TMS320F2802xF InstaSPIN-FOC
Technical Reference Manual, the TMS320F2805xF InstaSPIN-FOC Technical Reference Manual, and the
TMS320F2806xF InstaSPIN-FOC Technical Reference Manual). InstaSPIN-MOTION also supports solutions
that leverage mechanical sensors (for example, encoders, resolvers). These scenarios are described below.

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

35

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruhp4
https://www.ti.com/lit/pdf/spruhp4
https://www.ti.com/lit/pdf/spruhw0
https://www.ti.com/lit/pdf/spruhi9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Note that the variables used in Figure 1-11, Figure 1-12, Figure 1-13, and Figure 1-14 are defined as follows:

• θQep: position angle signal from encoder
• θM: formatted sawtooth position signal to be used in SpinTAC Position Controller
• θSP: Sawtooth position reference signal generated by SpinTAC Position Move
• ωlim: Speed Limit (used in position profile generation)
• T

lim

.
: Acceleration Limit

• T
lim

..
: Jerk Limit

• ωRef: Speed Reference
• T

Ref

.
: Acceleration Reference

• J
r

~ : Motor time constant

Scenario 1: InstaSPIN-MOTION™ Speed Control with FAST™ Software Encoder

In this scenario (see Figure 1-11 and Figure 1-12), SpinTAC Velocity Control receives the speed estimate from
the FAST estimator and generates the torque reference signal. This works with InstaSPIN-MOTION in user
memory (see Figure 1-11) or in ROM (see Figure 1-12). The SpinTAC Motion Control Suite provides the motion
sequence state machine, generates the reference trajectory and controls the system speed.

HAL_run

HAL_acqAdcInt
DRV_readAdcData

Figure 1-11. InstaSPIN-MOTION™ in User Memory, with Exception of FAST™ and SpinTAC™ in ROM

Introduction www.ti.com

36 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

InstaSPIN-DKd/KE¡

ROM

SVM

Iq

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

&�^d¡�

Software Encoder

Rotor Flux Observer

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

HAL_acqAdcInt

CTRL_run

CTRL_setup

Speed

PI

Traj

Ramp

Zref

Z
a

Spdout

User_SpdRef

^�]vd��¡�

Velocity

Control

^�]vd��¡�

Velocity

Move

Z
a

ROM

User_IdRef

Flux

ROM

STVELMOVE_run STVELCTL_run

^�]vd��¡�D}�]}v�

Control Suite

^�]vd��¡�

Velocity

Plan

Motion

Sequence

ZSP

FLASH/RAM

^�]vd��¡�

Velocity

Identify

ROM

STVELID_run

Zlim

..
Zlim

.

Velocity Mode

STVELPLAN_run

User_SpdRef

Zref

Zref

.

Figure 1-12. InstaSPIN-MOTION™ in ROM

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

37

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Scenario 2: InstaSPIN-MOTION™ Speed Control with a Mechanical Sensor

While sensorless solutions are appealing and cost effective for many applications, there are some applications
that require the rigor and accuracy of a mechanical sensor. For these applications (see Figure 1-13), the
quadrature encoder provides position information, which is then converted to speed feedback via the SpinTAC
Position Converter. SpinTAC Velocity Control receives the speed feedback and generates the torque reference
signal via IqRef. The SpinTAC Motion Control Suite provides the motion sequence state machine, generates the
reference trajectory and controls the system speed.

Figure 1-13. InstaSPIN-MOTION™ Speed Control with a Mechanical Sensor

Introduction www.ti.com

38 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Scenario 3: InstaSPIN-MOTION™ Position Control with Mechanical Sensor and Redundant FAST™
Software Sensor

There are many applications where precise position control is required. For these applications, it is difficult to
balance the many tuning parameters that are required. InstaSPIN-MOTION features accurate position, speed,
and torque control, with combined position and speed single-variable tuning. This simplifies the tuning challenge
and allows you to focus on your application and not on tuning your motor. Position applications require a
mechanical sensor in order to precisely identify the motor angle at zero and very low speeds. The FAST
Software Encoder may provide redundancy in position control applications; this can be used as a safety feature
in case the mechanical encoder fails (see Figure 1-14).

Figure 1-14. InstaSPIN-MOTION™ Position Control with Mechanical Sensor and Redundant FAST™
Software Sensor

1.2.3 Application Examples

InstaSPIN-MOTION is ideal for applications that require accurate speed and position control, minimal
disturbance, and for applications that undergo multiple state transitions or experience dynamic changes. A few
examples are provided below.

1.2.3.1 Treadmill Conveyor: Smooth Motion Across Varying Speeds and Loads

Consistent speed control is critical for treadmill conveyor belts. When a person runs on the treadmill, their stride
disturbs the motion of the belt. The runner's stride will be choppy if the motor driving the belt cannot quickly
provide enough torque to overcome the disturbance. This problem is exacerbated when the user changes
speeds as part of their exercise regime. If the belt does not smoothly accelerate or decelerate it seems like the
treadmill is not operating correctly. In addition, at low speeds when a user steps on the belt, their weight can
cause the belt to stop.

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

39

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

InstaSPIN-MOTION was applied to a commercial treadmill using a 4-HP, 220-V AC induction motor to drive the
conveyor belt. The treadmill was tested across a variable speed range: 42 rpm at the low end, to 3300 rpm at top
speed.

The customer found that InstaSPIN-MOTION's advanced controller automatically compensated for disturbances,
keeping the speed consistent while running, and across changing speeds. The controller prevented the belt
from stopping at low speeds when a load was applied. In addition, a single gain was used to control the entire
operating range.

1.2.3.2 Video Camera: Smooth Motion and Position Accuracy at Low Speeds

High-end security and conference room cameras operate at very-low speeds (for example, 0.1 rpm) and require
accurate and smooth position control to pan, tilt, and zoom. The motors that drive these cameras are difficult
to tune for low speed, and they usually require a minimum of four tuning sets. In addition, there can be choppy
movement at startup, which results in a shaky or unfocused picture.

InstaSPIN-MOTION was applied to a high-precision security camera driven by a 2-pole BLDC motor with a
magnetic encoder. InstaSPIN-MOTION was able to control both velocity and position using a single tuning
parameter that was effective across the entire operating range. SpinTAC Move was used to control the motor
jerk, resulting in smooth startup.

1.2.3.3 Washing Machine: Smooth Motion and Position Accuracy at Low Speeds

Cycle transitions, changing loads, and environmental disturbances cause significant wear and tear on motors.
Automatic, real-time reduction of disturbances can extend the life and performance of motors.

Consider washing machines, for example. Figure 1-15 displays the motion profile for three stages of a standard
washing machine. The first stage represents the agitation cycle, rotating between 250 rpm and -250 rpm
repeatedly. The second and third stages represent two different spin cycles. The second stage spins at 500 rpm
and the third stage spins at 2000 rpm. This profile was easily created using SpinTAC Plan.

Figure 1-15. Washing Machine Profile

Introduction www.ti.com

40 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

InstaSPIN-MOTION was applied to a washing machine application. The SpinTAC Plan trajectory planning
feature was used to quickly build various states of motion (speed A to speed B) and tie them together with state
based logic.

The washing machine application was run twice, once using a standard PI controller and once using
LineStream's SpinTAC controller. The data was then plotted against the reference curve for comparison.

1.2.3.3.1 Agitation Cycle

During agitation, the motor switches between the 250 rpm and -250 rpm set points 20 times. The results, shown
in Figure 1-16, that InstaSPIN-MOTION more closely matched the reference profile. Additionally, the maximum
error for PI was 91 rpm (341 - 250 = 91 rpm), whereas the maximum error for InstaSPIN-MOTION was 30 rpm
(280 - 250 = 30 rpm).

InstaSPIN-

MOTION

Figure 1-16. InstaSPIN-MOTION™ Minimizes Error

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

41

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1.2.3.3.2 Spin Cycles

For the first spin cycle, the objective is to maintain 500 rpm, even when disturbances are introduced. Figure 1-17
shows that the InstaSPIN-MOTION recovered from disturbances more quickly and with less oscillation than the
PI controller. Additionally, InstaSPIN-MOTION does not suffer from the overshoot and undershoot shown by the
PI controller when it tries to reach the initial 500 rpm set point.

InstaSPIN-

MOTION

Figure 1-17. First Spin Cycle - 500 rpm

During the second spin cycle, shown in Figure 1-18, InstaSPIN-MOTION consistently recovered from
disturbances at 2000 rpm more quickly and with less oscillation than the PI controller. Note that SpinTAC does
not suffer from the overshoot and undershoot shown by the PI controller when it tries to reach the initial 2000
rpm set point.

Additionally, the PI controller could not recover from the ramp disturbance at the 9.75 second mark. Instead, it
shows a steady-state error of roughly 20 rpm.

Introduction www.ti.com

42 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

InstaSPIN-

MOTION

Figure 1-18. Second Spin Cycle - 2000 rpm

1.2.3.3.3 InstaSPIN-MOTION Works Over the Entire Operating Range

Both the InstaSPIN-MOTION controller and the PI controller were tuned once, before executing the washing
machine application. From the example, it is evident that InstaSPIN-MOTION's tuning works over the entire
operating range. Whether the motor switches between the 250 rpm and -250 rpm, or maintains 500 rpm or 2000
rpm spin cycles, there is no need for new tuning sets.

www.ti.com Introduction

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

43

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Introduction www.ti.com

44 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2.1 Overview..46
2.2 Evaluating InstaSPIN-FOC™ and InstaSPIN-MOTION™...48

Chapter 2
Quick Start Kits - TI Provided Software and

Hardware

www.ti.com Quick Start Kits - TI Provided Software and Hardware

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

45

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2.1 Overview
Several GUI-based applications are provided for a quick and easy way to evaluate InstaSPIN-FOC and
InstaSPIN–MOTION software. Pre-configured graphical user interfaces (GUIs) are the quickest way to get
started, providing a demonstration platform for the F2806xM and F2806xF devices. The universal GUI provides
a GUI option for any MotorWare project that you can customize. You can use this GUI outside of Code
Composer Studio or within the IDE. The GUI Quick-Start Guides will lead you through the details of the
evaluation process. A simple overview of the pre-configured GUI is provided here: GUI Composer Runtime
Installation and Webapp for MotorWare Universal GUI.

Kits currently available all use the same processor, TMDSCNCD28069MISO F28069M (ROM) controlCARD,
paired with one of the following 3-phase inverters:

• Low Voltage / Low Current: DRV8312
– PN: DRV8312-69M-KIT
– DRV8312 three-phase inverter integrated power module base board supporting up to 50V and 3.5A

continuous with controlCARD interface
– 1 NEMA17 BLDC/PMSM 55W Motor
– For Position Control, purchase Anaheim Automation motor (with an encoder): BLY172D-24V-4000-2000SI

• Low Voltage / Medium Current: BoosterPack for LaunchPads
– 6-24V, 14A continuous
– PN: BOOSTXL-DRV8301 BoosterPack
– DRV8301 2.3A sink/1.7A source, three-phase inverter with integrated buck converter for 1.5-A external

loads
– PN: InstaSPIN enabled LaunchPad
– NexFET™ Power MOSFETs
– No motor or power supply included

• Low Voltage / High Current: DRV8301
– PN: DRV8301-69M-KIT
– DRV8301 2.3A sink/1.7A source, three-phase inverter with integrated buck converter for 1.5A external

loads
– No motor included
– For Position Control, purchase Low Voltage Servo Motor (LVSERVOMTR)

• High Voltage
– PN: TMDSHVMTRINSPIN
– Support for AC Induction, Permanent Magnet AC Synchronous, Brushless DC Motor
– Motor driver stage capable of up to 10A@350Vdv-bus continuous
– High voltage motors are available to order:

• HVBLDCMTR
• HVPMSMMTR

– For Position Control, purchase High Voltage Permanent Magnet Synchronous Motor (HVPMSMMTR)

All software and documentation is available in the MotorWare software download: MotorWare™ Software.

Kit information is also available from Resource Explorer, an application within Code Composer Studio™

(CCStudio), the IDE for TI MCUs. Resource Explorer will display the first time CCStudio is used with a new
workspace, to open it at a later time, select: Help->Welcome to CCS. Below are examples of the information that
is available.

Quick Start Kits - TI Provided Software and Hardware www.ti.com

46 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/instaspinfocmotorwaregui
http://www.ti.com/tool/instaspinfocmotorwaregui
http://www.ti.com/tool/DRV8312-69M-KIT
http://www.ti.com/tool/BOOSTXL-DRV8301
http://www.ti.com/launchpad
http://www.ti.com/tool/DRV8301-69M-KIT
http://www.ti.com/tool/lvservomtr
http://www.ti.com/tool/TMDSHVMTRINSPIN
http://www.ti.com/tool/hvbldcmtr
http://www.ti.com/tool/hvpmsmmtr
http://www.ti.com/tool/hvpmsmmtr
http://www.ti.com/tool/motorware
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

This document, along with all related documents for using InstaSPIN development kits, is available from
Resource Explorer:

Additional hardware information is available through controlSUITE™ libraries for C2000™ microcontrollers, a
cohesive set of software infrastructure and software tools designed to minimize software development time.
The controlSUITE libraries can be downloaded from controlSUITE™ Software Suite: Software and Development
Tools for C2000™ Microcontrollers.

www.ti.com Quick Start Kits - TI Provided Software and Hardware

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

47

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/controlsuite
http://www.ti.com/tool/controlsuite
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2.2 Evaluating InstaSPIN-FOC™ and InstaSPIN-MOTION™
The GUI provides a quick and easy way to evaluate InstaSPIN-FOC and InstaSPIN–MOTION. The InstaSPIN-
FOC and InstaSPIN-MOTION Quick Start Guides lead you through the details of the evaluation process. A
simple overview is provided.

Spending time with the InstaSPIN Quick Start Kits and Quick Start Guides is a good investment of time to
become familiar with the software and to reference the hardware schematics for the design of your board.
The example code (labs) are configured to run on each of these kits. Whether you are interested in code for
InstaSPIN-FOC or InstaSPIN-MOTION, you will find the examples you need to get started fast with your project.
For example software and documentation, see the MotorWare InstaSPIN Projects and Labs User's Guide in the
MotorWare software download (MotorWare™ Software).

1. Identify the motor parameters (Figure 2-1).

Figure 2-1. InstaSPIN-MOTION™ GUI Using Motor Identification Tab

Quick Start Kits - TI Provided Software and Hardware www.ti.com

48 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/motorware
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2. Tune the torque and/speed control (Figure 2-2).

Figure 2-2. InstaSPIN-MOTION™ GUI Using Speed or Torque Tab

www.ti.com Quick Start Kits - TI Provided Software and Hardware

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

49

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3. Identify system inertia (Figure 2-3).

Figure 2-3. InstaSPIN-MOTION™ GUI Using SpinTAC 1:Startup Tab

Quick Start Kits - TI Provided Software and Hardware www.ti.com

50 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4. Tune the disturbance-rejecting speed controller (Figure 2-4) This replaces the speed controller in Step 2.

Figure 2-4. InstaSPIN-MOTION™ GUI SpinTAC 2:Tuning Tab

www.ti.com Quick Start Kits - TI Provided Software and Hardware

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

51

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5. Set the target speed and select the profile type (Figure 2-5).

Figure 2-5. InstaSPIN-MOTION™ GUI Using SpinTAC 3:Motion Tab

Quick Start Kits - TI Provided Software and Hardware www.ti.com

52 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.1 Overview..54
3.2 MotorWare™ Directory Structure..55
3.3 MotorWare™ Object-Oriented Design.. 60
3.4 InstaSPIN-FOC™ API..62
3.5 InstaSPIN-MOTION™ and the SpinTAC™ API... 165
3.6 SpinTAC™ API.. 172

Chapter 3
InstaSPIN™ and MotorWare™

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

53

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.1 Overview
The MotorWare™ library is a cohesive set of software and technical resources designed to minimize motor
control system development time.

From device-specific drivers and support software to complete system examples and technical training,
MotorWare software provides support for every stage of development and evaluation.

MotorWare software has been developed to enable easy integration of best-in-class motor control techniques.

The software has been designed to enable:
• Cross TI MCU support
• Modular and portable across MCU, power electronics and control techniques
• Object Oriented software design
• API based

InstaSPIN-FOC and InstaSPIN-MOTION motor control solutions are delivered within MotorWare. For a latest
and complete listing of the API functions, MotorWare's Software Coding Standards and Architecture, see the
Resource Explorer found within CCStudio.

InstaSPIN™ and MotorWare™ www.ti.com

54 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.2 MotorWare™ Directory Structure
The MotorWare directories are structured to contain all code needed to run every motor control project.

File references in the Code Composer Studio (CCStudio) projects are relative. The relative directory links
provides the ability to open a project and compile the first time. The MotorWare directory structure was created
to provide an easy way to locate headers, libraries, and source code.

Four folders make up the core of the MotorWare directory structure:

• drivers - Peripheral driver API code.
• ide - Generic linker files used by CCStudio
• modules - Functions used in motor control
• solutions - Contains CCStudio projects to operate software solutions on motor example kits.

When integrating TI's MotorWare software with your application, it is recommended to create a separate
MotorWare directory structure with board specific files for multiple projects. Your software would then reference
the files within TI's MotorWare directory. This is optional, but recommended to simplify using future updates that
are planned by TI, see the screenshot below. For the actual contents of the directory structure, see the most
recent release of MotorWare software.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

55

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.2.1 MotorWare™ – drivers

The driver directory contains peripheral APIs for configuring a specific processor.

InstaSPIN™ and MotorWare™ www.ti.com

56 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.2.2 MotorWare™ – ide

The IDE directory contains generic linker files needed by the compiler tools.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

57

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.2.3 MotorWare™ – modules

The modules directory contains algorithms that are common across processors and projects. If a module has a
specific dependence to a processor it will have sub-directory for this dependence. The module will have source
code and/or library functions.

InstaSPIN™ and MotorWare™ www.ti.com

58 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.2.4 MotorWare™ – solutions

The solutions directory contains the complete solutions with complete CCStudio projects for specific targets.
InstaSPIN-FOC and InstaSPIN-MOTION example code is common across multiple target devices. The
hierarchical directory structure allows common source code that is not target dependent to be used with different
processors and different target boards. Where there is source code that is target dependent or processor
dependent, there are specific source code directories for these purposes. The figure below illustrates this
structure.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

59

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.3 MotorWare™ Object-Oriented Design
An object oriented approach has been used for MotorWare software. By using objects, the software is self-
documenting and uses much less space in the main.c file. An object is really a structure that contains variables
used by the object to perform its function. Associated with an object are methods which are function calls used
to setup and run calculations for the object. As we go through the definitions of the object oriented software
technique, the park transform object is used to show an example of how the objects are written.

InstaSPIN™ and MotorWare™ www.ti.com

60 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.3.1 Objects

The object is a structure. An example of the park transform structure is shown. Park.h is the file that contains the
structure declaration.

typedef struct _PARK_Obj_{
 _iq sinTh; //!< the sine of the angle between the d,q and the alpha,beta
 coordinate systems
 _iq cosTh; //!< the cosine of the angle between the d,q and the alpha,beta
 coordinate systems
 } PARK_Obj;

Every object has a handle. The handle is a pointer to the object. A handle is very useful when passing
objects between functions. Handles to objects also allow functions to work on only that object, or what is called
re-entrant code. The handle declaration for the Park transform object is shown.

typedef struct PARK_Obj *PARK_Handle;

3.3.2 Methods

Every object must do something. As it stands, an object is just a container of variables. For the object to perform
calculations or even send and receive data between its variables, it must have methods. Methods are functions
specific to an object that work on the variables the object contains. There are four main methods to every object
in MotorWare and they are named as follows.
• Init method - Used only to create a handle to an object
• Set method - Sets internal variables of an object
• Get method - Returns internal variable values of an object
• Run method - Performs the calculation function of the object

3.3.2.1 Init Method

The init method is only used to point a handle to an object. Code for the Park transform init method is shown.

The init method only takes two parameters, first the address of the object and second is the size (in bytes) of the
object. After the object is created, the other methods are used.

PARK_Handle PARK_init(void *pMemory,const size_t numBytes)
{
 PARK_Handle parkHandle;
 if(numBytes < sizeof(PARK_Obj))
 return((PARK_Handle)NULL);
 // assign the handle
 parkHandle = (PARK_Handle)pMemory;
 return(parkHandle);
}

3.3.2.2 Set Method

A set method puts a value into the variables that the object contains. In the example code for the Park transform
below, the set function assigns sine and cosine values to sinTh and cosTh object variables.

The set method takes as parameters the object handle and in the Park transform example, the angle θ. Set
functions do not return any values.

static inline void PARK_setup(PARK_Handle parkHandle,const _iq angle_pu)
{
 PARK_Obj *park = (PARK_Obj *)parkHandle;
 park->sinTh = _IQsinPU(angle_pu);
 park->cosTh = _IQcosPU(angle_pu);
 return;
}

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

61

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.3.2.3 Get Method

Get methods return object variables. Only two variables are contained in the Park object. Because the two
variables contained in Park are needed outside of the object, there are two get methods. One of the get
methods is shown.

The get method returns only the variable that the method is named for. In the example code for the Park object
get method, the sinTh variable is returned. A handle to the object is the only variable that is passed to the get
method. Only one variable is returned by a get method.

static inline _iq PARK_getSinTh(PARK_Handle parkHandle)
{
 PARK_Obj *park = (PARK_Obj *)parkHandle;
 return(park->sinTh);
}

3.3.2.4 Run Method

Run methods perform calculations of the object variables. In the case of embedded software, run methods
might also operate a peripheral or some other hardware. The Park run method calculates the Park transform of
the input vector {Id, Iq } and then returns the output vector {Iα, Iβ}. The code for the Park run method is shown.

In run methods, the first parameter is the handle to the object and the subsequent parameters are input and
output variables when in single quantities or pointers to vectors. Nothing is returned from a run method.

static inline void PARK_run(PARK_Handle parkHandle,const MATH_vec2
*pInVec,MATH_vec2 *pOutVec)
{
 PARK_Obj *park = (PARK_Obj *)parkHandle;
 _iq sinTh = park->sinTh;
 _iq cosTh = park->cosTh;
 _iq value_0 = pInVec->value[0];
 _iq value_1 = pInVec->value[1];
 pOutVec->value[0] = _IQmpy(value_0,cosTh) + _IQmpy(value_1,sinTh);
 pOutVec->value[1] = _IQmpy(value_1,cosTh) - _IQmpy(value_0,sinTh);
 return;
} // end of PARK_run() function

3.4 InstaSPIN-FOC™ API
All of the functionality of InstaSPIN-FOC is accessible through an extensive API. This API remains the same
whether InstaSPIN-FOC is in ROM or user memory. In this section, we will review the most commonly used
functions that provide access to variables and enable your application to implement system control. These
functions are used in the lab example projects at the end of this guide. For the latest and complete listing of the
API functions, see the Resource Explorer found within CCStudio.

Another resource for the API functions that is especially useful during software development is the Outline View
within CCStudio. This is feature provides navigation across the multiple files with a complete hyperlink listing
of all the symbols within the file you are using that is part of a CCStudio project. Access this view from the
CCStudio menu: Window->Show View->Outline.

Following is a screen capture using this view with ctrl.c. Notice that by clicking on the function name in the
Outline window, the cursor in the Source window highlights the related code. You can quickly navigate functions
and all symbols within a file, which is especially useful for the large number of API functions in InstaSPIN-FOC.

InstaSPIN™ and MotorWare™ www.ti.com

62 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

When using Outline View with ctrl.h you will notice some functions do not have source code listed. These
functions will have a circle with a green and white pattern next to the filename (instead of a solid green circle).
This indicates it is one of the few files that must remain in ROM since it is a function that interfaces directly to the
FAST estimator. An example of this can be seen in the following image where the function CTRL_initCtrl() does
not have source code but the function CTRL_isError() does.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

63

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 3-1 provides an overview of the InstaSPIN-FOC system functions and variables as they relate to user
memory and ROM. Notice the key functions: CTRL_run, CTRL_setup, EST_run, HAL_run, HAL_acqAdcInt, and
HAL_readAdcData. Also, the variables shown are all available. For example, the Ki gain for PI used for Id and
Iq can be read with the function CTRL_getKi and set with CTRL_setKi. The intention is to give full access to all
functions and variables.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

HAL_acqAdcInt

CTRL_run

CTRL_setup

Figure 3-1. Block Diagram of InstaSPIN-FOC™ in User Memory, with Exception of FAST™ in ROM

The API can be grouped into the following four categories:
• Controller – ctrl.c (software that can be moved to user memory)
• Estimator – FAST library (FAST estimator in ROM)
• HAL – hal.c (Hardware Abstraction Layer)
• User – user.c (user settings)

For the F2802xF devices, the API has an additional library in user memory:
• Public Library – fast_public.lib (software that has to be loaded in user memory)

The commonly used functions from each of these groups are listed in the next sections.

InstaSPIN™ and MotorWare™ www.ti.com

64 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1 Controller API Functions – ctrl.c, ctrl.h, CTRL_obj.h
3.4.1.1 CTRL Enumerations and Structures

CTRL_Obj

Defines the controller (CTRL) object. The controller object implements all of the FOC
algorithms and the estimator functions.

typedef struct _CTRL_Obj_
{
 CTRL_Version version; //!< the controller version
 CTRL_State_e state; //!< the current state of the
controller
 CTRL_State_e prevState; //!< the previous state of the
controller
 CTRL_ErrorCode_e errorCode; //!< the error code for the controller
 CLARKE_Handle clarkeHandle_I; //!< the handle for the current Clarke
transform
 CLARKE_Obj clarke_I; //!< the current Clarke transform
object
 CLARKE_Handle clarkeHandle_V; //!< the handle for the voltage Clarke
transform
 CLARKE_Obj clarke_V; //!< the voltage Clarke transform
object
 EST_Handle estHandle; //!< the handle for the parameter
estimator
 PARK_Handle parkHandle; //!< the handle for the Park object
 PARK_Obj park; //!< the Park transform object
 PID_Handle pidHandle_Id; //!< the handle for the Id PID
controller
 PID_Obj pid_Id; //!< the Id PID controller object
 PID_Handle pidHandle_Iq; //!< the handle for the Iq PID
controller
 PID_Obj pid_Iq; //!< the Iq PID controller object
 PID_Handle pidHandle_spd; //!< the handle for the speed PID
controller
 PID_Obj pid_spd; //!< the speed PID controller object
 IPARK_Handle iparkHandle; //!< the handle for the inverse Park
transform
 IPARK_Obj ipark; //!< the inverse Park transform object
 SVGEN_Handle svgenHandle; //!< the handle for the space vector
generator
 SVGEN_Obj svgen; //!< the space vector generator object
 TRAJ_Handle trajHandle_Id; //!< the handle for the Id trajectory
generator
 TRAJ_Obj traj_Id; //!< the Id trajectory generator
object
 TRAJ_Handle trajHandle_spd; //!< handle for the speed trajectory
generator
 TRAJ_Obj traj_spd; //!< the speed trajectory generator
object
 TRAJ_Handle trajHandle_spdMax; //!< handle for max speed traj
generator
 TRAJ_Obj traj_spdMax; //!< the max speed trajectory generator
object
 MOTOR_Params motorParams; //!< the motor parameters
 uint_least32_t waitTimes[CTRL_numStates];
//!< an array of wait times for each state, estimator clock counts
 uint_least32_t counter_state; //!< the state counter
 uint_least16_t numIsrTicksPerCtrlTick; //!< # of isr ticks per
controller tick
 uint_least16_t numCtrlTicksPerCurrentTick;
//!< # of controller ticks per current controller tick
 uint_least16_t numCtrlTicksPerSpeedTick;
//!< # of controller ticks per speed controller tick
 uint_least16_t numCtrlTicksPerTrajTick;
//!< # of controller ticks per trajectory tick
 uint_least32_t ctrlFreq_Hz; //!< Defines the controller
frequency, Hz
 uint_least32_t trajFreq_Hz; //!< Defines the trajectory
frequency, Hz
 _iq trajPeriod_sec; //!< Defines the trajectory period,

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

65

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_Obj (continued)

sec
 float_t ctrlPeriod_sec; //!< Defines the controller period,
sec
 _iq maxVsMag_pu; //!< the maximum voltage vector that is
allowed, pu
 MATH_vec2 Iab_in; //!< the Iab input values
 MATH_vec2 Iab_filt; //!< the Iab filtered values
 MATH_vec2 Idq_in; //!< the Idq input values
 MATH_vec2 Vab_in; //!< the Vab input values
 _iq spd_out; //!< the speed output value
 MATH_vec2 Vab_out; //!< the Vab output values
 MATH_vec2 Vdq_out; //!< the Vdq output values
 float_t Rhf; //!< the Rhf value
 float_t Lhf; //!< the Lhf value
 float_t RoverL; //!< the R/L value
 _iq Kp_Id; //!< the desired Kp_Id value
 _iq Kp_Iq; //!< the desired Kp_Iq value
 _iq Kp_spd; //!< the desired Kp_spd value
 _iq Ki_Id; //!< the desired Ki_Id value
 _iq Ki_Iq; //!< the desired Ki_Iq value
 _iq Ki_spd; //!< the desired Ki_spd value
 _iq Kd_Id; //!< the desired Kd_Id value
 _iq Kd_Iq; //!< the desired Kd_Iq value
 _iq Kd_spd; //!< the desired Kd_spd value
 _iq Ui_Id; //!< the desired Ui_Id value
 _iq Ui_Iq; //!< the desired Ui_Iq value
 _iq Ui_spd; //!< the desired Ui_spd value
 MATH_vec2 Idq_ref; //!< the Idq reference values, pu
 _iq IdRated; //!< the Id rated current, pu
 _iq spd_ref; //!< the speed reference, pu
 _iq spd_max; //!< the maximum speed, pu
 uint_least16_t counter_current; //!< the isr counter
 uint_least16_t counter_isr; //!< the isr counter
 uint_least16_t counter_speed; //!< the speed counter
 uint_least16_t counter_traj; //!< the traj counter
 bool flag_enableCtrl; //!< a flag to enable the controller
 bool flag_enableDcBusComp;
//!< a flag to enable the DC bus compensation in the controller
 bool flag_enablePowerWarp; //!< a flag to enable PowerWarp
 bool flag_enableOffset;
//!< a flag to enable offset estimation after idle state
 bool flag_enableSpeedCtrl; //!< a flag to enable the speed
controller
 bool flag_enableUserMotorParams;
//!< a flag to use known motor parameters from user.h file
} CTRL_Obj;

InstaSPIN™ and MotorWare™ www.ti.com

66 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_State_e

Enumeration for the controller states

typedef enum {
 CTRL_State_Error=0, //!< the controller error state
 CTRL_State_Idle, //!< the controller idle state
 CTRL_State_OffLine, //!< the controller offline state
 CTRL_State_OnLine, //!< the controller online state
 CTRL_numStates //!< the number of controller states
} CTRL_State_e;

CTRL_ErrorCode_e

Enumeration for the error codes

typedef enum
{
 CTRL_ErrorCode_NoError=0, //!< no error error code
 CTRL_ErrorCode_IdClip, //!< Id clip error code
 CTRL_ErrorCode_EstError, //!< estimator error code
 CTRL_numErrorCodes //!< the number of controller error codes
} CTRL_ErrorCode_e;

CTRL_TargetProc_e

Enumeration for the target processors

typedef enum
{
 CTRL_TargetProc_2806x=0, //!< 2806x processor
 CTRL_TargetProc_2805x, //!< 2805x processor
 CTRL_TargetProc_2803x, //!< 2803x processor
 CTRL_TargetProc_2802x, //!< 2802x processor
 CTRL_TargetProc_Unknown //!< Unknown processor
} CTRL_TargetProc_e;

CTRL_Type_e

Enumeration for the target processors

typedef enum
{
 CTRL_Type_PID_spd=0, //!< PID Speed controller
 CTRL_Type_PID_Id, //!< PID Id controller
 CTRL_Type_PID_Iq //!< PID Iq controller
} CTRL_Type_e;

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

67

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_Version

Defines the controller (CTRL) version number

typedef struct _CTRL_Version_
{
 uint16_t rsvd; //!< reserved value
 CTRL_TargetProc_e targetProc; //!< the target processor
 uint16_t major; //!< the major release number
 uint16_t minor; //!< the minor release number
} CTRL_Version;

InstaSPIN™ and MotorWare™ www.ti.com

68 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1.2 CTRL State Control and Error Handling

CTRL_initCtrl()

ctrlHandle = CTRL_initCtrl(ctrlNumber,estNumber)

Initializes a specified controller

ctrlNumber: The FOC (CTRL) controller number – The number of the FOC controller.

estNumber: The estimator (EST) number – The number of the InstaSPIN estimator.

Return: The controller (CTRL) object handle – The handle that is returned to point to the specific
estimator and controller.

CTRL_updateState ()

bool CTRL_updateState(CTRL_Handle handle)

Feeds back whether or not the controller state has changed

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if the state has changed (true) or not (false)

CTRL_isError ()

inline bool CTRL_isError(CTRL_Handle handle)

Determines if there is a controller error

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if there is a controller error (true) or not (false)

CTRL_checkForErrors ()

inline void CTRL_checkForErrors(CTRL_Handle handle)

Checks for error with the estimator and, if found, sets the controller state to the error state

Handle: The controller (CTRL) handle

Errors: CTRL_State_Error, CTRL_ErrorCode_EstError

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

69

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1.3 CTRL Get Functions

CTRL_getCount_current ()

inline uint_least16_t CTRL_getCount_current(CTRL_Handle handle)

Gets the current loop count

Handle: The controller (CTRL) handle

Return: The current loop count, obj->counter_current

CTRL_getCount_isr ()

inline uint_least16_t CTRL_getCount_isr(CTRL_Handle handle)

Gets the isr count

Handle: The controller (CTRL) handle

Return: The isr count, obj->counter_isr

CTRL_getCount_speed ()

inline uint_least16_t CTRL_getCount_speed(CTRL_Handle handle)

Gets the speed loop count

Handle: The controller (CTRL) handle

Return: The speed loop count, obj->counter_speed

CTRL_getCount_state ()

inline uint_least32_t CTRL_getCount_state(CTRL_Handle handle)

Gets the state count

Handle: The controller (CTRL) handle

Return: The state count, obj->counter_state

CTRL_getCount_traj ()

inline uint_least32_t CTRL_getCount_state(CTRL_Handle handle)

Gets the trajectory loop count

Handle: The controller (CTRL) handle

Return: The trajectory loop count, obj->counter_traj

InstaSPIN™ and MotorWare™ www.ti.com

70 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getCtrlFreq ()

inline uint_least32_t CTRL_ getCtrlFreq(CTRL_Handle handle)

Gets the controller execution frequency

Handle: The controller (CTRL) handle

Return: The controller execution frequency, Hz, obj->ctrlFreq_Hz

CTRL_getCtrlPeriod_sec ()

inline float_t CTRL_getCtrlPeriod_sec(CTRL_Handle handle)

Gets the controller execution period

Handle: The controller (CTRL) handle

Return: The controller execution period, sec, obj->ctrlPeriod_sec

CTRL_getErrorCode ()

inline CTRL_ErrorCode_e CTRL_getErrorCode(CTRL_Handle handle)

Gets the error code from the controller (CTRL) object

Handle: The controller (CTRL) handle

Return: The error code, obj->errorCode

CTRL_getEstHandle ()

inline EST_Handle CTRL_getEstHandle(CTRL_Handle handle)

Gets the estimator handle for a given controller

Handle: The controller (CTRL) handle

Return: The estimator handle for the given controller, obj->estHandle

CTRL_getFlag_enableCtrl ()

inline bool CTRL_getFlag_enableCtrl(CTRL_Handle handle)

Gets the enable controller flag value from the estimator

Handle: The controller (CTRL) handle

Return: The enable controller flag value, obj->flag_enableCtrl

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

71

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getFlag_enableDcBusComp ()

inline bool CTRL_getFlag_enableDcBusComp(CTRL_Handle handle)

Gets the enable DC bus compensation flag value from the estimator

Handle: The controller (CTRL) handle

Return: The enable DC bus compensation flag value, obj-> flag_enableDcBusComp

CTRL_getFlag_enablePowerWarp ()

inline bool CTRL_getFlag_enablePowerWarp(CTRL_Handle handle)

Gets the PowerWarp enable flag value from the estimator

Handle: The controller (CTRL) handle

Return: The PowerWarp enable flag value, obj-> flag_enablePowerWarp

CTR CTRL_getFlag_enableOffset ()

inline bool CTRL_getFlag_enableOffset(CTRL_Handle handle)

Gets the enable offset flag value from the controller

Handle: The controller (CTRL) handle

Return: The enable offset flag value, obj-> flag_enableOffset

CTRL_getFlag_enableSpeedCtrl ()

inline bool CTRL_getFlag_enableSpeedCtrl(CTRL_Handle handle)

Gets the enable speed control flag value from the controller

Handle: The controller (CTRL) handle

Return: The enable speed control flag value, obj-> flag_enableSpeedCtrl

CTRL_getFlag_enableUserMotorParams ()

inline bool CTRL_getFlag_enableSpeedCtrl(CTRL_Handle handle)

Gets the enable user motor parameters flag value in the estimator

Handle: The controller (CTRL) handle

Return: The enable user motor parameters flag value:

• true = Use the user motor parameters from user.h
• false = Perform motor parameter estimation

InstaSPIN™ and MotorWare™ www.ti.com

72 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getGains ()

void CTRL_getGains(CTRL_Handle handle, const CTRL_Type_e ctrlType, iq
*pKp,_iq *pKi,_iq *pKd)

Updates Kp, Ki, and Kd in the controller object

Handle: The controller (CTRL) handle

ctrlType: The controller type

pKp: The pointer for the Kp value, pu

pKi: The pointer for the Ki value, pu

pKd: The pointer for the Kd value, pu

CTRL_getIab_filt_pu ()

void CTRL_getIab_filt_pu (CTRL_Handle handle,MATH_vec2 *pIab_filt_pu)

Updates the alpha/beta filtered current vector values in the controller object

Handle: The controller (CTRL) handle

pIab_filt_pu: The vector for the alpha/beta filtered current vector values, pu

CTRL_getIab_filt_addr ()

inline MATH_vec2 *CTRL_getIab_filt_addr(CTRL_Handle handle)

Gets the alpha/beta filtered current vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta filtered current vector memory address, obj->Iab_filt

CTRL_getIab_in_addr ()

inline MATH_vec2 *CTRL_getIab_in_addr(CTRL_Handle handle)

Gets the alpha/beta current input vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta current input vector memory address, obj-> Iab_in

CTRL_getIab_in_pu ()

void CTRL_getIab_in_pu(CTRL_Handle handle,MATH_vec2 *pIab_in_pu);

Gets the alpha/beta current input vector values from the controller

Handle: The controller (CTRL) handle

pIab_in_pu: The vector for the alpha/beta current input vector values, pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

73

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getId_in_pu ()

inline _iq CTRL_getId_in_pu(CTRL_Handle handle)

Gets the direct current input value from the controller

Handle: The controller (CTRL) handle

Return: The direct current input value, pu, obj->Idq_in.value[0]

CTRL_getId_ref_pu ()

inline _iq CTRL_getId_ref_pu(CTRL_Handle handle)

Gets the direct current (Id) reference value from the controller

Handle: The controller (CTRL) handle

Return: The direct current reference value, pu, obj-> Idq_ref.value[0]

CTRL_getIdq_in_addr ()

inline MATH_vec2 *CTRL_getIdq_in_addr(CTRL_Handle handle)

Gets the direct/quadrature current input vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct/quadrature current input vector memory address, obj-> Idq_in

CTRL_getIdq_in_pu ()

void CTRL_getIdq_in_pu(CTRL_Handle handle,MATH_vec2 *pIdq_in_pu);

Gets the direct/quadrature current input vector values from the controller

Handle: The controller (CTRL) handle

pIdq_in_pu: The vector for the direct/quadrature input current vector values, pu

CTRL_getIdq_ref_pu ()

void CTRL_getIdq_ref_pu(CTRL_Handle handle,MATH_vec2 *pIdq_ref_pu);

Gets the direct/quadrature current reference vector values from the controller

Handle: The controller (CTRL) handle

pIdq_ref_pu: The vector for the direct/quadrature current reference vector values, pu

CTRL_getIdRated_pu ()

inline _iq CTRL_getIdRated_pu(CTRL_Handle handle)

Gets the Id rated current value from the controller

Handle: The controller (CTRL) handle

Return: The Id rated current value, pu, obj-> IdRated

InstaSPIN™ and MotorWare™ www.ti.com

74 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getIq_in_pu ()

inline _iq CTRL_getIq_in_pu(CTRL_Handle handle)

Gets the quadrature current input value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature current input value, pu, obj-> Idq_in.value[1]

CTRL_getIq_ref_pu ()

inline _iq CTRL_getIq_ref_pu(CTRL_Handle handle)

Gets the quadrature current (Iq) reference value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature current reference value, pu, obj-> Idq_ref.value [1]

CTRL_getKi ()

_iq CTRL_getKi (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the controller state

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Ki value

CTRL_getKd ()

_iq CTRL_getKd (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the proportional gain (Kd) value from the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Kd value

CTRL_getKp ()

_iq CTRL_getKp (CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the controller state

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The Kp value

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

75

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getLhf ()

inline float_t CTRL_getLhf(CTRL_Handle handle)

Gets the high frequency inductance (Lhf) value from the controller

Handle: The controller (CTRL) handle

Return: Return: The Lhf value, obj->Lhf

CTRL_getMagCurrent_pu ()

_iq CTRL_getMagCurrent_pu(CTRL_Handle handle)

Gets the magnetizing current value from the controller

Handle: The controller (CTRL) handle

Return: The magnetizing current value

CTRL_getMaxVsMag_pu ()

inline _iq CTRL_getMaxVsMag_pu(CTRL_Handle handle)

Gets the maximum voltage vector

Handle: The controller (CTRL) handle

Return: The maximum voltage vector (value between 0 and 4/3)

CTRL_getMaximumSpeed_pu ()

_iq CTRL_getMaximumSpeed_pu(CTRL_Handle handle);

Gets the maximum speed value from the controller

Handle: The controller (CTRL) handle

Return: The maximum voltage vector (value between 0 and 4/3)

CTRL_getMotorRatedFlux ()

inline float_t CTRL_getMotorRatedFlux(CTRL_Handle handle)

Gets the motor rated flux from the controller

Handle: The controller (CTRL) handle

Return: The motor rated flux, V*sec, obj->motorParams.ratedFlux_VpHz

CTRL_getMotorType ()

inline MOTOR_Type_e CTRL_getMotorType(CTRL_Handle handle)

Gets the motor type from the controller

Handle: The controller (CTRL) handle

Return: The motor type, obj-> motorParams.type

InstaSPIN™ and MotorWare™ www.ti.com

76 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getNumCtrlTicksPerCurrentTick ()

inline uint_least16_t CTRL_getNumCtrlTicksPerCurrentTick(CTRL_Handle handle)

Gets the number of controller clock ticks per current controller clock tick

Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per estimator clock tick, obj->
numCtrlTicksPerCurrentTick

CTRL_getNumCtrlTicksPerSpeedTick ()

inline uint_least16_t CTRL_getNumCtrlTicksPerSpeedTick(CTRL_Handle handle)

Gets the number of controller clock ticks per speed controller clock tick

Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per speed clock tick, obj->
numCtrlTicksPerSpeedTick

CTRL_getNumCtrlTicksPerTrajTick ()

inline uint_least16_t CTRL_getNumCtrlTicksPerTrajTick(CTRL_Handle handle)

Gets the number of controller clock ticks per trajectory clock tick

Handle: The controller (CTRL) handle

Return: The number of controller clock ticks per trajectory clock tick, obj->
numCtrlTicksPerTrajTick

CTRL_getNumIsrTicksPerCtrlTick ()

inline uint_least16_t CTRL_getNumIsrTicksPerCtrlTick(CTRL_Handle handle)

Gets the number of Interrupt Service Routine (ISR) clock ticks per controller clock tick

Handle: The controller (CTRL) handle

Return: The number of Interrupt Service Routine (ISR) clock ticks per controller clock tick, obj->
numIsrTicksPerCtrlTick

CTRL_getRefValue_pu ()

inline _iq CTRL_getRefValue_pu(CTRL_Handle handle,const CTRL_Type_e
ctrlType)

Gets the reference value from the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Return: The reference value, pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

77

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getRhf ()

inline float_t CTRL_getRhf(CTRL_Handle handle)

Gets the high frequency resistance (Rhf) value from the controller

Handle: The controller (CTRL) handle

Return: The Rhf value, obj->Rhf

CTRL_getRoverL ()

inline float_t CTRL_getRoverL(CTRL_Handle handle)

Gets the R/L value from the controller

Handle: The controller (CTRL) handle

Return: The the R/L value, obj-> RoverL

CTRL_getSpd_max_pu ()

i
nline _iq CTRL_getSpd_max_pu(CTRL_Handle handle)

Gets the maximum speed value from the controller

Handle: The controller (CTRL) handle

Return: The maximum speed value, pu, obj-> spd_max

CTRL_getSpd_out_addr ()

inline _iq *CTRL_getSpd_out_addr(CTRL_Handle handle)

Gets the output speed memory address from the controller

Handle: The controller (CTRL) handle

Return: The output speed memory address, obj-> spd_out

CTRL_getSpd_out_pu ()

inline _iq CTRL_getSpd_out_pu(CTRL_Handle handle)

Gets the output speed value from the controller

Handle: The controller (CTRL) handle

Return: The output speed value, pu, obj-> spd_out

InstaSPIN™ and MotorWare™ www.ti.com

78 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getSpd_ref_pu ()

inline _iq CTRL_getSpd_ref_pu(CTRL_Handle handle)

Gets the output speed reference value from the controller

Handle: The controller (CTRL) handle

Return: The output speed reference value, pu, obj-> spd_ref

CTRL_getSpd_int_ref_pu ()

inline _iq CTRL_getSpd_int_ref_pu(CTRL_Handle handle)

Gets the output speed intermediate reference value from the controller

Handle: The controller (CTRL) handle

Return: The output speed intermediate reference value, pu, obj-> trajHandle_spd

CTRL_getState ()

CTRL_State_e CTRL_getState(CTRL_Handle handle)

Gets the controller state

Handle: The controller (CTRL) handle

Return: The controller state

CTRL_getTrajFreq ()

inline uint_least32_t CTRL_getTrajFreq(CTRL_Handle handle)

Gets the trajectory execution frequency

Handle: The controller (CTRL) handle

Return: The trajectory execution frequency, Hz, obj->trajFreq_Hz

CTRL_getTrajPeriod_sec ()

inline _iq CTRL_getTrajPeriod_sec(CTRL_Handle handle)

Gets the trajectory execution frequency

Handle: The controller (CTRL) handle

Return: The trajectory execution period, sec, obj-> trajPeriod_sec

CTRL_getTrajStep ()

void CTRL_getTrajStep(CTRL_Handle handle);

Gets the trajectory step size

Handle: The controller (CTRL) handle

Return: The trajectory execution frequency, Hz

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

79

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getUi ()

inline _iq CTRL_getUi(CTRL_Handle handle,const CTRL_Type_e ctrlType)

Gets the integrator (Ui) value from the specified controller

Handle: The controller (CTRL) handle

Return: The Ui value

CTRL_getVab_in_pu ()

void CTRL_getVab_in_pu(CTRL_Handle handle,MATH_vec2 *pVab_in_pu);

Gets the alpha/beta voltage input vector values from the controller

Handle: The controller (CTRL) handle

pVab_in_pu: The vector for the alpha/beta voltage input vector values, pu

CTRL_getVab_out_addr ()

inline MATH_vec2 *CTRL_getVab_out_addr(CTRL_Handle handle)

Gets the alpha/beta voltage output vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The alpha/beta voltage output vector memory address, &(obj->Vab_out)

CTRL_getVab_out_pu ()

void CTRL_getVab_out_pu(CTRL_Handle handle,MATH_vec2 *pVab_out_pu);

Gets the alpha/beta voltage output vector values from the controller

Handle: The controller (CTRL) handle

Return: The vector for the alpha/beta voltage output vector values, pu

CTRL_getVd_out_addr ()

inline _iq *CTRL_getVd_out_addr(CTRL_Handle handle)

Gets the direct voltage output value memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct voltage output value memory address, &(obj->Vdq_out.value[0])

CTRL_getVd_out_pu ()

inline _iq CTRL_getVd_out_pu(CTRL_Handle handle)

Gets the direct voltage output value from the controller

Handle: The controller (CTRL) handle

Return: The direct voltage output value, pu, obj->Vdq_out.value[0])

InstaSPIN™ and MotorWare™ www.ti.com

80 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getVdq_out_addr ()

inline MATH_vec2 *CTRL_getVdq_out_addr(CTRL_Handle handle)

Gets the direct/quadrature voltage output vector memory address from the controller

Handle: The controller (CTRL) handle

Return: The direct/quadrature voltage output vector memory address, &(obj->Vdq_out)

CTRL_getVdq_out_pu ()

void CTRL_getVdq_out_pu(CTRL_Handle handle,MATH_vec2 *pVdq_out_pu);

Gets the direct/quadrature voltage output vector values from the controller

Handle: The controller (CTRL) handle

pVdq_out_pu: The vector for the direct/quadrature voltage output vector values, pu

CTRL_getVersion ()

void CTRL_getVersion(CTRL_Handle handle,CTRL_Version *pVersion);

Gets the controller version number

Handle: The controller (CTRL) handle

pVersion: A pointer to the version

CTRL_getVq_out_addr ()

inline _iq *CTRL_getVq_out_addr(CTRL_Handle handle)

Gets the quadrature voltage output value memory address from the controller

Handle: The controller (CTRL) handle

Return: The quadrature voltage output value memory address, &(obj->Vdq_out.value[1])

CTRL_getVq_out_pu ()

inline _iq CTRL_getVq_out_pu(CTRL_Handle handle)

Gets the quadrature voltage output value from the controller

Handle: The controller (CTRL) handle

Return: The quadrature voltage output value, pu, obj->Vdq_out.value[1]

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

81

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_getWaitTime ()

inline uint_least32_t CTRL_getWaitTime(CTRL_Handle handle,const CTRL_State_e
ctrlState)

Gets the wait time for a given state

Handle: The controller (CTRL) handle

ctrlState: The controller state

Return: The wait time, controller clock counts, waitTimes[ctrlState]

InstaSPIN™ and MotorWare™ www.ti.com

82 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1.4 CTRL Counter Functions

CTRL_incrCounter_current ()

inline void CTRL_incrCounter_current(CTRL_Handle handle)

Increments the current counter

Handle: The controller (CTRL) handle

counter_current: Member of CTRL object that is incremented

CTRL_incrCounter_isr ()

inline void CTRL_incrCounter_isr(CTRL_Handle handle)

Increments the ISR counter

Handle: The controller (CTRL) handle

counter_isr: Member of CTRL object that is incremented

CTRL_incrCounter_speed ()

inline void CTRL_incrCounter_speed(CTRL_Handle handle)

Increments the speed counter

Handle: The controller (CTRL) handle

counter_speed: Member of CTRL object that is incremented

CTRL_incrCounter_state ()

inline void CTRL_incrCounter_state(CTRL_Handle handle)

Increments the state counter

Handle: The controller (CTRL) handle

counter_state: Member of CTRL object that is incremented

CTRL_incrCounter_traj ()

inline void CTRL_incrCounter_traj(CTRL_Handle handle)

Increments the trajectory counter

Handle: The controller (CTRL) handle

counter_traj: Member of CTRL object that is incremented

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

83

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_resetCounter_current ()

inline void CTRL_resetCounter_current(CTRL_Handle handle)

Resets the current counter to 0

Handle: The controller (CTRL) handle

counter_current: Member of CTRL object that is reset to 0

CTRL_resetCounter_isr ()

inline void CTRL_resetCounter_isr(CTRL_Handle handle)

Resets the ISR counter to 0

Handle: The controller (CTRL) handle

counter_isr: Member of CTRL object that is reset to 0

CTRL_resetCounter_speed ()

inline void CTRL_resetCounter_speed(CTRL_Handle handle)

Resets the speed counter to 0

Handle: The controller (CTRL) handle

counter_speed: Member of CTRL object that is reset to 0

CTRL_resetCounter_state ()

inline void CTRL_resetCounter_state(CTRL_Handle handle)

Resets the state counter to 0

Handle: The controller (CTRL) handle

counter_state: Member of CTRL object that is reset to 0

CTRL_resetCounter_traj ()

inline void CTRL_resetCounter_traj(CTRL_Handle handle)

Resets the trajectory counter to 0

Handle: The controller (CTRL) handle

counter_traj: Member of CTRL object that is reset to 0

InstaSPIN™ and MotorWare™ www.ti.com

84 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1.5 CTRL Set Functions

CTRL_setCtrlFreq_Hz ()

nline void CTRL_setCtrlFreq_Hz(CTRL_Handle handle,const uint_least32_t
ctrlFreq_Hz)

Sets the controller frequency

Handle: The controller (CTRL) handle

ctrlFreq_Hz: The controller frequency, Hz

CTRL_setCtrlFreq_sec ()

inline void CTRL_setCtrlPeriod_sec(CTRL_Handle handle,const float_t
ctrlPeriod_sec)

Sets the controller execution period

Handle: The controller (CTRL) handle

ctrlPeriod_sec: The controller execution period, sec

CTRL_setErrorCode ()

inline void CTRL_setErrorCode(CTRL_Handle handle,const CTRL_ErrorCode_e
errorCode)

Sets the error code in the controller

Handle: The controller (CTRL) handle

errorCode: The error code

CTRL_setEstParams ()

void CTRL_setEstParams(EST_Handle estHandle,USER_Params *pUserParams);

Sets the default estimator parameters. Copies all scale factors that are defined in the file
user.h and used by CTRL into the CTRL object.

estHandle: The estimator (EST) handle

pUserParams: The pointer to the user parameters

CTRL_setFlag_enableCtrl ()

void CTRL_setFlag_enableCtrl(CTRL_Handle handle,const bool_t state)

Enables the FOC controller (enables the motor controller)

Handle: The controller (CTRL) handle

State: The desired state:

• True -> Enable the controller
• False -> Disable the controller

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

85

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setFlag_enableDcBusComp ()

void CTRL_setFlag_enableDcBusComp (CTRL_Handle handle,bool_t state)

Sets the enable DC bus compensation flag value in the estimator. The DC bus
compensation algorithm will compensate the Iq and Id PI controller's.

Handle: The controller (CTRL) handle

State: Boolean of desired state

CTRL_setFlag_enablePowerWarp ()

inline void CTRL_setFlag_enablePowerWarp(CTRL_Handle handle,const bool state)

Sets the PowerWarp enable flag value in the estimator. PowerWarp is only used when
controlling an induction motor. PowerWarp adjusts field levels so that the least amount of
power is used according to the load on the motor.

Handle: The controller (CTRL) handle

State: Boolean of desired state

CTRL_setFlag_enableOffset ()

void CTRL_setFlag_enableOffset(CTRL_Handle handle,const bool_t state)

Enable or disable the voltage and current offset calibration

Handle: The controller (CTRL) handle

State: The desired state:

• True -> Perform the offset calibration
• False -> Do not perform the offset

calibrationCTRL_setFlag_enableSpeedCtrl ()

void CTRL_setFlag_enableSpeedCtrl(CTRL_Handle handle,const bool_t state)

Enables speed control mode or enables torque control mode (connects the speed PI
output to Iq)

Handle: The controller (CTRL) handle

State: The desired state:

• True -> Enable speed control (connect the speed PI output to the Iq input)
• False -> Disable speed control (dis-connect the speed PI from the Iq. Iq is available for

direct input)

InstaSPIN™ and MotorWare™ www.ti.com

86 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setFlag_enableUserMotorParams ()

void CTRL_setFlag_enableUserMotorParams(CTRL_Handle handle,const bool_t
state)

Sets the enable user motor parameters flag value in the estimator

Handle: The controller (CTRL) handle

State: The desired state:

• True -> Use the user motor parameters from user.h
• False -> Perform motor parameter estimation

CTRL_setGains ()

void CTRL_setGains(CTRL_Handle handle,const CTRL_Type_e ctrlType, const _iq
Kp,const _iq Ki,const _iq Kd);

Sets the gain values for the specified controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Kp: The Kp gain value, pu

Ki: The Ki gain value, pu

Kd: The Kd gain value, pu

CTRL_setIab_in_pu ()

inline void CTRL_setIab_in_pu(CTRL_Handle handle,const MATH_vec2
*pIab_in_pu)

Sets the alpha/beta current (Iab) input vector values in the controller

Handle: The controller (CTRL) handle

pIab_in_pu: The vector of the alpha/beta current input vector values, pu

CTRL_setIab_filt_pu ()

void CTRL_setIab_filt_pu(CTRL_Handle handle,const MATH_vec2 *pIab_filt_pu);

Sets the alpha/beta filtered current vector values in the controller

Handle: The controller (CTRL) handle

pIab_filt_pu: The vector of the alpha/beta filtered current vector values, pu

CTRL_setId_ref_pu ()

inline void CTRL_setId_ref_pu(CTRL_Handle handle,const _iq Id_ref_pu)

Sets the direct current (Id) reference value in the controller

Handle: The controller (CTRL) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

87

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setId_ref_pu () (continued)

inline void CTRL_setId_ref_pu(CTRL_Handle handle,const _iq Id_ref_pu)

Id_ref_pu: The quadrature current reference value, pu; obj->Idq_ref.value[0]

CTRL_setIdq_in_pu ()

inline void CTRL_setIdq_in_pu(CTRL_Handle handle,const MATH_vec2
*pIdq_in_pu)

Sets the direct/quadrature current (Idq) input vector values in the controller

Handle: The controller (CTRL) handle

pIdq_in_pu: The vector of the direct/quadrature current input vector values, pu; obj-> Idq_in.value [0,1]

CTRL_setIdq_ref_pu ()

inline void CTRL_setIdq_ref_pu(CTRL_Handle handle,const MATH_vec2
*pIdq_ref_pu)

Sets the direct/quadrature current (Idq) reference vector values in the controller

Handle: The controller (CTRL) handle

pIdq_ref_pu: The vector of the direct/quadrature current reference vector values, pu, obj->
Idq_ref.value[0,1]

CTRL_setIdRated_pu ()

inline void CTRL_setIdRated_pu(CTRL_Handle handle,const _iq IdRated_pu)

Sets the Id rated current value in the controller

Handle: The controller (CTRL) handle

IdRated_pu: The Id rated current value, pu, obj-> IdRated

CTRL_setIq_ref_pu ()

void CTRL_setIq_ref_pu (CTRL_Handle handle, const _iq IqRef_pu)

Sets the quadrature current (Iq) reference value in the controller

Handle: The controller (CTRL) handle

IqRef_pu: The quadrature current reference value, pu, Idq_ref.value[1]

CTRL_setKd ()

void CTRL_setKd (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq Kd)

Sets the derivative gain (Kd) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type Kd: The Kd value

InstaSPIN™ and MotorWare™ www.ti.com

88 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setKi ()

void CTRL_setKi (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq Ki)

Sets the integral gain (Ki) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type Ki: The Ki value

CTRL_setKp ()

void CTRL_setKp (CTRL_Handle handle, const CTRL_Type_e ctrlType,const _iq Kp)

Sets the proportional gain (Kp) value for the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type

Kp: The Kp value

CTRL_setLhf ()

inline void CTRL_setLhf(CTRL_Handle handle,const float_t Lhf)

Sets the high frequency inductance (Lhf) value in the controller

Handle: The controller (CTRL) handle

ctrlType: The controller type

Lhf: The Lhf value

CTRL_setMagCurrent_pu ()

void CTRL_setMagCurrent_pu(CTRL_Handle handle,const _iq magCurrent_pu);

Sets the magnetizing current value in the controller

Handle: The controller (CTRL) handle

magCurrent_pu: The magnetizing current value, pu

CTRL_setMaxVsMag_pu ()

inline void CTRL_setMaxVsMag_pu(CTRL_Handle handle,const _iq maxVsMag)

Sets the maximum voltage vector in the controller

Handle: The controller (CTRL) handle

maxVsMag: The maximum voltage vector (value between 0 and 4/3), obj->maxVsMag_pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

89

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setMaxAccel_pu ()

inline void CTRL_setMaxAccel_pu(CTRL_Handle handle,const _iq maxAccel_pu)

Sets the maximum acceleration of the speed controller. Sets the maximum acceleration
rate of the speed reference.

Handle: The controller (CTRL) handle

maxAccel_pu: The maximum acceleration (value between 0 and 1), pu, obj->traj_spd.maxDelta

CTRL_setMaximumSpeed_pu ()

void CTRL_setMaximumSpeed_pu(CTRL_Handle handle,const _iq maxSpeed_pu);

Sets the maximum speed value in the controller.

Handle: The controller (CTRL) handle

maxSpeed_pu: The maximum speed value, pu

CTRL_setParams()

void CTRL_setParams(CTRL_Handle handle,USER_Params *pUserParams)

Sets the default controller parameters. This function allows for updates in scale factors
during real-time operation of the controller.

Handle: The controller (CTRL) handle

pUserParams: The pointer to the user parameters

CTRL_setNumCtrlTicksPerCurrentTick ()

inline void CTRL_setNumCtrlTicksPerCurrentTick(CTRL_Handle handle, const
uint_least16_t numCtrlTicksPerCurrentTick)

Sets the number of controller clock ticks per current controller clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerCur
rentTick:

The number of controller clock ticks per estimator clock tick, obj-
>numCtrlTicksPerCurrentTick

CTRL_setNumCtrlTicksPerSpeedTick ()

inline void CTRL_setNumCtrlTicksPerSpeedTick(CTRL_Handle handle,,const
uint_least16_t numCtrlTicksPerSpeedTick)numCtrlTicksPerCurrentTick)

Sets the number of controller clock ticks per speed controller clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerSpe
edTick:

The number of controller clock ticks per speed clock tick, obj->
numCtrlTicksPerSpeedTick

InstaSPIN™ and MotorWare™ www.ti.com

90 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setNumCtrlTicksPerTrajTick ()

inline void CTRL_setNumCtrlTicksPerTrajTick(CTRL_Handle handle, const
uint_least16_t numCtrlTicksPerTrajTick)

Sets the number of controller clock ticks per trajectory clock tick.

Handle: The controller (CTRL) handle

numCtrlTicksPerTraj
Tick:

The number of controller clock ticks per trajectory clock tick, obj->
numCtrlTicksPerTrajTick

CTRL_setNumIsrTicksPerCtrlTick ()

inline void CTRL_setNumIsrTicksPerCtrlTick(CTRL_Handle handle, const
uint_least16_t numIsrTicksPerCtrlTick)

Sets the number of Interrupt Service Routine (ISR) clock ticks per controller clock tick.

Handle: The controller (CTRL) handle

numIsrTicksPerCtrlT
ick:

The number of ISR clock ticks per controller clock tick

CTRL_setRhf ()

inline void CTRL_setRhf(CTRL_Handle handle,const float_t Rhf)

Sets the high frequency resistance (Rhf) value in the controller

Handle: The controller (CTRL) handle

Rhf: The Rhf value, obj->Rhf

CTRL_setRoverL ()

inline void CTRL_setRoverL(CTRL_Handle handle,const float_t RoverL)

Sets the R/L value in the controller

Handle: The controller (CTRL) handle

RoverL: The R/L value, obj-> RoverL

CTRL_setSpdMax ()

void CTRL_setSpdMax (CTRL_Handle handle, const _iq spdMax)

Sets the PI speed reference value that is located in the controller

Handle: The controller (CTRL) handle

spdMax: The maximum allowed output of the speed controller

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

91

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setSpd_max_pu ()

inline void CTRL_setSpd_max_pu(CTRL_Handle handle,const _iq maxSpd_pu)

Sets the maximum speed value in the controller

Handle: The controller (CTRL) handle

maxSpd_pu: The maximum speed value, pu

CTRL_setSpd_out_pu ()

inline void CTRL_setSpd_out_pu(CTRL_Handle handle,const _iq spd_out_pu)

Sets the output speed value in the controller

Handle: The controller (CTRL) handle

spd_out_pu: The output speed value, pu

CTRL_setSpd_ref_pu ()

void CTRL_setSpd_ref_pu(CTRL_Handle handle,const _iq spd_ref_pu);

Sets the output speed reference value in the controller

Handle: The controller (CTRL) handle

spd_ref_pu: The output speed reference value, pu

CTRL_setSpd_ref_krpm ()

void CTRL_setSpd_ref_krpm(CTRL_Handle handle,const _iq spd_ref_krpm)

Sets the PI speed reference value that is located in the controller

Handle: The controller (CTRL) handle

spd_ref_krpm: The output speed reference value, kilo-rpm

CTRL_setState ()

inline void CTRL_setState(CTRL_Handle handle,const CTRL_State_e state)

Sets the controller state

Handle: The controller (CTRL) handle

state: The new state

CTRL_setTrajFreq_Hz ()

inline void CTRL_setTrajFreq_Hz(CTRL_Handle handle,const uint_least32_t
trajFreq_Hz)

Sets the trajectory execution frequency

Handle: The controller (CTRL) handle

InstaSPIN™ and MotorWare™ www.ti.com

92 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setTrajFreq_Hz () (continued)

inline void CTRL_setTrajFreq_Hz(CTRL_Handle handle,const uint_least32_t
trajFreq_Hz)

trajFreq_Hz: The trajectory execution frequency, Hz, obj->trajFreq_Hz

CTRL_setTrajPeriod_sec ()

inline void CTRL_setTrajPeriod_sec(CTRL_Handle handle,const _iq trajPeriod_sec)

Sets the trajectory execution period

Handle: The controller (CTRL) handle

trajPeriod_sec: The trajectory execution period, sec, obj->trajPeriod_sec

CTRL_setUi ()

inline void CTRL_setUi(CTRL_Handle handle,const CTRL_Type_e ctrlType,const
_iq Ui)

Sets the integrator (Ui) value in the specified controller (speed, Id, or Iq)

Handle: The controller (CTRL) handle

ctrlType: The controller type

Ui: Ui value

CTRL_setupClarke_I ()

void CTRL_setupClarke_I(CTRL_Handle handle,uint_least8_t numCurrentSensors);

Sets the number of current sensors. Different algorithms are used for calculating the
Clarke transform when different number of currents are read in.

Handle: The controller (CTRL) handle

ctrlType: The controller type

numCurrentSensors The number of current sensors

CTRL_setupClarke_V ()

void CTRL_setupClarke_V(CTRL_Handle handle,uint_least8_t numVoltageSensors);

Sets the number of voltage sensors. Different algorithms are used for calculating the
Clarke transform when different number of voltages are read in.

Handle: The controller (CTRL) handle

ctrlType: The controller type

numVoltageSensors:The number of voltage sensors

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

93

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setupEstIdleState ()

void CTRL_setupEstIdleState(CTRL_Handle handle);

Sets up the controller and trajectory generator for the estimator idle state

Handle: The controller (CTRL) handle

CTRL_setupEstOnLineState ()

void CTRL_setupEstOnLineState(CTRL_Handle handle);

Sets up the controller and trajectory generator for the estimator idle state

Handle: The controller (CTRL) handle

CTRL_setUserMotorParams ()

void CTRL_setUserMotorParams(CTRL_Handle handle);

Sets the controller and estimator with motor parameters from the user.h file

Handle: The controller (CTRL) handle

CTRL_setVab_in_pu ()

inline void CTRL_setVab_in_pu(CTRL_Handle handle,const MATH_vec2
*pVab_in_pu)

Sets the alpha/beta voltage input vector values in the controller

Handle: The controller (CTRL) handle

CTRL_setVab_out_pu ()

inline void CTRL_setVab_out_pu(CTRL_Handle handle,const MATH_vec2
*pVab_out_pu)

Sets the alpha/beta voltage output vector values in the controller

Handle: The controller (CTRL) handle

CTRL_setVdq_out_pu ()

inline void CTRL_setVdq_out_pu(CTRL_Handle handle,const MATH_vec2
*pVdq_out_pu)

Sets the direct/quadrature voltage output vector values in the controller

Handle: The controller (CTRL) handle

pVdq_out_pu: The vector of direct/quadrature voltage output vector values, pu

CTRL_setWaitTimes ()

void CTRL_setWaitTimes(CTRL_Handle handle,const uint_least32_t *pWaitTimes)

Sets the wait times for the controller states

InstaSPIN™ and MotorWare™ www.ti.com

94 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_setWaitTimes () (continued)

void CTRL_setWaitTimes(CTRL_Handle handle,const uint_least32_t *pWaitTimes)

Handle: The controller (CTRL) handle

pWaitTimes: A pointer to a vector of wait times, controller clock counts

CTRL_setup ()

void CTRL_setup(CTRL_Handle handle)

Sets up the controllers

Handle: The controller (CTRL) handle

CTRL_setupCtrl ()

void CTRL_setupCtrl(CTRL_Handle handle);

Sets up the controller (CTRL) object and all of the subordinate objects (Runs the
InstaSPIN state machine)

Handle: The controller (CTRL) handle

CTRL_setupEst ()

void CTRL_setupEst(CTRL_Handle handle);

Sets up the controller (CTRL) object and all of the subordinate objects (Runs the
InstaSPIN state machine)

Handle: The controller (CTRL) handle

CTRL_setupTraj ()

void CTRL_setupTraj(CTRL_Handle handle);

Sets up the trajectory (TRAJ) object

Handle: The controller (CTRL) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

95

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.1.6 CTRL Run and Compute Functions

CTRL_angleDelayComp ()

inline _iq CTRL_angleDelayComp(CTRL_Handle handle, const _iq angle_pu)

Runs angle delay compensation. This function takes the decimation rates to calculate a
phase delay, and it compensates the delay. This allows the voltage output to do a better
correction of the error.

Handle: The controller (CTRL) handle

angle_pu: The angle delayed

Return: The phase delay compensated angle, angleComp_pu

CTRL_computePhasor ()

inline void CTRL_computePhasor(const _iq angle_pu,MATH_vec2 *pPhasor)

Computes a phasor for a given angle

angle_pu: The angle, pu

pPhasor: The pointer to the phasor vector values

CTRL_doCurrentCtrl ()

inline bool CTRL_doCurrentCtrl(CTRL_Handle handle)

Determines if the current controllers should be run

Handle: The controller (CTRL) handle

Return: The value denoting that the current controllers should be run (true) or not (false), result

CTRL_doSpeedCtrl ()

inline bool CTRL_doSpeedCtrl(CTRL_Handle handle)

Determines if the speed controller should be executed

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if the speed controller should be executed (true) or not (false)

InstaSPIN™ and MotorWare™ www.ti.com

96 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_run()

void CTRL_run(CTRL_Handle handle,HAL_Handle halHandle,const HAL_AdcData_t
*pAdcData, HAL_PwmData_t *pPwmData)

Runs the motor controller calculations, must be called at the ISR rate

Handle: The controller (CTRL) handle

halHandle: The driver (HAL) handle

pAdcData: The pointer to the ADC data in “HAL_AdcData_t” type format

pPwmData: The pointer to the PWM data in “HAL_AdcData_t” type format

CTRL_runTraj ()

void CTRL_runTraj(CTRL_Handle handle)

Runs the trajectory

Handle: The controller (CTRL) handle

CTRL_runOffLine ()

inline void CTRL_runOffLine(CTRL_Handle handle,HAL_Handle halHandle, const
HAL_AdcData_t *pAdcData,HAL_PwmData_t *pPwmData)

Runs the offline controller

Handle: The controller (CTRL) handle

halHandle: The hardware abstraction layer (HAL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

CTRL_runOnLine ()

inline void CTRL_runOnLine(CTRL_Handle handle,const HAL_AdcData_t
*pAdcData,HAL_PwmData_t *pPwmData)

Runs the online controller

Handle: The controller (CTRL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

97

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CTRL_runOnLine_User ()

inline void CTRL_runOnLine_User(CTRL_Handle handle, const HAL_AdcData_t
*pAdcData,HAL_PwmData_t *pPwmData)

Runs the online controller

Handle: The controller (CTRL) handle

pAdcData: The pointer to the ADC data

pPwmData: The pointer to the PWM data

CTRL_useZeroIq_ref ()

inline bool CTRL_useZeroIq_ref(CTRL_Handle handle)

Determines if a zero Iq current reference should be used in the controller

Handle: The controller (CTRL) handle

Return: A Boolean value denoting if a zero Iq current reference should be used (true) or not (false)

InstaSPIN™ and MotorWare™ www.ti.com

98 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2 Estimator API Functions – FAST™ Library – est.h, est_states.h
3.4.2.1 EST Enumerations and Structures

EST_RsOnLineFilterType_e

Enumeration for the Rs online filter types

typedef enum
{
 EST_RsOnLineFilterType_Current=0, < Current Filter
 EST_RsOnLineFilterType_Voltage < Voltage Filter
} EST_RsOnLineFilterType_e;

EST_ErrorCode_e

Enumeration for the estimator error codes

typedef enum
{
 EST_ErrorCode_NoError=0, < no error error code
 EST_ErrorCode_Flux_OL_ShiftOverFlow, < flux open loop shift overflow error
code
 EST_ErrorCode_FluxError, < flux estimator error code
 EST_ErrorCode_Dir_ShiftOverFlow, < direction shift overflow error code
 EST_ErrorCode_Ind_ShiftOverFlow, < inductance shift overflow error code
 EST_numErrorCodes < the number of estimator error codes
} EST_ErrorCode_e;

EST_State_e

Enumeration for the estimator states

typedef enum
{
 EST_State_Error=0, < error
 EST_State_Idle, < idle
 EST_State_RoverL, < R/L estimation
 EST_State_Rs, < Rs estimation state
 EST_State_RampUp, < ramp up the speed
 EST_State_IdRated, < control Id and estimate the rated flux
 EST_State_RatedFlux_OL, < estimate the open loop rated flux
 EST_State_RatedFlux, < estimate the rated flux
 EST_State_RampDown, < ramp down the speed
 EST_State_LockRotor, < lock the rotor
 EST_State_Ls, < stator inductance estimation state
 EST_State_Rr, < rotor resistance estimation state
 EST_State_MotorIdentified, < motor identified state
 EST_State_OnLine, < online parameter estimation
 EST_numStates < the number of estimator states
} EST_State_e;

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

99

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2.2 EST Set Functions

EST_setRsOnLineId_pu ()

extern void EST_setRsOnLineId_pu(EST_Handle handle,const _iq Id_pu);

Gets the Id value used for online stator resistance estimation in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The Id value, pu

EST_setAngle_pu ()

extern void EST_setAngle_pu(EST_Handle handle,const _iq angle_pu);

Sets the angle value in the estimator in per unit (pu), IQ24

This function overwrites the estimated angle with a user's provided angle. The set value
should be between 0x00000000 or _IQ(0.0) to 0x00FFFFFF or _IQ(1.0). The following
example shows how to overwrite the estimated angle:

 _iq Overwrite_Flux_Angle_pu = _IQ(0.5);
 EST_setAngle_pu(handle, Overwrite_Flux_Angle_pu);

This function is not recommended for general use, since this will automatically generate
an axis misalignment between the rotor flux axis and the control signals driving the motor.
The use of this function is recommended for advanced users interested in doing open
loop startup algorithms that need to bypass the estimator.

Handle: The estimator (EST) handle

angle_pu: The angle value, pu

EST_setDcBus_pu ()

extern void EST_setDcBus_pu(EST_Handle handle,const _iq dcBus_pu);

Sets the DC bus voltage in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

dcBus_pu: The DC bus voltage, pu

EST_setDir_qFmt ()

extern void EST_setDir_qFmt(EST_Handle handle,const uint_least8_t dir_qFmt);

Sets the direction Q format in the estimator

Handle: The estimator (EST) handle

dir_qFmt: The direction Q format

InstaSPIN™ and MotorWare™ www.ti.com

100 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setFe_neg_max_pu ()

extern void EST_setFe_neg_max_pu(EST_Handle handle,const _iq
fe_neg_max_pu);

Sets maximum negative electrical frequency from the estimator

Handle: The estimator (EST) handle

fe_neg_max_pu: The maximum negative electrical frequency, Hz

EST_setFe_pos_min_pu ()

extern void EST_setFe_pos_min_pu(EST_Handle handle,const _iq fe_pos_min_pu);

Sets minimum positive electrical frequency from the estimator

Handle: The estimator (EST) handle

fe_pos_min_pu: The minimum positive electrical frequency, Hz

EST_setFlag_enableFluxControl ()

extern void EST_setFlag_enableFluxControl(EST_Handle handle,const bool state);

Sets the enable flux control flag in the estimator

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_enableForceAngle ()

void EST_setFlag_enableForceAngle (EST_Handle handle,const bool_t state)

Sets the enable force angle flag in the estimator

Enable or disable the DC measurement of Rs at startup of the motor

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

• TRUE: Enable forced angle. The estimated angle will be bypassed if the flux frequency
falls below a threshold defined by:

 #define USER_ZEROSPEEDLIMIT (0.001)

in user.h. A typical value of this frequency is 0.001 of the full scale frequency defined
in:

 #define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

Forced angle algorithm, when active, that is, when the rotor flux electrical frequency
falls below the threshold, will be forcing a rotating angle at a frequency set by the
following define:

 #define USER_FORCE_ANGLE_FREQ_Hz (1.0)

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

101

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setFlag_enableForceAngle () (continued)

void EST_setFlag_enableForceAngle (EST_Handle handle,const bool_t state)
• FALSE: Disable forced angle. The estimator will never be bypassed by any forced

angle algorithm.

EST_setFlag_enableRsOnLine ()

void EST_setFlag_enableRsOnLine(EST_Handle handle,const bool_t state)

Enables or disables the Rs online estimation in the estimator handle

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_enableRsRecalc ()

void EST_setFlag_enableRsRecalc(EST_Handle handle,const bool_t state)

Sets the enable stator resistance (Rs) re-calculation flag in the estimator

Enable or disable the DC measurement of Rs at startup of the motor

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setFlag_estComplete ()

extern void EST_setFlag_estComplete(EST_Handle handle,const bool state);

Sets the estimation complete flag in the estimator

Handle: The estimator (EST) handle

State: The desired flag state, true (1) or false (0)

EST_setFlag_updateRs ()

void EST_setFlag_updateRs(EST_Handle handle,const bool_t state)

Sets the update stator resistance (Rs) flag in the estimator. Copies the Rs value from the
Rs online estimator to the Rs value used by the InstaSpin angle estimator

Handle: The estimator (EST) handle

State: The desired flag state, on (1) or off (0)

EST_setForceAngleDelta_pu ()

extern void EST_setForceAngleDelta_pu(EST_Handle handle,const _iq
angleDelta_pu);

Sets the force angle delta value in the estimator in per unit (pu), IQ24

This function sets a forced angle delta, which represents the increments to be added to
or subtracted from the forced angle. The higher this value is, the higher frequency will be

InstaSPIN™ and MotorWare™ www.ti.com

102 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setForceAngleDelta_pu () (continued)

extern void EST_setForceAngleDelta_pu(EST_Handle handle,const _iq
angleDelta_pu);
generated when the angle is forced (estimated angle is bypassed when in forced angle
mode). By default the forced angle frequency is set in user.h. The following example
shows how to set a forced angle frequency from Hertz (Hz) to per unit:

 #define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_EST_TICK)
 #define USER_FORCE_ANGLE_FREQ_Hz (1.0)
 _iq delta_hz_to_pu_sf = _IQ(1.0/(float_t)USER_EST_FREQ_Hz);
 _iq Force_Angle_Freq_Hz = _IQ(USER_FORCE_ANGLE_FREQ_Hz);
 _iq Force_Angle_Delta_pu = _IQmpy(Force_Angle_Freq_Hz, delta_hz_to_pu_sf);
 EST_setForceAngleDelta_pu(handle, Force_Angle_Delta_pu);

Handle: The estimator (EST) handle

angleDelta_pu: The force angle delta value, pu

EST_setFreqB0_lp_pu ()

extern void EST_setFreqB0_lp_pu(EST_Handle handle,const _iq b0_lp_pu);

Sets the low pass filter numerator value in the frequency estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

b0_lp_pu: The low pass filter numerator value, pu

EST_setFreqBeta_lp_pu ()

extern void EST_setFreqBeta_lp_pu(EST_Handle handle,const _iq beta_lp_pu);

Sets the value used to set the low pass pole location in the frequency estimator in per unit
(pu), IQ30

Handle: The estimator (EST) handle

beta_lp_pu: The value used to set the filter pole location, pu

EST_setFullScaleCurrent ()

extern void EST_setFullScaleCurrent(EST_Handle handle,const float_t
fullScaleCurrent);

Sets the full scale current in the estimator in Amperes (A)

Handle: The estimator (EST) handle

fullScaleCurrent: The full scale current, A

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

103

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setFullScaleFlux ()

extern void EST_setFullScaleFlux(EST_Handle handle,const float_t fullScaleFlux);

Sets the full scale flux value used in the estimator in Volts*seconds (V.s)

Handle: The estimator (EST) handle

fullScaleFlux: The full scale flux value, V*sec

EST_setFullScaleFreq ()

extern void EST_setFullScaleFreq(EST_Handle handle,const float_t fullScaleFreq);

Sets the full scale frequency in the estimator in Hertz (Hz)

Handle: The estimator (EST) handle

fullScaleFreq: The full scale frequency, Hz

EST_setFullScaleInductance ()

extern void EST_setFullScaleInductance(EST_Handle handle,const float_t
fullScaleInductance);

Sets the full scale inductance in the estimator in Henries (H).

Handle: The estimator (EST) handle

fullScaleInductance: The full scale inductance, Henry

EST_setFullScaleResistance ()

extern void EST_setFullScaleResistance(EST_Handle handle,const float_t
fullScaleResistance);

Sets the full scale resistance in the estimator in Ohms.

Handle: The estimator (EST) handle

fullScaleResistance: The full scale resistance, Ohm

EST_setFullScaleVoltage ()

extern void EST_setFullScaleVoltage(EST_Handle handle,const float_t
fullScaleVoltage);

Sets the full scale resistance in the estimator in Volts (V).

Handle: The estimator (EST) handle

fullScaleVoltage: The full scale voltage, V

EST_setIdle ()

extern void EST_setIdle(EST_Handle handle);

Sets the estimator to idle

InstaSPIN™ and MotorWare™ www.ti.com

104 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setIdle () (continued)

extern void EST_setIdle(EST_Handle handle);

Handle: The estimator (EST) handle

EST_setIdle_all ()

extern void EST_setIdle_all(EST_Handle handle);

Sets the estimator and all of the subordinate estimators to idle

Handle: The estimator (EST) handle

EST_setId_ref_pu ()

extern void EST_setId_ref_pu(EST_Handle handle,const _iq Id_ref_pu);

Sets the direct current (Id) reference value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

Id_ref_pu: The Id reference value, pu

EST_setIdRated_pu ()

extern void EST_setIdRated_pu(EST_Handle handle,const _iq IdRated_pu);

Sets the Id rated current value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

IdRated_pu: The Id rated current value, pu

EST_setIq_ref_pu ()

extern void EST_setIq_ref_pu(EST_Handle handle,const _iq Iq_ref_pu);

Sets the quadrature current (Iq) reference value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

Iq_ref_pu: The Iq reference value, pu

EST_setLs_d_pu ()

extern void EST_setLs_d_pu(EST_Handle handle,const _iq Ls_d_pu);

Sets the direct stator inductance value in the estimator in per unit (pu), IQ30

The internal direct inductance (Ls_d) used by the estimator can be changed in real time
by calling this function. An example showing how this is done is shown here:

 #define USER_MOTOR_Ls_d (0.012)
 float_t fullScaleInductance = EST_getFullScaleInductance(handle);
 float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
 int_least8_t lShift = ceil(log(USER_MOTOR_Ls_d/
(Ls_coarse_max*fullScaleInductance))/log(2.0));
 uint_least8_t Ls_qFmt = 30 - lShift;
 float_t L_max = fullScaleInductance * pow(2.0,lShift);

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

105

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setLs_d_pu () (continued)

extern void EST_setLs_d_pu(EST_Handle handle,const _iq Ls_d_pu);

 _iq Ls_d_pu = _IQ30(USER_MOTOR_Ls_d / L_max);
 EST_setLs_d_pu(handle, Ls_d_pu);
 EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_d_pu: The direct stator inductance value, pu

EST_setLs_delta_pu ()

extern void EST_setLs_delta_pu(EST_Handle handle,const _iq Ls_delta_pu);

Sets the delta stator inductance value during fine estimation

Handle: The estimator (EST) handle

Ls_delta_pu: The delta stator inductance value, pu

EST_setLs_dq_pu ()

extern void EST_setLs_dq_pu(EST_Handle handle,const MATH_vec2 *pLs_dq_pu);

Sets the direct/quadrature stator inductance vector values in the estimator in per unit (pu),
IQ30

The internal direct and quadrature inductances (Ls_d and Ls_q) used by the estimator
can be changed in real time by calling this function. An example showing how this is done
is shown here:

 #define USER_MOTOR_Ls_d (0.012)
 #define USER_MOTOR_Ls_q (0.027)
 float_t fullScaleInductance = EST_getFullScaleInductance(handle);
 float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
 int_least8_t lShift = ceil(log(USER_MOTOR_Ls_d/
(Ls_coarse_max*fullScaleInductance))/log(2.0));
 uint_least8_t Ls_qFmt = 30 - lShift;
 float_t L_max = fullScaleInductance * pow(2.0,lShift);
 MATH_vec2 Ls_dq_pu;
 Ls_dq_pu.value[0] = _IQ30(USER_MOTOR_Ls_d / L_max);
 Ls_dq_pu.value[1] = _IQ30(USER_MOTOR_Ls_q / L_max);
 EST_setLs_dq_pu(handle, &Ls_dq_pu);
 EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

pLs_dq_pu: The pointer to the direct/quadrature stator inductance vector values, pu

EST_setLs_q_pu ()

extern void EST_setLs_q_pu(EST_Handle handle,const _iq Ls_q_pu);

Sets the quadrature stator inductance value in the estimator in per unit (pu), IQ30

InstaSPIN™ and MotorWare™ www.ti.com

106 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setLs_q_pu () (continued)

extern void EST_setLs_q_pu(EST_Handle handle,const _iq Ls_q_pu);
The internal quadrature inductance (Ls_q) used by the estimator can be changed in real
time by calling this function. An example showing how this is done is shown here:

 #define USER_MOTOR_Ls_q (0.027)
 float_t fullScaleInductance = EST_getFullScaleInductance(handle);
 float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
 int_least8_t lShift = ceil(log(USER_MOTOR_Ls_q/
(Ls_coarse_max*fullScaleInductance))/log(2.0));
 uint_least8_t Ls_qFmt = 30 - lShift;
 float_t L_max = fullScaleInductance * pow(2.0,lShift);
 _iq Ls_d_pu = _IQ30(USER_MOTOR_Ls_q / L_max);
 EST_setLs_q_pu(handle, Ls_q_pu);
 EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_q_pu: The quadrature stator inductance value, pu

EST_setLs_qFmt ()

extern void EST_setLs_qFmt(EST_Handle handle,const uint_least8_t Ls_qFmt);

Sets the stator inductance Q format in the estimator in 8 bit unsigned integer
(uint_least8_t)

Updating the internal inductance also requires to update the Q format variable, which is
used to extend the covered range. This qFmt (Q Format) variable creates a floating point
using fixed point math. It is important to notice that the inductance Q Format set by calling
EST_setLs_qFmt() will be used by both per unit inductance calculations Ls_d and Ls_q.
An example showing how this Q Format is set is shown below:

 #define USER_MOTOR_Ls_d (0.012)
 #define USER_MOTOR_Ls_q (0.027)
 float_t fullScaleInductance = EST_getFullScaleInductance(handle);
 float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(handle));
 int_least8_t lShift = ceil(log(USER_MOTOR_Ls_d/
(Ls_coarse_max*fullScaleInductance))/log(2.0));
 uint_least8_t Ls_qFmt = 30 - lShift;
 float_t L_max = fullScaleInductance * pow(2.0,lShift);
 MATH_vec2 Ls_dq_pu;
 Ls_dq_pu.value[0] = _IQ30(USER_MOTOR_Ls_d / L_max);
 Ls_dq_pu.value[1] = _IQ30(USER_MOTOR_Ls_q / L_max);
 EST_setLs_dq_pu(handle, &Ls_dq_pu);
 EST_setLs_qFmt(handle, Ls_qFmt);

Handle: The estimator (EST) handle

Ls_qFmt: The stator inductance Q format

EST_setMaxAccel_pu ()

extern void EST_setMaxAccel_pu(EST_Handle handle,const _iq maxAccel_pu);

Sets the maximum acceleration value in the estimator in per unit (pu), IQ24

Handle: The estimator (EST) handle

maxAccel_pu: The maximum acceleration value, pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

107

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setMaxAccel_est_pu ()

extern void EST_setMaxAccel_est_pu(EST_Handle handle,const _iq maxAccel_pu);

Sets the maximum estimation acceleration value in the estimator in per unit (pu), IQ24.

Handle: The estimator (EST) handle

maxAccel_pu: The maximum estimation acceleration value, pu

EST_setMaxCurrentSlope_pu ()

void EST_setMaxCurrentSlope_pu (EST_Handle handle, const _iq
maxCurrentSlope_pu)

Sets the maximum current slope value in the estimator in per unit (pu), IQ24.

Handle: The estimator (EST) handle

maxCurrentSlope_p
u:

The maximum current slope value, pu

EST_setMaxCurrentSlope_PowerWarp_pu ()

extern void EST_setMaxCurrentSlope_PowerWarp_pu(EST_Handle handle,const
_iq maxCurrentSlope_pu);

Sets the maximum PowerWarp current slope value used in the estimator in per unit (pu),
IQ24

Handle: The estimator (EST) handle

maxCurrentSlope_p
u:

The maximum current slope value, pu

EST_setRr_pu ()

extern void EST_setRr_pu(EST_Handle handle,const _iq Rr_pu);

Sets the rotor resistance value in the estimator in per unit (pu), IQ30.

Handle: The estimator (EST) handle

Rr_pu: The rotor resistance value, pu

EST_setRr_qFmt ()

extern void EST_setRr_qFmt(EST_Handle handle,uint_least8_t Rr_qFmt);

Sets the rotor resistance Q format in the estimator in 8 bit unsigned integer (uint_least8_t)

Handle: The estimator (EST) handle

Rr_qFmt: The rotor resistance Q format

InstaSPIN™ and MotorWare™ www.ti.com

108 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setRs_delta_pu ()

extern void EST_setRs_delta_pu(EST_Handle handle,const _iq Rs_delta_pu);

Sets the delta stator resistance value

Handle: The estimator (EST) handle

Rs_delta_pu: The delta stator resistance value, pu

EST_setRsOnLine_pu ()

extern void EST_setRsOnLine_pu(EST_Handle handle,const _iq Rs_pu);

Sets the stator resistance value in the online stator resistance estimator in per unit (pu),
IQ30.

Handle: The estimator (EST) handle

Rs_pu: The stator resistance value, pu

EST_setRsOnLine_qFmt ()

extern void EST_setRsOnLine_qFmt(EST_Handle handle,const uint_least8_t
Rs_qFmt);

Sets the stator resistance Q format in the online stator resistance estimator in 8 bit
unsigned integer (uint_least8_t)

Handle: The estimator (EST) handle

Rs_qFmt: The stator resistance Q format

EST_setRsOnLineFilterParams ()

extern void EST_setRsOnLineFilterParams(EST_Handle handle,const
EST_RsOnLineFilterType_e filterType, const _iq filter_0_b0,const _iq
filter_0_a1,const _iq filter_0_y1, const _iq filter_1_b0,const _iq filter_1_a1,const _iq
filter_1_y1);

Sets the online stator resistance filter parameters in per unit (pu), IQ24

Handle: The estimator (EST) handle

filterType: The filter type

filter_0_b0: The filter 0 numerator coefficient value for z^0

filter_0_a1: The filter 0 denominator coefficient value for z^(-1)

filter_0_y1: The filter 0 output value at time sample n=-1

filter_1_b0: The filter 1 numerator coefficient value for z^0

filter_1_a1: The filter 1 denominator coefficient value for z^(-1)

filter_1_y1: The filter 1 output value at time sample n=-1

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

109

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_setRsOnLineId_mag_pu ()

extern void EST_setRsOnLineId_mag_pu(EST_Handle handle,const _iq
Id_mag_pu);

Sets the Id magnitude value used for online stator resistance estimation in per unit (pu),
IQ24

Handle: The estimator (EST) handle

Id_mag_pu: The Id magnitude value, pu

EST_setRs_pu ()

extern void EST_setRs_pu(EST_Handle handle,const _iq Rs_pu);

Sets the stator resistance value used in the estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

Rs_pu: The stator resistance value, pu

EST_setRs_qFmt ()

extern void EST_setRs_qFmt(EST_Handle handle,uint_least8_t Rs_qFmt);

Sets the stator resistance Q format in the estimator in 8 bit unsigned integer
(uint_least8_t)

Handle: The estimator (EST) handle

Rs_qFmt: The stator resistance Q format

EST_updateId_ref_pu ()

extern void EST_updateId_ref_pu(EST_Handle handle,_iq *pId_ref_pu);

Updates the Id reference value used for online stator resistance estimation in per unit
(pu), IQ24.

Handle: The estimator (EST) handle

pId_ref_pu: The pointer to the Id reference value, pu

InstaSPIN™ and MotorWare™ www.ti.com

110 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2.3 EST Get Functions

EST_get_krpm_to_pu_sf ()

extern _iq EST_get_krpm_to_pu_sf(EST_Handle handle);

Gets the krpm to pu scale factor in per unit (pu), IQ24. This function is needed when a
user needs to scale a value of the motor speed from kpm (kilo revolutions per minute) to a
per units value.

This scale factor is calculated and used as shown below:

 #define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 _iq scale_factor = _IQ(USER_MOTOR_NUM_POLE_PAIRS * 1000.0 / (60.0 *
USER_IQ_FULL_SCALE_FREQ_Hz));
 _iq Speed_krpm = EST_getSpeed_krpm(handle);
 _iq Speed_krpm_to_pu_sf = EST_get_krpm_to_pu_sf(handle);
 _iq Speed_pu = _IQmpy(Speed_krpm,Speed_krpm_to_pu_sf);

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24

EST_get_pu_to_krpm_sf ()

extern _iq EST_get_pu_to_krpm_sf(EST_Handle handle);

Gets the pu to krpm scale factor in per unit (pu), IQ24. This function is needed when a
user needs to scale a value of the motor speed from per units to krpm (kilo revolutions per
minute) value.

This scale factor is calculated and used as shown below:

 #define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 _iq scale_factor = IQ(60.0 * USER_IQ_FULL_SCALE_FREQ_Hz /
(USER_MOTOR_NUM_POLE_PAIRS * 1000.0));
 _iq Speed_pu = EST_getFm_pu(handle);
 _iq Speed_pu_to_krpm_sf = EST_get_pu_to_krpm_sf(handle);
 _iq Speed_krpm = _IQmpy(Speed_krpm,Speed_krpm_to_pu_sf);

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24

EST_getAngle_pu ()

_iq EST_getAngle_pu(EST_Handle handle)

Gets the angle value from the estimator in per unit (pu), IQ24. This function returns a per
units value of the rotor flux angle. This value wraps around at 1.0, so the return value is
between 0x00000000 or _IQ(0.0) to 0x00FFFFFF or _IQ(1.0). An example of using this
angle is shown:

_iq Rotor_Flux_Angle_pu = EST_getAngle_pu(handle);

Handle: The estimator (EST) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

111

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getAngle_pu () (continued)

_iq EST_getAngle_pu(EST_Handle handle)

Return: The flux angle value, pu

EST_getDcBus_pu ()

_iq EST_getDcBus_pu(EST_Handle handle)

Gets the DC bus value from the estimator in per unit (pu), IQ24. This value is originally
passed as a parameter when calling function EST_run(). A similar function can be simply
reading what has been read and scaled by the ADC converter on pAdcData->dcBus. This
value is used by the libraries internally to calculate one over dcbus, which is a value used
to compensate the proportional gains of the current controllers. The following example
shows how to use this function to calculate a DC bus value in kilo volts:

#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 _iq Vbus_pu = EST_getDcBus_pu(handle);
 _iq Vbus_pu_to_kV_sf = _IQ(USER_IQ_FULL_SCALE_VOLT
_iq Vbus_kV = _IQmpy(Vbus_pu,Vbus_pu_to_kV_sf);

Handle: The estimator (EST) handle

Return: The DC bus value, pu

EST_ErrorCode_e EST_getErrorCode ()

extern EST_ErrorCode_e EST_getErrorCode(EST_Handle handle);

Gets the error code from the estimator

Handle: The estimator (EST) handle

Return: The error code

EST_getFe ()

extern int32_t EST_getFe(EST_Handle handle);

Gets the electrical frequency of the motor in Hertz (Hz). This frequency, in Hz, is the
frequency of currents and voltages going into the motor. In order to get the speed of the
motor, it is better to use EST_getFm().

Handle: The estimator (EST) handle

Return: The electrical frequency, Hz

EST_getFe_pu ()

extern _iq EST_getFe_pu(EST_Handle handle);

Gets the electrical frequency of the motor in per unit (pu), IQ24. Similar to EST_getFe()
function, this function returns the electrical frequency of the motor in per units. In order

InstaSPIN™ and MotorWare™ www.ti.com

112 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFe_pu () (continued)

extern _iq EST_getFe_pu(EST_Handle handle);
to convert the electrical frequency from per units to Hz, the user needs to multiply the
returned value by the following scale factor:

_iq Full_Scale_Freq_Elec_Hz = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz);
_iq Freq_Elec_Hz = _IQmpy(EST_getFe_pu(handle),Full_Scale_Freq_Elec_Hz);

Handle: The estimator (EST) handle

Return: The electrical frequency, pu

EST_getFlag_enableForceAngle ()

extern bool EST_getFlag_enableForceAngle(EST_Handle handle);

Gets the enable force angle flag value from the estimator.

Handle: The estimator (EST) handle

Return: The value of the flag, in Boolean type, bool

• TRUE: Forced angle is enabled, and the estimated angle will be bypassed if the flux
frequency falls below a threshold defined by:

#define USER_ZEROSPEEDLIMIT (0.001)

A typical value of this frequency is 0.001 of the full scale frequency defined in:

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)

Forced angle algorithm, when active, that is, when the rotor flux electrical frequency
falls below the threshold, will be forcing a rotating angle at a frequency set by the
following define:

#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

• FALSE: Disable forced angle. The estimator will never be bypassed by any forced
angle algorithm.

EST_getFlag_enableRsOnLine ()

extern bool EST_getFlag_enableRsOnLine(EST_Handle handle);

Gets the value of the flag which enables online stator resistance (Rs) estimation

Handle: The estimator (EST) handle

Return: The enable online Rs flag value

• true Rs online recalibration algorithm is enabled. The estimator will run a set of
functions related to rs online which recalculates the stator resistance while the motor
is rotating. This algorithm is useful when motor heats up, and hence stator resistance
increases.

• false Rs online recalibration algorithm is disabled, and no updates to Rs will be made
even if the motor heats up. Low speed performace, and startup performance with full

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

113

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFlag_enableRsOnLine () (continued)

extern bool EST_getFlag_enableRsOnLine(EST_Handle handle);
torque might be affected if stator resistance changes due to motor heating up. The
stator resistance will be fixed, and equal to the value returned by: EST_getRs_Ohm().

EST_getFlag_enableRsRecalc ()

extern bool EST_getFlag_enableRsRecalc(EST_Handle handle);

Gets the value of the flag which enables online stator resistance (Rs) estimation

Handle: The estimator (EST) handle

Return: The enable online Rs flag value

• true Rs online recalibration algorithm is enabled. The estimator will run a set of
functions related to rs online which recalculates the stator resistance while the motor
is rotating. This algorithm is useful when motor heats up, and hence stator resistance
increases.

• false Rs online recalibration algorithm is disabled, and no updates to Rs will be made
even if the motor heats up. Low speed performace, and startup performance with full
torque might be affected if stator resistance changes due to motor heating up. The
stator resistance will be fixed, and equal to the value returned by: EST_getRs_Ohm().

EST_getFlag_estComplete ()

extern bool EST_getFlag_estComplete(EST_Handle handle);

Gets the value of the flag which denotes when the estimation is complete. This flag is set
to true every time the EST_run() function is run. This flag can be reset to false by using
the following example:

bool estComplete_Flag = EST_getFlag_estComplete(handle);

Handle: The estimator (EST) handle

Return: The enable online Rs flag value

• true - The estimator has been run at least once since last time
EST_setFlag_estComplete(handle, false) was called.

• false - The estimator has not been run since last time
EST_setFlag_estComplete(handle, false) was called.

EST_getFlag_updateRs ()

extern bool EST_getFlag_updateRs(EST_Handle handle);

Gets the value of the flag which enables the updating of the stator resistance (Rs)
value. When the online resistance estimator is enabled, the update flag allows the online
resistance to be copied to the resistance used by the estimator model. If the update flag
is not set to true the online resistance estimation will not be used by the estimator model,

InstaSPIN™ and MotorWare™ www.ti.com

114 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFlag_updateRs () (continued)

extern bool EST_getFlag_updateRs(EST_Handle handle);
and if the resistance changes too much due to temperature increase, the model may not
work as expected.

bool update_Flag = EST_getFlag_updateRs(handle);

Handle: The estimator (EST) handle

Return: The update Rs flag value

• true - The stator resistance estimated by the Rs OnLine module will be copied to the
stator resistance used by the module, so of the motor's temperature changes, the
estimated angle will be calculated based on the most up to date stator resistance

• false - The stator resistance estimated by the Rs OnLine module may or may not be
updated depending on the enable flag, but will not be used in the motor's model used
to generate the estimated speed and angle.

EST_getFlux_VpHz ()

int32_t EST_getFlux_VpHz(EST_Handle handle)

Gets the flux value in V/Hz

The estimator continuously calculates the flux linkage between the rotor and stator, which
is the portion of the flux that produces torque. This function returns the flux linkage,
ignoring the number of turns, between the rotor and stator coils, in Volts per Hertz, or
V/Hz. This functions returns a precise value only after the motor has been identified,
which can be checked by the following code example:

if(EST_isMotorIdentified(handle))
 {
 // once the motor has been identified, get the flux
 float_t Flux_VpHz = EST_getFlux_VpHz(handle);
 }

Handle: The estimator (EST) handle

Return: The flux value, V/Hz

EST_getFlux_Wb ()

int32_t EST_getFlux_Wb(EST_Handle handle)

Gets the flux value in Weber

The estimator continuously calculates the flux linkage between the rotor and stator, which
is the portion of the flux that produces torque. This function returns the flux linkage,
ignoring the number of turns, between the rotor and stator coils, in Webers, or Wb, or
Volts * Seconds (V.s). This functions returns a precise value only after the motor has been
identified, which can be checked by the following code example:

if(EST_isMotorIdentified(handle))
 {
 // once the motor has been identified, get the flux

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

115

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFlux_Wb () (continued)

int32_t EST_getFlux_Wb(EST_Handle handle)

 float_t Flux_Wb = EST_getFlux_Wb(handle);
 }

Handle: The estimator (EST) handle

Return: The flux value, Weber

EST_getFlux_pu ()

extern _iq EST_getFlux_pu(EST_Handle handle);

Gets the flux value in per unit (pu), IQ24

The estimator continuously calculates the flux linkage between the rotor and stator, which
is the portion of the flux that produces torque. This function returns the flux linkage,
ignoring the number of turns, between the rotor and stator coils, in per units. This
functions returns a precise value only after the motor has been identified, which can be
checked by the following code example:

if(EST_isMotorIdentified(handle))
 {
 // once the motor has been identified, get the flux
 _iq Flux_pu = EST_getFlux_pu(handle);
 }

For some applications it is important to get this value in per units, since it is much faster
to process especially when the architecture of the microcontroller does not have a floating
point processing unit. In order to translate this per units value into a scaled value in _iq, it
is important to consider a scale factor to convert this flux in per units to the required units.
The following example shows how to scale a per units value to Wb and V/Hz in IQ for
faster processing:

float_t FullScaleFlux = (USER_IQ_FULL_SCALE_VOLTAGE_V/
(float_t)USER_EST_FREQ_Hz);
 float_t maxFlux =
(USER_MOTOR_RATED_FLUX*((USER_MOTOR_TYPE==MOTOR_Type_Induction)?0.05:0.7));
 float_t lShift = -ceil(log(FullScaleFlux/maxFlux)/log(2.0));
 _iq gFlux_pu_to_Wb_sf = _IQ(FullScaleFlux/(2.0*MATH_PI)*pow(2.0,lShift));
 _iq gFlux_pu_to_VpHz_sf = _IQ(FullScaleFlux*pow(2.0,lShift));
 // The value of gFlux_pu_to_Wb_sf and gFlux_pu_to_VpHz_sf can be calculated
once at the beginning of the
 // code and stored as global variables
 _iq Flux_Wb;
 _iq Flux_VpHz;
 _iq Flux_pu = EST_getFlux_pu(handle);
 Flux_Wb = _IQmpy(Flux_pu, gFlux_pu_to_Wb_sf);
 Flux_VpHz = _IQmpy(Flux_pu, gFlux_pu_to_VpHz_sf);

Handle: The estimator (EST) handle

Return: The flux value, pu

InstaSPIN™ and MotorWare™ www.ti.com

116 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFm ()

extern int32_t EST_getFm(EST_Handle handle);

Gets the mechanical frequency of the motor in Hertz (Hz). This frequency, in Hz, is
the mechanical frequency of the motor. If the motor is a permanent magnet motor, the
mechanical frequency will be equal to the electrical frequency, since it is a synchronous
motor. In the case of AC induction motors, the mechanical frequency will be equal to the
electrical frequency minus the slip frequency. The following code example shows how to
use this function to calculate revolutions per minute (RPM) in floating point:

#define USER_MOTOR_NUM_POLE_PAIRS (2)
 float_t Mechanical_Freq_Hz = EST_getFm(handle);
 float_t hz_to_rpm_sf = 60.0/USER_MOTOR_NUM_POLE_PAIRS;
 float_t Speed_RPM = Mechanical_Freq_Hz * hz_to_rpm_sf;

Handle: The estimator (EST) handle

Return: The mechanical frequency, Hz

EST_getFm_pu ()

extern _iq EST_getFm_pu(EST_Handle handle);

Gets the mechanical frequency of the motor in per unit (pu), IQ24. Similar to
EST_getFe_pu() function, this function returns the mechanical frequency of the motor
in per units. In order to convert the mechanical frequency from per units to kHz (to avoid
saturation of IQ24), the user needs to multiply the returned value by the following scale
factor:

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 _iq pu_to_khz_sf = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz/1000.0);
 _iq khz_to_krpm_sf = _IQ(60.0/USER_MOTOR_NUM_POLE_PAIRS);
 _iq Mechanical_Freq_kHz = _IQmpy(EST_getFm_pu(handle),pu_to_khz_sf);
 _iq Speed_kRPM = _IQmpy(Mechanical_Freq_kHz,khz_to_krpm_sf);

Handle: The estimator (EST) handle

Return: The mechanical frequency, pu

EST_getForceAngleDelta_pu ()

extern _iq EST_getForceAngleDelta_pu(EST_Handle handle);

Gets the force angle delta value from the estimator in per unit (pu), IQ24. This
function returns a valid value only after initializing the controller object by calling
CTRL_setParams() function. The force angle delta represents the increments to be added
to or subtracted from the forced angle. The higher this value is, the higher frequency
will be generated when the angle is forced (estimated angle is bypassed when in forced
angle mode). By default the forced angle frequency is set in user.h. The following example
shows how to convert delta in per units to kilo Hertz (kHz).

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

117

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getForceAngleDelta_pu () (continued)

extern _iq EST_getForceAngleDelta_pu(EST_Handle handle);

 #define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_EST_TICK)
 _iq delta_pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);
 _iq Force_Angle_Delta_pu = EST_getForceAngleDelta_pu(handle);
 _iq Force_Angle_Freq_kHz = _IQmpy(Force_Angle_Delta_pu, delta_pu_to_kHz_sf);

Note that kHz is preferred to avoid overflow of IQ24 variables.

Handle: The estimator (EST) handle

Return: The force angle delta, pu. Minimum value of _IQ(0.0) and maximum of _IQ(1.0).

EST_getForceAngleStatus ()

extern bool EST_getForceAngleStatus(EST_Handle handle);

Gets the status of the force angle operation in the estimator. The status can only change
to active when forced angle mode has been enabled by calling the following function:
EST_setFlag_enableForceAngle(handle, true); Forced angle mode will be active when
the electrical frequency of the motor falls below the defined threshold in user.h: #define
USER_ZEROSPEEDLIMIT (0.001) details A manual check of forced angle status can be
done using the following code example:

_iq fe_pu = EST_getFe_pu(handle);
 bool is_forced_angle_active;
 if(_IQabs(fe_pu) < _IQ(USER_ZEROSPEEDLIMIT))
 {
 is_forced_angle_active = true;
 }
 else
 {
 is_forced_angle_active = false;
 }

Note that kHz is preferred to avoid overflow of IQ24 variables.

Handle: The estimator (EST) handle

Return: A Boolean value denoting whether the angle has been forced (true) or not (false)

• true - The last iteration of the estimator used a forced angle to run the park and inverse
park transforms. The estimator was also run in parallel to the forced angle, but the
estimator output was not used.

\retval

• false - Forced angle mode is either disabled, or the electrical frequency did not fall
below the predetermined threshold. The estimator output was used to run the park and
inverse park transforms.

EST_getFreqB0_lp_pu ()

extern _iq EST_getFreqB0_lp_pu(EST_Handle handle);

Gets the low pass filter numerator value in the frequency estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

InstaSPIN™ and MotorWare™ www.ti.com

118 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFreqB0_lp_pu () (continued)

extern _iq EST_getFreqB0_lp_pu(EST_Handle handle);

Return: The low pass filter numerator value, pu

EST_getFreqBeta_lp_pu ()

extern _iq EST_getFreqBeta_lp_pu(EST_Handle handle);

Gets the value used to set the pole location in the low-pass filter of the frequency
estimator in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The value used to set the filter pole location, pu

EST_getFslip ()

extern int32_t EST_getFslip(EST_Handle handle);

Gets the slip frequency of the motor in Hertz (Hz).

Handle: The estimator (EST) handle

Return: The slip frequency, Hz

Handle: The estimator (EST) handle

Return: The krpm to pu scale factor. This value is in IQ24

EST_getFslip_pu ()

extern _iq EST_getFslip_pu(EST_Handle handle);

Gets the slip frequency of the motor in per unit (pu), IQ24

Similar to EST_getFe_pu() function, this function returns the slip frequency of the motor in
per units. In order to convert the slip frequency from from per units to Hz, the user needs
to multiply the returned value by the following scale factor:

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 _iq Full_Scale_Freq_Elec_Hz = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz);
 _iq Freq_Slip_Hz = _IQmpy(EST_getFslip_pu(handle),Full_Scale_Freq_Elec_Hz);

Handle: The estimator (EST) handle

Return: The slip frequency, pu

EST_getFullScaleCurrent ()

extern int32_t EST_getFullScaleCurrent(EST_Handle handle);

Gets the full scale current value used in the estimator in Amperes (A)

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

119

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFullScaleCurrent () (continued)

extern int32_t EST_getFullScaleCurrent(EST_Handle handle);
The value returned by this function is the same as the value defined in user.h. When
users require to display a value in real world units; that is, in Amperes, this value is used
to convert the per unit values of currents into Amperes. The following example shows two
different ways of doing this conversion, one using floating point, and the other one using
IQ math. Example using floating point:

float_t pu_to_amps_sf = EST_getFullScaleCurrent(handle);
 _iq Id_rated_pu = EST_getIdRated_pu(handle);
 float_t Id_rated_A = _IQtoF(Id_rated_pu) * pu_to_amps_sf;
 Example using fixed point:

 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 _iq pu_to_amps_sf = _IQ(USER_IQ_FULL_SCALE_CURRENT_A);
 _iq Id_rated_pu = EST_getIdRated_pu(handle);
 _iq Id_rated_A = _IQmpy(Id_rated_pu, pu_to_amps_sf);

Handle: The estimator (EST) handle

Return: The full scale current value, A

EST_getFullScaleFlux ()

extern int32_t EST_getFullScaleFlux(EST_Handle handle);

Gets the full scale flux value used in the estimator in Volts per Hertz (V/Hz)

Handle: The estimator (EST) handle

Return: The full scale flux value

EST_getFullScaleFreq ()

extern int32_t EST_getFullScaleFreq(EST_Handle handle);

Gets the full scale frequency value used in the estimator in Hertz (Hz).

Full-scale frequency can be used as a scale factor to convert values from per units to
Hertz. The following example shows how to use this function to convert frequency from
per units to Hz using floating point math:

float_t Mechanical_Frequency_pu = _IQtoF(EST_getFm_pu(handle));
 float_t pu_to_hz_sf = EST_getFullScaleFreq(handle);
 float_t Mechanical_Frequency_hz = Mechanical_Frequency_pu * pu_to_hz_sf

For faster execution, this function call can be avoided by using a definition of the full scale
frequency that resides in user.h. The following example shows the same functionality but
using fixed point math for faster execution:

#define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 _iq Mechanical_Frequency_pu = EST_getFm_pu(handle);
 _iq pu_to_khz_sf = _IQ(USER_IQ_FULL_SCALE_FREQ_Hz/1000.0);
 _iq Mechanical_Frequency_khz = _IQmpy(Mechanical_Frequency_pu, pu_to_khz_sf);

Handle: The estimator (EST) handle

Return: The full scale frequency value, Hz

InstaSPIN™ and MotorWare™ www.ti.com

120 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFullScaleInductance ()

extern int32_t EST_getFullScaleInductance(EST_Handle handle);

Gets the full scale inductance value used in the estimator in Henries (H).

There are different ways of getting the inductance used by the estimator. This function
helps when converting an inductance from per units to H. However, the returned value is
in floating point format, so utilizing this full scale value to convert per units to H is not the
most efficient way. Two examples are provided below, showing a floating point per units
to H conversion, and a fixed point per units to H conversion for faster execution. Floating
point example:

uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
 float_t fullScaleInductance = EST_getFullScaleInductance(handle);
 float_t Ls_d_pu = _IQ30toF(EST_getLs_d_pu(handle));
 float_t pu_to_h_sf = fullScaleInductance * pow(2.0, 30 - Ls_qFmt);
 float_t Ls_d_H = Ls_d_pu * pu_to_h_sf;

Another example is to avoid using floating point math for faster execution. In this example
the full scale inductance value is calculated using pre-compiler math based on user's
parameters in user.h:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) : ((var)
<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Ls_d_pu = _IQ30toIQ(EST_getLs_d_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
 _iq Ls_d_H = _IQmpy(Ls_d_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Henry

EST_getFullScaleResistance ()

extern int32_t EST_getFullScaleResistance(EST_Handle handle);

Gets the full scale resistance value used in the estimator in Ohms There are different
ways of getting the resistance used by the estimator. This function helps when converting
resistance from per units to Ohms. However, the returned value is in floating point format,
so utilizing this full scale value to convert per units to Ohms is not the most efficient
way. Two examples are provided below, showing a floating point per units to Ohms
conversion, and a fixed point per units to Ohms conversion for faster execution. Floating
point example:

uint_least8_t Rs_qFmt = EST_getRs_qFmt(handle);
 float_t fullScaleResistance = EST_getFullScaleResistance(handle);
 float_t Rs_pu = _IQ30toF(EST_getRs_pu(handle));
 float_t pu_to_ohms_sf = fullScaleResistance * pow(2.0, 30 - Rs_qFmt);
 float_t Rs_Ohms = Rs_pu * pu_to_ohms_sf;

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

121

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getFullScaleResistance () (continued)

extern int32_t EST_getFullScaleResistance(EST_Handle handle);
Another example is to avoid using floating point math for faster execution. In this example
the full scale resistance value is calculated using pre-compiler math based on user's
parameters in user.h:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 uint_least8_t Rs_qFmt = EST_getRs_qFmt(handle);
 _iq fullScaleResistance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
USER_IQ_FULL_SCALE_CURRENT_A);
 _iq Rs_pu = _IQ30toIQ(EST_getRs_pu(handle));
 _iq pu_to_ohms_sf = VarShift(fullScaleResistance, 30 - Rs_qFmt);
 _iq Rs_Ohms = _IQmpy(Rs_pu, pu_to_ohms_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Ohm

EST_getFullScaleVoltage ()

extern int32_t EST_getFullScaleVoltage(EST_Handle handle);

Gets the full-scale voltage value used in the estimator in Volts (V).

The value returned by this function is the same as the value defined in user.h. When
users require to display a value in real world units; that is, in Volts, this value is used
to convert the per unit values of voltage into Volts. The following example shows two
different ways of doing this conversion, one using floating point, and the other one using
IQ math.

Example using floating point:

float_t pu_to_v_sf = EST_getFullScaleVoltage(handle);
 _iq DcBus_pu = EST_getDcBus_pu(handle);
 float_t DcBus_V = _IQtoF(DcBus_pu) * pu_to_v_sf;

Example using fixed point:

#define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 _iq pu_to_kv_sf = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/1000.0);
 _iq DcBus_pu = EST_getDcBus_pu(handle);
 _iq DcBus_kV = _IQmpy(DcBus_pu, pu_to_kv_sf);

Handle: The estimator (EST) handle

Return: The full scale resistance value, Ohm

EST_getIdRated ()

float_t EST_getIdRated(EST_Handle handle)

Gets the Id rated current value from the estimator

Handle: The estimator (EST) handle

Return: The Id rated current value, A

InstaSPIN™ and MotorWare™ www.ti.com

122 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getIdRated_pu ()

extern _iq EST_getIdRated_pu(EST_Handle handle);

Gets the Id rated current value from the estimator in per unit (pu), IQ24.

Handle: The estimator (EST) handle

Return: The Id rated current value, pu

EST_getIdRated_indEst_pu ()

_iq EST_getIdRated_indEst_pu(EST_Handle handle)

Gets the Id rated current value used for induction estimation

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getIdRated_ratedFlux_pu ()

extern _iq EST_getIdRated_ratedFlux_pu(EST_Handle handle);

Gets the Id current value used for flux estimation of induction motors in per unit (pu),
IQ24.

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getLr_H ()

extern int32_t EST_getLr_H(EST_Handle handle);

Gets the rotor inductance value in Henries (H).

Handle: The estimator (EST) handle

Return: The Id rated value, pu

EST_getLr_pu ()

extern _iq EST_getLr_pu(EST_Handle handle);

Gets the rotor inductance value in per unit (pu), IQ30.

The per units value of the rotor inductance can be used as an alternative way of
calculating the rotor inductance of an induction motor using fixed point math. An example
showing how this is done is shown here:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Lr_qFmt = EST_getLr_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

123

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getLr_pu () (continued)

extern _iq EST_getLr_pu(EST_Handle handle);

(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Lr_pu = _IQ30toIQ(EST_getLr_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Lr_qFmt);
 _iq Lr_H = _IQmpy(Lr_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The rotor inductance value, pu

EST_getLr_qFmt ()

extern uint_least8_t EST_getLr_qFmt(EST_Handle handle);

Gets the rotor inductance Q format in 8 bit unsigned integer (uint_least8_t).

When the motor is identified by the estimator, the Q format is used to have a wider range
of the identified parameter. This Q format is the difference between the actual Q format
used for the identification and IQ30 which is used internaly during identification of the
motor parameters. To understand how this Q format can be used in user's code, please
refer to the following example, which converts a per units value read from the estimator to
Henries:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Lr_qFmt = EST_getLr_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Lr_pu = _IQ30toIQ(EST_getLr_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Lr_qFmt);
 _iq Lr_H = _IQmpy(Lr_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The rotor inductance value Q format

EST_getLs_d_H ()

float_t EST_getLs_d_H(EST_Handle handle)

Gets the direct stator inductance value in Henries

Handle: The estimator (EST) handle

Return: The direct stator inductance value, Henry

EST_getLs_d_pu ()

extern _iq EST_getLs_d_pu(EST_Handle handle);

Gets the direct stator inductance value in per unit (pu), IQ30

InstaSPIN™ and MotorWare™ www.ti.com

124 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getLs_d_pu () (continued)

extern _iq EST_getLs_d_pu(EST_Handle handle);
The per units value of the direct stator inductance can be used as an alternative way of
calculating the direct stator inductance of a permanent magnet motor using fixed point
math. An example showing how this is done is shown here:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Ls_d_pu = _IQ30toIQ(EST_getLs_d_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
 _iq Ls_d_H = _IQmpy(Ls_d_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The direct stator inductance value, pu

EST_getLs_delta_pu ()

extern _iq EST_getLs_delta_pu(EST_Handle handle);

Gets the delta stator inductance value in the stator inductance estimator

Handle: The estimator (EST) handle

Return: The delta stator inductance value, pu

EST_getLs_dq_pu ()

extern void EST_getLs_dq_pu(EST_Handle handle,MATH_vec2 *pLs_dq_pu);

Gets the direct/quadrature stator inductance vector values from the estimator in per unit
(pu), IQ30 Both direct and quadrature stator inductances can be read from the estimator
by using this function call and passing a pointer to a structure where these two values will
be stored.

Handle: The estimator (EST) handle

pLs_dq_pu: The pointer for the direct/quadrature stator inductance vector values, pu

EST_getLs_q_H ()

float_t EST_getLs_q_H(EST_Handle handle)

Gets the stator inductance value in the quadrature coordinate direction in Henries

Handle: The estimator (EST) handle

Return: The stator inductance value, Henry

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

125

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getLs_q_pu ()

extern _iq EST_getLs_q_pu(EST_Handle handle);

Gets the stator inductance value in the quadrature coordinate direction in per unit (pu),
IQ30

The per units value of the quadrature stator inductance can be used as an alternative way
of calculating the quadrature stator inductance of a permanent magnet motor using fixed
point math. An example showing how this is done is shown here:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Ls_q_pu = _IQ30toIQ(EST_getLs_q_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
 _iq Ls_q_H = _IQmpy(Ls_q_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The stator inductance value, pu

EST_getLs_qFmt ()

extern uint_least8_t EST_getLs_qFmt(EST_Handle handle);

Gets the stator inductance Q format in 8 bit unsigned integer (uint_least8_t).

When the motor is identified by the estimator, the Q format is used to have a wider range
of the identified parameter. This Q format is the difference between the actual Q format
used for the identification and IQ30 which is used internaly during identification of the
motor parameters. To understand how this Q format can be used in user's code, please
refer to the following example, which converts a per units value read from the estimator to
Henries:

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) :
((var)<<(nshift)))
 #define MATH_PI (3.1415926535897932384626433832795)
 #define USER_IQ_FULL_SCALE_VOLTAGE_V (300.0)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_VOLTAGE_FILTER_POLE_Hz (335.648)
 #define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI *
USER_VOLTAGE_FILTER_POLE_Hz)
 uint_least8_t Ls_qFmt = EST_getLs_qFmt(handle);
 _iq fullScaleInductance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/
(USER_IQ_FULL_SCALE_CURRENT_A * USER_VOLTAGE_FILTER_POLE_rps));
 _iq Ls_q_pu = _IQ30toIQ(EST_getLs_q_pu(handle));
 _iq pu_to_h_sf = VarShift(fullScaleInductance, 30 - Ls_qFmt);
 _iq Ls_q_H = _IQmpy(Ls_q_pu, pu_to_h_sf);

Handle: The estimator (EST) handle

Return: The stator inductance Q format

InstaSPIN™ and MotorWare™ www.ti.com

126 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getLs_max_pu ()

extern _iq EST_getLs_max_pu(EST_Handle handle);

Gets the maximum stator inductance value from the stator inductance estimator

Handle: The estimator (EST) handle

Return: The maximum stator inductance value, pu

EST_getLs_min_pu ()

extern _iq EST_getLs_min_pu(EST_Handle handle);

Gets the minimum stator inductance value from the stator inductance estimator

Handle: The estimator (EST) handle

Return: The minimum stator inductance value, pu

EST_getLs_coarse_max_pu ()

extern _iq EST_getLs_coarse_max_pu(EST_Handle handle);

Gets the maximum stator inductance value during coarse estimation in the stator
inductance estimator

Handle: The estimator (EST) handle

Return: The maximum stator inductance value, pu

EST_getMaxAccel_pu ()

extern _iq EST_getMaxAccel_pu(EST_Handle handle);

Gets the maximum acceleration value used in the estimator in per unit (pu), IQ24

The maximum acceleration is a setting of the trajectory module, which sets the speed
reference. The acceleration returned by this function call is used after the motor has been
identified. This value represents how the speed reference is increased or decreased from
an initial value to a target value. The following example shows how convert the returned
value of this function to kilo Hertz per second (kHz/s) and kilo RPM per second (kRPM/s):

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 #define USER_MOTOR_NUM_POLE_PAIRS (4)
 _iq pu_to_khzps_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz / 1000.0);
 _iq khzps_to_krpmps_sf = _IQ(60.0 / (float_t)USER_MOTOR_NUM_POLE_PAIRS);

 _iq Accel_pu = EST_getMaxAccel_pu(handle);
 _iq Accel_kilo_hz_per_sec = _IQmpy(Accel_pu, pu_to_khzps_sf);
 _iq Accel_kilo_rpm_per_sec = _IQmpy(Accel_kilo_hz_per_sec, khzps_to_krpmps_sf);

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

127

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getMaxAccel_pu () (continued)

extern _iq EST_getMaxAccel_pu(EST_Handle handle);
The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 #define USER_MAX_ACCEL_Hzps (20.0)
 _iq hzps_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz));

 _iq Accel_hertz_per_sec = _IQ(USER_MAX_ACCEL_Hzps);
 _iq Accel_pu = _IQmpy(Accel_hertz_per_sec, hzps_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum acceleration value, pu

EST_getMaxAccel_est_pu ()

extern _iq EST_getMaxAccel_est_pu(EST_Handle handle);

Gets the maximum estimation acceleration value used in the estimator in per unit (pu),
IQ24

The maximum acceleration is a setting of the trajectory module, which sets the speed
reference. The acceleration returned by this function call is used during the motor
identification process. This value represents how the speed reference is increased or
decreased from an initial value to a target value. The following example shows how
convert the returned value of this function to kilo Hertz per Second (kHz/s) and kilo RPM
per second (kRPM/s):

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 #define USER_MOTOR_NUM_POLE_PAIRS (4)
 _iq pu_to_khzps_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz / 1000.0);
 _iq khzps_to_krpmps_sf = _IQ(60.0 / (float_t)USER_MOTOR_NUM_POLE_PAIRS);

 _iq est_Accel_pu = EST_getMaxAccel_est_pu(handle);
 _iq est_Accel_kilo_hz_per_sec = _IQmpy(est_Accel_pu, pu_to_khzps_sf);
 _iq est_Accel_kilo_rpm_per_sec = _IQmpy(est_Accel_kilo_hz_per_sec,
khzps_to_krpmps_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)

InstaSPIN™ and MotorWare™ www.ti.com

128 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getMaxAccel_est_pu () (continued)

extern _iq EST_getMaxAccel_est_pu(EST_Handle handle);

 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_FREQ_Hz (500.0)
 #define USER_MAX_ACCEL_EST_Hzps (2.0)
 _iq hzps_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_FREQ_Hz));

 _iq est_Accel_hertz_per_sec = _IQ(USER_MAX_ACCEL_EST_Hzps);
 _iq est_Accel_pu = _IQmpy(est_Accel_hertz_per_sec, hzps_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum estimation acceleration value, pu

EST_getMaxCurrentSlope_pu ()

extern _iq EST_getMaxCurrentSlope_pu(EST_Handle handle);

Gets the maximum current slope value used in the estimator in per unit (pu), IQ24

Gets the slope of Id reference. The following example shows how to convert the returned
value into kilo Amperes per second (kA/s):

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 _iq pu_to_kA_per_sec_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A / 1000.0);
 _iq currentSlope_pu = EST_getMaxCurrentSlope_pu(handle);
 _iq currentSlope_kAps = _IQmpy(currentSlope_pu, pu_to_kA_per_sec_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_MOTOR_RES_EST_CURRENT (1.0)
 _iq A_per_sec_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A));
 _iq currentSlope_Aps = _IQ(USER_MOTOR_RES_EST_CURRENT);
 _iq currentSlope_pu = _IQmpy(currentSlope_Aps, A_per_sec_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum current slope value, pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

129

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getMaxCurrentSlope_PowerWarp_pu ()

extern _iq EST_getMaxCurrentSlope_PowerWarp_pu(EST_Handle handle);

Gets the maximum PowerWarp current slope value used in the estimator in per unit (pu),
IQ24

Gets the slope of Id reference change when efficient partial load is enabled. This mode
only applies to induction motors. The following example shows how to convert the
returned value into kilo Amperes per second (kA/s):

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 _iq pu_to_kA_per_sec_sf = _IQ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A / 1000.0);
 _iq currentSlope_PowerWarp_pu = EST_getMaxCurrentSlope_PowerWarp_pu(handle);
 _iq currentSlope_PowerWarp_kAps = _IQmpy(currentSlope_PowerWarp_pu,
pu_to_kA_per_sec_sf);

The default value is set by a user's defined value in user.h, and the default value in per
units is calculated internally as follows:

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
 #define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)
 #define USER_PWM_FREQ_kHz (15.0)
 #define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
 #define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)
 #define USER_TRAJ_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz/
USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)
 #define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
 #define USER_MOTOR_RES_EST_CURRENT (1.0)
 _iq A_per_sec_to_pu_sf = _IQ(1.0 / ((float_t)USER_TRAJ_FREQ_Hz *
USER_IQ_FULL_SCALE_CURRENT_A));
 _iq currentSlope_PowerWarp_Aps = _IQ(0.3 * USER_MOTOR_RES_EST_CURRENT);
 _iq currentSlope_PowerWarp_pu = _IQmpy(currentSlope_PowerWarp_Aps,
A_per_sec_to_pu_sf);

Handle: The estimator (EST) handle

Return: The maximum PowerWarp current slope value, pu

EST_getOneOverDcBus_pu ()

extern _iq EST_getOneOverDcBus_pu(EST_Handle handle);

Gets the inverse of the DC bus voltage in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The inverse of the DC bus voltage, pu

EST_getRr_Ohm ()

extern int32_t EST_getRr_Ohm(EST_Handle handle);

Gets the rotor resistance value in Ohms

InstaSPIN™ and MotorWare™ www.ti.com

130 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getRr_Ohm () (continued)

extern int32_t EST_getRr_Ohm(EST_Handle handle);

Handle: The estimator (EST) handle

Return: The rotor resistance value, Ohm

EST_getRr_pu ()

extern _iq EST_getRr_pu(EST_Handle handle);

Gets the rotor resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The rotor resistance value, pu

EST_getRr_qFmt ()

extern uint_least8_t EST_getRr_qFmt(EST_Handle handle);

Gets the rotor resistance Q format in 8 bit unsigned integer (uint_least8_t).

Handle: The estimator (EST) handle

Return: The rotor resistance Q format

EST_getRs_delta_pu ()

extern _iq EST_getRs_delta_pu(EST_Handle handle);

Gets the delta stator resistance value from the stator resistance estimator

Handle: The estimator (EST) handle

Return: The delta stator resistance value, pu

EST_getRs_Ohm ()

float_t EST_getRs_Ohm(EST_Handle handle)

Gets the stator resistance value that is used by the angle estimator

Handle: The estimator (EST) handle

Return: The stator resistance value, Ohm

EST_getRs_pu ()

extern _iq EST_getRs_pu(EST_Handle handle);

Gets the stator resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The stator resistance value, pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

131

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getRs_qFmt ()

extern uint_least8_t EST_getRs_qFmt(EST_Handle handle);

Gets the stator resistance Q format in 8 bit unsigned integer (uint_least8_t)

Handle: The estimator (EST) handle

Return: The stator resistance Q format

EST_getRs_qFmt ()

extern void EST_getRsOnLineFilterParams(EST_Handle handle,const
EST_RsOnLineFilterType_e filterType, _iq *pFilter_0_b0,_iq *pFilter_0_a1,_iq
*pFilter_0_y1, _iq *pFilter_1_b0,_iq *pFilter_1_a1,_iq *pFilter_1_y1);

Gets the online stator resistance filter parameters in per unit (pu), IQ24

Handle: The estimator (EST) handle

filterType: The filter type

pFilter_0_b0: The pointer for the filter 0 numerator coefficient value for z^0

pFilter_0_a1: The pointer for the filter 0 denominator coefficient value for z^(-1)

pFilter_0_y1: The pointer for the filter 0 output value at time sample n=-1

pFilter_1_b0: The pointer for the filter 1 numerator coefficient value for z^0

pFilter_1_a1: The pointer for the filter 1 denominator coefficient value for z^(-1)

pFilter_1_y1: The pointer for the filter 1 output value at time sample n=-1

EST_getRsOnLine_Ohm ()

extern int32_t EST_getRsOnLine_Ohm(EST_Handle handle)

Gets the online stator resistance value

Handle: The estimator (EST) handle

Return: The online stator resistance value, Ohm

EST_getRsOnLine_pu ()

extern _iq EST_getRsOnLine_pu(EST_Handle handle);

Gets the online stator resistance value in per unit (pu), IQ30

Handle: The estimator (EST) handle

Return: The online stator resistance Q format

EST_getRsOnLineId_mag_pu ()

extern _iq EST_getRsOnLineId_mag_pu(EST_Handle handle);

Gets the Id magnitude value used for online stator resistance estimation in per unit (pu),
IQ24

InstaSPIN™ and MotorWare™ www.ti.com

132 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getRsOnLineId_mag_pu () (continued)

extern _iq EST_getRsOnLineId_mag_pu(EST_Handle handle);

Handle: The estimator (EST) handle

Return: The Id magnitude value, pu

EST_getRsOnLineId_pu ()

extern _iq EST_getRsOnLineId_pu(EST_Handle handle);

Gets the Id value used for online stator resistance estimation in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The Id value, pu

EST_getSpeed_krpm ()

_iq EST_getSpeed_krpm(EST_Handle handle)

Gets the speed value in kilo-rpm

Handle: The estimator (EST) handle

Return: The speed value, kilo-rpm

EST_getSignOfDirection ()

extern int_least8_t EST_getSignOfDirection(EST_Handle handle);

Gets the sign of the direction value in 8 bit signed integer (int_least8_t)

Handle: The estimator (EST) handle

Return: The sign of the direction value (-1 for negative, 1 for positive)

EST_getSpeed_krpm ()

_iq EST_getSpeed_krpm(EST_Handle handle)

Gets the speed value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The speed value, kilo-rpm

EST_getState ()

EST_State_e EST_getState(EST_Handle handle)

Gets the state of the estimator

Handle: The estimator (EST) handle

Return: The estimator state

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

133

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_getTorque_lbin ()

_iq EST_getTorque_lbin(EST_Handle handle)

Gets the torque value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The torque value, lb*in

EST_getTorque_Nm ()

extern _iq EST_getTorque_Nm(EST_Handle handle);

Gets the torque value in per unit (pu), IQ24

Handle: The estimator (EST) handle

Return: The torque value, N*m

EST_getDir_qFmt ()

extern uint_least8_t EST_getDir_qFmt(EST_Handle handle);

Gets the direction Q format from the estimator

Handle: The estimator (EST) handle

Return: The direction Q format

InstaSPIN™ and MotorWare™ www.ti.com

134 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2.4 EST Run and Compute Functions

EST_computeLr_H ()

extern int32_t EST_computeLr_H(EST_Handle handle,const _iq current);

Computes the rotor inductance in Henries (H)

Handle: The estimator (EST) handle

Current: The current in the rotor

Return: The rotor inductance, H

EST_doCurrentCtrl ()

extern bool EST_doCurrentCtrl(EST_Handle handle);

Determines if current control should be performed during motor identification

Handle: The estimator (EST) handle

Return: A Boolean value denoting whether (true) or not (false) to perform current control

EST_genOutputLimits_Pid_Id ()

extern void EST_genOutputLimits_Pid_Id(EST_Handle handle, const _iq
maxDutyCycle, _iq *outMin,_iq *outMax);

Generated the PID Id controller output limits

Handle: The estimator (EST) handle

maxDutyCycle: The maximum duty cycle, pu

outMin: The pointer to the minimum output value

outMax: The pointer to the maximum output value

EST_genOutputLimits_Pid_Iq ()

extern void EST_genOutputLimits_Pid_Iq(EST_Handle handle, const _iq
maxDutyCycle, const _iq out_Id,_iq *outMin,_iq *outMax);

Generated the PID Iq controller output limits

Handle: The estimator (EST) handle

maxDutyCycle: The maximum duty cycle, pu

out_Id: The Id output value

outMin: The pointer to the minimum output value

outMax: The pointer to the maximum output value

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

135

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_run ()

extern void EST_run(EST_Handle handle, const MATH_vec2 *pIab_pu, const
MATH_vec2 *pVab_pu, const _iq dcBus_pu, const _iq speed_ref_pu);

Runs the estimator

Handle: The estimator (EST) handle

pIab_pu: The pointer to the phase currents in the alpha/beta coordinate system, pu

IQ24 pVab_pu: The pointer to the phase voltages in the alpha/beta coordinate system, pu

IQ24 dcBus_pu: The DC bus voltage, pu

IQ24 speed_ref_pu: The speed reference value to the controller, pu IQ24

EST_computeDirection_qFmt ()

extern uint_least8_t EST_computeDirection_qFmt(EST_Handle handle,const int32_t
flux_max);

Computes the direction Q format for the estimator

Handle: The estimator (EST) handle

flux_max: The maximum flux value

Return: The direction Q format

InstaSPIN™ and MotorWare™ www.ti.com

136 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2.5 EST Counter Functions

EST_resetCounter_ctrl ()

extern void EST_resetCounter_ctrl(EST_Handle handle);

Resets the control counter

Handle: The estimator (EST) handle

EST_resetCounter_state ()

extern void EST_resetCounter_state(EST_Handle handle);

Resets the state counter

Handle: The estimator (EST) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

137

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.2.6 EST State Control and Error Handling Functions

EST_isError ()

extern bool EST_isError(EST_Handle handle);

Determines if there is an estimator error

Handle: The estimator (EST) handle

Return: A Boolean value denoting if there is an estimator error (true) or not (false)

EST_isIdle ()

extern bool EST_isIdle(EST_Handle handle);

Determines if the estimator is idle

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is idle (true) or not (false)

EST_isLockRotor ()

extern bool EST_isLockRotor(EST_Handle handle);

Determines if the estimator is waiting for the rotor to be locked

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is waiting for the rotor to be locked (true) or not
(false)

EST_isMotorIdentified ()

EST_State_e EST_isMotorIdentified (EST_Handle handle)

Determines if the motor has been identified

Handle: The estimator (EST) handle

Return: The estimator state

EST_isOnLine ()

extern bool EST_isOnLine(EST_Handle handle);

Determines if the estimator is ready for online control

Handle: The estimator (EST) handle

Return: A Boolean value denoting if the estimator is ready for online control (true) or not (false)

InstaSPIN™ and MotorWare™ www.ti.com

138 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

EST_updateState ()

extern bool EST_updateState(EST_Handle handle,const _iq Id_target_pu);

Updates the estimator state

Handle: The estimator (EST) handle

Id_target_pu: The target Id current during each estimator state, pu IQ24

Return: A Boolean value denoting if the state has changed (true) or not (false)

EST_useZeroIq_ref ()

extern bool EST_useZeroIq_ref(EST_Handle handle);

Determines if a zero Iq current reference should be used in the controller

Handle: The estimator (EST) handle

Return: A Boolean value denoting if a zero Iq current reference should be used (true) or not (false)

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

139

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3 Hardware Abstraction Layer (HAL) API Functions – hal.c, hal.h, hal_obj.h

The HAL_Obj is a structure that contains the handles to the peripherals on the device. HAL_init() allocates
memory for HAL object, and once the memory is allocated, HAL_setParams() configures the each peripheral
according to the user settings in the object USER_Params.

3.4.3.1 HAL Enumerations and Structures

HAL_AdcData_t

Defines the ADC data This data structure contains the voltage and current values that are
used when performing a HAL_AdcRead and then this structure is passed to the CTRL
controller and the FAST estimator.

typedef struct _HAL_AdcData_t_
{
 MATH_vec3 I; //!< the current values
 MATH_vec3 V; //!< the voltage values
 _iq dcBus; //!< the dcBus value
} HAL_AdcData_t;

HAL_DacData_t

Defines the DAC data This data structure contains the pwm values that are used for the
DAC output on a lot of the hardware kits for debugging.

typedef struct _HAL_DacData_t_
{
 _iq value[4]; //!< the DAC data
} HAL_DacData_t;

HAL_PwmData_t

Defines the PWM data This structure contains the pwm voltage values for the three
phases. A HAL_PwmData_t variable is filled with values from, for example, a space
vector modulator and then sent to functions like HAL_writePwmData() to write to the PWM
peripheral.

typedef struct _HAL_PwmData_t_
{
 MATH_vec3 Tabc; //!< the PWM time-durations for each motor phase
} HAL_PwmData_t;

HAL_LedNumber_e

Enumeration to define the LEDs on ControlCARD

typedef enum
{
 HAL_Gpio_LED2=GPIO_Number_31, //!< GPIO pin number for ControlCARD LED 2
 HAL_Gpio_LED3=GPIO_Number_34 //!< GPIO pin number for ControlCARD LED 3
} HAL_LedNumber_e;

InstaSPIN™ and MotorWare™ www.ti.com

140 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

GPIO_Number_e

Enumeration to define the general purpose I/O (GPIO) numbers

typedef enum
{
 GPIO_Number_0=0, //!< Denotes GPIO number 0
 GPIO_Number_1, //!< Denotes GPIO number 1
 GPIO_Number_2, //!< Denotes GPIO number 2
...
 GPIO_Number_57, //!< Denotes GPIO number 57
 GPIO_Number_58, //!< Denotes GPIO number 58
 GPIO_numGpios
} GPIO_Number_e;

HAL_SensorType_e

typedef enum
{
 HAL_SensorType_Current=0, //!< Enumeration for current sensor
 HAL_SensorType_Voltage //!< Enumeration for voltage sensor
} HAL_SensorType_e;

HAL_Obj

The HAL object contains all handles to peripherals. When accessing a peripheral on a
processor, use a HAL function along with the HAL handle for that processor to access its
peripherals.

typedef struct _HAL_Obj_
{
 ADC_Handle adcHandle; //!< the ADC handle
 CLK_Handle clkHandle; //!< the clock handle

 CPU_Handle cpuHandle; //!< the CPU handle
 FLASH_Handle flashHandle; //!< the flash handle
 GPIO_Handle gpioHandle; //!< the GPIO handle
 OFFSET_Handle offsetHandle_I[3]; //!< the handles for the current offset
estimators
 OFFSET_Obj offset_I[3]; //!< the current offset objects
 OFFSET_Handle offsetHandle_V[3]; //!< the handles for the voltage offset
estimators
 OFFSET_Obj offset_V[3]; //!< the voltage offset objects
 OSC_Handle oscHandle; //!< the oscillator handle
 PIE_Handle pieHandle; //<! the PIE handle
 PLL_Handle pllHandle; //!< the PLL handle
 PWM_Handle pwmHandle[3]; //<! the PWM handles
 PWMDAC_Handle pwmDacHandle[3]; //<! the PWMDAC handles
 PWR_Handle pwrHandle; //<! the power handle
 TIMER_Handle timerHandle[3]; //<! the timer handles
 WDOG_Handle wdogHandle; //!< the watchdog handle
 HAL_AdcData_t adcBias; //!< the ADC bias
 _iq current_sf; //!< the current scale factor, amps_pu/cnt
 _iq voltage_sf; //!< the voltage scale factor, volts_pu/cnt
 uint_least8_t numCurrentSensors; //!< the number of current sensors
 uint_least8_t numVoltageSensors; //!< the number of voltage sensors
 AFE_Handle afeHandle; //!< the AFE handle

#ifdef QEP
 QEP_Handle qepHandle[1]; //!< the QEP handle
#endif
} HAL_Obj;

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

141

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3.2 HAL – ADC and AFE

HAL_setupAdcs ()

void HAL_setupAdcs(HAL_Handle handle)

Sets up the ADCs (Analog to Digital Converters)

Handle: The driver (HAL) handle

HAL_setupAfe ()

void HAL_setupAfe(HAL_Handle halHandle)

Sets up the AFE (Analog Front End)

Handle: The driver (HAL) handle

HAL_acqAdcInt ()

void HAL_acqAdcInt(HAL_Handle handle,const ADC_IntNumber_e intNumber)

Acknowledges an interrupt from the ADC

Handle: The driver (HAL) handle

intNumber: The interrupt number

HAL_readAdcData()

void HAL_readAdcData(HAL_Handle handle,HAL_AdcData_t *pAdcData)

Reads the ADC data into the values pointed to by pAdcData

Reads in the ADC result registers, adjusts for offsets, and scales the values according
to the settings in user.h. The structure gAdcData holds three phase voltages, three line
currents, and one DC bus voltage.

Handle: The driver (HAL) handle

pAdcData: A pointer to the ADC data buffer

HAL_updateAdcBias ()

static inline void HAL_updateAdcBias(HAL_Handle handle)

Updates the ADC bias values This function is called before the motor is started. It sets the
voltage and current measurement offsets.

Handle: The driver (HAL) handle

HAL_setBias ()

void HAL_setBias (HAL_Handle handle,const HAL_SensorType_e
sensorType,uint_least8_t sensorNumber,const _iq bias)

Sets the ADC bias value

InstaSPIN™ and MotorWare™ www.ti.com

142 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_setBias () (continued)

void HAL_setBias (HAL_Handle handle,const HAL_SensorType_e
sensorType,uint_least8_t sensorNumber,const _iq bias)

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

bias: The ADC bias value

HAL_getBias ()

void HAL_getBias (HAL_Handle handle,const HAL_SensorType_e
sensorType,uint_least8_t sensorNumber)

Gets the ADC bias value

The ADC bias contains the feedback circuit's offset and bias. Bias is the mathematical
offset used when a bi-polar signal is read into a uni-polar ADC.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The ADC bias value

HAL_cal ()

extern void HAL_cal(HAL_Handle handle);

Executes calibration routines

Values for offset and gain are programmed into OTP memory by TI factory. This calls and
internal function that programs these offsets and gains into the ADC registers.

Handle: The driver (HAL) handle

HAL_AdcCalConversion ()

uint16_t HAL_AdcCalConversion(HAL_Handle handle);

Reads the converted value from the selected calibration channel

Handle: The driver (HAL) handle

Return: The converted value

HAL_AdcOffsetSelfCal ()

void HAL_AdcOffsetSelfCal(HAL_Handle handle);

Executes the offset calibration of the ADC

Handle: The driver (HAL) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

143

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_getAdcSocSampleDelay ()

static inline ADC_SocSampleDelay_e HAL_getAdcSocSampleDelay(HAL_Handle
handle, const ADC_SocNumber_e socNumber)

Gets the ADC delay value

Handle: The driver (HAL) handle

socNumber: The ADC SOC number

Return: The ADC delay value

HAL_setAdcSocSampleDelay ()

static inline ADC_SocSampleDelay_e HAL_setAdcSocSampleDelay(HAL_Handle
handle, const ADC_SocNumber_e socNumber)

Sets the ADC delay value

Handle: The driver (HAL) handle

socNumber: The ADC SOC number

sampleDelay: The ADC delay value

HAL_getCurrentScaleFactor ()

static inline _iq HAL_getCurrentScaleFactor(HAL_Handle handle)

Gets the current scale factor

The current scale factor is defined as USER_ADC_FULL_SCALE_CURRENT_A/
USER_IQ_FULL_SCALE_CURRENT_A. This scale factor is not used when converting
between PU amps and real amps.

Handle: The driver (HAL) handle

Return: The current scale factor

HAL_setCurrentScaleFactor ()

static inline _iq HAL_setCurrentScaleFactor(HAL_Handle handle)

Sets the current scale factor

The current scale factor is defined as USER_ADC_FULL_SCALE_CURRENT_A/
USER_IQ_FULL_SCALE_CURRENT_A. This scale factor is not used when converting
between PU amps and real amps.

Handle: The driver (HAL) handle

current_sf: The current scale factor

HAL_getVoltageScaleFactor ()

static inline _iq HAL_getVoltageScaleFactor(HAL_Handle handle)

Gets the voltage scale factor

InstaSPIN™ and MotorWare™ www.ti.com

144 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_getVoltageScaleFactor () (continued)

static inline _iq HAL_getVoltageScaleFactor(HAL_Handle handle)
The voltage scale factor is defined as USER_ADC_FULL_SCALE_VOLTAGE_V/
USER_IQ_FULL_SCALE_VOLTAGE_V. This scale factor is not used when converting
between PU volts and real volts.

Handle: The driver (HAL) handle

Return: The voltage scale factor

HAL_setVoltageScaleFactor ()

static inline _iq HAL_setVoltageScaleFactor(HAL_Handle handle)

Sets the voltage scale factor

Handle: The driver (HAL) handle

voltage_sf: The voltage scale factor

HAL_getNumCurrentSensors ()

static inline uint_least8_t HAL_getNumCurrentSensors(HAL_Handle handle)

Gets the number of current sensors

Handle: The driver (HAL) handle

Return: The number of current sensors

HAL_setNumCurrentSensors ()

static inline uint_least8_t HAL_setNumCurrentSensors(HAL_Handle handle)

Sets the number of current sensors

Handle: The driver (HAL) handle

Return: The number of current sensors

HAL_getNumVoltageSensors ()

static inline uint_least8_t HAL_getNumVoltageSensors(HAL_Handle handle)

Gets the number of voltage sensors

Handle: The driver (HAL) handle

Return: The number of voltage sensors

HAL_setNumVoltageSensors ()

static inline uint_least8_t HAL_setNumVoltageSensors(HAL_Handle handle)

Sets the number of voltage sensors

Handle: The driver (HAL) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

145

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_setNumVoltageSensors () (continued)

static inline uint_least8_t HAL_setNumVoltageSensors(HAL_Handle handle)

numVoltageSensors:The number of voltage sensors

Handle: The driver (HAL) handle

Return:

HAL_getOffsetBeta_lp_pu ()

static inline _iq HAL_getOffsetBeta_lp_pu(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Gets the value used to set the low pass filter pole for offset estimation

An IIR single pole low pass filter is used to find the feedback circuit's offsets. This function
returns the value of that pole.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The value used to set the low pass filter pole, pu

HAL_setOffsetBeta_lp_pu ()

static inline _iq HAL_setOffsetBeta_lp_pu(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber)

Sets the value used to set the low pass filter pole for offset estimation

An IIR single pole low pass filter is used to find the feedback circuit's offsets. This function
returns the value of that pole.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

beta_lp_pu: The value used to set the low pass filter pole, pu

HAL_setOffsetInitCond ()

static inline void HAL_setOffsetInitCond(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber, const _iq
initCond)

Sets the offset initial condition value for offset estimation

Handle: The driver (HAL) handle

InstaSPIN™ and MotorWare™ www.ti.com

146 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_setOffsetInitCond () (continued)

static inline void HAL_setOffsetInitCond(HAL_Handle handle, const
HAL_SensorType_e sensorType, const uint_least8_t sensorNumber, const _iq
initCond)

sensorType: The sensor type

sensorNumber: The sensor number

initCond: The initial condition value

HAL_getOffsetValue ()

static inline _iq HAL_getOffsetValue(HAL_Handle handle, const HAL_SensorType_e
sensorType, const uint_least8_t sensorNumber)

Gets the offset value

The offsets that are calculated during the feedback circuits calibrations are returned from
the IIR filter object.

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Return: The offset value

HAL_setOffsetValue ()

static inline _iq HAL_setOffsetValue(HAL_Handle handle, const HAL_SensorType_e
sensorType, const uint_least8_t sensorNumber)

Sets the offset value

Handle: The driver (HAL) handle

sensorType: The sensor type

sensorNumber: The sensor number

Value: The initial offset value

HAL_runOffsetEst ()

inline void HAL_runOffsetEst(HAL_Handle handle,const HAL_AdcData_t
*pAdcData)

Runs offset estimation

Handle: The driver (HAL) handle

pAdcData: The pointer to the ADC data

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

147

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3.3 HAL – PWM and PWM-DAC

HAL_setupPwms ()

extern void HAL_setupPwms(HAL_Handle handle, const uint_least16_t
systemFreq_MHz, const float_t pwmPeriod_usec, const uint_least16_t
numPwmTicksPerIsrTick);

Sets up the PWMs (Pulse Width Modulators)

Handle: The driver (HAL) handle

systemFreq_MHz: The system frequency, MHz

pwmPeriod_usec: The PWM period, usec

numPwmTicksPerIsr
Tick:

The number of PWM clock ticks per ISR clock tick

HAL_setupPwmDacs ()

void HAL_setupPwmDacs(HAL_Handle handle)

Sets up the PWM DACs

Handle: The driver (HAL) handle

HAL_readTimerCnt ()

static inline uint32_t HAL_readTimerCnt(HAL_Handle handle,const uint_least8_t
timerNumber)

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high impedance state

Handle: The driver (HAL) handle

HAL_reloadTimer ()

static inline void HAL_reloadTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high impedance state

Handle: The driver (HAL) handle

HAL_readPwmPeriod ()

static inline uint16_t HAL_readPwmPeriod(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM period register

Handle: The driver (HAL) handle

pwmNumber: The PWM number

InstaSPIN™ and MotorWare™ www.ti.com

148 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_readPwmPeriod () (continued)

static inline uint16_t HAL_readPwmPeriod(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Return: The PWM period value

HAL_disablePwm ()

void HAL_disablePwm (HAL_Handle handle);

Turns off the outputs of the EPWM peripherals which will put the power switches into a
high-impedance state

Handle: The driver (HAL) handle

HAL_enablePwm ()

void HAL_enablePwm (HAL_Handle handle);

Turns on the outputs of the EPWM peripheral which will allow the power switches to be
controlled

Handle: The driver (HAL) handle

HAL_writeDacData ()

static inline void HAL_writeDacData(HAL_Handle handle,HAL_DacData_t
*pDacData)

Writes DAC data to the PWM comparators for DAC (digital-to-analog conversion) output

Handle: The driver (HAL) handle

pDacData: The pointer to the DAC data

HAL_writePwmData()

void HAL_writePwmData (HAL_Handle handle, HAL_PwmData_t *pPwmData)

Writes PWM data to the PWM comparators for motor control

Handle: The driver (HAL) handle

pPwmData: The pointer to the PWM data

HAL_readPwmCmpA ()

static inline uint16_t HAL_readPwmCmpA(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM compare register A

Handle: The driver (HAL) handle

pwmNumber: The PWM number

Return: The PWM compare value

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

149

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_readPwmCmpB ()

static inline uint16_t HAL_readPwmCmpB(HAL_Handle handle,const
PWM_Number_e pwmNumber)

Reads PWM compare register B

Handle: The driver (HAL) handle

pwmNumber: The PWM number

Return: The PWM compare value

HAL_setTrigger ()

static inline void HAL_setTrigger(HAL_Handle handle,const int16_t minwidth)

Handle: The driver (HAL) handle

minwidth:

HAL_acqPwmInt ()

static inline void HAL_acqPwmInt(HAL_Handle handle,const PWM_Number_e
pwmNumber)

Acknowledges an interrupt from the PWM

Handle: The driver (HAL) handle

pwmNumber: The PWM number

HAL_enablePwmInt ()

extern void HAL_enablePwmInt(HAL_Handle handle);

Enables the PWM interrupt

Handle: The driver (HAL) handle

HAL_hvProtection ()

void HAL_hvProtection(HAL_Handle handle)

Runs high voltage protection logic. Sets up the trip registers.

Handle: The driver (HAL) handle

InstaSPIN™ and MotorWare™ www.ti.com

150 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3.4 HAL – CPU Timers

HAL_setupClks ()

void HAL_setupClks (HAL_Handle halHandle)

Sets up the clocks

Handle: The driver (HAL) handle

HAL_setupTimers ()

void HAL_setupTimers(HAL_Handle handle,const uint_least16_t systemFreq_MHz);

Setup CPU timers 0 and 1

Handle: The driver (HAL) handle

systemFreq_MHz: The system frequency, MHz

HAL_startTimer ()

static inline void HAL_startTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Starts the CPU timer

Handle: The driver (HAL) handle

timerNumber: The CPU timer number; 0, 1 or 2

HAL_stopTimer ()

static inline void HAL_stopTimer(HAL_Handle handle,const uint_least8_t
timerNumber)

Stops the CPU timer

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

HAL_setTimerPeriod ()

static inline void HAL_setTimerPeriod(HAL_Handle handle,const uint_least8_t
timerNumber, const uint32_t period)

Sets the CPU timer period

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

period: The timer period

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

151

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_getTimerPeriod ()

static inline void HAL_getTimerPeriod(HAL_Handle handle,const uint_least8_t
timerNumber, const uint32_t period)

Gets the CPU timer period

Handle: The driver (HAL) handle

timerNumber: The timer number; 0, 1 or 2

period: The timer period

InstaSPIN™ and MotorWare™ www.ti.com

152 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3.5 HAL – GPIO and LED

HAL_setupGpios ()

void HAL_setupGpios(HAL_Handle handle)

Sets up the GPIO

Handle: The driver (HAL) handle

HAL_toggleGpio ()

void HAL_toggleGpio (HAL_Handle handle ,const GPIO_Number_e gpioNumber);

Takes in the enumeration GPIO_Number_e and toggles that GPIO pin.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_setGpioHigh ()

static inline void HAL_setGpioHigh(HAL_Handle handle,const GPIO_Number_e
gpioNumber)

Sets the GPIO pin high. Takes in the enumeration GPIO_Number_e and sets that GPIO
pin high.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_setGpioLow ()

static inline void HAL_setGpioLowHAL_Handle handle,const GPIO_Number_e
gpioNumber)

Sets the GPIO pin low. Takes in the enumeration GPIO_Number_e and sets that GPIO
pin low.

Handle: The driver (HAL) handle

gpioNumber: The GPIO number

HAL_toggleLed

Defines the function to turn LEDs on

#define HAL_toggleLed HAL_toggleGpio

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

153

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.3.6 HAL – Miscellaneous

HAL_init()

HAL_Handle HAL_init(void *pMemory,const size_t numBytes)

Initializes the driver (HAL) object and returns a handle to the HAL object

pMemory: A pointer to the memory for the driver object

numBytes: The number of bytes allocated for the driver object, bytes

Return: The driver (HAL) object handle

HAL_initIntVectorTable ()

void HAL_initIntVectorTable(HAL_Handle handle)

Initializes the interrupt vector table

Handle: The driver (HAL) handle

HAL_setParams ()

void HAL_setParams(HAL_Handle handle,const USER_Params *pUserParams)

Sets the hardware abstraction layer parameters

Sets up the microcontroller peripherals. Creates all of the scale factors for the ADC
voltage and current conversions. Sets the initial offset values for voltage and current
measurements.

Handle: The driver (HAL) handle

pUserParams: The pointer to the user parameters

HAL_setupFlash ()

void HAL_setupFlash(HAL_Handle handle)

Sets up the FLASH.

Handle: The driver (HAL) handle

HAL_setupPie ()

void HAL_setupPie(HAL_Handle handle)

Sets up the Peripheral Interrupt Expansion (PIE).

Handle: The driver (HAL) handle

InstaSPIN™ and MotorWare™ www.ti.com

154 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_setupPll ()

void HAL_setupPll(HAL_Handle handle,const PLL_ClkFreq_e clkFreq)

Sets up the Phase-Lock Loop (PLL).

Handle: The driver (HAL) handle

clkFreq: The clock frequency

HAL_setupPeripheralClks ()

void HAL_setupPeripheralClks (HAL_Handle handle)

Sets up the peripheral clocks.

Handle: The driver (HAL) handle

HAL_getOscTrimValue ()

uint16_t HAL_getOscTrimValue(int16_t coarse, int16_t fine);

Converts coarse and fine oscillator trim values into a single 16-bit word value.

Handle: The driver (HAL) handle

coarse: The coarse trim portion of the oscillator trim

fine: The fine trim portion of the oscillator trim

Return: The combined trim value

HAL_OscTempComp ()

void HAL_OscTempComp(HAL_Handle handle);

Executes the oscillator 1 and 2 calibration functions.

Handle: The driver (HAL) handle

HAL_osc1Comp ()

void HAL_osc1Comp(HAL_Handle handle, const int16_t sensorSample);

Executes the oscillator 1 calibration based on input sample.

Handle: The driver (HAL) handle

HAL_osc2Comp ()

void HAL_osc2Comp(HAL_Handle handle, const int16_t sensorSample);

Executes the oscillator 2 calibration based on input sample.

Handle: The driver (HAL) handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

155

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

HAL_setupFaults ()

extern void HAL_setupFaults(HAL_Handle handle);

Configures the fault protection logic

Sets up the trip zone inputs so that when a comparator signal from outside the micro-
controller trips a fault, the EPWM peripheral blocks will force the power switches into a
high-impedance state.

Handle: The driver (HAL) handle

HAL_setParams()

void HAL_setParams(HAL_Handle handle,const USER_Params *pUserParams)

Sets the driver parameters

Handle: The driver (HAL) handle

pUserParams: The pointer to the user parameters

HAL_enableDebugInt ()

void HAL_enableDebugInt (HAL_Handle handle);

Enables real-time debug global interrupt

Handle: The driver (HAL) handle

HAL_enableGlobalInts ()

void HAL_enableGlobalInts(HAL_Handle handle);

Enables global interrupts

Handle: The driver (HAL) handle

HAL_disableGlobalInts ()

void HAL_disableGlobalInts(HAL_Handle handle);

Disables global interrupts

Handle: The driver (HAL) handle

HAL_disableWdog ()

xtern void HAL_disableWdog(HAL_Handle handle);

Disables the watchdog

Handle: The driver (HAL) handle

InstaSPIN™ and MotorWare™ www.ti.com

156 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.4 User Settings – user.c, user.h, userParams.h
3.4.4.1 USER Enumerations and Structures

Struct_USER_Params_

Structure for user parameters.

typedef struct _USER_Params_
{
 float_t iqFullScaleCurrent_A; //!< Defines the full scale
current for the IQ variables, A
 float_t iqFullScaleVoltage_V; //!< Defines the full scale
voltage for the IQ variable, V
 float_t iqFullScaleFreq_Hz; //!< Defines the full scale
frequency for IQ variable, Hz
 uint_least16_t numIsrTicksPerCtrlTick; //!< Defines the number of
Interrupt Service Routine (ISR) clock ticks per controller clock tick
 uint_least16_t numCtrlTicksPerCurrentTick; //!< Defines the number of
controller clock ticks per current controller clock tick
 uint_least16_t numCtrlTicksPerEstTick; //!< Defines the number of
controller clock ticks per estimator clock tick
 uint_least16_t numCtrlTicksPerSpeedTick; //!< Defines the number of
controller clock ticks per speed controller clock tick
 uint_least16_t numCtrlTicksPerTrajTick; //!< Defines the number of
controller clock ticks per trajectory clock tick
 uint_least8_t numCurrentSensors; //!< Defines the number of
current sensors
 uint_least8_t numVoltageSensors; //!< Defines the number of
voltage sensors
 float_t offsetPole_rps; //!< Defines the pole location
for the voltage and current offset estimation, rad/s
 float_t fluxPole_rps; //!< Defines the pole location
for the flux estimation, rad/s
 float_t zeroSpeedLimit; //!< Defines the low speed limit
for the flux integrator, pu
 float_t forceAngleFreq_Hz; //!< Defines the force angle
frequency, Hz
 float_t maxAccel_Hzps; //!< Defines the maximum
acceleration for the speed profiles, Hz/s
 float_t maxAccel_est_Hzps; //!< Defines the maximum
acceleration for the estimation speed profiles, Hz/s
 float_t directionPole_rps; //!< Defines the pole location
for the direction filter, rad/s
 float_t speedPole_rps; //!< Defines the pole location
for the speed control filter, rad/s
 float_t dcBusPole_rps; //!< Defines the pole location
for the DC bus filter, rad/s
 float_t fluxFraction; //!< Defines the flux fraction
for Id rated current estimation
 float_t indEst_speedMaxFraction; //!< Defines the fraction of
SpeedMax to use during inductance estimation
 float_t powerWarpGain; //!< Defines the PowerWarp gain
for computing Id reference
 uint_least16_t systemFreq_MHz; //!< Defines the system clock
frequency, MHz
 float_t pwmPeriod_usec; //!< Defines the Pulse Width
Modulation (PWM) period, usec
 float_t voltage_sf; //!< Defines the voltage scale
factor for the system
 float_t current_sf; //!< Defines the current scale
factor for the system
 float_t voltageFilterPole_rps; //!< Defines the analog voltage
filter pole location, rad/s
 float_t maxVsMag_pu; //!< Defines the maximum voltage
magnitude, pu
 float_t estKappa; //!< Defines the convergence
factor for the estimator
 MOTOR_Type_e motor_type; //!< Defines the motor type
 uint_least16_t motor_numPolePairs; //!< Defines the number of pole
pairs for the motor
 float_t motor_ratedFlux; //!< Defines the rated flux of
the motor, V/Hz

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

157

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Struct_USER_Params_ (continued)

 float_t motor_Rr; //!< Defines the rotor
resistance, ohm
 float_t motor_Rs; //!< Defines the stator
resistance, ohm
 float_t motor_Ls_d; //!< Defines the direct stator
inductance, H
 float_t motor_Ls_q; //!< Defines the quadrature
stator inductance, H
 float_t maxCurrent; //!< Defines the maximum current
value, A
 float_t maxCurrent_resEst; //!< Defines the maximum current
value for resistance estimation, A
 float_t maxCurrent_indEst; //!< Defines the maximum current
value for inductance estimation, A
 float_t maxCurrentSlope; //!< Defines the maximum current
slope for Id current trajectory
 float_t maxCurrentSlope_powerWarp; //!< Defines the maximum current
slope for Id current trajectory during PowerWarp
 float_t IdRated; //!< Defines the Id rated current
value, A
 float_t IdRatedFraction_indEst; //!< Defines the fraction of Id
rated current to use during inductance estimation
 float_t IdRatedFraction_ratedFlux; //!< Defines the fraction of Id
rated current to use during rated flux estimation
 float_t IdRated_delta; //!< Defines the Id rated delta
current value, A
 float_t fluxEstFreq_Hz; //!< Defines the flux estimation
frequency, Hz
 uint_least32_t ctrlWaitTime[CTRL_numStates]; //!< Defines the wait times for
each controller state, estimator ticks
 uint_least32_t estWaitTime[EST_numStates]; //!< Defines the wait times for
each estimator state, estimator ticks
 uint_least32_t FluxWaitTime[EST_Flux_numStates]; //!< Defines the wait times
for each Ls estimator, estimator ticks
 uint_least32_t LsWaitTime[EST_Ls_numStates]; //!< Defines the wait times for
each Ls estimator, estimator ticks
 uint_least32_t RsWaitTime[EST_Rs_numStates]; //!< Defines the wait times for
each Rs estimator, estimator ticks
 uint_least32_t ctrlFreq_Hz; //!< Defines the controller
frequency, Hz
 uint_least32_t estFreq_Hz; //!< Defines the estimator
frequency, Hz
 uint_least32_t RoverL_estFreq_Hz; //!< Defines the R/L estimation
frequency, Hz
 uint_least32_t trajFreq_Hz; //!< Defines the trajectory
frequency, Hz
 float_t ctrlPeriod_sec; //!< Defines the controller
execution period, sec
 float_t maxNegativeIdCurrent_a; //!< Defines the maximum negative
current that the Id PID is allowed to go to, A
 USER_ErrorCode_e errorCode;
} USER_Params;

USER_ErrorCode_e

Structure for user error codes.

typedef enum
{
 USER_ErrorCode_NoError=0, //!< no error error code
 USER_ErrorCode_iqFullScaleCurrent_A_High=1, //!< iqFullScaleCurrent_A
too high error code
 USER_ErrorCode_iqFullScaleCurrent_A_Low=2, //!< iqFullScaleCurrent_A
too low error code
 USER_ErrorCode_iqFullScaleVoltage_V_High=3, //!< iqFullScaleVoltage_V
too high error code
 USER_ErrorCode_iqFullScaleVoltage_V_Low=4, //!< iqFullScaleVoltage_V
too low error code

InstaSPIN™ and MotorWare™ www.ti.com

158 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

USER_ErrorCode_e (continued)

 USER_ErrorCode_iqFullScaleFreq_Hz_High=5, //!< iqFullScaleFreq_Hz
too high error code
 USER_ErrorCode_iqFullScaleFreq_Hz_Low=6, //!< iqFullScaleFreq_Hz
too low error code
 USER_ErrorCode_numPwmTicksPerIsrTick_High=7, //!<
numPwmTicksPerIsrTick too high error code
 USER_ErrorCode_numPwmTicksPerIsrTick_Low=8, //!<
numPwmTicksPerIsrTick too low error code
 USER_ErrorCode_numIsrTicksPerCtrlTick_High=9, //!<
numIsrTicksPerCtrlTick too high error code
 USER_ErrorCode_numIsrTicksPerCtrlTick_Low=10, //!<
numIsrTicksPerCtrlTick too low error code
 USER_ErrorCode_numCtrlTicksPerCurrentTick_High=11, //!<
numCtrlTicksPerCurrentTick too high error code
 USER_ErrorCode_numCtrlTicksPerCurrentTick_Low=12, //!<
numCtrlTicksPerCurrentTick too low error code
 USER_ErrorCode_numCtrlTicksPerEstTick_High=13, //!<
numCtrlTicksPerEstTick too high error code
 USER_ErrorCode_numCtrlTicksPerEstTick_Low=14, //!<
numCtrlTicksPerEstTick too low error code
 USER_ErrorCode_numCtrlTicksPerSpeedTick_High=15, //!<
numCtrlTicksPerSpeedTick too high error code
 USER_ErrorCode_numCtrlTicksPerSpeedTick_Low=16, //!<
numCtrlTicksPerSpeedTick too low error code
 USER_ErrorCode_numCtrlTicksPerTrajTick_High=17, //!<
numCtrlTicksPerTrajTick too high error code
 USER_ErrorCode_numCtrlTicksPerTrajTick_Low=18, //!<
numCtrlTicksPerTrajTick too low error code
 USER_ErrorCode_numCurrentSensors_High=19, //!< numCurrentSensors
too high error code
 USER_ErrorCode_numCurrentSensors_Low=20, //!< numCurrentSensors
too low error code
 USER_ErrorCode_numVoltageSensors_High=21, //!< numVoltageSensors
too high error code
 USER_ErrorCode_numVoltageSensors_Low=22, //!< numVoltageSensors
too low error code
 USER_ErrorCode_offsetPole_rps_High=23, //!< offsetPole_rps too
high error code
 USER_ErrorCode_offsetPole_rps_Low=24, //!< offsetPole_rps too
low error code
 USER_ErrorCode_fluxPole_rps_High=25, //!< fluxPole_rps too
high error code
 USER_ErrorCode_fluxPole_rps_Low=26, //!< fluxPole_rps too low
error code
 USER_ErrorCode_zeroSpeedLimit_High=27, //!< zeroSpeedLimit too
high error code
 USER_ErrorCode_zeroSpeedLimit_Low=28, //!< zeroSpeedLimit too
low error code
 USER_ErrorCode_forceAngleFreq_Hz_High=29, //!< forceAngleFreq_Hz
too high error code
 USER_ErrorCode_forceAngleFreq_Hz_Low=30, //!< forceAngleFreq_Hz
too low error code
 USER_ErrorCode_maxAccel_Hzps_High=31, //!< maxAccel_Hzps too
high error code
 USER_ErrorCode_maxAccel_Hzps_Low=32, //!< maxAccel_Hzps too
low error code
 USER_ErrorCode_maxAccel_est_Hzps_High=33, //!< maxAccel_est_Hzps
too high error code
 USER_ErrorCode_maxAccel_est_Hzps_Low=34, //!< maxAccel_est_Hzps
too low error code
 USER_ErrorCode_directionPole_rps_High=35, //!< directionPole_rps
too high error code
 USER_ErrorCode_directionPole_rps_Low=36, //!< directionPole_rps
too low error code
 USER_ErrorCode_speedPole_rps_High=37, //!< speedPole_rps too
high error code
 USER_ErrorCode_speedPole_rps_Low=38, //!< speedPole_rps too
low error code
 USER_ErrorCode_dcBusPole_rps_High=39, //!< dcBusPole_rps too
high error code
 USER_ErrorCode_dcBusPole_rps_Low=40, //!< dcBusPole_rps too
low error code
 USER_ErrorCode_fluxFraction_High=41, //!< fluxFraction too

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

159

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

USER_ErrorCode_e (continued)

high error code
 USER_ErrorCode_fluxFraction_Low=42, //!< fluxFraction too low
error code
 USER_ErrorCode_indEst_speedMaxFraction_High=43, //!<
indEst_speedMaxFraction too high error code
 USER_ErrorCode_indEst_speedMaxFraction_Low=44, //!<
indEst_speedMaxFraction too low error code
 USER_ErrorCode_powerWarpGain_High=45, //!< powerWarpGain too
high error code
 USER_ErrorCode_powerWarpGain_Low=46, //!< powerWarpGain too
low error code
 USER_ErrorCode_systemFreq_MHz_High=47, //!< systemFreq_MHz too
high error code
 USER_ErrorCode_systemFreq_MHz_Low=48, //!< systemFreq_MHz too
low error code
 USER_ErrorCode_pwmFreq_kHz_High=49, //!< pwmFreq_kHz too high
error code
 USER_ErrorCode_pwmFreq_kHz_Low=50, //!< pwmFreq_kHz too low
error code
 USER_ErrorCode_voltage_sf_High=51, //!< voltage_sf too high
error code
 USER_ErrorCode_voltage_sf_Low=52, //!< voltage_sf too low
error code
 USER_ErrorCode_current_sf_High=53, //!< current_sf too high
error code
 USER_ErrorCode_current_sf_Low=54, //!< current_sf too low
error code
 USER_ErrorCode_voltageFilterPole_Hz_High=55, //!< voltageFilterPole_Hz
too high error code
 USER_ErrorCode_voltageFilterPole_Hz_Low=56, //!< voltageFilterPole_Hz
too low error code
 USER_ErrorCode_maxVsMag_pu_High=57, //!< maxVsMag_pu too high
error code
 USER_ErrorCode_maxVsMag_pu_Low=58, //!< maxVsMag_pu too low
error code
 USER_ErrorCode_estKappa_High=59, //!< estKappa too high
error code
 USER_ErrorCode_estKappa_Low=60, //!< estKappa too low
error code
 USER_ErrorCode_motor_type_Unknown=61, //!< motor type unknown
error code
 USER_ErrorCode_motor_numPolePairs_High=62, //!< motor_numPolePairs
too high error code
 USER_ErrorCode_motor_numPolePairs_Low=63, //!< motor_numPolePairs
too low error code
 USER_ErrorCode_motor_ratedFlux_High=64, //!< motor_ratedFlux too
high error code
 USER_ErrorCode_motor_ratedFlux_Low=65, //!< motor_ratedFlux too
low error code
 USER_ErrorCode_motor_Rr_High=66, //!< motor_Rr too high
error code
 USER_ErrorCode_motor_Rr_Low=67, //!< motor_Rr too low
error code
 USER_ErrorCode_motor_Rs_High=68, //!< motor_Rs too high
error code
 USER_ErrorCode_motor_Rs_Low=69, //!< motor_Rs too low
error code
 USER_ErrorCode_motor_Ls_d_High=70, //!< motor_Ls_d too high
error code
 USER_ErrorCode_motor_Ls_d_Low=71, //!< motor_Ls_d too low
error code
 USER_ErrorCode_motor_Ls_q_High=72, //!< motor_Ls_q too high
error code
 USER_ErrorCode_motor_Ls_q_Low=73, //!< motor_Ls_q too low
error code
 USER_ErrorCode_maxCurrent_High=74, //!< maxCurrent too high
error code
 USER_ErrorCode_maxCurrent_Low=75, //!< maxCurrent too low
error code
 USER_ErrorCode_maxCurrent_resEst_High=76, //!< maxCurrent_resEst
too high error code
 USER_ErrorCode_maxCurrent_resEst_Low=77, //!< maxCurrent_resEst
too low error code

InstaSPIN™ and MotorWare™ www.ti.com

160 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

USER_ErrorCode_e (continued)

 USER_ErrorCode_maxCurrent_indEst_High=78, //!< maxCurrent_indEst
too high error code
 USER_ErrorCode_maxCurrent_indEst_Low=79, //!< maxCurrent_indEst
too low error code
 USER_ErrorCode_maxCurrentSlope_High=80, //!< maxCurrentSlope too
high error code
 USER_ErrorCode_maxCurrentSlope_Low=81, //!< maxCurrentSlope too
low error code
 USER_ErrorCode_maxCurrentSlope_powerWarp_High=82, //!<
maxCurrentSlope_powerWarp too high error code
 USER_ErrorCode_maxCurrentSlope_powerWarp_Low=83, //!<
maxCurrentSlope_powerWarp too low error code
 USER_ErrorCode_IdRated_High=84, //!< IdRated too high
error code
 USER_ErrorCode_IdRated_Low=85, //!< IdRated too low
error code
 USER_ErrorCode_IdRatedFraction_indEst_High=86, //!<
IdRatedFraction_indEst too high error code
 USER_ErrorCode_IdRatedFraction_indEst_Low=87, //!<
IdRatedFraction_indEst too low error code
 USER_ErrorCode_IdRatedFraction_ratedFlux_High=88, //!<
IdRatedFraction_ratedFlux too high error code
 USER_ErrorCode_IdRatedFraction_ratedFlux_Low=89, //!<
IdRatedFraction_ratedFlux too low error code
 USER_ErrorCode_IdRated_delta_High=90, //!< IdRated_delta too
high error code
 USER_ErrorCode_IdRated_delta_Low=91, //!< IdRated_delta too
low error code
 USER_ErrorCode_fluxEstFreq_Hz_High=92, //!< fluxEstFreq_Hz too
high error code
 USER_ErrorCode_fluxEstFreq_Hz_Low=93, //!< fluxEstFreq_Hz too
low error code
 USER_ErrorCode_ctrlFreq_Hz_High=94, //!< ctrlFreq_Hz too high
error code
 USER_ErrorCode_ctrlFreq_Hz_Low=95, //!< ctrlFreq_Hz too low
error code
 USER_ErrorCode_estFreq_Hz_High=96, //!< estFreq_Hz too high
error code
 USER_ErrorCode_estFreq_Hz_Low=97, //!< estFreq_Hz too low
error code
 USER_ErrorCode_RoverL_estFreq_Hz_High=98, //!< RoverL_estFreq_Hz
too high error code
 USER_ErrorCode_RoverL_estFreq_Hz_Low=99, //!< RoverL_estFreq_Hz
too low error code
 USER_ErrorCode_trajFreq_Hz_High=100, //!< trajFreq_Hz too high
error code
 USER_ErrorCode_trajFreq_Hz_Low=101, //!< trajFreq_Hz too low
error code
 USER_ErrorCode_ctrlPeriod_sec_High=102, //!< ctrlPeriod_sec too
high error code
 USER_ErrorCode_ctrlPeriod_sec_Low=103, //!< ctrlPeriod_sec too
low error code
 USER_ErrorCode_maxNegativeIdCurrent_a_High=104, //!<
maxNegativeIdCurrent_a too high error code
 USER_ErrorCode_maxNegativeIdCurrent_a_Low=105, //!<
maxNegativeIdCurrent_a too low error code
 USER_numErrorCodes=106 //!< the number of user
error codes
} USER_ErrorCode_e;

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

161

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.4.2 USER Set and Compute Functions

USER_setParams()

void USER_setParams(USER_Params *pUserParams)

Sets the user parameter values

pUserParams: A pointer to the user param structure

USER_calcPIgains ()

void USER_calcPIgains(CTRL_Handle handle)

Updates Id and Iq PI gains

Handle: The controller (CTRL) handle

USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf ()

_iq USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf(void);

Computes the scale factor needed to convert from torque created by Ld, Lq, Id and Iq,
from per unit to Nm

Return: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm, in IQ24
format

USER_computeTorque_Flux_Iq_pu_to_Nm_sf ()

_iq USER_computeTorque_Flux_Iq_pu_to_Nm_sf(void);

Computes the scale factor needed to convert from torque created by flux and Iq, from per
unit to Nm

Return: The scale factor to convert torque from Flux * Iq from per unit to Nm, in IQ24 format

USER_computeFlux_pu_to_Wb_sf ()

_iq USER_computeFlux_pu_to_Wb_sf (void);

Computes the scale factor needed to convert from per unit to Wb

Return: The scale factor to convert from flux per unit to flux in Wb, in IQ24 format

USER_computeFlux_pu_to_VpHz_sf ()

_iq USER_computeFlux_pu_to_VpHz_sf (void);

Computes the scale factor needed to convert from per unit to V/Hz

Return: The scale factor to convert from flux per unit to flux in V/Hz, in IQ24 format

InstaSPIN™ and MotorWare™ www.ti.com

162 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

USER_computeFlux ()

_iq USER_computeFlux(CTRL_Handle handle, const _iq sf);

Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter

Handle: The controller (CTRL) handle

sf: The scale factor to convert flux from per unit to Wb or V/Hz

Return: The flux in Wb or V/Hz depending on the scale factor sent as parameter, in IQ24 format

USER_computeTorque_Nm ()

_iq USER_computeTorque_Nm(CTRL_Handle handle, const _iq torque_Flux_sf,
const _iq torque_Ls_sf);

Computes Flux in Wb or V/Hz depending on the scale factor sent as parameter

Handle: The controller (CTRL) handle

torque_Flux_sf: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm

torque_Ls_sf: The scale factor to convert torque from Flux * Iq from per unit to Nm

Return: The torque in Nm, in IQ24 format

USER_computeTorque_lbin ()

_iq USER_computeTorque_lbin(CTRL_Handle handle, const _iq torque_Flux_sf,
const _iq torque_Ls_sf);

Computes Torque in lbin

Handle: The controller (CTRL) handle

torque_Flux_sf: The scale factor to convert torque from (Ld - Lq) * Id * Iq from per unit to Nm

torque_Ls_sf: The scale factor to convert torque from Flux * Iq from per unit to Nm

Return: The torque in Nm, in IQ24 format

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

163

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.4.4.3 USER Error Handling Functions

USER_checkForErrors ()

void USER_checkForErrors(USER_Params *pUserParams);

Checks for errors in the user parameter values

pUserParams: A pointer to the user param structure

USER_getErrorCode ()

USER_ErrorCode_e USER_getErrorCode(USER_Params *pUserParams);

Gets the error code in the user parameters

pUserParams: A pointer to the user param structure

Return: The error code

USER_setErrorCode ()

void USER_setErrorCode(USER_Params *pUserParams,const USER_ErrorCode_e
errorCode);

Sets the error code in the user parameters

pUserParams: A pointer to the user param structure

Return: The error code

3.4.5 Miscellaneous Functions

softwareUpdate1p6 ()

void softwareUpdate1p6 (CTRL_Handle handle)

Recalculates inductances with the correct Q Format. A bug fix for InstaSPIN-FOC v1.6,
the software version in ROM on the F2806x devices. This function only applies to F2806x
devices, since F2802x and F2805x have v1.7 which does not need this fix.

Handle: The controller (CTRL) handle

InstaSPIN™ and MotorWare™ www.ti.com

164 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.5 InstaSPIN-MOTION™ and the SpinTAC™ API
InstaSPIN-MOTION combines InstaSPIN-FOC with the SpinTAC Motion Control Suite developed by LineStream
Technologies. These components provide a low maintenance, high-performance, and easy to use solution for
simple motion systems. SpinTAC offers two solutions: one for velocity control applications and one for position
control applications.

The components of the velocity control solution include a motion sequence generator (SpinTAC Velocity Plan),
motion profile generator (SpinTAC Velocity Move), closed-loop disturbance rejecting speed controller (SpinTAC
Velocity Control), and system inertia identification (SpinTAC Velocity Identify).

The SpinTAC motion control library allows you to use multiple instances of each component. It allows for two
instances of SpinTAC Plan and SpinTAC Move. It allows for controlling two motion axes using SpinTAC Control
and one instance of SpinTAC Identify.

Similarly, the components of the position control solution include a signal converter (SpinTAC Position Convert),
position sequence generator (SpinTAC Position Plan), motion profile generator (SpinTAC Position Move), and
closed-loop disturbance rejecting cascaded position and speed controller (SpinTAC Position Control).

These components are packaged together as the SpinTAC motion control library which can be found in sw/
modules/spintac. The SpinTAC motion control library is designed to be modular. This allows developers to
include only selected SpinTAC components in projects in order to minimize code size. Any component can be
used in conjunction with other SpinTAC components or third party software.

The SpinTAC motion control library allows you to use multiple instances of each component. It allows for two
instances of SpinTAC Plan and SpinTAC Move. It allows for controlling two motion axes using SpinTAC Control
and one instance of SpinTAC Identify.

Figure 3-2 an overview of how the components of the velocity solution of the SpinTAC Motion Suite connect
together and how they interface with InstaSPIN-FOC.

FOC + FAST Estimator

User_IqRef

Torque

Mode

InstaSPIN-&K�¡

CTRL_run

CTRL_setup

User_SpdRef

InstaSPIN-DKd/KE¡

Z
a

Motion

Sequence

^�]vd��¡�

Velocity

Move

Z
a

ROM

STVELMOVE_run

^�]vd��¡�D}�]}v��}v��}o�^µ]��

^�]vd��¡�

Velocity

Plan

ZSP

FLASH/RAM

Zlim

..
Zlim

.

Velocity Mode

STVELPLAN_run

Zref

Zref

. ^�]vd��¡�

Velocity

Control

ROM

STVELCTL_run

^�]vd��¡�

Velocity

Identify

ROM

STVELID_run

PWM

Driver

ADC

Driver

HAL_run

HAL_readAdcData

HAL_acqAdcInt

Drivers

Figure 3-2. InstaSPIN-MOTION™ Velocity Control

Figure 3-3 provides an overview of how the components of the position solution of the SpinTAC Motion Suite
connect together and how they interface with InstaSPIN-FOC.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

165

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 3-3. InstaSPIN-MOTION™ Position Control

The API for the SpinTAC Motion Control Suite can be broken down into the following components, where each
has a specific prefix for their API functions:

Component Prefix
1. SpinTAC Velocity Control STVELCTL
2. SpinTAC Velocity Move STVELMOVE
3. SpinTAC Velocity Plan STVELPLAN
4. SpinTAC Velocity Identify STVELID
5. SpinTAC Position Convert STPOSCONV
6. SpinTAC Position Control STPOSCTL
7. SpinTAC Position Move STPOSMOVE
8. SpinTAC Position Plan STPOSPLAN

Each component of the SpinTAC Suite contains an initialize function and a run function. The initialize function is
designed to establish the handle that will be used to interface to the SpinTAC component. The run function is the
main calculation function for that component. All variables in these components can be accessed via get and set
functions. The commonly used functions for SpinTAC components are detailed in Section 3.6.9.

InstaSPIN™ and MotorWare™ www.ti.com

166 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 3-4. SpinTAC™ Module Directory Structure

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

167

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.5.1 Header Files, Public Library, and ROM Library

The SpinTAC suite is comprised of a public library, and a ROM library. The public library is also known as the
SpinTAC library file. "SpinTAC.lib" is located at /sw/modules/spintac/lib/32b/ and the user must include this file in
the project. If the project requires fpu32 support, use the library file "SpinTAC_fpu32.lib." Note that this library still
uses the fixed point IQMath library. The header files that need to be included in user code are listed in Table 3-1.
Developers can include the header files associated with the desired components. The source code for this library
is not available.

Table 3-1. User Code Header Files
SpinTAC Component Header File
SpinTAC Velocity Control spintac_vel_ctl.h

SpinTAC Velocity Move spintac_vel_move.h

SpinTAC Velocity Plan spintac_vel_plan.h

SpinTAC Velocity Identify spintac_vel_id.h

SpinTAC Position Convert spintac_pos_conv.h

SpinTAC Position Control spintac_pos_ctl.h

SpinTAC Position Move spintac_pos_move.h

SpinTAC Position Plan spintac_pos_plan.h

SpinTAC Version spintac_version.h

The SpinTAC ROM library is a C-callable library embedded in on-chip execute-only ROM on the
TMS320F2805xM and TMS320F2806xM devices. The source code for this library is not available. The ROM
library implements the core SpinTAC functions that are called by the Public library.

3.5.2 Version Information

For detailed version information about the SpinTAC library, the ST_Ver_t object contains this information. The
structure is detailed in Table 3-2.

Table 3-2. SpinTAC™ Version Structure
Member Name Data Type Description V2.2.7 Example
Major uint16_t Major version of library 2

Minor uint16_t Minor version of library 2

Revision uint16_t Revision version of library 7

MathType ST_MathType_e Math implementation the library was compiled for. FIXED_POINT32b

SecureROM uint32_t SecureROM version 20010008

Date int32_t Date the library was compiled 20140530

Label uint_least8_t [10] Other information about library TI_C2000

InstaSPIN™ and MotorWare™ www.ti.com

168 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.5.2.1 Code Example for Returning SpinTAC™ Version Information

There are four steps to returning the SpinTAC version information. These steps are done in each example lab
project. They are included below to show how simple it is to include the SpinTAC version information in your
project.

3.5.2.1.1 Include the Header File

This should be done with the rest of the module header file includes. In the InstaSPIN-MOTION lab example
project, this file is included in all of the SpinTAC module header files. For your project, this step can be
completed by including spintac_velocity.h or spintac_position.h.

// SpinTAC
#include "spintac_velocity.h"
//OR
#include "spintac_position.h"

3.5.2.1.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the example lab
projects, this structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h
or spintac_position.h header files.

ST_Obj st_obj;
ST_Handle stHandle;

3.5.2.1.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Version structure. This step can be completed by running the function ST_init that is
declared in the spintac_velocity.h or spintac_position.h header files.

// initialize the SpinTAC Components
stHandle = ST_init(&st_obj, sizeof(st_obj));

3.5.2.1.4 Return the Version Information

Now that the version handle has been defined it can be used to return the version information of the SpinTAC
library.

uint16_t major, minor, revision; // Variables to return the version numbers
ST_getVersionNumbers(stVersionHandle, &major, &minor, &revision);

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

169

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.5.3 SpinTAC™ Structure Names

All structure data type names follow the pattern:

ST_[Object] [Functionality] [Subfunctionality(optional)]_t

For example, the Velocity Control structure type is named ST_VelCtl_t.

The Configuration substructure type of Velocity Control is named ST_VelCtlCfg_t, and is contained inside the
structure ST_VelCtl_t

All the structures and sub structure names of SpinTAC are listed in Table 3-3.

Table 3-3. SpinTAC™ Structure Names
Component Structure Name Substructure Name Description
Velocity Control ST_VelCtl_t Main structure

ST_VelCtlCfg_t Configuration substructure

Velocity Move ST_VelMove_t Main structure

ST_VelMoveCfg_t Configuration substructure

ST_VelMoveMsg_t Information substructure

Velocity Plan ST_VelPlan_t Main structure

Velocity Identify ST_VelId_t Main structure

ST_VelIdCfg_t Configuration substructure

Position Convert ST_PosConv_t Main structure

ST_PosConvCfg_t Configuration substructure

Position Control ST_PosCtl_t Main structure

ST_PosCtlCfg_t Configuration substructure

Position Move ST_PosMove_t Main structure

ST_PosMoveCfg_t Configuration substructure

ST_PosMoveMsg_t Information substructure

Position Plan ST_PosPlan_t Main structure

Version ST_Ver_t Main Structure

InstaSPIN™ and MotorWare™ www.ti.com

170 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.5.4 SpinTAC™ Variables

Variables are broadly classified as shown in Table 3-4.

Table 3-4. SpinTAC™ Variables
Variable Categories Subclasses
Configuration Variables:
Variables used to configure
SpinTAC components.

System Variables: These are known values that are based on system parameters. Some examples:
1. Sample time of the interrupt
2. Scaling factor between a mechanical revolution and user unit.
3. The system gain is a special case in that the inertia in the velocity loop or position-velocity loop is

normally obtained by running an inertia estimation function for a constant inertia system. A constant
inertia can be estimated by Inertia Identify in open loop. However, if the system inertia is gradually
changing, it needs to be calculated or estimated outside Velocity Control and sent to Velocity
Control in real time.

Protection Variables: Used to indicate the upper limit or lower limit of other variables. For this reason,
protection variables all have the suffix "Max" or "Min". Some examples:
1. OutMax and OutMin are the protection bounds for the variable Out. These bounds come from

the fixed-point IQMath calculation limit, from the physical limit, or the safe limit obtained through
experience.

2. VelMax is determined by the maximum allowable velocity for a specific motor, which is a physical
limit.

3. BwMax, the Bandwidth upper limit can be set high in the beginning and then decreased after a
reasonable upper bound is determined through testing.

Tuning Variables: Parameters used to give users flexibility to adjust SpinTAC components' behavior.
Some examples:
1. Control bandwidth of Velocity Control.
2. Velocity, acceleration/deceleration, and jerk limits of Velocity Move.
3. Low pass filter time constant for Velocity Identify.

Input/Output Variables:
Variables that are used to pass
values into and out of the
SpinTAC components

Input variables: Interfaces for external signals to be input into a SpinTAC component. They receive the
external signals before the component function is called. Examples include:
1. Reference and feedback signals of Velocity Control
2. Feedback signal of Inertia Identify.

Control Variables: Signals used to control each component. Examples are:
1. ENB and RES are control variables for each SpinTAC component. Generally, when the value of

RES is false, ENB enables a component on the rising edge and disables a component when it is
set to false. When the value of RES is true, the component is disabled (in RESET) and the value of
ENB is held at false.

2. TST is a control variable used to test the Velocity Move component. If the value of TST is true,
Velocity Move only gives the profile information without producing the profile to the controller;
otherwise, it will produce the profile. This control bit can be used by the designers to verify the
calculated profile limits and profile time before applying the profile to the controller.

Output variables: Contain the outputs of a SpinTAC component. These variables need to be set to the
appropriate external variables after the component function is called. Examples:
1. Control output of Velocity Control and Inertia Identify
2. Profile references of Velocity Move.

Information Variables: Read-only variables, which provide useful information about a SpinTAC
component. Examples include:
1. State and the error code of any SpinTAC component
2. Profile time and the actual limits of Velocity Move.

Internal Variables: The internal variables in the SpinTAC components should not be accessed by customers. It is hazardous to modify the
internal variables.The internal variables are stored in locations declared as bulk memory and are not listed in this document.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

171

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6 SpinTAC™ API
This section describes the Application Program Interface (API) of each of the SpinTAC components including
each component’s internal state machine, primary functions and data structures for control and configuration.
The components of the velocity solution are presented first, then the components of the position solution.

3.6.1 SpinTAC™ Velocity Control

The SpinTAC Velocity Controller is different from error-based control designs. The following example is used to
illustrate the difference.

A velocity system can be described with Equation 1:

()Jv(t) f v(t),d(t) u(t)= +& (1)

In Equation 1, v(t), u(t), and d(t) are system output (velocity), system input (torque), and external disturbance
respectively; f(·) is an unknown nonlinear function, and J is the system inertia. In traditional control design, a
PI controller would be used to control these dynamics with the proportional gain and integral gains determined
experimentally. Model-based controllers, on the other hand, respond to the dynamics based on a predefined
linear or nonlinear model.

The SpinTAC Velocity Controller is unique in that it treats the nonlinear term f(·) as a disturbance that can
be estimated and rejected. The tuning process is also simplified via a parameterization method that enables
high-performance control of dynamical systems using a single tuning parameter: the control bandwidth.

3.6.1.1 SpinTAC™ Velocity Control Interface

The SpinTAC Velocity Control interfaces and functions are shown in Figure 3-5.

^�]vd��¡�

Velocity

Move

ROM

STVELMOVE_run
Speed

Reference
^�]vd��¡�

Velocity

Control

ROM

STVELCTL_run

FOC
Acceleration

Reference
Torque

Reference

ROM

CTRL_run

Speed
Feedback

Figure 3-5. SpinTAC™ Velocity Control Interfaces

Note

In SpinTAC Velocity Control, the value for inertia can be obtained by the SpinTAC Velocity Identify
component. The switch cfg.FiltEn can be enabled if the feedback is very noisy. The only controller
tuning parameter is the bandwidth which is set via BwScale.

InstaSPIN™ and MotorWare™ www.ti.com

172 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-5 lists the interface parameters for SpinTAC Velocity Control.

Table 3-5. SpinTAC™ Velocity Control Interface Parameters

Signal Type
Structure Member
Name Data Type Description Value Range Units

Config cfg.Axis ST_Axis_e SpinTAC Control Axis ID {ST_AXIS0, ST_AXIS1}

cfg.T_sec _iq24 Sampling time (0 , 1] s

cfg.InertiaMax _iq24 Maximum system inertia for
velocity loop control

(0, 100] PU · s2 / pu

cfg.InertiaMin _iq24 Minimum system inertia for
velocity loop control

(0, cfg.InertiaMax] PU · s2 / pu

cfg.OutMax _iq24 Maximum control signal [-1 , 1] PU

cfg.OutMin _iq24 Minimum control signal [-1, cfg.OutMax] PU

cfg.VelMax _iq24 Maximum reference signal
(maximum velocity of the
system)

[-1 , 1] pu / s

cfg.VelMin _iq24 Minimum reference signal
(minimum velocity of the system)

[-1 , cfg.VelMax] pu / s

cfg.BwScaleMax _iq24 Bandwidth scale upper limit [0.01, min(100, 0.01/
cfg.T_sec)]

cfg.BwScaleMin _iq24 Bandwidth scale lower limit [0.01, cfg.BwScaleMax]

cfg.FiltEn bool Enable feedback low pass filter false: disabled; true: enabled

Inputs VelRef _iq24 Reference signal (velocity
reference)

[cfg.VelMin, cfg.VelMax] pu / s

AccRef _iq24 Feedforward signal (acceleration
reference)

pu / s2

VelFdb _iq24 Feedback signal (velocity
feedback)

pu / s

Inertia _iq24 System Inertia [cfg.InertiaMin,
cfg.InertiaMax]

PU · s2 / pu

Friction _iq24 Friction coefficient [0, 5] PU · s / pu

Tuning BwScale _iq24 Bandwidth scale [cfg.BwScaleMin,
cfg.BwScaleMax]

Control ENB bool Enable bit false: disabled; true: enabled

RES bool Reset bit false: not reset; true: reset
ERR_ID, and hold Out as 0

Output Out _iq24 Control output [cfg.OutMin, cfg.OutMax] PU

Info Bw_radps _iq20 Controller bandwidth rad/s

STATUS ST_CtlStatus_e Status information {ST_CTL_IDLE,
ST_CTL_INIT,
ST_CTL_CONF,
ST_CTL_BUSY}

ERR_ID uint16_t Error code See Table 12-2

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

173

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.1.2 SpinTAC™ Velocity Control Run Function

The primary function is STVELCTL_run(ST_VELCTL_Handle handle), where handle is a pointer to a specific
ST_VelCtl_t object. This function runs SpinTAC Velocity Control. It is recommended to run this controller at
one-fifth or one-tenth the rate of the current controller.

void STVELCTL_run(ST_VELCTL_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELCTL_Handle Handle The pointer to a ST_VelCtl_t object

The SpinTAC Velocity Control state transition map is shown in Figure 3-6. Note in Figure 3-6, the transitions from
state IDLE to INIT, INIT to CONF, and CONF to BUSY, happen within one sample time. Therefore, the controller
works directly at the sample time when it is enabled.

IDLE CONF BUSY

ENB rising && RES == 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 &&

ENB == 1 &&

no change in BwScale or

Inertia or Friction

RES == 1 || ENB == 0

RES == 0 &&

ENB == 1 &&

change in BwScale or

Inertia or Friction

 RES == 1 ||

ENB not

rising

Figure 3-6. SpinTAC™ Velocity Control State Transition Map

The SpinTAC Velocity Control states transitions are described in Table 3-6.

Table 3-6. SpinTAC™ Velocity Control State Transition
From State To State Transition Condition Action
IDLE 1. Set ENB = false;

2. Hold Out as zero

Parameter validation
1. Validate the configuration parameters, including cfg.InertiaMax,

cfg.InertiaMin, cfg.BwScaleMax, cfg.BwScaleMin, cfg.Axis,
cfg.FiltEn, and cfg.T_sec. If any of the checked variables are
invalid, ERR_ID will be nonzero.

INIT RES == false AND ENB is on
rising edge AND ERR_ID == 0

INIT Parameter validation
1. Validate the parameters, including cfg.VelMax, cfg.VelMin,

cfg.OutMax, cfg.OutMin. If any of the checked variables are
invalid, ERR_ID will be nonzero.

IDLE ERR_ID != 0 Set ENB = false

CONF ERR_ID == 0

CONF BUSY Saturate Inertia, BwScale, and Friction by the specified bounds. If
saturation occurs, ERR_ID will be 1012, or 1013, 1014, or 1016.

InstaSPIN™ and MotorWare™ www.ti.com

174 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-6. SpinTAC™ Velocity Control State Transition (continued)
From State To State Transition Condition Action
BUSY Generate control signal

IDLE RES == true OR ENB == false Set ENB = false

CONF RES == false AND ENB == true
AND changes in BwScale, Inertia,
or Friction

3.6.2 SpinTAC™ Velocity Move

SpinTAC Velocity Move generates motion profiles satisfying the specified maximum jerk, acceleration, and
velocity values. The relationships among the generated reference signals are: the velocity reference is the
derivative of position reference; the acceleration reference is the derivative of the velocity reference; and the jerk
reference is the derivative of the acceleration.

3.6.2.1 SpinTAC™ Velocity Move Interface

The interfaces and functions of SpinTAC Velocity Move are shown in Figure 3-7.

^�]vd��¡�

Velocity

Move

ROM

STVELMOVE_run
Speed

Reference
^�]vd��¡�

Velocity

Control

ROM

STVELCTL_run

Acceleration
Reference

^�]vd��¡�

Velocity

Plan

RAM/FLASH

STVELPLAN_run
Speed
Target

Acceleration
Limit

Jerk
Limit

Figure 3-7. SpinTAC™ Velocity Move Interfaces

Table 3-7 lists the interface parameters for SpinTAC Velocity Move.

Table 3-7. SpinTAC™ Velocity Move Interfaces

Signal Type
Structure Member
Name Data Type Description Value Range Units

Config cfg.Axis ST_Axis_e SpinTAC Move Axis ID {ST_AXIS0, ST_AXIS1}

cfg.CurveType ST_MoveCurveT
ype_e

Curve type {ST_MOVE_CUR_TRAP,
ST_MOVE_CUR_SCRV,
ST_MOVE_CUR_STCRV}

cfg.T_sec _iq24 Sampling time (0 , 0.01] s

cfg.VelMax _iq24 Maximum velocity of the system (0 , 1] pu / s

cfg.AccMax _iq24 Maximum acceleration of the
system

[0.001 , 120] pu / s2

cfg.JrkMax _iq20 Maximum jerk of the system [0.0005, 2000] pu / s3

cfg.VelStart _iq24 Velocity start value [-cfg.VelMax , cfg.VelMax] pu / s

cfg.IgnoreLimitErrors bool If a profile bound is set outside
the valid value range, this will
saturate the profile limit to within
the valid value range

false: provide an error code
& do not generate a profile;
true: saturate profile limit &
generate a profile

Message msg.ProTime_tick uint_32 Profile time in sample time
counts

Sample
Counts

msg.Acc _iq24 Maximum acceleration of the
profile

pu / s2

msg.Jrk _iq20 Maximum jerk of the profile pu / s3

Inputs VelEnd _iq24 Velocity end value [-cfg.VelMax , cfg.VelMax] pu / s

AccLim _iq24 Acceleration limit [0.001 , cfg.AccMax] pu / s2

JrkLim _iq20 Jerk limit [0.0005, cfg.JrkMax] pu / s3

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

175

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-7. SpinTAC™ Velocity Move Interfaces (continued)

Signal Type
Structure Member
Name Data Type Description Value Range Units

Control ENB bool Enable bit false: profile done or
disabled;
true: enable and run

RES bool Reset bit false: not reset;
true: reset ERR_ID, and hold
profile outputs as previous
values

TST bool Profile configuration test bit false: not test;
true: test profile configuration

Outputs VelRef _iq24 Velocity reference pu / s

AccRef _iq24 Acceleration reference pu / s2

JrkRef _iq20 Jerk reference pu / s3

Info STATUS ST_MoveStatus_
e

Status information {ST_MOVE_IDLE,
ST_MOVE_INIT,
ST_MOVE_CONF,
ST_MOVE_BUSY,
ST_MOVE_HALT}

DON bool Profile done indicator false: running;
true: profile done or idle

ERR_ID uint16_t Error code See Table 13-1

For simplicity in SpinTAC Velocity Move, all velocity profiles use the configured acceleration for all moves. For
instance, you could have a profile that would technically be decelerating, but SpinTAC Velocity Move would use
the acceleration limit for that profile.

InstaSPIN™ and MotorWare™ www.ti.com

176 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.2.2 SpinTAC™ Velocity Move Run Function

The main function is STVELMOVE_run(ST_VELMOVE_Handle handle), where handle is a pointer to a specific
ST_VelMove_t object. This function runs SpinTAC velocity move. This function must be run at the same rate as
SpinTAC Velocity Control.

void STVELMOVE_run(ST_VELMOVE_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELMOVE_Handle Handle The pointer to a ST_VelMove_t object

The SpinTAC Velocity Move state transition map is shown in Figure 3-8. Note in Figure 3-8, the transitions from
state IDLE to INIT, and then to CONF, happen within one sample time. Thus, the profile is generated at the
sample time when the profile is enabled.

IDLE CONF BUSY

ENB rising && RES == 0
 RES == 1 ||

ENB not

rising

ERR_ID != 0 || STEP == 0

ERR_ID == 0 &&

STEP != 0

INIT

TST == 1

TST == 0

RES == 0 &&

ENB == 1 &&

 DON == 0 &&

VelEnd unchanged

DON == 1 ||

RES == 1 ||

ENB == 0 &&

VelEnd

unchanged

HALT

VelEnd

changed

AccRef != 0

AccRef == 0

Figure 3-8. SpinTAC™ Velocity Move State Transition Map

The states of the SpinTAC Velocity Move are described in Table 3-8.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

177

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-8. SpinTAC™ Velocity Move State Transition
From State To State Transition Condition(1) (2) (3) (4) Action
IDLE Keep IDLE status

1. Set ENB = false;
2. Set DON = true;
3. Hold the values for VelRef, AccRef, and JrkRef

(The value of cfg.VelStart and VelEnd can only be set in the IDLE
state)

INIT RES == false AND ENB is on
rising edge

INIT Parameter validation
1. Validate the configuration parameters, including cfg.VelMax,

cfg.VelStart, VelEnd, cfg.JrkMax, cfg.AccMax, JrkLim, AccLim,
cfg.CUR_MOD, and cfg.T_sec. If any of the checked variables
is invalid, ERR_ID will be nonzero;

2. Calculate velocity step, STEP

IDLE ERR_ID != 0 OR STEP == 0 Set ENB = false

CONF ERR_ID == 0 AND STEP != 0

CONF Determine the profile with the configured parameters

IDLE TST == true Set the value of VelEnd back to the value of cfg.VelStart

BUSY TST == false

BUSY Produce the profile
1. Update references VelRef, AccRef, JrkRef at each sample time;
2. If the profile is finished, set DON as true

IDLE RES == true OR ENB == false
OR DON == true

Set ENB = false

HALT VelEnd changed during profile

HALT Reduce AccRef to 0. Update AccRef, JrkRef at each sample time.
Prepare to smoothly move to the new VelEnd.

INIT AccRef == 0

(1) The RES signal provides the ability to place SpinTAC Velocity Move into reset.
(2) If RES is set to true, ENB will be set to false. Any current errors will be discarded. The current profile is discarded, AccRef is set to 0,

VelRef is held as the value from previous sample time, and VelEnd and cfg.VelStart are set with the value of VelRef. Therefore, when
RES is set back to false, a new profile can be started with the held over velocity reference.

(3) The ENB signal provides the start signal to SpinTAC Velocity Move. The ENB signal only functions when RES is set to false.
(4) The purpose of TST bit is to provide the profile information without generating trajectories. The information includes the profile time

and actual maximums for acceleration and jerk. The TST signal is received by the function at the rising edge of ENB in the INIT state.
If TST is true, it is in the test mode. In test mode, the profile output VelRef will keep the value of cfg.VelStart; AccRef will be 0, not
influenced by VelEnd. After the test, the profile information (msg.ProTtime_tick, msg.Acc, and msg.Jrk) is output, VelEnd is set back to
the value of cfg.VelStart, DON will be set to true, and ENB will be set to false.

InstaSPIN™ and MotorWare™ www.ti.com

178 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.3 SpinTAC™ Velocity Plan

SpinTAC Velocity Plan components provide the functionality to setup and run motion sequences determined by
the user application.

3.6.3.1 SpinTAC™ Velocity Plan Interface

The interfaces and functions of SpinTAC Velocity Plan are shown in Figure 3-9 and described in Table 3-9.

Figure 3-9. SpinTAC™ Velocity Plan Interfaces

Table 3-9. SpinTAC™ Velocity Plan Interfaces

Signal Type
Structure Member
Name Data Type Description Value Range Units

Control ENB bool Enable bit false: disabled;
true: enabled

RES bool Reset bit false: not reset;
true: reset

Outputs VelEnd _iq24 Current velocity setpoint [-VelMax , VelMax] pu / s

AccLim _iq24 Current acceleration limit [0.002 , AccMax] pu / s2

JrkLim _iq20 Current jerk limit [0.001, JrkMax] pu / s3

Info Timer_tick int32_t Time remaining in the current
state

STATUS ST_PlanStatus_e Status information {ST_PLAN_IDLE,
ST_PLAN_INIT,
ST_PLAN_CONF,
ST_PLAN_BUSY}

CurState uint16_t Current state index [0, StateNum)

CurTran uint16_t Current transition index [0, TranNum)

FsmState ST_PlanFsmStat
e_e

Status to indicate if it is in
a transition, or in a state, or
waiting for a transition

{ ST_FSM_STATE_STAY,
ST_FSM, _STATE_COND,
ST_FSM _STATE_TRAN }

DON bool Plan done indicator false: not done;
true: done

ERR_ID uint16_t Plan function that caused the
error

See Table 13-4

CfgError.ERR_idx uint16_t Component index where the
error occurred

CfgError.ERR_code uint16_t Condition that caused error See Table 13-4

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

179

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.3.2 SpinTAC™ Velocity Plan Primary Functions

The primary function is STVELPLAN_run(ST_VELPLAN_Handle handle), where handle is a pointer to a specific
ST_VelPlan_t object. This function runs SpinTAC Velocity Plan. This function can be run in the main loop of the
program.

void STVELPLAN_run(ST_VELPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The pointer to a ST_VelPlan_t object

The function for SpinTAC Velocity Plan that handles decrementing the state timer is
STVELPLAN_runTick(ST_VELPLAN_Handle handle), where handle is a pointer to a specific ST_VelPlan_t
object. This function decrements the state times for SpinTAC Velocity Plan. This function must be run at the
same rate as SpinTAC Velocity Control.

void STVELPLAN_runTick(ST_VELPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The pointer to a ST_VelPlan_t object

The SpinTAC Velocity Plan state transition map is shown in Figure 3-10. Note in Figure 3-10, the transitions from
state IDLE to INIT, and then to BUSY, happen within one sample time.

IDLE

 RES == 1 ||

ENB not

rising

BUSY

ENB rising && RES == 0

INIT

 ENB == 1 &&

RES == 0 &&

DON == 0

WAIT

HALT

 ENB == 0 &&

RES == 0

 ENB == 1 &&

RES == 0

 Unit Profile Done

&& RES == 0

 ENB == 0 ||

RES == 1

 ENB == 1 &&

RES == 0 &&

DON == 1

Unit Profile Done

&& RES == 1

Unit Profile

Not Done

RES == 1

Figure 3-10. SpinTAC™ Velocity Plan State Transition Map

InstaSPIN™ and MotorWare™ www.ti.com

180 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The states of SpinTAC Velocity Plan are described in Table 3-10.

Table 3-10. SpinTAC™ Velocity Plan State Transition

From State To State
Transition Condition(1) (2) (3) (4)
(5) Action

IDLE Keep IDLE status
1. Set ENB = false;
2. Hold the values for VelEnd, AccLim, and JrkLim

INIT RES == false AND ENB is on
rising edge

INIT BUSY Parameter validation
1. Reset internal status;
2. Enter state 0 and execute the actions defined for entering state

0.

BUSY Operate the plan

IDLE RES == false AND ENB == true
AND DON == true

Set ENB = false

HALT RES == true OR ENB == false Load the halt state profile configurations

HALT IDLE HALT state Timer up AND RES
== true

Load the configurations of state 0

WAIT HALT state Timer up AND RES
== false

WAIT IDLE RES == true Load the configurations of state 0

HALT ENB == true Load the configurations of the last state

(1) The RES signal provides the ability to place SpinTAC Velocity Plan into reset.
(2) The ENB signal controls the operation of SpinTAC Velocity Plan when RES is false.
(3) If ENB is set to false when SpinTAC Velocity Plan is running, SpinTAC Velocity Plan will then send out the velocity setpoint and limits of

the HALT state. When the unit profile is done, SpinTAC Velocity Plan will enter WAIT state, and can only continue the plan when ENB
is set to true.

(4) If RES is set to true, ENB will be set to false. SpinTAC Velocity Plan will then send out the velocity setpoint and limits of state 0, and
SpinTAC Velocity Plan enters IDLE state.

(5) Effectively, ENB functions as a pause/start button, while RES functions as stop.

Table 3-11 lists the functions that can be used to perform operations such as set, get, add, and delete
configuration and runtime parameters of SpinTAC Velocity Plan. These functions are described in more detail in
Section 3.6.9.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

181

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-11. SpinTAC™ Velocity Plan Additional Functions
Function Group Function Name Description
Initialization STVELPLAN_init Initialize SpinTAC Velocity Plan

Configuration STVELPLAN_setCfg Set the system and protection parameters

STVELPLAN_setCfgArray Setup configuration array

STVELPLAN_setCfgHaltState Set the parameters for the HALT state

STVELPLAN_addCfgState Add a new State

STVELPLAN_addCfgVar Add a new Variable

STVELPLAN_addCfgCond Add a new Condition that compares a Variable against static values

STVELPLAN_addCfgVarCond Add a new Condition that compares two Variables

STVELPLAN_addCfgTran Add a new Transition

STVELPLAN_addCfgAct Add a new Action

Runtime STVELPLAN_run Run SpinTAC Velocity Plan. Can run from main loop.

STVELPLAN_runTick Run SpinTAC Velocity Plan Timer function. Must run from ISR.

STVELPLAN_setVar Set the value of a Variable during runtime

STVELPLAN_getVar Get the value of a Variable during runtime

STVELPLAN_reset Reset SpinTAC Velocity Plan and configuration

STVELPLAN_setUnitProfDone Sets if the currently running profile is done

Plan modification and
debugging functions
(Provide ability to
modify SpinTAC
Velocity Plan at
runtime)

STVELPLAN_getCfgStateNum Get the number of configured States

STVELPLAN_getCfgVarNum Get the number of configured Variables

STVELPLAN_getCfgCondNum Get the number of configured Conditions

STVELPLAN_getCfgTranNum Get the number of configured Transitions

STVELPLAN_getCfgActNum Get the number of configured Actions

STVELPLAN_getCfg Get the system & protection parameters

STVELPLAN_getCfgHaltState Get the parameters for the HALT state

Each function with a suffix -Add has three other functions: -Del, -Set, and -Get to delete the item, to set the item,
and to get the item respectively. These functions allow runtime modification of SpinTAC Velocity Plan.

InstaSPIN™ and MotorWare™ www.ti.com

182 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.4 SpinTAC™ Velocity Identify

SpinTAC Velocity Identify estimates system inertia according to the applied torque profile and the measured
velocity feedback.

Neglecting disturbances and non-linearities, simple motion systems can be described with Equation 2.

Jv(t) Bv(t) u(t)= - +& (2)

In Equation 2, v(t) and u(t) are the velocity and control input, respectively; J and B are the inertia ratio and friction
coefficient, respectively.

SpinTAC Velocity Identify applies a continuous torque profile and estimates system inertia ratio with respect
to the speed feedback. The estimated inertia and friction should be provided to SpinTAC controllers. SpinTAC
Velocity Identify should be used to estimate the inertia for both velocity and position solutions.

3.6.4.1 SpinTAC™ Velocity Identify Interface

The interfaces of SpinTAC Velocity Identify are shown in Figure 3-11 and described in Table 3-12.

Figure 3-11. SpinTAC™ Velocity Identify Interfaces

Table 3-12. SpinTAC™ Velocity Identify Interfaces and Parameters
Signal Type Variable Name Data Type Description Value Range Unit
Config cfg.T_sec _iq24 Sampling time (0 , 0.01] s

cfg.VelMax _iq24 Maximum velocity of the system (0 , 1] pu / s

cfg.OutMax _iq24 Maximum velocity loop control
signal

(0 , 1] PU

cfg.OutMin _iq24 Minimum velocity loop control
signal

[-1, 0) PU

cfg.VelPos _iq24 Velocity positive value (0 , cfg.VelMax] pu / s

cfg.OutPos _iq24 Control signal positive value (0 , cfg.OutMax] PU

cfg.OutNeg _iq24 Control signal negative value [cfg.OutMin, 0) PU

cfg.LpfTime_tick int16_t Feedback signal low pass filter
time constant

[1 , 100] Sample
Counts

cfg.TimeOut_sec _iq24 Maximum time allowed for inertia
identification

[1, 10] s

cfg.RampTime_sec _iq24 Time allowed for control signal
to reach 1.0 PU during inertia
estimation process

[cfg.T, sec 25] s

Input VelFdb _iq24 Velocity feedback pu / s

Control ENB bool Enable bit false: disabled; true: enabled

RES bool Reset bit false: not reset; true: reset
ERR_ID, and hold Out as 0

Output Out _iq24 Torque signal PU

Result InertiaEst _iq24 Estimated inertia PU· s2 / pu

FrictionEst _iq24 Estimated friction coefficient PU· s / pu

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

183

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-12. SpinTAC™ Velocity Identify Interfaces and Parameters (continued)
Signal Type Variable Name Data Type Description Value Range Unit
Info STATUS ST_VelIdStatus_

e
Status {ST_VEL_ID_IDLE,

ST_VEL_ID_INIT,
ST_VEL_ID_BUSY }

DON bool Identification completed indicator false: running or disabled;
true: Identification complete

ERR_ID uint16_t Error ID See Table 7-1

3.6.4.2 SpinTAC™ Velocity Identify Run Function

The primary function is STVELID_run(ST_VELID_Handle handle), where handle is the pointer to a specific
ST_VelId_t object. This function needs to be called at the configured sample rate.

void STVELID_run(ST_VELID_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_VELID_Handle handle The pointer to a ST_VelId_t object

The state transition map is shown in Figure 3-12.

IDLE BUSY

ENB uprising && RES == 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 &&

ENB == 1 &&

DON == 0 &&

ERR_ID == 0

 DON == 1 || RES == 1 || ENB == 0 || ERR_ID != 0

 RES == 1 ||

ENB not

uprising

Figure 3-12. SpinTAC™ Velocity Identify State Transition Map

The state transitions of Inertia Identify are described in Table 3-13.

InstaSPIN™ and MotorWare™ www.ti.com

184 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-13. SpinTAC™ Velocity Identify State Transition
From State To State Transition Condition Action
IDLE 1. Set ENB = false;

2. Hold Out as 0

Parameter validation
1. Validate the configuration parameters, including cfg.VelMax,

cfg.OutMax, cfg.OutMin, cfg.LpfTime_tick, cfg.TimeOut_sec,
and cfg.T_sec, if any of the checked variables is invalid,
ERR_ID will be nonzero;

INIT RES == false AND ENB is on
rising edge AND ERR_ID == 0

INIT Parameter validation
1. Validate the parameters, including cfg.VelPos, cfg.OutPos,

cfg.OutNeg, and cfg.RampTime_sec, if any of the checked
variables is invalid, ERR_ID will be nonzero;

IDLE ERR_ID != 0 Set ENB = false

BUSY ERR_ID == 0

BUSY Produce torque profile and monitor velocity feedback
1. Produce torque profile and monitor velocity feedback at each

sample time;
2. If the profile is finished, set DON as true; if the profile times out,

ERR_ID is set to 2004;
3. If the estimated inertia is not positive, ERR_ID is set to 2003;
4. If the motor stops during the test, ERR_ID is set to 2006;

IDLE RES == true OR ENB == false
OR DON == true OR ERR_ID !=
0

1. If RES == true OR ENB == FLASE, Out will steadily approach
zero, and then wait a few seconds to settle. ERR_ID will be set
to 2005.

Set ENB = false

3.6.5 SpinTAC™ Position Convert

The SpinTAC Position Convert is required for systems that use an encoder for feedback. It calculates position
and velocity signals from the position encoder feedback. This component is used to provide the velocity
feedback signal [pu/s] for SpinTAC Velocity Identify and SpinTAC Velocity Control when using an encoder to
provide electrical angle to the FOC. It is also used for all position solutions to convert the encoder electrical
angle into a mechanical angle. This component is not required for systems that use the FAST sensorless
estimator. SpinTAC Position Convert will also provide an estimation of the Slip Speed for AC induction motors.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

185

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.5.1 SpinTAC™ Position Convert Interfaces

The interfaces and functions of SpinTAC Position Convert are shown in Figure 3-13 and described in Table 3-14.

Figure 3-13. SpinTAC™ Position Convert Interfaces

Table 3-14. SpinTAC™ Position Convert Interfaces and Parameters

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Config cfg.T_sec _iq24 Sampling time (0 , 0.01] s

cfg.ROMax_erev _iq24 Maximum bound for electrical
revolution [ERev]

[0 , 16] ERev

cfg.ROMin_erev _iq24 Minimum bound for electrical
revolution [ERev]

[-16, 0] ERev

cfg.erev_TO_pu_ps _iq24 Conversion ratio from electrical
revolution [ERev] to velocity user
unit [pu/s]

(0 , 0.01] pu / s / ERev

cfg.PolePairs _iq24 Conversion ratio from
mechanical revolution to
electrical revolution [Pole Pairs]

[1, 32]

cfg.ROMax_mrev _iq24 Position Rollover Bound [2, 100] MRev

cfg.LpfTime_tick int16 Low-pass filter time constant
[ISR ticks]

[1 , 100] Sample
counts

cfg.SampleTimeOverTim
eConst

_iq24 Scalar value used in the Slip
Compensator (ACIM Only)

[0, 128.0)

cfg.OneOverFreqTimeCo
nst

_iq24 Scalar value used in the Slip
Compensator (ACIM Only)

[0, 128.0)

Input Pos_erev _iq24 Saw-tooth electrical angle signal [cfg.ROMin_erev,
cfg.ROMax_erev)

ERev

Id _iq24 Id Current Feedback (ACIM
Only)

[-1.0, 1.0] PU

Iq _iq24 Iq Current Feedback (ACIM
Only)

[-1.0, 1.0] PU

Control ENB bool Enable bit false: disabled; true: enabled

RES bool Reset bit false: not reset; true: reset

Outputs Vel _iq24 Calculated velocity in user unit
(unfiltered)

[-1, 1] pu / s

VelLpf _iq24 Filtered velocity in user unit [-1, 1] pu / s

Pos_mrev _iq24 Saw-tooth mechanical angle
signal

[-cfg.ROMax_mrev,
cfg.ROMax_mrev]

MRev

PosROCounts int32_t Position roll over counts

SlipVel _iq24 Speed of magnetic slip (ACIM
Only)

[-1.0, 1.0] ERev / s

Info STATUS ST_PosConvStat
us_e

Status information {ST_POS_CONV_IDLE,
ST_POS_CONV_INIT,
ST_POS_CONV_BUSY}

ERR_ID uint16_t Error code See Table 18-2

InstaSPIN™ and MotorWare™ www.ti.com

186 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.5.2 SpinTAC™ Position Convert Run Function

The primary function is STPOSCONV_run(ST_POSCONV_Handle handle), where handle is the pointer to a
specific ST_PosConv_t object, this handle needs to be established by the initialize function STPOSCONV_init.

void STPOSONV_run(ST_POSCONV_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSCONV_Handle handle The pointer to a ST_PosConv_t object

The state transition map is shown in Figure 3-14.

IDLE BUSY

ENB rising && RES == 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 &&

ENB == 1

RES == 1 || ENB == 0

 RES == 1 ||

ENB not

rising

Figure 3-14. SpinTAC™ Position Convert State Transition Map

The state transitions of the SpinTAC Position Convert are described in Table 3-15.

Table 3-15. SpinTAC™ Position Convert State Transition
From State To State Transition Condition Action
IDLE 1. Set ENB = false;

2. Hold Vel, VelLpf, Pos_mrev, and PosROCounts as 0

INIT RES == false AND ENB is on
rising edge

INIT Parameter validation
1. Validate the configuration parameters, including

cfg.ROMax_erev, cfg.ROMin_erev, cfg.erev_TO_pu_ps,
cfg.PolePairs, cfg.ROMax_mrev, cfg.LpfTime_ticks, and
cfg.T_sec, if any of the checked variables is invalid, ERR_ID
will be nonzero;

IDLE ERR_ID != 0 Set ENB = false

BUSY ERR_ID == 0

BUSY Calculate sawtooth position signal in [MRev] and velocity signal in
[pu/s]

IDLE RES == true OR ENB == false Set ENB = false

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

187

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.6 SpinTAC™ Position Control

The SpinTAC Position Control is a cascaded controller that controls the position and velocity loops for a motion
system. It allows developers to tune both loops with a single tuning parameter. Similarly to SpinTAC Velocity
Control, SpinTAC Position Control rejects external disturbances, which is represented by an unknown, nonlinear
term in the control equations. The tuning process is also simplified, like in SpinTAC Velocity Control, via a
parameterization method that enables high-performance control of dynamical systems using a single tuning
parameter: bandwidth. This single parameter is used to tune both the velocity and position loops of SpinTAC
Position Control.

3.6.6.1 SpinTAC™ Position Control Interface

The interfaces and functions of SpinTAC Position Control are shown in Figure 3-15.

Figure 3-15. SpinTAC™ Position Control Interfaces

Note: in SpinTAC Position Control, the inertia, cfg.Inertia, can be obtained by SpinTAC Velocity Identify. The
switch cfg.RampDist can be enabled if the dominant disturbance is ramp type. The only tuning parameter of the
controller is the bandwidth BwScale.

Table 3-16 lists the interface parameters for SpinTAC Position Control.

Table 3-16. SpinTAC™ Position Control Interface Parameters

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Config cfg.Axis ST_Axis_e SpinTAC Control Axis ID {ST_AXIS0, ST_AXIS1}

cfg.T_sec _iq24 Sampling time (0 , 0.01] s

cfg.InertiaMax _iq24 Maximum system inertia (0, 100] PU · s2 / pu

cfg.InertiaMin _iq24 Minimum system inertia (0, cfg.InertiaMax] PU · s2 / pu

cfg.OutMax _iq24 Maximum control signal (0 , 1] PU

cfg.OutMin _iq24 Minimum control signal [-1, 0) PU

cfg.VelMax _iq24 Maximum velocity reference
signal

(0 , 1] pu / s

cfg.ROMax_mrev _iq24 Position rollover bound [2, 100] MRev

cfg.mrev_TO_pu _iq24 Conversion ratio from
mechanical revolution [MRev] to
[pu]

[0.002, 1] pu / MRev

cfg.PosErrMax_mrev _iq24 Maximum allowable position
error

(0, cfg.ROMax_mrev /2] MRev

cfg.RampDist bool Reject ramp disturbance false: disabled; true: enabled

cfg.BwScaleMax _iq24 Bandwidth upper limit [0.01, min(50, 0.005/
cfg.T_sec)]

cfg.BwScaleMin _iq24 Bandwidth lower limit [0, cfg.BwScaleMax]

cfg.FiltEn bool Enable feedback low pass filter false: disabled; true: enabled

InstaSPIN™ and MotorWare™ www.ti.com

188 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-16. SpinTAC™ Position Control Interface Parameters (continued)

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Inputs PosRef_mrev _iq24 Position reference signal [-cfg.ROMax_mrev,
cfg.ROMax_mrev]

MRev

VelRef _iq24 Velocity reference signal [-cfg.VelMax, cfg.VelMax] pu / s

AccRef _iq24 Acceleration reference signal [cfg.OutMin, cfg.OutMax] pu / s2

PosFdb_mrev _iq24 Position feedback signal [-cfg.ROMax_mrev,
cfg.ROMax_mrev)

MRev

Inertia _iq24 System inertia [cfg.InertiaMin,
cfg.InertiaMax]

PU · s2 / pu

Friction _iq24 System friction [0, 5] PU · s2 / pu

Tuning BwScale _iq24 Controller bandwidth scale [cfg.BwScaleMin,
cfg.BwScaleMax]

Control ENB bool Enable bit false: disabled; true: enabled

RES bool Reset bit false: not reset; true: reset
ERR_ID, and hold Out as 0

Output Out _iq24 Control output [cfg.OutMin, cfg.OutMax] PU

Info Bw_radps _iq20 Controller bandwidth rad/s

STATUS ST_CtlStatus_e Status information {ST_CTL_IDLE,
ST_CTL_INIT,
ST_CTL_CONF,
ST_CTL_BUSY}

ERR_ID uint16_t Error code See Table 12-3

PosErr_mrev _iq24 Position error MRev

3.6.6.2 SpinTAC™ Position Control Run Function

The primary function is STPOSCTL_run(ST_POSCTL_Handle handle), where handle is the pointer to a specific
ST_PosCtl_t object, this handle needs to be established by the initialize function STPOSCTL_init.

void STPOSCTL_run(ST_POSCTL_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSCTL_Handle Handle The pointer to a ST_PosCtl_t object

The SpinTAC Position Control state transition map is shown in Figure 3-16. Note in Figure 3-16, the transitions
from state IDLE to INIT, INIT to CONF, and CONF to BUSY, happen within one sample time. Therefore, the
controller works directly at the sample time when it is enabled.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

189

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

IDLE CONF BUSY

ENB rising && RES == 0 &&

ERR_ID == 0

 RES == 1 ||

ENB not rising ||

ERR_ID != 0

ERR_ID !=0

ERR_ID == 0

INIT

RES == 0 &&

ENB == 1 &&

ERR_ID != 2002 &&

no change in

BwScale or Inertia or Friction

RES == 1 || ENB == 0 || ERR_ID == 2002

RES == 0 &&

ENB == 1 &&

ERR_ID != 2002 &&

change in BwScale or

Inertia or Friction

Figure 3-16. SpinTAC™ Position Control State Transition Map

The state transitions of SpinTAC Position Control are described in Table 3-17.

Table 3-17. SpinTAC™ Position Control State Transition
From State To State Transition Condition Action
IDLE 1. Set ENB = false;

2. Hold Out as zero

INIT RES == false AND ENB is on
rising edge AND ERR_ID == 0

INIT Parameter validation
1. Validate the configuration parameters, including

cfg.VelMax, cfg.OutMax, cfg.OutMin, cfg.ROMax_mrev,
cfg.mrev_TO_pu, cfg.PosErrMax_mrev, cfg.InertiaMax,
cfg.InertiaMin, cfg.BwScaleMax, cfg.BwScaleMin, cfg.DistType,
and cfg.T_sec. If any of the checked variables is invalid,
ERR_ID will be nonzero

IDLE ERR_ID != 0 Set ENB = false

CONF ERR_ID == 0

CONF BUSY Saturate Inertia and BwScale by the specified bounds. If saturation
occurs, ERR_ID will be 1012, or 1013, or 1014, or 1015.

BUSY 1. Generate control signal.
2. If PosErr_mrev exceeds cfg.PosErrMax_mrev, ERR_ID =2002.

IDLE RES == true OR ENB == false
OR ERR_ID == 2002

Set ENB = false

CONF RES == false AND ENB == true
AND changes in BwScale or
Inertia AND ERR_ID != 2002

InstaSPIN™ and MotorWare™ www.ti.com

190 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.7 SpinTAC™ Position Move

SpinTAC Position Move provides two modes: velocity-controlled position profile and position-controlled position
profile. The former mode is suited for ramp signals and profiles switching among different velocities. The second
mode is best suited for point-to-point position moves. cfg.ProfileType is used to switch between the two modes,
which can only be adjusted at the rising edge of the ENB signal. Mode switching requires cfg.VelStart set to zero
and STATUS in the IDLE state.

3.6.7.1 SpinTAC™ Position Move Interface

The interfaces and functions of SpinTAC Position Move are shown in Figure 3-17.

Figure 3-17. SpinTAC™ Position Move Interfaces

Table 3-18 lists the interface parameters for SpinTAC Position Move.

Table 3-18. SpinTAC™ Position Move Interfaces

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Config cfg.Axis ST_Axis_e SpinTAC Move Axis ID {ST_AXIS0, ST_AXIS1}

cfg.ProfileType ST_PosMove
Profiletype_e

Profile mode (velocity-controlled
or position-controlled)

{ST_POS_MOVE_VEL_
TYPE,
ST_POS_MOVE_POS_
TYPE}

cfg.CurveType ST_MoveCurve
Type_e

Curve type {ST_MOVE_CUR_TRAP,
ST_MOVE_CUR_SCRV,
ST_MOVE_CUR_STCRV}

cfg.T_sec _iq24 Sampling time (0 , 0.01] s

cfg.ROMax_mrev _iq24 Position rollover bound [2, 100] MRev

cfg.mrev_TO_pu _iq24 Conversion ratio from
mechanical revolution to pu

[0.002, 1] Pu / MRev

cfg.VelMax _iq24 Maximum velocity of the system (0 , 1] pu / s

cfg.AccMax _iq24 Maximum acceleration of the
system

[0.001 , 120] pu / s2

cfg.DecMax _iq24 Maximum deceleration of the
system

[0.001 , 120] pu / s2

cfg.JrkMax _iq20 Maximum jerk of the system [0.0005, 2000] pu / s3

cfg.VelStart _iq24 Velocity start value [-cfg.VelMax , cfg.VelMax] pu / s

cfg.PosStart_mrev _iq24 Position start value [-cfg.ROMax, cfg.ROMax] MRev

cfg.IgnoreLimitErrors bool If a profile bound is set outside
the valid value range, this will
saturate the profile limit to within
the valid value range

false: provide an error code
and do not generate a
profile; true: saturate profile
limit and generate a profile

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

191

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-18. SpinTAC™ Position Move Interfaces (continued)

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Message msg.ProTime_tick uint32_t Profile time within 1 million
counts

Sample
Counts

msg.ProTime_mtick uint32_t Profile time million counts Million
Sample
Counts

msg.Vel _iq24 Maximum velocity of the profile pu / s

msg.Acc _iq24 Maximum acceleration of the
profile

pu / s2

msg.Dec _iq24 Maximum deceleration of the
profile

pu / s2

msg.Jrk _iq20 Maximum jerk of the profile pu / s3

msg.PosStepMax_mrev _iq24 Maximum position step MRev

Inputs PosStepInt_mrev int32_t Position step integer value [-2147483647, 2147483647] MRev

PosStepFrac_mrev _iq24 Position step fraction value (-1, 1) MRev

VelLim _iq24 Velocity limit (0, cfg.VelMax] pu / s

AccLim _iq24 Acceleration limit [0.001 , cfg.AccMax] pu / s2

DecLim _iq24 Deceleration limit [0.001 , cfg.DecMax] pu / s2

JrkLim _iq20 Jerk limit [0.0005, cfg.JrkMax] pu / s3

VelEnd _iq24 Velocity end value [-cfg.VelMax , cfg.VelMax] pu / s

Control ENB bool Enable bit false: profile done or
disabled; true: enable and
run

RES bool Reset bit false: not reset; true: reset
ERR_ID, and hold profile
outputs as previous values

TST bool Profile configuration test bit false: not test; true: test
profile configuration

Info STATUS ST_MoveStatus_
e

Status information {ST_MOVE_IDLE,
ST_MOVE_INIT,
ST_MOVE_CONF,
ST_MOVE_BUSY,
ST_MOVE_HALT}

DON bool Profile done indicator false: running; true: profile
done or idle

ERR_ID uint16_t Error code See Table 13-2

Outputs PosRollOver int32_t Position rollover counts

PosRef_mrev _iq24 Position reference MRev

VelRef _iq24 Velocity reference pu / s

AccRef _iq24 Acceleration reference pu / s2

JrkRef _iq20 Jerk reference pu / s3

InstaSPIN™ and MotorWare™ www.ti.com

192 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.7.2 SpinTAC™ Position Move Run Function

The SpinTAC Position Move function is STPOSMOVE_run(ST_POSMOVE_Handle handle), where handle is
a pointer to a specific ST_PosMove_t object, this handle needs to be established by the initialize function
STPOSMOVE_init.

void STPOSMOVE_run(ST_POSMOVE_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSMOVE_Handle Handle The pointer to a ST_PosMove_t object

The SpinTAC Position Move_t state transition map is shown in Figure 3-18. Note in Figure 3-18, the transitions
from state IDLE to INIT, and then to CONF, happen within one sample time. Thus, the profile is generated at the
same sample time that the profile was enabled.

Figure 3-18. SpinTAC™ Position Move State Transition Map

The states of SpinTAC Position Move are described in Table 3-19.

Table 3-19. SpinTAC™ Position Move State Transition
From State To State Transition Condition(1) (2) (3) (4) Action
IDLE Keep IDLE status

1. Set ENB = false;
2. Set DON = false;
3. Hold the values for PosRef, VelRef, AccRef, and JrkRef

(The value of cfg.PosStart_mrev can only be set in the IDLE state.)

INIT RES == false AND ENB is on
rising edge

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

193

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-19. SpinTAC™ Position Move State Transition (continued)
From State To State Transition Condition(1) (2) (3) (4) Action
INIT Parameter validation

1. Validate the configuration parameters, including
cfg.PosStart_mrev, PosStepInt_mrev, PosStepFrac_mrev,
cfg.VelStart, VelEnd, cfg.VelMax, cfg.AccMax, cfg.DecMax,
cfg.JrkMax, AccLim, DecLim, JrkLim, cfg.CurveType,
cfg.ProfileType, and cfg.T_sec. If any of the checked variables
is invalid, ERR_ID will be nonzero;

2. Calculate profile step STEP (velocity step if cfg.ProfileType ==
ST_POS_MOVE_VEL_TYPE, or position step if cfg.ProfileType
== ST_POS_MOVE_POS_TYPE).

IDLE ERR_ID != 0 OR STEP == 0 Set ENB = false

CONF ERR_ID == 0 AND STEP != 0

CONF Determine the profile with the configured parameters

IDLE TST == true AND ENB == true
AND RES == false

In test mode, no profile is produced
1. If cfg.ProfileType == ST_POS_MOVE_POS_TYPE, set

PosStepInt_mrev and PosStepFrac_mrev as 0; if
cfg.ProfileType == ST_POS_MOVE_VEL_TYPE, set VelEnd
back to the value of cfg.VelStart

BUSY TST == false AND ENB == true
AND RES == false

HALT RES == true OR ENB == false

BUSY Produce the profile
1. Update references PosRef_mrev, VelRef, AccRef, JrkRef at

each sample time;
2. If the profile is finished, DON = true

IDLE RES == false AND ENB == true
AND DON == true

Set ENB = false

CONF RES == true OR ENB == false Configure a deceleration profile
1. Set cfg.ProfileType = ST_POS_MOVE_VEL_TYPE, VelEnd = 0,

AccLim = cfg.AccMax, cfg.DecMax, JrkLim = cfg.JrkMax

HALT Generate a deceleration profile
1. Update references PosRef, VelRef, AccRef, JrkRef at each

sample time;
2. If the deceleration profile is finished, DON = True

IDLE DON == true Set ENB = false

HALT DON == false

(1) The RES signal provides the ability to place SpinTAC Position Move into reset.
(2) If RES is set to true, ENB will be set to false. Any current errors will be discarded. SpinTAC Position Move will then generate a

deceleration profile to stop all motion of the axis.
(3) The ENB signal provides the start signal to SpinTAC Position Move. The ENB signal only functions when RES is false.
(4) The purpose of the TST bit is to provide the profile information without actually generating trajectories. The information includes the

profile time and actual maximums for velocity, acceleration and jerk.
TST signal is received by the function at the rising edge of ENB in the INIT state. If TST is true, it operates in test mode. In test mode,
the profile output PosRef_mrev will keep the value of cfg.PosStart_mrev; AccRef will be 0, not influenced by PosStepInt_mrev and
PosStepFrac_mrev. After the test, the profile information (msg.ProTime_tick, msg.ProTime_mtick, msg.Vel, msg.Acc, and msg.Jrk) is
output, DON will be set to true, and ENB will be set to false.

InstaSPIN™ and MotorWare™ www.ti.com

194 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.8 SpinTAC™ Position Plan

SpinTAC Position Plan provides the functionality to setup and run position sequences determined by the user
application.

3.6.8.1 SpinTAC™ Position Plan Interface

The interfaces and functions of SpinTAC Position Plan are shown in Figure 3-19.

Figure 3-19. SpinTAC™ Position Plan Interfaces

Table 3-20 lists the interface parameters for SpinTAC Position Plan.

Table 3-20. SpinTAC™ Position Plan Interfaces

Signal Type
Structure Member
Name Data Type Description Value Range Unit

Control ENB bool Enable bit false: disabled; true: enabled

RES bool Reset bit false: not reset; true: reset

Outputs PosStepInt_mrev uint32_t Current Position Step command
integer part

[-2147483647, 2147483647] MRev

PosStepFrac_mrev _iq24 Current Position Step command
fraction part

(-1, 1) MRev

VelLim _iq24 Current velocity limit (0 , VelMax] pu / s

AccLim _iq24 Current acceleration limit [0.001 , AccMax] pu / s2

DecLim _iq24 Current deceleration limit [0.001 , DecMax] pu / s2

JrkLim _iq20 Current jerk limit [0.0005, JrkMax] pu / s3

Timer_tick uint32_t Time remaining in the current
state

Sample
Counts

Info STATUS ST_PlanStatus_e Status information {ST_PLAN_IDLE,
ST_PLAN_INIT,
ST_PLAN_BUSY,
ST_PLAN_HALT,
ST_PLAN_WAIT}

CurState unit16_t Current state index [0, StateNum)

CurTran unit16_t Current transition index [0, TranNum)

FsmState ST_PlanFsmStat
e_e

Status to indicate if it is in
a transition, or in a state, or
waiting for a transition

{ST_FSM _STATE_STAY,
ST_FSM _STATE_COND,
ST_FSM_STATE_TRAN }

Timer_tick uint32_t Time remaining in the current
state

Sample
Counts

ERR_ID uint16_t Error code See Table 13-6

DON bool Plan done indicator false: not done; true: done

CfgError.ERR_idx uint16_t Index where the error occurred

CfgError.ERR_code uint16_t Condition that caused the error See Table 13-6

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

195

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.8.2 SpinTAC™ Position Plan Primary Functions

The primary function is STPOSPLAN_run(ST_POSPLAN_Handle handle), where handle is a pointer to a
specific ST_PosPlan_t object, this handle needs to be established by the initialize function ST_POSPLAN_init.
This function can be called from the main-loop of the project.

void STPOSPLAN_run(ST_POSPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The pointer to a ST_PosPlan_t object

The ISR function is STPOSPLAN_runTick(ST_POSPLAN_Handle handle), where handle is a pointer to a
specific ST_PosPlan_t object. This function handles the time-critical code of ST_PosPlan. This function must
be called in the main ISR of the project.

void STPOSPLAN_runTick(ST_POSPLAN_Handle handle)

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The pointer to a ST_PosPlan_t object

The ST_PosPlan state transition map is the same as ST_VelPlan, as shown in Figure 3-10.

The states of ST_PosPlan are described in Table 3-21.

Table 3-21. SpinTAC™ Position Plan State Transition
From State To State Transition Condition(1) (2) (3) (4) Action
IDLE Keep IDLE status

1. Set ENB = false;
2. Keep PosStepInt = 0, PosStepFrac=0, and hold the values for

VelLim, AccLim, and JrkLim

INIT RES == false AND ENB is on
rising edge

INIT BUSY Parameter validation
1. Reset internal status;
2. Enter state 0 and execute the actions defined for entering state

0.

BUSY Operate the plan

IDLE RES == false AND ENB == True
AND DON == true

Set ENB = false

HALT RES == true OR ENB == false Load the halt state profile configurations

HALT IDLE HALT state Timer times up AND
RES == true

Load the configurations of state 0

WAIT HALT state Timer times up AND
RES == false

InstaSPIN™ and MotorWare™ www.ti.com

196 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 3-21. SpinTAC™ Position Plan State Transition (continued)
From State To State Transition Condition(1) (2) (3) (4) Action
WAIT IDLE RES == true Load the configurations of state 0

HALT ENB == true Load the configurations of the last state

(1) The RES signal provides the ability to place SpinTAC Position Plan into reset.
(2) The ENB signal controls the operation of SpinTAC Position Plan when RES is false.
(3) If ENB is set to false when SpinTAC Position Plan is running, SpinTAC Position Plan will then send out the position step and limits of

the HALT state. When the unit profile is done, SpinTAC Position Plan will enter WAIT state, and can only continue the plan when ENB
is set to true.
If RES is set to true, ENB will be set to false. SpinTAC Position Plan will then send out the position step and limits of state 0, and
SpinTAC Position Plan enters IDLE state.

(4) Effectively, ENB functions as a pause/start button, while RES functions as stop.

Table 3-22 lists the functions that can be used to do operations like set, get, add, and delete configuration and
runtime parameters of SpinTAC Position Plan. These functions are described in more detail in Section 3.6.9.

Table 3-22. SpinTAC™ Position Plan Additional Functions
Function Group Function Name Description
Initialization STPOSPLAN_init Initialize SpinTAC Position Plan

Configuration STPOSPLAN_setCfgArray Set the array that SpinTAC Position Plan will use to store the
configuration

STPOSPLAN_setCfg Set the system parameters, protection parameters

STPOSPLAN_setCfgHaltState Set the parameters for the HALT state

STPOSPLAN_addCfgState Add a new State

STPOSPLAN_addCfgVar Add a new Variable

STPOSPLAN_addCfgCond Add a new Condition that compares a Variable against static values

STPOSPLAN_addCfgVarCond Add a new Condition that compares two Variables

STPOSPLAN_addCfgTran Add a new Transition

STPOSPLAN_addCfgAct Add a new Action

Runtime STPOSPLAN_run Run SpinTAC Position Plan. Can run from main loop.

STPOSPLAN_runTick Run SpinTAC Position Plan Timer. Must run from main ISR

STPOSPLAN_setVar Set the value of a Variable during runtime

STPOSPLAN_getVar Get the value of a Variable during runtime

STPOSPLAN_reset Reset SpinTAC Position Plan and configuration

STPOSPLAN_setUnitProfDone Sets if the currently running profile is done

Plan modification and
debugging functions
(Provide runtime
modification ability of
Plan)

STPOSPLAN_getCfgStateNum Get the number of configured States

STPOSPLAN_getCfgVarNum Get the number of configured Variables

STPOSPLAN_getCfgCondNum Get the number of configured Conditions

STPOSPLAN_getCfgTranNum Get the number of configured Transitions

STPOSPLAN_getCfgActNum Get the number of configured Actions

STPOSPLAN_getCfg Get the system & protection parameters

STPOSPLAN_getCfgHaltState Get the parameters for the HALT state

Each function with a suffix -add has three other functions: -del, -set, and -get to delete the item, to set the item, and
to get the item respectively. These functions allow online SpinTAC Position Plan modification.

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

197

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.6.9 SpinTAC™ Functions

The following is a list of commonly used SpinTAC functions. This section is provided as a reference. Prior to the
implementation of a component, the corresponding section of this document should be read.

void STVELCTL_run(ST_VELCTL_Handle)

Function: This function runs SpinTAC Velocity Control.

Parameters:

No. Type Parameters Description
1 ST_VELCTL_Handle handle The handle to the ST_VelCtl_t datatype

void STVELMOVE_run(ST_VELMOVE_Handle)

Function: This function runs SpinTAC Velocity Move.

Parameters:

No. Type Parameters Description
1 ST_VELMOVE_Handle handle The handle to the ST_VelMove_t datatype

void STVELID_run(ST_VELID_Handle)

Function: This function runs SpinTAC Velocity Identify.

Parameters:

No. Type Parameters Description
1 ST_VELID_Handle handle The handle to the ST_VelId_t datatype

void STVELPLAN_run(ST_VELPLAN_Handle)

Function: This function runs SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

void STVELPLAN_runTick(ST_VELPLAN_Handle)

Function: This function runs SpinTAC Velocity Plan Timer. Must run from an ISR.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

InstaSPIN™ and MotorWare™ www.ti.com

198 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STVELPLAN_addCfgAct(ST_VELPLAN_Handle, uint16_t, ST_PlanCond_e , uint16_t , uint16_t, uint16_t,
ST_PlanActOptn_e, _iq24, ST_PlanActTrgr_e)

Function: This function adds an action to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t StateIdx The index of the state in which the action to be
executed

3 ST_PlanCond_e AndOr ST_COND_NC: act without condition;
ST_COND_FC: act when the first condition
satisfied;
ST_COND_AND: act when both conditions
satisfied;
ST_COND_OR: act when either condition
satisfied;

4 uint16_t CondIdx1 The index of the first condition

5 uint16_t CondIdx2 The index of the second condition

6 uint16_t VarIdx The index of the variable to be operated

7 ST_PlanActOptn_e Opt ST_ACT_EQ: set the value to the variable
ST_ACT_QDD: add the value to the variable

8 _iq24 Value The value to be set to the variable or added to the
variable

9 ST_PlanActTrgr_e EnterExit ST_ACT_ENTR: execute the action when
entering the state
ST_ACT_EXIT: execute the action when exiting
the state

void STVELPLAN_setCfgArray(ST_VELPLAN_Handle, uint32_t *, const size_t, uint16_t, uint16_t, uint16_t,
uint16_t, uint16_t)

Function: This function adds an action to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint32_t * cfgArray Pointer to cfgArray used for Plan configuration.

3 const size_t numBytes The number of bytes allocated to the cfgArray
array. Get number of bytes by calling
sizeof(cfgArray)

4 uint16_t MaxActNum Number of Actions

5 uint16_t MaxCondNum Number of Conditions

6 uint16_t MaxVarNum Number if Variables

7 uint16_t MaxTranNum Number of Transitions

8 uint16_t MaxStateNum Number of States

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

199

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

ST_VELPLAN_Handle STVELPLAN_init (void *, const size_t)

Function: This function initializes SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 void * pMemory The pointer to the memory for a ST_VelPlan_t

object

2 const size_t numBytes The number of bytes allocated to the
ST_VelPlan_t object

Return: The ST_VelPlan_t object handle

void STVELPLAN_addCfgCond(ST_VELPLAN_Handle, uint16_t, ST_PlanComp_e, _iq24, _iq24)

Function: This function adds a condition to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t VarIdx The index of the variable to be compared

3 ST_PlanComp_e Comp ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_COMP_EGT: equal to or greater than Value1;
ST_COMP_LW: lower than Value1;
ST_COMP_ELW: equal to or lower than;
ST_COMP_In: belong to the range of (Value1,
Value2);
ST_COMP_Ein: belong to the range of [Value1,
Value2);
ST_COMP_InE: belong to the range of (Value1,
Value2];
ST_COMP_EinE: belong to the range of [Value1,
Value2];
ST_COMP_Out: not belong to the range of
[Value1, Value2];
ST_COMP_Eout: not belong to the range of
(Value1, Value2];
ST_COMP_OutE: not belong to the range of
[Value1, Value2);
ST_COMP_EoutE: not belong to the range of
(Value1, Value2)

4 _iq24 Value1 The first value

5 _iq24 Value2 The second value

InstaSPIN™ and MotorWare™ www.ti.com

200 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STVELPLAN_addCfgVarCond ST_VELPLAN_Handle, uint16_t, uint16_t, ST_PlanComp_e)

Function: This function adds a condition that compares two variables to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t VarIdx1 The index of the first variable to be compared

3 uint16_t VarIdx2 The index of the second variable to be compared

4 ST_PlanComp_e Comp ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_COMP_EGT: equal to or greater than Value1;
ST_COMP_LW: lower than Value1;
ST_COMP_ELW: equal to or lower than;

void STVELPLAN_setCfgHaltState(ST_VELPLAN_Handle, _iq24, _iq24, _iq20, int32_t)

Function: This function adds a state to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 _iq24 VelEnd Velocity set point for the HALT state

3 _iq24 AccLim Acceleration limit for the HALT state

4 _iq20 JrkLim Jerk limit for the HALT state

5 int32_t Timer Timer in [Count] to indicate how long to stay in
the HALT state before further operation

void STVELPLAN_setCfg(ST_VELPLAN_Handle, _iq24, _iq24, _iq24, _iq20, bool)

Function: This function sets the SpinTAC Velocity Plan system configuration.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 _iq24 T_sec Sample time in [s]

3 _iq24 VelMax System maximum velocity limit

4 _iq24 AccMax System maximum acceleration limit

5 _iq20 JrkMax System maximum jerk limit

6 bool LoopENB false: plan operates only once and then goes
back to IDLE state
true: plan operate again each time entering
IDLES state

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

201

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STVELPLAN_addCfgState(ST_VELPLAN_Handle, _iq24, int32_t)

Function: This function adds a state to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 _iq24 VelEnd Velocity set point for the state

3 int32_t Timer_tick Timer in [Count] to indicate how long to state in
the state

void STVELPLAN_addCfgTran(ST_VELPLAN_Handle, uint16_t, uint16_t, ST_PlanCond_e, uint16_t, uint16_t,
_iq24, _iq20)

Function: This function adds a transaction to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t FromState The index of the state in which the transition
starts

3 uint16_t ToState The index of the state in which the transition to
ends

4 ST_PlanCond_e AndOr ST_COND_NC: transit without condition;
ST_COND_FC: transit with the first condition
satisfied;
ST_COND_AND: transit with both conditions
satisfied;
ST_COND_OR: transit with either condition
satisfied;

5 uint16_t CondIdx1 The index of the first condition

6 uint16_t CondIdx2 The index of the second condition

7 _iq24 AccLim The acceleration limit used for this transition

8 _iq20 JrkLim The jerk limit used for this transition

void STVELPLAN_addCfgVar(ST_VELPLAN_Handle, ST_PlanVar_e, _iq24)

Function: This function adds a variable to SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 ST_PlanVar_e Type ST_VAR_INOUT: timer type, can be used in
condition
ST_VAR_IN: sensor type, only receive value, can
be used in condition
ST_VAR_OUT: actuator type, only send value,
cannot be used in condition

3 _iq24 Value Initial value of the variable

InstaSPIN™ and MotorWare™ www.ti.com

202 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STVELPLAN_setUnitProfDone(ST_VELPLAN_Handle, bool)

Function: This function informs SpinTAC Velocity Plan if the currently running profile is done.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 bool ProDON false: not done; true: done

void STVELPLAN_getVar(ST_VELPLAN_Handle, uint16_t, _iq24 *)

Function: This function returns the value of a variable from SpinTAC Velocity Plan. It is typically used to send
data from SpinTAC Velocity Plan to an external component

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t VarIdx The index of the variable to receive the value

3 _iq24 * Value The pointer to the external variable to receive the
value

void STVELPLAN_setVar(ST_VELPLAN_Handle, uint16_t, _iq24)

Function: This function sets the value of a variable in SpinTAC Velocity Plan. It is typically used to pass sensor
data into SpinTAC Velocity Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 uint16_t VarIdx The index of the variable to receive the value

3 _iq24 Value The value to be set to the variable

void STPOSCTL_run(ST_POSCTL_Handle)

Function: This function runs SpinTAC Position Control.

Parameters:

No. Type Parameters Description
1 ST_POSCTL_Handle handle The handle to the ST_PosCtl_t datatype

void STPOSMOVE_run(ST_POSMOVE_Handle)

Function: This function runs SpinTAC Position Move.

Parameters:

No. Type Parameters Description
1 ST_POSMOVE_Handle handle The handle to the ST_PosMove_t datatype

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

203

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STPOSCONV_run(ST_POSCONV_Handle)

Function: This function runs SpinTAC Position Convert.

Parameters:

No. Type Parameters Description
1 ST_POSCONV_Handle handle The handle to the ST_PosConv_t datatype

void STPOSPLAN_run(ST_POSPLAN_Handle)

Function: This function runs SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

void STPOSPLAN_runTick(ST_POSPLAN_Handle)

Function: This function runs SpinTAC Position Plan Timer. Must run from an ISR.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

void STPOSPLAN_addCfgAct(ST_POSPLAN_Handle, uint16_t, ST_PlanCond_e , uint16_t , uint16_t, uint16_t,
ST_PlanActOptn_e, _iq24, ST_PlanActTrgr_e)

Function: This function adds an action to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t StateIdx The index of the state in which the action to be
executed

3 uint16_t VarIdx The index of the variable to be operated

4 ST_PlanCond_e AndOr ST_COND_NC: act without condition;
ST_COND_FC: act when the first condition
satisfied;
ST_COND_AND: act when both conditions
satisfied;
ST_COND_OR: act when either condition
satisfied;

5 uint16_t CondIdx1 The index of the first condition

6 uint16_t CondIdx2 The index of the second condition

7 ST_PlanActOptn_e Opt ST_ACT_EQ: set the value to the variable
ST_ACT_QDD: add the value to the variable

8 _iq24 Value The value to be set to the variable or added to the
variable

InstaSPIN™ and MotorWare™ www.ti.com

204 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

No. Type Parameters Description
9 ST_PlanActTrgr_e EnterExit ST_ACT_ENTR: execute the action when

entering the state
ST_ACT_EXIT: execute the action when exiting
the state

void STPOSPLAN_setCfgArray(ST_POSPLAN_Handle, uint32_t *, const size_t, uint16_t, uint16_t, uint16_t,
uint16_t, uint16_t)

Function: This function adds an action to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint32_t * cfgArray Pointer to cfgArray used for Plan configuration.

3 const size_t numBytes The number of bytes allocated to the cfgArray
array. Get number of bytes by calling
sizeof(cfgArray)

4 uint16_t MaxActNum Number of Actions

5 uint16_t MaxCondNum Number of Conditions

6 uint16_t MaxVarNum Number if Variables

7 uint16_t MaxTranNum Number of Transitions

8 uint16_t MaxStateNum Number of States

ST_POSPLAN_Handle STPOSPLAN_init(void *, const size_t)

Function: This function initializes SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 void * pMemory The pointer to the memory for a ST_PosPlan_t

object

const size_t numBytes The number of bytes allocated to the
ST_PosPlan_t object

Return: The ST_PosPlan_t object handle

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

205

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STPOSPLAN_addCfgCond(ST_POSPLAN_Handle, uint16_t, ST_PlanComp_e, _iq24, _iq24)

Function: This function adds a condition to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t VarIdx The index of the variable to be compared

3 ST_PlanComp_e Comp ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_ COMP_EGT: equal to or greater than
Value1;
ST_ COMP_LW: lower than Value1;
ST_ COMP_ELW: equal to or lower than;
ST_ COMP_In: belong to the range of (Value1,
Value2);
ST_ COMP_Ein: belong to the range of [Value1,
Value2);
ST_ COMP_InE: belong to the range of (Value1,
Value2];
ST_ COMP_EinE: belong to the range of [Value1,
Value2];
ST_ COMP_Out: not belong to the range of
[Value1, Value2];
ST_ COMP_Eout: not belong to the range of
(Value1, Value2];
ST_ COMP_OutE: not belong to the range of
[Value1, Value2);
ST_ COMP_EoutE: not belong to the range of
(Value1, Value2)

4 _iq24 Value1 The first value

5 _iq24 Value2 The second value

void STPOSPLAN_addCfgVarCond(ST_POSPLAN_Handle, uint16_t, uint16_t, ST_PlanComp_e)

Function: This function adds a condition that compares two variables to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t VarIdx1 The index of the first variable to be compared

3 uint16_t VarIdx2 The index of the second variable to be compared

4 ST_PlanComp_e Comp ST _COMP_NA: Not defined;
ST _COMP_EQ: equal to Value1;
ST _COMP_NEQ: not equal to Value1;
ST__COMP_GT: greater than Value1;
ST_ COMP_EGT: equal to or greater than
Value1;
ST_ COMP_LW: lower than Value1;
ST_ COMP_ELW: equal to or lower than;

InstaSPIN™ and MotorWare™ www.ti.com

206 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STPOSPLAN_setCfgHaltState(ST_POSPLAN_Handle, int32_t, _iq24,_iq24, _iq24, , int32_t)

Function: This function adds a state to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_VELPLAN_Handle handle The handle to the ST_VelPlan_t datatype

2 int32_t PosStepInt_mrev Position step integer part for the HALT state

3 _iq24 PosStepFrac_mrev Position step fraction part for the HALT state

4 _iq24 VelLim Velocity limit for the HALT state

5 _iq24 AccLim Acceleration limit for the HALT state

6 _iq20 JrkLim Jerk limit for the HALT state

7 Int32_t Timer Timer in [Count] to indicate how long to stay in
the HALT state before further operation

void STPOSPLAN_setCfg(ST_POSPLAN_Handle, _iq24, _iq24, _iq24, _iq20, bool)

Function: This function sets the SpinTAC Position Plan system configuration.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 _iq24 T_sec Sample time in [s]

3 _iq24 VelMax System maximum velocity limit

4 _iq24 AccMax System maximum acceleration limit

5 _iq20 JrkMax System maximum jerk limit

6 bool LoopENB false: plan operates only once and then goes
back to IDLE state
true: plan operate again each time entering
IDLES state

void STPOSPLAN_addCfgState(ST_POSPLAN_Handle, int32_t, _iq24, int32_t)

Function: This function adds a state to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 int32_t PosStepInt_mrev Position step command integer part value

3 _iq24 PosStepFrac_mrev Position step command fraction part value

4 int32_t Timer_tick Timer in [Count] to indicate how long to state in
the state

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

207

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STPOSPLAN_addCfgTran(ST_POSPLAN_Handle, uint16_t, uint16_t, ST_PlanCond_e, uint16_t, uint16_t,
_iq24, _iq24, _iq20)

Function: This function adds a transaction to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t FromState The index of the state in which the transition
starts

3 uint16_t ToState The index of the state in which the transition to
ends

4 ST_PlanCond_e AndOr ST_COND_NC: transition without condition;
ST_COND_FC: transition when the first condition
satisfied;
ST_COND_AND: transition when both conditions
satisfied;
ST_COND_OR: transition when either condition
satisfied;

5 uint16_t CondIdx1 The index of the first condition

6 uint16_t CondIdx2 The index of the second condition

7 _iq24 VelLim The velocity limit used for this transition

8 _iq24 AccLim The acceleration limit used for this transition

9 _iq24 DecLim The deceleration limit used for this transition

10 _iq20 JrkLim The jerk limit used for this transition

void STPOSPLAN_addCfgVar(ST_POSPLAN_Handle, ST_PlanVar_e, _iq24)

Function: This function adds a variable to SpinTAC Position Plan.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 ST_PlanVar_e Type ST_VAR_INOUT: timer type, can be used in
condition
ST_VAR_IN: sensor type, only receive value, can
be used in condition
ST_VAR_OUT: actuator type, only send value,
cannot be used in condition

3 _iq24 Value Initial value of the variable

void STPOSPLAN_setUnitProfDone(ST_POSPLAN_Handle, bool)

Function: This function informs SpinTAC Position Plan if the currently running profile is done.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 bool ProDON false: not done; true: done

InstaSPIN™ and MotorWare™ www.ti.com

208 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

void STPOSPLAN_getVar(ST_POSPLAN_Handle, uint16_t, _iq24 *)

Function: This function returns the value of a variable from SpinTAC Position Plan. It is typically used to send
data from SpinTAC Position Plan to an external component.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t VarIdx The index of the variable to receive the value

3 _iq24 * Value The pointer to the external variable to receive the
value

void STPOSPLAN_setVar(ST_POSPLAN_Handle, uint16_t, _iq24)

Function: This function returns the value of a variable from SpinTAC Position Plan. It is typically used to send
data from SpinTAC Position Plan to an external component.

Parameters:

No. Type Parameters Description
1 ST_POSPLAN_Handle handle The handle to the ST_PosPlan_t datatype

2 uint16_t VarIdx The index of the variable to receive the value

3 _iq24 Value The value to be set to the variable

void ST_getVersionNumber(ST_VER_Handle, uint16_t *, uint16_t *, uint16_t *)

Function: This function returns the version number of the SpinTAC library.

Parameters:

No. Type Parameters Description
1 ST_VER_Handle handle The hanlde to the ST_Ver_t datatype

2 uint16_t * major Major version of library

3 uint16_t * minor Minor version of library

4 uint16_t * revision Revision version of library

www.ti.com InstaSPIN™ and MotorWare™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

209

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

InstaSPIN™ and MotorWare™ www.ti.com

210 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

User.h is where all user parameters are stored. Some of these values can be manipulated through the GUI or
CCStudio during run-time, but must be updated in user.h for permanent saving.

4.1 Currents and Voltages..212
4.2 Clocks and Timers..214
4.3 Decimation.. 215
4.4 Limits... 217
4.5 Poles.. 219
4.6 User Motor and ID Settings..220
4.7 SpinTAC™ Parameters (spintac_velocity.h and spintac_position.h).. 222
4.8 Setting ACIM Motor Parameters in user.h..226

Chapter 4
User Parameters (user.h)

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

211

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.1 Currents and Voltages
User.h contains the public interface for user initialization data for the CTRL, HAL, and EST modules.

4.1.1 USER_IQ_FULL_SCALE_FREQ_Hz

#define USER_IQ_FULL_SCALE_FREQ_Hz (800.0)

This module defines the full scale frequency for IQ variable, in Hz. All frequencies are converted into (pu) based
on the ratio to this value. This value must be larger than the maximum speed that you are expecting from the
motor.

4.1.2 USER_IQ_FULL_SCALE_VOLTAGE_V

#define USER_IQ_FULL_SCALE_VOLTAGE_V (24.0)

This module defines the full-scale value for the IQ30 variable of voltage inside the system. All voltages are
converted into pu based on the ratio to this value.

CAUTION
• This value MUST be larger than the maximum value of any voltage calculated inside the control

system otherwise the value can saturate and roll over, causing an inaccurate value.
• This value is OFTEN greater than the maximum measured ADC value, especially with high Bemf

motors operating at higher than rated speeds.
• If you know the value of your Bemf constant, and you know you are operating at higher than rated

speed due to field weakening, be sure to set this value higher than the expected Bemf voltage
• This value can also be used to calculate the minimum flux that can be identified by calculating the

following formula:

USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

For high-flux motors (that is, washing machine motors), it is recommended to start with a value ~3x greater than
the USER_ADC_FULL_SCALE_VOLTAGE_V and increase to 4-5x if scenarios where a Bemf calculation may
exceed these limits.

For low-flux motors (that is, low-inductance high-speed hobby motors), it is recommended to have a value that
allows flux identification as per the equation:

USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

4.1.3 USER_ADC_FULL_SCALE_VOLTAGE_V

#define USER_ADC_FULL_SCALE_VOLTAGE_V (66.32)

This module defines the maximum voltage at the input to the AD converter. The value that will be represented
by the maximum ADC input (3.3V) and conversion (0FFFh). Hardware dependent, this should be based on the
voltage sensing and scaling to the ADC input.

4.1.4 USER_VOLTAGE_SF

#define USER_VOLTAGE_SF
((float_t)((USER_ADC_FULL_SCALE_VOLTAGE_V)/(USER_IQ_FULL_SCALE_VOLTAGE_V)))

This module defines the voltage scale factor for the system.

The compile time calculation for scale factor (ratio) is used throughout the system.

User Parameters (user.h) www.ti.com

212 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.1.5 USER_IQ_FULL_SCALE_CURRENT_A

#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

This module defines the full scale current for the IQ variables, in A.

All currents are converted into (pu) based on the ratio to this value.

CAUTION

This value MUST be larger than the maximum current readings that you are expecting from the
motor or the reading will roll over to 0, creating a control issue.

4.1.6 USER_ADC_FULL_SCALE_CURRENT_A

#define USER_ADC_FULL_SCALE_CURRENT_A (17.30)

This module defines the maximum current at the AD converter.

This value will be represented by the maximum ADC input (3.3 V) and conversion (0FFFh).

The value is hardware dependent and should be based on the current sensing and scaling to the ADC input.

4.1.7 USER_CURRENT_SF

#define USER_CURRENT_SF
((float_t)((USER_ADC_FULL_SCALE_CURRENT_A)/(USER_IQ_FULL_SCALE_CURRENT_A)))

This module is the scale factor for the system.

The compile time calculation for scale factor (ratio) is used throughout the system.

4.1.8 USER_NUM_CURRENT_SENSORS

#define USER_NUM_CURRENT_SENSORS (3)

This module defines the number of current sensors used.

The value is defined by the hardware capability present; may be (2) or (3).

4.1.9 USER_NUM_VOLTAGE_SENSORS

#define USER_NUM_VOLTAGE_SENSORS (3)

This module defines the number of voltage (phase) sensors.

The value must be (3).

4.1.10 I_A_offset , I_B_offset , I_C_offset

#define I_A_offset (0. 8661925197)
#define I_B_offset (0.8679816127)
#define I_C_offset (0.8638074994)

This module defines the ADC current offsets for A, B, and C phases.

One-time hardware dependent, though the calibration can be done at run-time as well.

After initial board calibration these values should be updated for your specific hardware so they are available
after compile in the binary to be loaded to the controller.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

213

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.1.11 V_A_offset , V_B_offset , V_C_offset

#define V_A_offset (0.1776982546)
#define V_B_offset (0.1776063442)
#define V_C_offset (0.1771019101)

This module defines the ADC voltage offsets for A, B, and C phases.

One-time hardware dependent, though the calibration can be done at run-time as well.

After initial board calibration these values should be updated for your specific hardware so they are available
after compile in the binary to be loaded to the controller.

4.2 Clocks and Timers
4.2.1 USER_SYSTEM_FREQ_MHz

#define USER_SYSTEM_FREQ_MHz (90.0) // Maximum frequency for F2805xF/M and F2806xF/M devices
#define USER_SYSTEM_FREQ_MHz (60.0) // Maximum frequency for F2802xF devices

This module defines the system clock frequency, in MHz.

4.2.2 USER_PWM_FREQ_kHz

#define USER_PWM_FREQ_kHz (20.0)

This module defines the Pulse Width Modulation (PWM) frequency, in kHz.

PWM frequency can be set directly here up to 30 kHz safely (60 kHz MAX in some cases).

For higher PWM frequencies (60 kHz+ typical for low-inductance, high-current ripple motors), it
is recommended to use the ePWM hardware and adjustable ADC SOC to decimate the ADC
conversion done interrupt to the control system. This can be done by using the hardware decimation
USER_NUM_PWM_TICKS_PER_ISR_TICK. If hardware decimation is not used in high PWM frequencies, there
is a risk of missing interrupts and disrupting the timing of the control state machine.

4.2.3 USER_MAX_VS_MAG_PU

#define USER_MAX_VS_MAG_PU (0.5)

Set to 1.0 if a current reconstruction technique is not used. For more information, see the svgen_current module
in Lab10a-x.

Defines the maximum voltage vector (Vs) magnitude allowed. This value sets the maximum magnitude for the
output of the Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq.

The relationship between Vs, Vd, and Vq is:

Vs = sqrt(Vd^2 + Vq^2).

In this FOC controller, the Vd value is set equal to USER_MAX_VS_MAG*USER_VD_MAG_FACTOR.

Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2).

• Set USER_MAX_VS_MAG = 0.5 for a pure sinewave with a peak at SQRT(3)/2 = 86.6% duty cycle. No
current reconstruction is needed for this scenario.

• Set USER_MAX_VS_MAG = 2/SQRT(3) = 0.5774 for a pure sinewave with a peak at 100% duty cycle.
Current reconstruction will be needed for this scenario (Lab10a-x).

• Set USER_MAX_VS_MAG = 4/3 = 0.6666 to create a trapezoidal voltage waveform. Current reconstruction
will be needed for this scenario (Lab10a-x).

• For space vector over-modulation, see lab 10 for details on system requirements that will allow the SVM
generator to go all the way to trapezoidal.

User Parameters (user.h) www.ti.com

214 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.2.4 USER_PWM_PERIOD_usec

#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)

This module defines the Pulse Width Modulation (PWM) period, in µsec.

Compile time calculation.

4.2.5 USER_ISR_FREQ_Hz

#define USER_ISR_FREQ_Hz
((float_t)USER_PWM_FREQ_kHz * 1000.0 / (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

This module defines the Interrupt Service Routine (ISR) frequency, in Hz.

Compile time calculation.

4.2.6 USER_ISR_PERIOD_usec

#define USER_ISR_PERIOD_usec
 (USER_PWM_PERIOD_usec * (float_t)USER_NUM_PWM_TICKS_PER_ISR_TICK)

This module defines the Interrupt Service Routine (ISR) period, in µsec.

4.3 Decimation
Decimation defines the number of ticks between module execution.

Controller clock tick (CTRL) is the main clock used for all timing in the software.

Typically the PWM Frequency triggers (can be decimated by the ePWM hardware for less overhead) an ADC
SOC.

ADC SOC triggers an ADC Conversion Done.

ADC Conversion Done triggers ISR.

This relates the hardware ISR rate to the software controller rate.

Typcially want to consider some form of decimation (ePWM hardware, CURRENT or EST) over 16kHz ISR to
insure interrupt completes and leaves time for background tasks.

4.3.1 USER_NUM_PWM_TICKS_PER_ISR_TICK

#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

This module defines the number of PWM periods per interrupt.

Relationship between PWM frequency and interrupt frequency.

4.3.2 USER_NUM_ISR_TICKS_PER_CTRL_TICK

#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)

This module defines the number of controller clock ticks per current controller clock tick.

Relationship of controller clock rate to current controller (FOC) rate.

4.3.3 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK

#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)

This module defines the number of controller clock ticks per estimator clock tick.

Relationship of controller clock rate to estimator (FAST) rate.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

215

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.3.4 USER_NUM_CTRL_TICKS_PER_EST_TICK

#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)

This module depends on needed dynamic performance, FAST provides very good results as low as 1 kHz while
more dynamic or high speed applications may require up to 15 kHz.

4.3.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK

#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (15)

This module defines the number of controller clock ticks per speed controller clock tick.

The value is the relationship of controller clock rate to speed loop rate.

4.3.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK

#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (15)

This module defines the number of controller clock ticks per trajectory clock tick.

The value is the relationship of controller clock rate to trajectory loop rate; typically, the same as the speed rate.

4.3.7 USER_CTRL_FREQ_Hz

#define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz/
USER_NUM_ISR_TICKS_PER_CTRL_TICK)

This module defines the controller frequency, in Hz.

Compile time calculation.

4.3.8 USER_EST_FREQ_Hz

#define USER_EST_FREQ_Hz
(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_EST_TICK)

This module defines the estimator frequency, in Hz.

Compile time calculation.

4.3.9 USER_TRAJ_FREQ_Hz

#define USER_TRAJ_FREQ_Hz
(uint_least32_t)(USER_CTRL_FREQ_Hz/USER_NUM_CTRL_TICKS_PER_TRAJ_TICK)

This module defines the trajectory frequency, in Hz.

Compile time calculation.

4.3.10 USER_CTRL_PERIOD_usec

#define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec *
USER_NUM_ISR_TICKS_PER_CTRL_TICK)

This module defines the controller execution period, in µsec.

Compile time calculation.

4.3.11 USER_CTRL_PERIOD_sec

#define USER_CTRL_PERIOD_sec
((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)

This module defines the controller execution period, in sec.

User Parameters (user.h) www.ti.com

216 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Compile time calculation.

4.4 Limits
4.4.1 USER_MAX_NEGATIVE_ID_REF_CURRENT_A

#define USER_MAX_NEGATIVE_ID_REF_CURRENT_A (-0.5 * USER_MOTOR_MAX_CURRENT)

Example, adjust to meet safety needs of your motor:

-0.5 * USER_MOTOR_MAX_CURRENT

This module defines the maximum negative current to be applied in Id reference.

Used in field weakening only, this is a safety setting (for example, to protect against demagnetization).

User must also be aware that overall current magnitude [√(Id2 + Iq2)] should be kept below any machine design
specifications.

4.4.2 USER_ZEROSPEEDLIMIT

#define USER_ZEROSPEEDLIMIT (1.0 / USER_IQ_FULL_SCALE_FREQ_Hz)

typical = 0.002 pu, 1-5 Hz

Hz = USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz

This module defines the low speed limit for the flux integrator, in pu.

This is the speed range (CW/CCW) at which the ForceAngle object is active, but only if enabled.

Outside of this speed, or if disabled, the ForceAngle will NEVER be active and the angle is provided by FAST
only.

4.4.3 USER_FORCE_ANGLE_FREQ_Hz

#define USER_FORCE_ANGLE_FREQ_Hz (USER_ZEROSPEEDLIMIT * USER_IQ_FULL_SCALE_FREQ_Hz)

Typical force angle start-up speed = 1.0

This module defines the force angle frequency, in Hz.

Frequency of stator vector rotation used by the ForceAngle object.

Can be positive or negative

4.4.4 USER_MAX_CURRENT_SLOPE_POWERWARP

#define USER_MAX_CURRENT_SLOPE_POWERWARP
 (0.3*USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz)

This defines the maximum current slope for Id trajectory during PowerWarp mode.

For Induction motors only, controls how fast Id input can change under PowerWarp control.

4.4.5 USER_MAX_ACCEL_Hzps

#define USER_MAX_ACCEL_Hzps (20.0)

This module defines the starting maximum acceleration and deceleration for the speed profiles, in Hz/sec.

Updated in run-time through user functions.

Inverter, motor, inertia, and load will limit actual acceleration capability.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

217

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.4.6 USER_MAX_ACCEL_EST_Hzps

#define USER_MAX_ACCEL_EST_Hzps (2.0)

This module defines maximum acceleration for the estimation speed profiles, in Hz/sec.

Only used during Motor ID (commission).

4.4.7 USER_MAX_CURRENT_SLOPE

#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT/USER_IQ_FULL_SCALE_CURRENT_A/USER_TRAJ_FREQ_Hz)

This module defines the maximum current slope for Id trajectory during estimation.

4.4.8 USER_IDRATED_FRACTION_FOR_RATED_FLUX

#define USER_IDRATED_FRACTION_FOR_RATED_FLUX (1.0)

This module defines the fraction of IdRated to use during rated flux estimation.

Default is 1.0; do not change.

4.4.9 USER_IDRATED_FRACTION_FOR_L_IDENT

#define USER_IDRATED_FRACTION_FOR_L_IDENT (1.0)

This module defines the fraction of IdRated to use during inductance estimation.

Default is 1.0; do not change.

4.4.10 USER_IDRATED_DELTA

#define USER_IDRATED_DELTA (0.00002)

This module defines the IdRated delta to use during estimation.

4.4.11 USER_SPEEDMAX_FRACTION_FOR_L_IDENT

#define USER_SPEEDMAX_FRACTION_FOR_L_IDENT (1.0)

This module defines the fraction of SpeedMax to use during inductance estimation.

4.4.12 USER_FLUX_FRACTION

#define USER_FLUX_FRACTION (1.0)

This module defines flux fraction to use during inductance identification.

4.4.13 USER_POWERWARP_GAIN

#define USER_POWERWARP_GAIN (1.0)

This module defines the PowerWarp gain for computing Id reference.

Induction motors only. Default is 1.0; do not change.

4.4.14 USER_R_OVER_L_EST_FREQ_Hz

#define USER_R_OVER_L_EST_FREQ_Hz (300)

This module defines the R/L estimation frequency, in Hz.

User Parameters (user.h) www.ti.com

218 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.5 Poles
4.5.1 USER_VOLTAGE_FILTER_POLE_Hz

#define USER_VOLTAGE_FILTER_POLE_Hz (344.62)

This module defines the analog filter pole location, in Hz.

The value must match the hardware voltage feedback filter that is calculated based on Equation 8 in Section
5.2.4.

4.5.2 USER_VOLTAGE_FILTER_POLE_rps

#define USER_VOLTAGE_FILTER_POLE_rps (2.0 * MATH_PI * USER_VOLTAGE_FILTER_POLE_Hz)

This module defines the analog voltage filter pole location, in rad/s.

Compile time calcuation from Hz to rad/s.

4.5.3 USER_OFFSET_POLE_rps

#define USER_OFFSET_POLE_rps (20.0)

This module defines the software pole location for the voltage and current offset estimation, in rad/s.

Should not be changed from default of (20.0).

4.5.4 USER_FLUX_POLE_rps

#define USER_FLUX_POLE_rps (100.0)

This module defines the software pole location for the flux estimation, in rad/s.

This value should not be changed from default of 100.0 rps.

4.5.5 USER_DIRECTION_POLE_rps

#define USER_DIRECTION_POLE_rps (6.0)

This module defines the software pole location for the direction filter, in rad/s.

4.5.6 USER_SPEED_POLE_rps

#define USER_SPEED_POLE_rps (100.0)

This module defines the software pole location for the frequency estimator filter, in rad/s. For most applications,
100.0 rps is sufficient. For high-speed motors, performance may be improved by increasing this value up to
500.0

4.5.7 USER_DCBUS_POLE_rps

#define USER_DCBUS_POLE_rps (100.0)

This module defines the software pole location for the DC bus filter, in rad/s.

4.5.8 USER_EST_KAPPAQ

#defineUSER_EST_KAPPAQ (1.5)

This module defines the convergence factor for the estimator.

Do not change from default for FAST.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

219

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.6 User Motor and ID Settings
4.6.1 USER_MOTOR_TYPE

#define USER_MOTOR_TYPE MOTOR_Type_Pm

Motor_Type_Pm (All Synchronous: BLDC, PMSM, SMPM, IPM) or Motor_Type_Induction (Asynchronous ACI).

4.6.2 USER_MOTOR_NUM_POLE_PAIRS

#define USER_MOTOR_NUM_POLE_PAIRS (4)

PAIRS, not total poles. Used to calculate user RPM from rotor, in Hz only.

4.6.3 USER_MOTOR_Rr

#define USER_MOTOR_Rr (NULL)

Induction motors only, else NULL.

4.6.4 USER_MOTOR_Rs

#define USER_MOTOR_Rs (2.303403)

Identified phase to neutral resistance in a Y equivalent circuit (Ohms, float).

4.6.5 USER_MOTOR_Ls_d

#define USER_MOTOR_Ls_d (0.008464367)

For PM, Identified average stator inductance (Henry, float).

4.6.6 USER_MOTOR_Ls_q

#define USER_MOTOR_Ls_q (0.008464367)

For PM, Identified average stator inductance (Henry, float).

4.6.7 USER_MOTOR_RATED_FLUX

#define USER_MOTOR_RATED_FLUX (0.38)

Identified TOTAL flux linkage between the rotor and the stator (Webers = Volts* Seconds).

4.6.8 USER_MOTOR_MAGNETIZING_CURRENT

#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)

Induction motors only, else NULL.

4.6.9 USER_MOTOR_RES_EST_CURRENT

#define USER_MOTOR_RES_EST_CURRENT (1.0)

During Motor ID, maximum current (Amperes, float) used for Rs estimation, 10-20%.

4.6.10 USER_MOTOR_IND_EST_CURRENT

#define USER_MOTOR_IND_EST_CURRENT (-1.0)

During Motor ID, maximum current (negative Amperes, float) used for Ls estimation, use just enough to enable
rotation.

User Parameters (user.h) www.ti.com

220 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.6.11 USER_MOTOR_MAX_CURRENT

#define USER_MOTOR_MAX_CURRENT (3.82)

CRITICAL: Used during ID and run-time, sets a limit on the maximum current command output of the provided
Speed PI Controller to the Iq controller.

4.6.12 USER_MOTOR_FLUX_EST_FREQ_Hz

#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

During Motor ID, maximum commanded speed (Hz, float), ~10% rated.

4.6.13 USER_MOTOR_ENCODER_LINES (InstaSPIN-MOTION™ Only)

#define USER_MOTOR_ENCODER_LINES (2500.0)

Used to setup an encoder, this provides the place to specify the number of lines on the encoder wheel.

4.6.14 USER_MOTOR_MAX_SPEED_KRPM (InstaSPIN-MOTION™ Only)

#define USER_MOTOR_MAX_SPEED_KRPM (3.0)

Used to set an upper bound on speed reference for position control applications.

4.6.15 USER_SYSTEM_INERTIA (InstaSPIN-MOTION™ Only)

#define USER_SYSTEM_INERTIA (0.02)

Inertia describes the amount of mass that is rigidly coupled with the motor. This is used by the InstaSPIN-
MOTION controllers as an input. It should be identified with InstaSPIN-MOTION Inertia Identification.

4.6.16 USER_SYSTEM_FRICTION (InstaSPIN-MOTION™ Only)

#define USER_SYSTEM_FRICTION (0.02)

Friction describes the resistance to motion that is seen by the motor. This is used by the InstaSPIN-MOTION
controllers as an input. It should be identified with InstaSPIN-MOTION Inertia Identification.

4.6.17 USER_SYSTEM_BANDWIDTH_SCALE (InstaSPIN-MOTION™ Only)

#define USER_SYSTEM_BANDWIDTH_SCALE (1.0)

Bandwidth Scale sets the default bandwidth that is used by the InstaSPIN-MOTION controllers. This should be
updated after completing a tuning process with the InstaSPIN-MOTION controller.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

221

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.7 SpinTAC™ Parameters (spintac_velocity.h and spintac_position.h)
The SpinTAC components that make up InstaSPIN-MOTION need to be configured for your specific application.
This is a simple process. The specific configuration details of the SpinTAC components in InstaSPIN-MOTION
will be covered in subsequent sections of this document. The spintac_velocity.h and spintac_position.h header
files provide a singular interface to include the SpinTAC components in your project. These files contain the
macro definitions, type definitions, and function definitions required to setup the SpinTAC components. Including
these files in your project is the first step to using the SpinTAC components that make up InstaSPIN-MOTION.
The file that should be included is dependent on the type of control. If the application is a velocity application,
spintac_velocity.h should be included. If the application requires position control, spintac_position.h should be
included.

4.7.1 Macro Definitions

The macro definitions (#define) provide a simple method for updating your configuration in a large number of
places throughout the Motorware project. The #define directive specifies a macro identifier and a replacement.
The replacement is substituted for every subsequent occurrence of that macro identifier at compile time. The
macro definitions used by SpinTAC components in spintac_velocity.h and spintac_position.h are described
herein.

4.7.1.1 ST_MREV_ROLLOVER (spintac_position.h only)

This defines the maximum and minimum value that will be used to represent mechanical revolutions inside
SpinTAC Position Control. This is used in order to maintain precision. When the value for mechanical revolutions
reaches the value defined in ST_MREV_ROLLOVER, a rollover counter is incremented, and the value for
mechanical revolutions will be set to negative ST_MREV_ROLLOVER.

4.7.1.2 ST_EREV_MAXIMUM (spintac_position.h only)

This defines the maximum value for an electrical revolution. This is the maximum electrical angle value produced
by the encoder or other electrical angle source.

4.7.1.3 ST_POS_ERROR_MAXIMUM_MREV (spintac_position.h only)

This defines the maximum position error allowable in the application. If a position error beyond this threshold is
detected it will force the controller output to zero until the error has been reduced below this threshold.

4.7.1.4 ST_ISR_TICKS_PER_SPINTAC_TICK

This identifies the decimation factor for the SpinTAC components of InstaSPIN-MOTION. This value represents
the number of ISRs completed in-between each execution of the SpinTAC components. This value is calculated
from parameters defined in user.h. Decimation factors are further explained in Section 9.2.

4.7.1.5 ST_SPEED_SAMPLE_TIME

This identifies how often the SpinTAC components are executed. This value is calculated from parameters that
are defined in user.h.

4.7.1.6 ST_SPEED_PU_PER_KRPM

This identifies the scaling between kilo-rpm and pu/s speed. This is used to convert from user variables which
are typically in kilo-rpm into scaled speed variables. This ensures that all calculations in InstaSPIN-MOTION will
not cause an overflow. This value is calculated from parameters that are defined in user.h

4.7.1.7 ST_SPEED_KRPM_PER_PU

This identifies the scaling between pu/s and kilo-rpm speed. This is used to convert from scaled speed variables
into user unit variables. This is done to ensure that all calculations in InstSPIN-MOTION will not cause an
overflow. This value is calculated from parameters that are defined in user.h

User Parameters (user.h) www.ti.com

222 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.7.1.8 ST_MOTOR_INERTIA_PU

This identifies the inertia of the system in scaled units. This value is calculated from
ST_MOTOR_INERTIA_A_PER_KRPM and will be provided to SpinTAC Velocity Control or SpinTAC Position
Control.

4.7.1.9 ST_MOTOR_FRICTION_PU

This identifies the inertia of the system in scaled units. This value is calculated from
ST_MOTOR_FRICTION_A_PER_KRPM and will be provided to SpinTAC Velocity Control or SpinTAC Position
Control.

4.7.1.10 ST_MIN_ID_SPEED_RPM

This identifies the minimum speed of the motor prior to running SpinTAC Velocity Identify. This is done to ensure
that the inertia identification process does not begin if the motor is spinning too quickly. This value is specified in
rpm. If there is difficulty in beginning the inertia identification process, and the motor has trouble holding a zero
speed, this value should be increased to widen the bound from which the motor will start the inertia identification
process.

4.7.1.11 ST_MIN_ID_SPEED_PU

This identifies the minimum speed of the motor prior to running SpinTAC Velocity Identify. This value is
calculated from ST_MIN_ID_SPEED_RPM. This is the value that will be compared against in the user project.

4.7.1.12 ST_ID_INCOMPLETE_ERROR

This error is triggered anytime that SpinTAC Velocity Identify fails and the system inertia remains unknown. The
value refers to the specific error code produced by the SpinTAC Velocity Identify component. Do not modify this
value.

4.7.1.13 ST_VARS_DEFAULTS

This identifies the default values that should be loaded into the ST_Vars_t structure described in Section 4.7.2.5.
These default values are used to initialize the structure and to provide the correct values at startup. Do not
modify these values.

4.7.2 Type Definitions

Type definitions (typedefs) organize the code that calls SpinTAC and simplify the API experience for the user.

4.7.2.1 VEL_Params_t / POS_Params_t

This structure identifies which SpinTAC component will be used in the project. This structure is included as part
of ST_Obj discussed in Section 4.7.2.2. This structure should not be declared in your project.

4.7.2.2 ST_Obj

This is the main structure of the SpinTAC components. This structure is designed to align the SpinTAC
components around a single motor axis. This structure contains substructures that separate the SpinTAC
components into the portion of the motor axis that they work on. This structure should be declared in the main
source file of your project.

4.7.2.3 ST_Handle

This handle is used to represent the address of the main SpinTAC structure. It should be used in the user project
to pass the address of the main SpinTAC structure into the user functions so that they will not be operating on a
global variable. The lab projects included in MotorWare have examples of how to setup user functions to use the
handle for interfacing.

4.7.2.4 ST_PlanButton_e

This enumeration identifies the states that can be set to control the operation of SpinTAC Plan. This is done to
construct a small state machine to handle enabling, disabling, and resetting SpinTAC Plan. This should be used
in the main source file to establish a button that can be used to control the operation of SpinTAC Plan.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

223

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.7.2.5 ST_Vars_t

This is a structure that contains the user interface variables that should be used to operate on the SpinTAC
components. This structure should not be declared in the main source file. It is already declared as part of
MOTOR_Vars_t in main.h and main_position.h. More information about MOTOR_Vars_t can be found in the lab
documentation.

4.7.3 Functions

These functions are used to initialize and configure the SpinTAC components.

4.7.3.1 ST_init

This function initializes the SpinTAC structures. It should be called prior to the forever loop in the main source
file. This function will pass the memory locations of the SpinTAC components and will return a handle to be used
to interface to these components.

4.7.3.2 ST_setupPosConv

This function sets up the default values for the SpinTAC Position Converter. It should be called after ST_init,
but before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac.h. These values should be modified to fit your system.

4.7.3.3 ST_setupVelCtl (Velocity Control Only)

This function sets up the default values for the SpinTAC Velocity Control. It should be called after ST_init,
but before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac_velocity.h. These values should be modified to fit your system.

4.7.3.4 ST_setupPosCtl (Position Control Only)

This function sets up the default values for SpinTAC Position Control. It should be called after ST_init, but before
the forever loop in the main source file. This function extracts configuration values from the macro definitions in
user.h and spintac_position.h. These values should be modified to fit your system.

4.7.3.5 ST_setupVelMove (Velocity Control Only)

This function sets up the default values for SpinTAC Velocity Move. It should be called after ST_init, but before
the forever loop in the main source file. This function extracts configuration values from the macro definitions in
user.h and spintac_velocity.h. These values should be modified to fit your system.

4.7.3.6 ST_setupPosMove (Position Control Only)

This function sets up the default values for SpinTAC Position Move. It should be called after ST_init, but before
the forever loop in the main source file. This function extracts configuration values from the macro definitions in
user.h and spintac_position.h. These values should be modified to fit your system.

4.7.3.7 ST_setupVelPlan (Velocity Control Only)

This function is used to setup SpinTAC Velocity Plan. This function should be called after the ST_init function,
and should be declared and written in the main source file of the project. For more information about how to
configure SpinTAC Plan, see Section 13.5.

4.7.3.8 ST_setupPosPlan (Position Control Only)

This function is used to setup SpinTAC Position Plan. This function should be called after the ST_init function,
and should be declared and written in the main source file of the project. For more information about how to
configure SpinTAC Plan, see Section 13.5.

4.7.3.9 ST_setupVelId (Velocity Control Only)

This function sets up the default values for the SpinTAC Velocity Identify. It should be called after ST_init,
but before the forever loop in the main source file. This function extracts configuration values from the macro
definitions in user.h and spintac_velocity.h. These values should be modified to fit your system.

User Parameters (user.h) www.ti.com

224 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.7.3.10 ST_runPosConv

This function is used to run the SpinTAC Position Converter in the ISR. This function should be decimated at
the rate defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main
source file of the project. The InstaSPIN-MOTION lab projects 12 through 13e provide an example of how to call
the SpinTAC Position Converter as part of your ISR.

4.7.3.11 ST_runVelCtl (Velocity Control Only)

This function is used to run SpinTAC Velocity Control in the ISR. This function should be decimated at the rate
defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main source
file of the project. The InstaSPIN-MOTION lab projects 05d through 06d provide an example of how to call
SpinTAC Velocity Control as part of your ISR.

4.7.3.12 ST_runPosCtl (Position Control Only)

This function is used to run SpinTAC Position Control in the ISR. This function should be decimated at the rate
defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main source
file of the project. The InstaSPIN-MOTION lab projects 13a through 13e provide an example of how to call
SpinTAC Position Control as part of your ISR.

4.7.3.13 ST_runVelMove (Velocity Control Only)

This function is used to run SpinTAC Velocity Move in the ISR. This function should be decimated at the rate
defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main source
file of the project. The InstaSPIN-MOTION lab projects 06a through 06d provide an example of how to call
SpinTAC Velocity Move as part of your ISR.

4.7.3.14 ST_runPosMove (Position Control Only)

This function is used to run SpinTAC Position Move in the ISR. This function should be decimated at the rate
defined in ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main source
file of the project. The InstaSPIN-MOTION lab projects 13b through 13e provide an example of how to call
SpinTAC Position Move as part of your ISR.

4.7.3.15 ST_runVelPlan (Velocity Control Only)

This function is used to run the main component of SpinTAC Velocity Plan. This function can be called in either
the ISR or in the main loop of the project. This function should be declared and written in the main source file
of the project. The InstaSPIN-MOTION lab projects 06b and 06c provide an example of how to call SpinTAC
Velocity Plan as part of your ISR. The InstaSPIN-MOTION lab project 06d provides an example of how to call
SpinTAC Velocity Plan as part of your main loop.

4.7.3.16 ST_runVelPlanTick (Velocity Control Only)

This function is used to run the timer component of SpinTAC Velocity Plan in the ISR. This function should be
decimated at the rate defined in ISR_TICKS_PER_SPINTAC_TICK. The InstaSPIN-MOTION lab projects 06b
through 06d provide an example of how to call this component of SpinTAC Velocity Plan as part of your ISR.

4.7.3.17 ST_runPosPlan (Position Control Only)

This function is used to run the main component of SpinTAC Position Plan. This function can be called in either
the ISR or in the main loop of the project. This function should be declared and written in the main source file
of the project. The InstaSPIN-MOTION lab project 13c provides an example of how to call SpinTAC Position
Plan as part of your ISR. The InstaSPIN-MOTION lab project13d provides an example of how to call SpinTAC
Position Plan as part of your main loop.

4.7.3.18 ST_runPosPlanTick (Position Control Only)

This function is used to run the ISR component of SpinTAC Position Plan in the ISR. This function should be
decimated at the rate defined in ISR_TICKS_PER_SPINTAC_TICK. The InstaSPIN-MOTION lab projects 13c
through 13d provide an example of how to call this component of SpinTAC Position Plan as part of your ISR.

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

225

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.7.3.19 ST_runVelId (Velocity Control Only)

This function is used to run SpinTAC Velocity Identify in the ISR. This function should be decimated at the
rate defined in ST_ISR_TICKS_PER_SPINTAC_TICK. This function should be declared and written in the main
source file of the project. The InstaSPIN-MOTION lab project 05cincluded in MotorWare provides an example of
how to call SpinTAC Velocity Identify as part of the ISR.

4.8 Setting ACIM Motor Parameters in user.h
The parameters provided in user.h for ACIM motors are:

#if (USER_MOTOR == User_ACIM)
#define USER_MOTOR_TYPE MOTOR_Type_Induction
#define USER_MOTOR_NUM_POLE_PAIRS (2)
#define USER_MOTOR_Rr (5.054793)
#define USER_MOTOR_Rs (7.801885)
#define USER_MOTOR_Ls_d (0.03334743)
#define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)
#define USER_MOTOR_RATED_FLUX (0.8165*230.0/60.0)
#define USER_MOTOR_MAGNETIZING_CURRENT (1.134086)
#define USER_MOTOR_MAX_CURRENT (5.0)

Table 4-1 summarizes all the parameters that are required in user.h header file when ACIM motor identification is
bypassed.

Table 4-1. ACIM Motor Parameters in user.h
ACIM Motor Parameter in user.h ACIM Motor Parameter and Units ACIM Motor Model Symbol
USER_MOTOR_Rr Rotor Resistance (Ω) RR

USER_MOTOR_Rs Stator Resistance (Ω) Rs

USER_MOTOR_Ls_d Stator Series Inductance (H) LσS

USER_MOTOR_RATED_FLUX Rated Rotor Flux (V/Hz) ψR

USER_MOTOR_MAGNETIZING_CURRENT Rated Magnetizing Current (A) isd

The following section covers each of these parameters and how to get them from a typical motor manufacturer's
data sheet.

4.8.1 Getting Parameters From an ACIM Datasheet

Figure 4-1 corresponds to an ACIM motor datasheet used as an example. The motor's part number is:
56H17T2011A, from company: Marathon Electric (www.marathonelectric.com).

User Parameters (user.h) www.ti.com

226 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.marathonelectric.com
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 4-1. Example ACIM Motor Datasheet

4.8.1.1 Number of Pole Pairs

The number of pole pairs is used to calculate speeds in revolutions per minute (RPM) and for some flux
calculations, as shown in the rated flux calculation example. We simply use the number of pole pairs from the
motor's datasheet into user.h as follows. Keep in mind that sometimes this value is provided in number of poles,
so we simply divide number of poles by two to get number of pole pairs:

#define USER_MOTOR_NUM_POLE_PAIRS (2)

4.8.1.2 Entering ACIM Motor Parameters from a Data Sheet to user.h

With the information we have in the motor's name plate we can enter these values into user.h with the following
parameter conversion, assuming a rated frequency of 60 Hz for the impedance calculations.

2

R

XM
R R2 6.8031

XM X2

æ ö
= = Wç ÷

+è ø

()

S

S

R R1 9 25

XM XM X1 XM
L 0 0352 H

2 XM XM X2

.

.
f

s

= = W

+æ ö
= - =ç ÷p +è ø

Where:

R1: Stator resistance (Ω)

R2: Stator referenced rotor resistance (Ω)

X1: Stator leakage reactance (Ω)

X2: Stator referenced rotor leakage reactance (Ω)

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

227

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

XM: Magnetizing reactance (Ω)

f: Rated frequency of the motor (Hz)

RR: Stator referenced scaled rotor resistance (Ω)

Rs: Stator resistance (Ω)

LσS: Stator series inductance (H)

Note that in order to convert reactance (X) to inductance (L) the user must use the same frequency that was
used to define the reactance value itself, which is typically the rated frequency of the motor. In this example, the
rated frequency of the motor is 60 Hz, hence f = 60 Hz.

With these values we can then enter motor's parameters in user.h:

#define USER_MOTOR_Rr (6.8031)
#define USER_MOTOR_Rs (9.25)
#define USER_MOTOR_Ls_d (0.0352)
#define USER_MOTOR_Ls_q (USER_MOTOR_Ls_d)

There are cases where the ACIM motor parameters are provided in terms of inductance values instead of
reactance values. For example, if we convert the values from the motor's data sheet into inductances, we would
have the following values:

() ()

() ()

() ()

s

r

m

X1 9 08
L 0 0241H

2 2 60

X2 4 28
L 0 0114 H

2 2 60

XM 170
L 0 4509 H

2 2 60

.
.

f

.
.

f

.
f

s

s

= = =
p p

= = =
p p

= = =
p p

And now the conversion from these set of values to what we need in user.h is as follows:

2

m
R

m r

s

m s m
S m

m m r

L
R R2 6 8031

L L

R R1 9 25

L L L
L L 0 0352 H

L L L

.

.

.

s

s
s

s

æ ö
= = Wç ÷

+è ø

= = W

æ ö+
= - =ç ÷

+è ø

Where:

Lσs: Stator leakage inductance (H)

Lσr: Stator referenced rotor leakage inductance (H)

Lm: Magnetizing inductance (H)

User Parameters (user.h) www.ti.com

228 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

4.8.1.3 Getting the Rated Magnetizing Current of an ACIM

To get the rated magnetizing current of an ACIM motor, we can calculated from the no load current specified in
a motor's name plate. In this particular example, the no load current noload(i) is 0.7 A, which is usually a value
provided in RMS. Usually this no load current is approximately the same as the rated magnetizing current

rated
d(i)

with iq ≅ 0. The value we need to define in user.h is in maximum amplitude, so we calculate it as follows:

rated noload

di i 2 0 7 2 0 9899 A. .= = =

Now we can enter this value in user.h:

#define USER_MOTOR_MAGNETIZING_CURRENT (0.9899)

4.8.1.4 Getting the Rated Flux of an ACIM

To get the rated flux of an ACIM, we need to calculate the rated stator flux based on the name plate values,
and subtract the flux produced by the inductance to get the rated rotor flux. The following equation is used to
calculate the rated rotor flux:

() ()

()()
()

ra

rated
rated line to line
s rated

rated rated

s

ted

R

rated

R

S d

rated

R

v2 2 230
0 4981 Wb

2 603 32

L i 0 4981 0 0352 0 9899 0 4633 Wb

2 2 9107 V HUSER z

.
f

. . . .

._ /

- -

s

æ ö æ ö
y = = =ç ÷ ç ÷ç ÷ ç ÷ ppè ø è ø

y - = - =

y == p y

y =

Now we can set this value in user.h:

#define USER_MOTOR_RATED_FLUX (2.9107)

www.ti.com User Parameters (user.h)

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

229

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

User Parameters (user.h) www.ti.com

230 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

For the InstaSPIN FAST observer (flux, rotor flux angle, shaft speed and torque), voltage and current signals
from the motor are required to be measured by the ADC. The accuracy of these signals has direct impact
on the performance of the observer. This section discusses the required signals, which parameters in the
InstaSPIN software are used to configure for these signals and their related circuits. The following sections are
considered "prerequisites", required software and hardware configuration for a successful motor identification
and the running of InstaSPIN.

5.1 Software Prerequisites...232
5.2 Hardware Prerequisites... 237

Chapter 5
Managing Motor Signals

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

231

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.1 Software Prerequisites
Below are the parameters that require configuration by in the user's software to manage the motor signals
required by InstaSPIN's FAST observer. Each parameter is discussed in this section.

• IQ full-scale frequency - set to motor's max electrical frequency with 20-30% headroom
• IQ full-scale voltage - set to motor's max voltage with 20-30% headroom
• IQ full-scale current - set to motor's max measureable current with 20-30% headroom
• Max Current - set to motor manufacturer's max current (peak) with 0% headroom
• Decimation rates - multiple loop rates and settings
• System Frequency - set to MCU's max CPU clock speed
• PWM Frequency - default is 20 KHz, increase with lower inductance motors
• Max Duty Cycle - 100% duty use 3-shunt current measurements

5.1.1 IQ Full-Scale Frequency

IQ Full-Scale Frequency represents the electrical frequency of the motor in a per unit value. In other words,
the electrical frequency of the motor is normalized with the value in this define. It is recommended to have a
value of IQ full-scale frequency equal to the absolute maximum electrical frequency that the motor will run in the
application.

Set IQ full-scale frequency equal to the motor's absolute maximum electrical frequency.

To illustrate a typical example of this value, consider a PMSM motor with four pole pairs, running at an absolute
maximum speed of 15,000 RPM. In this case, the absolute maximum frequency of the motor is 15000/60*4 =
1000 Hz. The following setting of the IQ full-scale frequency is recommended in this case:

//! \brief Defines the full-scale frequency for IQ variable, Hz
#define USER_IQ_FULL_SCALE_FREQ_Hz (1000.0)

It is important to note that this value must be higher than any allowable frequency in the motor, so it is
recommended to add 20-30% headroom to this value, higher than the maximum expected frequency of the
motor.

5.1.2 IQ Full-Scale Voltage

Similar to IQ Full-Scale Frequency, the IQ full-scale voltage value is used to normalize all the voltage terms
inside of the library to a per unit value. For that reason, this define must be greater than any voltage provided to
the motor windings, including voltages present inside the motor. These voltages inside the motor can be greater
than the input voltage itself in cases where the motor is operated in field weakening, which is operating the motor
beyond its rated speed.

Voltages inside the motor can be greater than the input voltage. Set IQ Full-Scale Frequency greater than
any voltage inside the motor.

To illustrate, consider a PMSM motor with a rated speed of 4000 RPM. If the motor is driven with a 24V power
supply, and no field weakening is used, all the voltages outside and inside the motor will be equal or less than
24V. However, if field weakening is used to double the speed of the motor to a maximum of 8000 RPM, then
inside the motor, the back EMF voltage might be up to twice the input voltage of 24V, reaching up to 48V. In
this scenario it is recommended to set the IQ full-scale voltage define to 48V as shown in the following code
example:

//! \brief Defines the full-scale voltage for the IQ variable, V
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)

Managing Motor Signals www.ti.com

232 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

CAUTION

In the following flux calculation of
max a
d q

m xandy y , if any of these two values is equal to or greater
than 2.0, a numerical overflow condition will occur, since this value is represented in a numeric
format that has a maximum integer range of 2 (IQ30 actually has a maximum value very close to 2,
which is (2 - 2-30), see the IQmath library for more details on this format).

max
IQ

filter _ pole

max
motor

s _ d

s _ q

V USER _IQ _FULL _ SCALE _ VOLTAGE _ V ?

2 USER _IQ _FULL _ SCALE _FREQ _Hz 2 714.15 Hz 4487.1 rad / s

I USER _MOTOR _MAX _ CURRENT 4.2 A

L USER _MOTOR _Ls _ d 0.0006 H

L USER _MOTOR _Ls _ q 0.00

= =

w = ´ p ´ = ´ p ´ =

= =

= =

= =

yields
filter _ polemax max max max

d motor s _ d IQ motor s _ d filter _ polemax
IQ

yields
filter _ polemax max max max

motor s _ q IQ motor s _ q filter _ polem xq a
IQ

06 H

1
I L 2.0 V I L

2V

1
I L 2.0 V I L

2V

w
= ´ ´ < ® > ´ ´ ´ w

w
= ´ ´ < ® > ´

y

´ ´ wy

In the previous example, both inductances are the same (Ls_d = Ls_q), hence the
max
IQV voltage must be greater

than:

max max
IQ motor s _ d filter _ pole

1
V I L

2
> ´ ´ ´ w

max
IQ

max
IQ

1
V 4.2A 0.0006 H 4487.1 rad / s

2

V 5.65 V

> ´ ´ ´

>

It is recommended to have 20-30% headroom on top of this minimum value. In the previous example, the motor
can be operated up to 48 V, and since this voltage is greater than

max
IQV (with headroom) we can just simply set 48

V for our full-scale voltage:

//! \brief Defines the full-scale voltage for the IQ variable, V
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)

User must select parameters so that this overflow is prevented. If the inductance is unknown, a rough estimation
must be used in the above calculation to know if there will be an overflow condition.

In addition to a minimum value set in USER_IQ_FULL_SCALE_VOLTAGE_V, there is a maximum value to be
set here also. The maximum value relates to the minimum flux that can be identified by InstaSPIN. The minimum
flux that can be identified is calculated as follows:

Minimum Flux (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/USER_EST_FREQ_Hz/0.7

For example, if a motor has a flux of 0.001 V/Hz (this value is not unusual when working with
hobby motors with extremely low flux values), and running the estimator at 20 kHz, then the maximum
USER_IQ_FULL_SCALE_VOLTAGE_V that can be used to identify this motor is:

USER_IQ_FULL_SCALE_VOLTAGE_V < 0.001 * 20000 / 0.7 = 28.57 V

30% of headroom is recommended to allow a stable identification. So in the previous example, a
USER_IQ_FULL_SCALE_VOLTAGE_V of 20.0V is recommended.

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

233

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.1.3 IQ Full-Scale Current

IQ full-scale current serves the same purpose as the previous IQ full-scale values for the frequency and voltage,
but for the current feedback. IQ full-scale current is used to normalize the current feedback into a per unit value.
This value must be greater than any measurable current.

IQ full-scale current must be greater than any measurable current

For example, if the motor has a peak current value of 8 A per phase, the IQ full-scale value should be set to a
higher value with 20-30% headroom, in this example, to 10 A.

//! \brief Defines the full-scale current for the IQ variables, A
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)

CAUTION

If the measured current is greater than the IQ full-scale current at any point, there might be a
numerical overflow condition in the software. Make sure the measurable current is less than this
value to avoid an undesirable software behavior. In order to avoid this issue, user must make sure
that (USER_IQ_FULL_SCALE_CURRENT_A * 2) is always greater that the measurable current
by the ADC. The "multiply by 2" factor is because the USER_IQ_FULL_SCALE_CURRENT_A
parameter ranges from zero to maximum amplitude (peak), while the USER_ADC_FULL_SCALE_
CURRENT_A is from peak to peak.

Following the guideline below prevents numerical overflow on the current measurement:

(USER_IQ_FULL_SCALE_CURRENT_A * 2) >= USER_ADC_FULL_SCALE_CURRENT_A

5.1.4 Max Current

Max Current defines the maximum output of the speed controller, different from the IQ Full-Scale Current which
defines a normalization factor of currents measured with the ADC converter. Max Current must always be lower
than IQ Full-Scale Current since Max Current is a software limit only, while IQ Full-Scale Current represents a
maximum software representation of a maximum hardware input.

Max current must always be lower than IQ Full-Scale Current.

The definition of the maximum current sets a maximum software limit. It indicates that the maximum current
commanded by the speed controller will be clamped to the maximum current definition. For example, if the
maximum current definition is set to 4.2 A, and the speed controller requires an increase on the torque demand
through the current controllers, the maximum commanded current will be 4.2 A, or whatever is set in this
definition. It is recommended to have a maximum current less than or equal to the maximum recommended
current by the motor manufacturer to avoid damage to the motor.

Max current less than or equal to motor manufacturer's recommended max current.

For example, the Anaheim motor provided with the DRV8312 Revision D board has a rated torque of 21 oz-in
and a torque constant of 5 oz-in/A, which leads us to a rated current of 4.2 A to produce rated torque. 4.2 A is
set to the motor maximum current (peak current amplitude) is shown in the following code example:

#define USER_MOTOR_MAX_CURRENT (4.2)

Note that the Max Current defined in user.h does not provide a hardware limitation or protection against over
currents. In other words, this is not a hardware current limit, instead, this is a software limit that only limits the
maximum input of the current controllers, and not their output.

Figure 5-1 shows a representation of where this USER_MOTOR_MAX_CURRENT is used in InstaSPIN. As can
be seen in the diagram, the maximum current does not limit a current cycle by cycle, but it provides a saturation
of the speed controller integral portion output as well as a saturation of the overall speed controller output before
providing the reference to the current controller.

Managing Motor Signals www.ti.com

234 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 5-1. USER_MOTOR_MAX_CURRENT in InstaSPIN™

5.1.5 Decimation Rates

Decimation rates allow the user to configure each loop rate to meet their code execution requirements. It is
recommended to use the default decimation rates as a starting point. The user must verify real-time scheduling
is met, verifying that a single interrupt period allows execution of all software in the ISR. This can be done
by simply toggling (2) GPIO pins, one at the start and the other at the end of the ISR, and observing on an
oscilloscope. If real-time scheduling is not met then InstaSPIN performance is not predictable.

Real-time scheduling is required for consistent InstaSPIN performance.

Following are the default decimation rates:

// Defines the number of pwm clock ticks per isr clock tick
// Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)
// Defines the number of isr ticks (hardware) per controller clock tick (software)
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
// Defines the number of controller clock ticks per estimator clock tick
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
// Defines the number of controller clock ticks per current controller clock tick
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)
// Defines the number of controller clock ticks per speed controller clock tick
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (10)
// Defines the number of controller clock ticks per trajectory clock tick
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)

If the interrupt period does not allow these decimation rates to complete, see Section 9.1 to learn more about
changing the decimation rates.

5.1.6 System Frequency

System Frequency is the clock rate of the MCU. It is recommended to run at the highest frequency possible so
that the code is executed as fast as possible. There are two sections where user must configure the system
frequency to the maximum.

Configure MCU to fastest CPU clock for best real-time performance.

The first section is in user.h file. This #define will make sure the calculations for all the timing blocks are
calculated accordingly.

The second section is in the file hal.c using the function HAL_setParams, see the code example shown in Table
5-1 configuring the PLL to run at a maximum frequency of 90 MHz for the 2806x device, and 60 MHz for the
2805x and 2802x devices.

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

235

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 5-1. hal.c Configuring the PLL

Device
Fastest System

Frequency user.h hal.c
2806x 90 MHz #define USER_SYSTEM_FREQ_MHz

(90)
HAL_setupPll(handle,PLL_ClkFreq_90_MHz)

2805x 60 MHz #define USER_SYSTEM_FREQ_MHz
(60)

HAL_setupPll(handle,PLL_ClkFreq_60_MHz)

2802x 60 MHz #define USER_SYSTEM_FREQ_MHz
(60)

HAL_setupPll(handle,PLL_ClkFreq_60_MHz)

5.1.7 PWM Frequency

PWM Frequency is set in the file user.h. Some motors require more PWM frequency than others, depending on
the motor inductance. As a general rule, the lower the inductance of the motor, the higher the PWM frequency
needed to avoid too much current ripple. In general, 20 kHz is recommended for the majority of motors, special
cases where the PWM frequency is suggested to be higher are discussed in subsequent sections of this
document.

Lower inductance motors require higher PWM frequency.

The following code example shows how to set the software for 20 kHz PWM frequency:

//! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
#define USER_PWM_FREQ_kHz (20.0)

5.1.8 Max Voltage Vector

Maximum voltage vector is set in the file user.h and is used to set the maximum magnitude for the output of the
Id and Iq PI current controllers. The Id and Iq current controller outputs are Vd and Vq. The relationship between
Vs, Vd, and Vq is:

Vs = sqrt(Vd^2 + Vq^2)

Vq = sqrt(USER_MAX_VS_MAG^2 - Vd^2)

In this FOC controller, the Vd value is set equal to:

USER_MAX_VS_MAG*USER_VD_MAG_FACTOR.

USER_MAX_VS_MAG_PU can go up to 1.0, in global IQ format, or _IQ(1.0), if current reconstruction is not
used. For further discussion and examples, see Labs 10a-x.

//! \brief Defines the voltage vector magnitude
#define USER_MAX_VS_MAG_PU (1.0)

Besides this definition of the maximum voltage vector magnitude, a member of the controller object can be
changed to allow changing the output of the current controllers, which is then the input of the space vector
modulation (SVM). This is important to note, because even though the maximum voltage vector magnitude is
defined in user.h to be a maximum of 1.0 (or 100%), the inputs to the SVM can go up to 4.0/3.0 = 1.3333
allowing over modulation. An input into the SVM above 1.0 is in the over modulation region. An input of
2/SQRT(3) = 1.1547 is where the crest of the sine wave touches the 100% duty cycle. At an input of 1.3333,
the SVM generator produces a trapezoidal waveform. The following code example changing the output of the
current controllers to 1.3333 allowing maximum over modulation:

// Set the maximum current controller output for the Iq and Id current
// controllers to enable overmodulation.
CTRL_setMaxVsMag_pu(ctrlHandle, _IQ(pUserParams->maxVsMag_pu));

Managing Motor Signals www.ti.com

236 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 5-2 describes the different ranges of the maximum SVM input and what it means for the space vector
modulation module (SVM).

Table 5-2. Maximum SVM Input Ranges
#define USER_MAX_VS_MAG_PU

(value)
CTRL_setMaxVsMag_pu

(handle,value)
Duty Cycle on
EPWM at Peak Waveform Type

Current
Reconstruction

(1.0) IQ(1.0) 86.6% Perfect Sinusoidal Not needed

2

3

1.1547=
_IQ(2/SQRT(3)) 100.0% Quasi-Sinusoidal Required

4

3
= 1.3333

_IQ(1.3333) 100.0% Trapezoidal Required

When operating in the overmodulation region, voltage waveforms start turning from sinusoidal to trapezoidal
depending on how much overmodulation is applied. Motor vibration and torque ripple should be expected as
motor operation goes deeper into overmodulation. The SVM module is explained in detail in Chapter 3.

Maximum Voltage Magnitude that causes a peak duty cycle of 100% requires three shunt current
measurement.

The actual duty cycle range caused by the maximum voltage magnitude depends on the number of shunt
resistors used to sample the currents. If 100% duty cycles are required by the application, user must use three
shunt resistors to sample the phase currents of the motor. Having only two shunt resistors limits the duty cycle
to be less than 100%. The maximum duty cycle allowed when using two shunt resistors depends on the OPAMP
parameters and the layout itself. The details of choosing the right components for the current feedback are
covered in Chapter 17.

5.2 Hardware Prerequisites
There are a few hardware dependent parameters that need to be set correctly in order to identify the motor
properly and run the motor effectively using InstaSPIN. The following parameters are related to this, each will be
discussed in detail:

• Current feedback gain - maximize ADC input range
• Current feedback polarity - match software with hardware polarity
• Voltage feedback
• Voltage filter pole
• Number of shunt resistors
• Dead-time configuration
• Analog inputs configuration
• PWM outputs configuration

The following sections describe each one of these parameters.

5.2.1 Current Feedback Gain

In order to measure bidirectional currents, that is, positive and negative currents, the circuits below require a
reference voltage of 1.65 V. This voltage is generally not available in 3.3-V systems, but can be created very
easily by a voltage follower. Figure 5-2 is a circuit example that generates a 1.65-V reference from a 3.3-V input,
which is available in 3.3-V systems. For subsequent circuits connecting to 1.65 V, this circuit is assumed to be
used.

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

237

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

+

-

3.3 V

R1

R2

1.65 V

R1 = R2

Figure 5-2. 1.65-V Reference from 3.3-V Input Circuit Example

Figure 5-3 shows a typical differential amplifier configuration for the current measurement.

+

-

Rshunt

Iin

1.65 V

Rin

Rin

Rfbk

Rfbk

Vout

Figure 5-3. Typical Differential Amplifier Circuit

The transfer function of this circuit is given by Equation 3.

fbk
out in shunt

in

R
V 1.65 I R

R
= + ´ ´

(3)

In order to illustrate some values on this circuit, let's consider a motor with a maximum phase current defined to
be 10 A. The maximum current to be measured by the microcontroller in this example is ±10 A with this circuit
producing a maximum voltage of 1.65V (±1.65V) to support the 3.3 V ADC input range.

For the worst case of 10A, consider a 0.01-Ohm shunt resistor.

fbk out

in in shunt

R V 1.65 3.3 1.65
16.5

R I R 10 0.01

- -

= = =

´ ´ (4)

Now if we let the input resistance be 1.0 kOhm, we can calculate the feedback resistance based on the input
resistance and the required ratio.

ƒbk inR 16.5 R 16.5 k= ´ = W (5)

The calculated resistance values lead to the circuit shown in Figure 5-4, providing a voltage range of 0-3.3 V to
represent a measured phase current of ±10 A.

Managing Motor Signals www.ti.com

238 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/lsds/ti/analog/amplifiersandlinears/amplifiersandlinears.page
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

+

-

Iin

1.65 V

16.5 kQ

Vout

16.5 kQ

1 kQ

1 kQ

0.01 Q

Iin = 10 A Vout = 3.3 V

Iin = -10 A Vout = 0.0 V

Figure 5-4. Calculated Resistance Values Circuit

As shown in this example, the maximum peak to peak current measurable by the microcontroller is 20 A, which
is the peak to peak value of ±10 A. The following code snippet shows how this is defined in user.h:

//! \brief Defines the maximum current at the AD converter
#define USER_ADC_FULL_SCALE_CURRENT_A (20.0)

The slew rate of the OPAMP plays an important role in the current measurement quality. For more details, see
Chapter 17.

5.2.2 Current Feedback Polarity

Correct polarity of the current feedback is also important so that the microcontroller has an accurate current
measurement.

5.2.2.1 Positive Feedback

In this hardware configuration, the negative pin of the shunt resistor, which is connected to ground, is also
connected to the inverting pin of the operational amplifier. Figure 5-5 shows a positive polarity in hardware and
its configuration in software. The highlighted sign is required to be configured in order to have correct polarity for
the current feedback in software. The code is shown, a variable "current_sf" is negative in HAL_readAdcData()
for inverting operation. For positive feedback, the current offsets are negative in user.h to correct the polarity
mismatch. The lines of code shown illustrate offset negation done in user.h. Functions HAL_readAdcData() is
located in hal.h file. No change is needed in these functions.

+

-

Rshunt

Iin

1.65 V

Rin

Rin

Rfbk

Rfbk

Vout
+

-

Figure 5-5. Positive Feedback

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

239

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

static inline void HAL_readAdcData(HAL_Handle handle,HAL_AdcData_t *pAdcData)
{
 HAL_Obj *obj = (HAL_Obj *)handle;
 _iq value;
 _iq current_sf = -HAL_getCurrentScaleFactor(handle);
 _iq voltage_sf = HAL_getVoltageScaleFactor(handle);
 // convert current A
 // sample the first sample twice due to errata sprz342f, ignore the first sample
 value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_1);
 value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[0]; // divide by 2^numAdcBits =
2^12
 pAdcData->I.value[0] = value;
 // convert current B
 value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_2);
 value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[1]; // divide by 2^numAdcBits =
2^12
 pAdcData->I.value[1] = value;

#define I_A_offset (-0.8641905189)
#define I_B_offset (-0.8677659631)
#define I_C_offset (-0.8685645461)

5.2.2.2 Negative Feedback

On the other hand, Figure 5-6 represents a negative feedback. In this hardware configuration, the negative pin
of the shunt resistor, which is connected to ground, is also connected to the noninverting pin of the operational
amplifier. The code is shown below, a variable "current_sf" is positive in HAL_readAdcData() for noninverting
operation. For negative feedback, the current offsets are positive in user.h. The lines of code shown below
illustrate the offset in user.h. Functions HAL_readAdcData() is located in hal.h file; no change is needed in
these functions also.

-

+

Rshunt

Iin

1.65 V

Rin

Rin

Rfbk

Vout

Rfbk

+

-

Figure 5-6. Negative Feedback

static inline void HAL_readAdcData(HAL_Handle handle,HAL_AdcData_t *pAdcData)
{
 HAL_Obj *obj = (HAL_Obj *)handle;
 _iq value;
 _iq current_sf = HAL_getCurrentScaleFactor(handle);
 _iq voltage_sf = HAL_getVoltageScaleFactor(handle);
 // convert current A
 // sample the first sample twice due to errata sprz342f, ignore the first sample
 value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_1);
 value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[0]; // divide by 2^numAdcBits = 2^12
 pAdcData->I.value[0] = value;
 // convert current B
 value = (_iq)ADC_readResult(obj->adcHandle,ADC_ResultNumber_2);
 value = _IQ12mpy(value,current_sf) - obj->adcBias.I.value[1]; // divide by 2^numAdcBits = 2^12
 pAdcData->I.value[1] = value;

#define I_A_offset (0.9902871847)
#define I_B_offset (0.9889662266)
#define I_C_offset (0.9897354245)

Managing Motor Signals www.ti.com

240 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.2.3 Voltage Feedback

Voltage feedback is needed in the FAST estimator to allow the best performance at the widest speed range.
Other algorithms rely on software variables which fail to represent the voltage phases accurately. In FAST, phase
voltages are measured directly from the motor phases instead of a software estimate. This is why the hardware
setting for voltage feedback is another prerequisite for InstaSPIN and motor identification. This software value
(USER_ADC_FULL_SCALE_VOLTAGE_V) depends on the circuit that senses the voltage feedback from the
motor phases. Figure 5-7 is an example of a voltage feedback circuit based on resistor dividers.

Three Phase

Inverter
Motor

95.3 kQ 95.3 kQ 95.3 kQ

4.99 kQ 4.99 lQ� 4.99 lQ�

47 nF 47 nF 47 nF

Va

Vb

Vc

VADC_a

VADC_b

VADC_c

Figure 5-7. Voltage Feedback Circuit

The maximum phase voltage feedback measurable by the microcontroller in this example can be calculated as
follows, considering the maximum voltage for the ADC input is 3.3V:

() ()max max
a ADC _ a

4.99 k 95.3 k 4.99 k 95.3 k
V V 3.3 V 66.3 V

4.99 k 4.99 k

W + W W + W
= ´ = ´ =

W W (6)

With that voltage feedback circuit, the following setting is done in user.h:

//! \brief Defines the maximum voltage at the input to the AD converter
#define USER_ADC_FULL_SCALE_VOLTAGE_V (66.3)

If we consider 20-30% headroom for this value, the maximum voltage input to the system is recommended to
be between 66.3*0.7 = 46.4 V and 66.3*0.8 = 53, so for a motor of 48 V this voltage feedback resistor divider is
ideal.

An example of a different nominal voltage is given next. If the motor to be driven has a nominal voltage of 24 V,
then the voltage feedback circuit needs to be modified so that the ADC resolution is maximized for the measured
voltage. Following the same recommendation for headroom, consider a nominal of 24 V, and a headroom value
of 30%. This gives us a USER_ADC_FULL_SCALE_VOLTAGE_V of 24*1.3 = 31.2 V which is represented in
Equation 7, where we fix one of the resistors to leave only one variable.

() ()max max

a ADCa

4.99 k R 4.99 k R
V 31.2 V V 3.3 V

4.99 k 4.99 k

31.2 V 4.99 k
R 4.99 k 42.2 k

3.3 V

W + W +
= = ´ = ´

W W

´ W
= - W = W

(7)

That would give us the maximum voltage of 31.2 V configured as follows:

//! \brief Defines the maximum voltage at the input to the AD converter
#define USER_ADC_FULL_SCALE_VOLTAGE_V (31.2)

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

241

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The voltage feedback circuit with those values is represented in Figure 5-8.

Three Phase

Inverter
Motor

42.2 kQ 42.2 kQ 42.2 kQ

4.99 kQ 4.99 lQ� 4.99 lQ�

47 nF 47 nF 47 nF

Va

Vb

Vc

VADC_a

VADC_b

VADC_c

Figure 5-8. Voltage Feedback Circuit

Managing Motor Signals www.ti.com

242 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.2.4 Voltage Filter Pole

The voltage filter pole is needed by the FAST estimator to allow an accurate detection of the voltage feedback.
The filter should be low enough to filter out the PWM signals, and at the same time allow a high-speed voltage
feedback signal to pass through the filter.

As a general guideline, a cutoff frequency of a few hundred Hz is enough to filter out a PWM frequency of 10
to 20 kHz. The hardware filter should only be changed when ultra-high-speed motors are run, which generate
phase-voltage frequencies in the order of a few kHz.

In this example, consider the Anaheim PMSM motor with a maximum speed of 8000 RPM with 4 pole pairs
(533 Hz), along with the BOOSTXL-DRV8305 EVM with PWM running at 45 kHz. Considering the BOOSTXL-
DRV8305 EVM hardware seen in HALF-BRIDGES & BEMF SENSE section in the BOOSTXL-DRV8305EVM
User’s Guide, also shown in Figure 5-9.

Figure 5-9. BOOSTXL-DRV8305 EVM HALF-BRIDGES & BACK-EMF SENSE Circuit

The filter pole setting can be calculated as follows:

filter _pole
parallel

1 1
F 344.618Hz

2 R C 62k 4.99k
2 0.1 F

62k 4.99k

S u u § ·: u :

S u u P¨ ¸: � :© ¹ (8)

The following code example shows how this is defined in user.h:

#define USER_VOLTAGE_FILTER_POLE_Hz (344.62)

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

243

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLVUAI8
https://www.ti.com/lit/pdf/SLVUAI8
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Note
• Typical values for USER_VOLTAGE_FILTER_POLE_Hz fall between 300 Hz < pole < 400 Hz.
• USER_VOLTAGE_FILTER_POLE_Hz ≥ 200 Hz.
• IQ_FULLSCALE_FREQUENCY_Hz must be set to a value < 4.0 ×

USER_VOLTAGE_FILTER_POLE_Hz to avoid numerical saturation.

5.2.5 Number of Shunt Resistors

An important hardware configuration choice is the number of shunt resistors to use. This number is ultimately
used by the Clarke transform to convert from a three-phase system to a two-phase system. Three shunt
resistors are used if all of the phases have a shunt resistor from the bottom transistor to ground as shown in
Figure 5-10.

Ia

Motor

Ib Ic

Figure 5-10. Shunt Resistors

If this configuration is present, the user should define three shunt resistors in the software for best results. The
following code example shows how to configure the software to use three shunt resistors:

//! \brief Defines the number of current sensors used
#define USER_NUM_CURRENT_SENSORS (3)

If the hardware has two shunt resistors to measure the currents, the software must be configured for only two
shunt resistors as follows:

//! \brief Defines the number of current sensors used
#define USER_NUM_CURRENT_SENSORS (2)

For more details about shunt resistor measurement requirements of InstaSPIN, see Chapter 17.

Managing Motor Signals www.ti.com

244 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.2.6 Dead-Time Configuration

Depending on the hardware used, the dead time must be configured correctly in order to avoid shoot-through
between high-side and low-side transistors within the inverter (see Figure 5-11). For more details about EPWM
module and dead-time configuration, see the microcontroller technical reference manual.

Motor

EPWM1A

EPWM1B

Gate

Driver

EPWM1A

EPWM1B

Dead

Time

2.0 sμ 2.0 sμ

Example of 2.0 s

deadtime

μ

Figure 5-11. Dead-Time Configuration

Dead time depends on the transistor and gate driver circuit used, and is configured as shown in the following
code example, based on system clock delay counts:

//! \bried Defines the PWM deadband falling edge delay count (system clocks)
//!
#define HAL_PWM_DBFED_CNT
//! \brief Defines the PWM deadband rising edge delay count (system clocks)
//!
#define HAL_PWM_DBRED_CNT

// setup the Dead-Band Rising Edge Delay Register (DBRED)
PWM_setDeadBandRisingEdgeDelay(obj->pwmHandle[cnt],HAL_PWM_DBRED_CNT);
// setup the Dead-Band Falling Edge Delay Register (DBFED)
PWM_setDeadBandFallingEdgeDelay(obj->pwmHandle[cnt],HAL_PWM_DBFED_CNT);

Trip zones and comparators used to protect the hardware against overcurrent or overvoltage conditions depend
on the particular hardware used, and it is the responsibility of the end user to make use of all the available
feature of the EPWM and ADC modules to protect the hardware. Also, alternative dead-time implementation
scenarios can be accomplished with the flexibility of the EPWM module, however, the scope of this document is
limited to the functionality of InstaSPIN software, and does not cover all the EPWM implementation scenarios.

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

245

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.2.7 Analog Inputs Configuration

The analog pins must be configured in the software. To illustrate this, consider Figure 5-12, representing how the
analog pins are connected when using a F2806xF device with a DRV8312 Revision D development board.

28069F

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Figure 5-12. Analog Connections

For more details about the ADC configuration, see the TMS320x2806x Technical Reference Guide), the
TMS320x2805x Technical Reference Guide, and the TMS320F2802x, TMS320F2802xx System Control and
Interrupts Reference Guide. For more details about pins related to specific packages, see the TMS320F2806x
Microcontrollers Data Sheet, the TMS320F2805x Microcontrollers Data Sheet, and the TMS320F2802x,
TMS320F2802xx Microcontrollers Data Sheet.

The following code example shows how to configure the ADC input pins to represent the previous diagram. The
lines of code doing the actual configuration are highlighted in the code example. This code is part of the function
HAL_setupAdcs of hal.c file.

ADC_setSocChanNumber (obj->adcHandle,ADC_SocNumber_0,ADC_SocChanNumber_A1);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_0,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_0,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_1,ADC_SocChanNumber_B5);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_1,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_1,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_2,ADC_SocChanNumber_A5);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_2,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_2,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_3,ADC_SocChanNumber_B7);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_3,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_3,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_4,ADC_SocChanNumber_A7);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_4,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_4,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_5,ADC_SocChanNumber_B4);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_5,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_5,ADC_SocSampleDelay_9_cycles);
ADC_setSocChanNumber(obj->adcHandle,ADC_SocNumber_6,ADC_SocChanNumber_B2);
ADC_setSocTrigSrc(obj->adcHandle,ADC_SocNumber_6,ADC_SocTrigSrc_EPWM1_ADCSOCA);
ADC_setSocSampleDelay(obj->adcHandle,ADC_SocNumber_6,ADC_SocSampleDelay_9_cycles);

Managing Motor Signals www.ti.com

246 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5.2.8 PWM Outputs Configuration

Figure 5-13 represents a configuration of the PWM pins, where phase A of the motor is driven by
EPWM1A/EPWM1B, motor phase B by EPWM2A/EPWM2B, and motor phase C by EPWM3A/EPWM3B. This
configuration in hardware is the same as the DRV8312 Revision D board, and it is taken as an example in this
document.

28069F

EPWM1A

EPWM1B

EPWM2A

EPWM2B

EPWM3A

EPWM3B

Figure 5-13. PWM Pin Configuration

For more details about the EPWM configuration, see the TMS320x2806x Technical Reference Guide, the
TMS320x2805x Technical Reference Guide, and the TMS320F2802x, TMS320F2802xx System Control and
Interrupts Reference Guide. For more details about pins related to specific packages, see the TMS320F2806x
Microcontrollers Data Sheet, the TMS320F2805x Microcontrollers Data Sheet, and the TMS320F2802x,
TMS320F2802xx Microcontrollers Data Sheet.

The following code example shows how to setup the PWM pins for the diagram shown above. This code
example is part of the initialization of the driver object (HAL_init), contained in hal.c file. Once the handles are
initialized to use the first three EPWM pairs, the rest of the PWM configuration is done to the initialized handles:

// initialize PWM handle
obj->pwmHandle[0] = PWM_init((void *)PWM_ePWM1_BASE_ADDR,sizeof(PWM_Obj));
obj->pwmHandle[1] = PWM_init((void *)PWM_ePWM2_BASE_ADDR,sizeof(PWM_Obj));
obj->pwmHandle[2] = PWM_init((void *)PWM_ePWM3_BASE_ADDR,sizeof(PWM_Obj));

The highlighted text indicates the correspondence between:

• pwmHandle[0] = EPWM1A/EPWM1B, which will drive phase A of the motor
• pwmHandle[1] = EPWM2A/EPWM2B, which will drive phase B of the motor
• pwmHandle[2] = EPWM3A/EPWM3B, which will drive phase C of the motor.

www.ti.com Managing Motor Signals

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

247

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Managing Motor Signals www.ti.com

248 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.1 Overview..250
6.2 InstaSPIN™ Motor Identification...251
6.3 Motor Identification Process Overview.. 254
6.4 Differences between PMSM and ACIM Identification Process...259
6.5 Prerequisites...260
6.6 Full Identification of PMSM Motors...263
6.7 Full Identification of ACIM Motors.. 279
6.8 Recalibration of PMSM and ACIM Motor Identification...294
6.9 Setting PMSM Motor Parameters in user.h.. 301
6.10 Troubleshooting Motor Identification... 304

Chapter 6
Motor Identification and State Diagrams

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

249

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.1 Overview
We will look at the motor identification function comparing the process differences with identifying ACIM
and PMSM, looking at the detail of each process, and discussing the special cases that require non-typical
procedures.

Some sensorless motor control applications rely on a motor model. This motor model requires knowledge of
certain motor parameters in order to have an accurate representation of the motor. This model is then used to
run an estimator, which will then provide the unknown variables such as rotor flux angle or speed. A problem
occurs when the motor parameters are unknown, or if the parameters change over time. Typically a well-defined
motor is used for an end application, but in some cases, the motor has not been defined or there are several
motors used during the product's life.

A way to determine the motor parameters and keep track of them is to have software that measures motor
parameters. Although identifying the motor is not a must for all applications, it provides an easy and better out of
the box experience to run any given motor sensorlessly. Other algorithms in the marketplace require an intensive
tuning process upfront, even before running the motor in closed loop at all.

The following sections describe in detail the process of motor identification with the InstaSPIN solution.
Significant efforts have been spent on ensuring both the algorithms and steps describe will successfully identify
a large number of motor types. But, one should not expect that the algorithms and steps described will always
successfully identify all motors or motor types. The troubleshooting section mentions a few specific motor types
that require special attention.

Motor Identification and State Diagrams www.ti.com

250 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.2 InstaSPIN™ Motor Identification
The highlighted blocks in Figure 6-1 are related to the InstaSPIN Motor Identification feature.

Figure 6-1. InstaSPIN™ Motor Identification Components

Motor identification is a feature added to InstaSPIN-FOC that allows the identification of the parameters needed
by the estimator to run in closed loop sensorlessly. If the motor parameters are well known by the user, motor
identification is optional. The motor identification feature of InstaSPIN enables users to run their motor to its
highest performance even when motor parameters are unknown. In the case of a known motor or a previously
identified motor, running InstaSPIN's motor identification is optional, since the required motor parameters can be
recorded in a header file. An example of such a header file is user.h. The following example shows the required
parameters for PMSM motors when bypassing motor identification:

#if (USER_MOTOR == User_PMSM)
#define USER_MOTOR_Rs (2.83)
#define USER_MOTOR_Ls_d (0.0115)
#define USER_MOTOR_Ls_q (0.0135)
#define USER_MOTOR_RATED_FLUX (0.502)

The following example shows the required parameters for ACIM motors when bypassing motor identification:

#elif (USER_MOTOR == User_ACIM)
#define USER_MOTOR_Rr (5.5)
#define USER_MOTOR_Rs (10.7)
#define USER_MOTOR_Ls_d (0.053)
#define USER_MOTOR_Ls_q USER_MOTOR_Ls_d
#define USER_MOTOR_MAGNETIZING_CURRENT (1.4)

For more details about the motor parameters needed for PMSM and ACIM motors see Chapter 4.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

251

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Motor identification can be run with both full and minimum implementation of InstaSPIN, see Figure 6-2 and
Figure 6-3. When running motor identification with InstaSPIN's minimum implementation users must include the
provided blocks for field oriented control (FOC) included in InstaSPIN open source library.

HAL_readAdcData

User_SpdRef

User_IqRef

User_IdRef

Angle

Speed

Flux

Torque

Enable Motor Identification

�v��o��W}Á��t���¡�

Motor Type

Enable Rs Online Recalibration

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

Enable Force Angle Startup

Torque

Mode

HAL_acqAdcInt

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

CTRL_run

+
+

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

EST_run

ROM ROM

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

CTRL_setup

PWM

Driver

ADC

Driver

HAL_run

FLASH/RAM

FLASH/RAM

Figure 6-2. Full Implementation of InstaSPIN-FOC™ (F2805xF, F2805xM, F2806xF, and F2806xM Devices)

Motor Identification and State Diagrams www.ti.com

252 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

HAL_acqAdcInt

CTRL_run

CTRL_setup

Figure 6-3. Minimum Implementation of InstaSPIN-FOC™ (F2802xF, F2805xF, F2805xM, F2806xF, and
F2806xM Devices)

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

253

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.3 Motor Identification Process Overview
6.3.1 Controller (CTRL) State Machine

Table 6-1 summarizes all the states shown in Figure 6-4, with a brief description. A more detailed description is
given in this document when the detailed motor identification process is explained.

Table 6-2 summarizes all the state transition conditions shown in Figure 6-4.

Motor running in closed

loop or is being Identified,

depending on Estimator

(EST) State Machine

Hardware

Offsets

RecalibrationIdle Offline

Online

Controller Disabled OR

(Controller Enabled AND

 Estimator Not Idle AND

 �}v[��W��(}�u�>}�l���Z}�}��d���)

Controller Enabled AND

Estimator is Idle AND

(Motor Not Identified OR

(Motor Identified AND

Offset Recalibration Enabled))

(Controller Enabled AND

Estimator is Idle AND

Motor Identified AND

Offset Recalibration Disabled) OR

(Estimator Not Idle AND

Perform Locked Rotor Test)

Controller Enabled AND

Wait Not Expired

Controller Disabled

Controller Enabled AND

Wait Expired

Controller Enabled AND

(Estimator Not In Locked Rotor OR

Estimator Not Idle)

Controller Enabled AND

((Estimator Idle AND

Motor Identified AND

Offset Recalibration Disabled) OR

(Estimator Not Idle AND

Perform Locked Rotor Test))

Start

Figure 6-4. Controller (CTRL) State Diagram

Table 6-1. Controller (CTRL) States
Controller State Brief Description
Start The start state is only shown as a starting point of the entire state machine. However it does not actually

exist in the controller state machine.

Idle
CTRL_State_Idle

This state is present when the controller is waiting for user's input to start. This state is also present
when the system is waiting for user's input to start doing the locked rotor test when identifying AC
Induction Motors.

Offline
CTRL_State_OffLine

The hardware offsets calibration is done during this state of the controller

Online
CTRL_State_OnLine

Motor is running in closed loop, or is being identified. The entire estimator (EST) state machine is run
when the controller (CTRL) state machine is Online

Motor Identification and State Diagrams www.ti.com

254 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 6-2. State Transitions for Controller (CTRL) State Diagram
Condition Brief Explanation
Controller Disabled This condition is present when the controller has not been enabled, can be checked with the following

instruction:
if(CTRL_getFlag_enableCtrl(ctrlHandle)== FALSE)
Also, the controller can be disabled at any time with user's code by calling the following function with the
indicated parameter:
CTRL_setFlag_enableCtrl(ctrlHandle,FALSE);

Controller Enabled This condition is present when the controller has been enabled, can be checked with the following
instruction:
if(CTRL_getFlag_enableCtrl(ctrlHandle)== TRUE)
The controller can be enabled by using:
CTRL_setFlag_enableCtrl(ctrlHandle,TRUE);

Estimator Not Idle This condition is present when the estimator state is any state other than Idle. Can be checked with the
following instruction:
if(EST_getState(obj->estHandle)!=EST_State_Idle)

Estimator Is Idle This condition is present when the estimator state is in the Idle state. Can be checked with the following
instruction:
if(EST_getState(obj->estHandle)==EST_State_Idle)

Don't Perform Locked Rotor Test This condition is internally checked in the state machine of the estimator, and is not publicly accessible
with user's code. This condition is only checked internally when the motor type is set to induction motor.

Perform Locked Rotor Test Same explanation as in "Don't Perform Locked Rotor Test."

Motor Not Identified This condition is true when the motor has not been identified, or when user motor's parameters haven't
been loaded into the controller object. The Motor Not Identified condition can be checked by using the
following example:
if(EST_isMotorIdentified(obj->estHandle)== FALSE)

Motor Identified After motor identification is completed, or after user motor's parameters are loaded into the controller,
the motor identified condition is true. This condition can also be checked by using the following example:
if(EST_isMotorIdentified(obj->estHandle)==TRUE)

Offset Recalibration Enabled This condition is true when the hardware offsets recalibration has been enabled. Offsets recalibration is
enabled by default. This can be checked with the following instruction example:
if(CTRL_getFlag_enableOffset(ctrlHandle)==TRUE)

Offset Recalibration Disabled When hardware offsets recalibration has been disabled, this condition is true. It can be checked using
the following example:
if(CTRL_getFlag_enableOffset(ctrlHandle)==FALSE)

Wait Not Expired This is an internal condition which is checked while the offset recalibration is being executed. The time
taken by the offset recalibration is defined by the following instruction in user.c file:
pUserParams->ctrlWaitTime[CTRL_State_OffLine] =
(uint_least32_t)(5.0 * USER_CTRL_FREQ_Hz);
Where the USER_CTRL_FREQ_Hz is defined in user.h.

Estimator Not In Locked Rotor This condition is present when the estimator state machine is not in locked rotor test. Such condition can
be checked by the user using the following instruction example:
if(EST_getState(obj->estHandle) !=EST_State_LockRotor);

Wait Expired The state transitions that have time dependencies are based on an internal counter compared to the
value stored in the respective wait time in user.c:
uint_least32_t ctrlWaitTime[CTRL_numStates];

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

255

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.3.2 Estimator (EST) State Machine

Table 6-3 summarizes all the states shown in Figure 6-5, with a brief description. A more detailed description is
given in this document when the detailed motor identification process is explained.

Table 6-4 summarizes all the state transition conditions shown in Figure 6-5.

Start Idle Rs

Online

RoverL

Id

Rated

Rated

Flux

Ramp

Up

Rated

Flux

OL

Ramp

Down

Lock

Rotor

Ls

Motor

Ident

Rr

Controller

Disabled

Motor Is Not

Identified

Motor is Identified AND

Rs Recalibration Enabled

Wait Expired

Wait Expired AND

Motor Is Identified

Controller Enabled

Controller

Disabled

Wait

Expired

Wait Expired

AND

Motor Is

Identified

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired
Wait

Expired

Wait Expired

AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is an

ACIM

Wait Expired

AND

Motor Is Not

an ACIM

Controller

Enabled

Controller

Disabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM

Wait

Expired

Motor is Identified AND

Rs Recalibration Disabled AND

Controller Enabled

Figure 6-5. Estimator (EST) State Diagram

Table 6-3. Estimator (EST) States
Estimator State Brief Description
Start The start state is only shown as a starting point of the entire state machine. However it does not

actually exist in the estimator state machine.

Idle
EST_State_Idle

During the idle state, the estimator state machine does not execute any code. It is simply waiting
for the controller state machine to change the state of the estimator.

RoverL
EST_State_RoverL

The R over L state of the estimator is executed during the motor identification process in order to
measure the electrical constant of the motor. The resulting R over L ratio is used at the end of this
state to calculate the ID and IQ current controller gains.

Rs
EST_State_Rs

The estimator is in the Rs state when identifying the stator resistance of the motor for the first
time, or when it is recalibrating the stator resistance after the motor has been fully identified.

Motor Identification and State Diagrams www.ti.com

256 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 6-3. Estimator (EST) States (continued)
Estimator State Brief Description
Online
EST_State_OnLine

The online state of the estimator is present when the motor is operating in closed loop. In order to
be in this state, the motor had to be fully identified or motor parameters had to be provided to a
header file in user.h, and the controller had been run. This is the state where the speed reference
can be changed, and when full load can be applied to the motor's shaft.

Ramp Up
EST_State_RampUp

The ramp up state of the estimator is to get the motor spinning up to a configured frequency in
order to perform other identification tasks, such as flux and inductance identification. During this
state, there aren't any parameters estimated, it only spins the motor up to a certain frequency.

Rated Flux OL
EST_State_RatedFluxOL

This is a transitional state of the estimator prior to identifying the rated flux of the machine.

Rated Flux
EST_State_RatedFlux

During this state, the flux linkage of the motor from the rotor to the stator is identified.

Id Rated
EST_State_IdRated

Only applicable to ACIM motors, this state is present when the motor's magnetizing current is
being identified for the commanded flux defined in user.h.

Ls
EST_State_Ls

The stator inductance is identified during this state of the estimator.

Rr
EST_State_Rr

Only applicable to ACIM motors, during this state, the rotor resistance is identified. The rotor must
be locked in order to perform the rotor resistance identification.

Lock Rotor
EST_State_LockRotor

This state is used to let users know that the rotor must be locked, and then controller must
be re-enabled after rotor is locked, to proceed with the rest of the identification process. The
controller is put in idle when the estimator is in lock rotor state.

Ramp Down
EST_State_RampDown

After all parameters of the motor have been identified, the ramp down state is present to allow
some time to remove the currents flowing through the motor windings. No parameters are
identified during this state since it is only a transitional state before the end of the identification
process.

Motor Ident
EST_State_MotorIdentified

The motor identified state is also a transitional state to let the estimator state machine know that
the motor is fully identified, and after this state is done, the state machine is put back in idle. The
controller state machine is also put in idle state after the motor identified state is finished.

Table 6-4. State Transitions for Estimator (EST) State Diagram
Condition Brief Explanation
Motor Is Not Identified Explained in the controller state machine

Motor Is Identified Explained in the controller state machine

Rs Recalibration Disabled The stator resistance recalibration feature of InstaSPIN, also known as Rs Offline recalibration, is used
when the motor is at stand still, right before running the motor in closed loop when the motor has been
fully identified, or when motor parameters have been provided by the user in user.h file. This condition
where the Rs recalibration is disabled is present when this feature has been disabled, which can be
checked using the following code example:
if(EST_getFlag_enableRsRecalc(obj->estHandle)==FALSE)
The Rs recalibration feature can be disabled by calling this function with the indicated parameter before
enabling the controller:
EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);
The Rs recalibration feature is enabled by default.

Rs Recalibration Enabled This condition where the Rs recalibration is enabled is present when this feature has been enabled,
which can be checked using the following code example:
if(EST_getFlag_enableRsRecalc(obj->estHandle)==TRUE)
The Rs recalibration feature can be enabled by calling this function with the indicated parameter before
enabling the controller:
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);
The Rs recalibration feature is enabled by default.

Controller Disabled Explained in the controller state machine

Controller Enabled Explained in the controller state machine

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

257

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 6-4. State Transitions for Estimator (EST) State Diagram (continued)
Condition Brief Explanation
Motor Is Not an ACIM This condition is true when the motor type is not an ACIM, which can be checked by the following

example:
if(CTRL_getMotorType(ctrlHandle)!=MOTOR_Type_Induction)

Motor Is an ACIM This condition is true when the motor type is an ACIM, which can be checked by the following example:
if(CTRL_getMotorType(ctrlHandle)==MOTOR_Type_Induction)

Wait Expired The state transitions that have time dependencies are based on an internal counter compared to the
value stored in the respective wait time in userParams.h:
uint_least32_t estWaitTime[EST_numStates];
uint_least32_t FluxWaitTime[EST_Flux_numStates];
uint_least32_t LsWaitTime[EST_Ls_numStates];
uint_least32_t RsWaitTime[EST_Rs_numStates];

6.3.3 Controller (CTRL) and Estimator (EST) State Machine Dependencies

The controller state machine governs the estimator state machine. In fact, all of the estimator state transitions
happen only when the controller state is Online. To illustrate this, consider the following simplified controller state
machine (Figure 6-6), with a magnified online state showing the entire state machine of the estimator inside of it.

Idle OfflineStart

CTRL State == Online

EST State Machine

Figure 6-6. Controller and Estimator State Diagrams - Dependency Shown

Motor Identification and State Diagrams www.ti.com

258 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.4 Differences between PMSM and ACIM Identification Process
There are certain states during the identification of the motors that differ between a PMSM and an ACIM motor.
Figure 6-7 highlights the states that are related to PMSM motors, the ones related to ACIM motors, and also the
states that are related to both.

Start Idle Rs

Online

RoverL

Id

Rated

Rated

Flux

Ramp

Up

Rated

Flux

OL

Ramp

Down

Lock

Rotor

Ls

Motor

Ident

Rr

Controller

Disabled

Motor Is Not

Identified

Motor is Identified AND

Rs Recalibration Enabled

Wait Expired

Wait Expired AND

Motor Is Identified

Controller Enabled

Controller

Disabled

Wait

Expired

Wait Expired

AND

Motor Is

Identified

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired
Wait

Expired

Wait Expired

AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is an

ACIM

Wait Expired

AND

Motor Is Not

an ACIM

Controller

Enabled

Controller

Disabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM

Wait

Expired

Motor is Identified AND

Rs Recalibration Disabled AND

Controller Enabled

Applicable to

both PMSM and

ACIM Motors

Only Applicable to

PMSM Motors

Only Applicable to

ACIM Motors

Figure 6-7. PMSM and ACIM States in EST State Diagram

As a supplement to Figure 6-7, consider Table 6-5, listing all the states, and the motors to which they apply.

Table 6-5. Listing of PMSM and ACIM EST States
Motors the State Applies to Estimator States
Both PMSM and ACIM Idle, Online, R over L, Rs, Ramp Up, Rated Flux, Ls, Ramp Down and Motor Identified

ACIM Only Id Rated, Lock Rotor and Rr

PMSM Only Rated Flux OL

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

259

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.5 Prerequisites
There are several prerequisites in order to have a successful identification of a PMSM motor. The following
sections describe these prerequisites grouped in three main areas: mechanical, hardware and software
prerequisites.

6.5.1 Mechanical Prerequisites
6.5.1.1 Motor Connection

Before running motor identification, the motor must be connected to the driver board. This board can be a
development board or a user's board, in either case the software needs to be configured to operate with the
specific board.

6.5.1.2 Order of the Phases

The order of the phases to be connected to the board does not matter for controlling the dynamics of the motor,
except direction. If direction is important, it is recommended to connect the motor for the required direction prior
to starting identification. If the direction of the motor rotation is not the desired direction, swap two of the motor
phases, and the direction will reverse. Then try the identification again.

6.5.1.3 Minimum Mechanical Load

It is also important to have as minimum mechanical load as possible. This is because the identification runs
a series of motor tests, some of them in open loop. These open loop tests do not have the ability to produce
maximum torque on the motor's shaft hence it is required to have the motor's shaft with as little load as possible,
knowing that no load is ideal. Section 6.10.1.1 covers some guidelines to follow when identifying motors when
the mechanical load cannot be removed, such as in a compressor or direct drive washing machine.

6.5.2 Hardware Prerequisites

For more details, see Chapter 5.

6.5.3 Software Prerequisites

For more details, see Chapter 5.

6.5.4 Software Configuration for PMSM Motor Identification

• Motor Type
• Number of Pole Pairs
• Frequency for Rhf and Lhf
• Current for Rs
• Current for Ls
• Frequency for Ls and Flux

6.5.4.1 Motor Type

User must know their motor type in order to run motor identification. For PMSM motor identification, set the
following definition to PMSM motor type (MOTOR_Type_Pm) as shown below. This definition is in user.h:

#define USER_MOTOR_TYPE MOTOR_Type_Pm

If the wrong motor is selected, for example a PMSM when an ACIM motor is connected, the estimator will not
be able to identify the correct parameters. Motor identitication cannot identify what type of motor is connected,
instead it identifies the motor parameters. Having the correct motor definition specified is required, otherwise
motor identification will not work.

Motor Identification and State Diagrams www.ti.com

260 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.5.4.2 Number of Pole Pairs

The number of pole pairs is not critical but should be set correctly in order to have a correct measurement of
speed in revolutions per minute (RPM) and torque. For example, consider a motor with four pole pairs. The
following code example shows how this is set in user.h:

#define USER_MOTOR_NUM_POLE_PAIRS (4)

6.5.4.3 Frequency for Rhf and Lhf

This frequency is used by the motor identification algorithm to estimate initial values for stator resistance and
stator inductance in order to calculate current controller gains. This estimation is done at this frequency, set by
default to 100 Hz as shown in the following code example from user.h:

//! \brief Defines the R/L estimation frequency, Hz
//!
#define USER_R_OVER_L_EST_FREQ_Hz (100)

This frequency will be covered in more detail in the identification procedure discussed in upcoming sections of
this document.

6.5.4.4 Current for Rs

The stator resistance is estimated by injecting a constant current, which is set by this parameter. Although this
part of the identification process will be explained in detail, a general guideline to set this value is 10% to 20%
of the rated phase current of the motor. For example, if a motor requires 4 A to produce rated torque, then the
current to estimate the stator resistance (Rs) should be around 0.5 A.

#define USER_MOTOR_RES_EST_CURRENT (0.5)

Later in the motor identification process, this current is also used to get the motor spinning in open loop. If the
motor does not spin through the entire ramp up process, increase in 10% of the rated current increments until
the shaft is in motion during the entire ramp up process.

6.5.4.5 Current for Ls

As a general rule, the current commanded to estimate the stator inductance (Ls) should be 10% to 20% of
the rated phase current (negative current). Considering the same example as the resistance estimation, if we
consider the same motor, with 4 A of rated current, the recommended current would be about -0.5A, as shown
below:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)

Keep in mind that the current used to estimate Ls is independent of the current used for Rs identification. Even
though the general guideline for both currents is 10-20% of the rated current of the motor, if the motor required
more current for Rs in order to get it through the open loop ramp, the Ls current might not need to as high since
the motor is already spinning.

6.5.4.6 Frequency for Ls and Flux

This frequency is used to ramp up the motor being identified to estimate the stator inductance (Ls) and flux.
Typically, for PMSM motors a frequency of 20 Hz is high enough to estimate a stator inductance from a few tens
of µH and higher. If the inductance is known to be in the single digits of µH and lower, then a higher frequency
is recommended, up to 60 Hz for very low inductances. As an example, consider the Anaheim motor from the
DRV8312 kit (Revision D board):

#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

If the typical value of 20 Hz exceeds the rated speed of the motor, set the frequency lower to stay less than the
motor's rated speed.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

261

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.5.5 Software Configuration for ACIM Motor Identification

• Motor Type
• Number of Poles
• Frequency for Rhf and Lhf
• Rated Flux
• Current for Rs
• Frequency for IdRated, Ls and Rr

6.5.5.1 Motor Type

As stated earlier, user must know their motor type in order to run motor identification. For ACIM motor
identification, set the following definition to ACIM motor type (MOTOR_Type_Induction) as shown below. This
definition is in user.h:

#define USER_MOTOR_TYPE MOTOR_Type_Induction

6.5.5.2 Number of Pole Pairs

The same criteria needs to be followed as explained in Section 6.5.4.2.

6.5.5.3 Frequency for Rhf and Lhf

The same criteria needs to be followed as explained in Section 6.5.4.3.

6.5.5.4 Rated Flux

The rated flux for an ACIM motor is required for a full identification. This rated flux is set in user.h as follows:

#define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0)

The way this flux is calculated is by the name plate of the motor. For example, if the motor is rated for single
phase 220VAC and 60 Hz then this value is calculated as follows:

1 220VAC 220VAC
RatedFlux 2 0.8165 2.9938

60Hz 60Hz3
= ´ ´ = ´ =

(9)

Another example is a motor with the same input voltage of 220 VAC but a rated frequency of 50 Hz. This would
result in a rated flux of:

1 220VAC 220VAC
RatedFlux 2 0.8165 3.5926V / Hz

50Hz 50Hz3
= ´ ´ = ´ =

(10)

The 2 sqrt 2 term is to convert single phase RMS voltage value to peak voltage, and the 1 3 1 over sqrt 3 term
is to convert motor line-to-line voltage to motor line-to-neutral voltage. Based on the rated flux of a given motor,
it is to identify the Id Rated current for half of the rated flux. In such a case, simply enter the desired flux or a
portion of it. Notice that the voltage needed to calculate rated flux is in the motor line to motor neutral, hence the
conversion from 220 VAC (motor line to motor line) to VDC (from motor line to motor line), and then from VDC
(from motor line to motor line) to VDC (from motor line to motor neutral).

6.5.5.5 Current for Rs

The same criteria needs to be followed as explained in Section 6.5.4.4.

6.5.5.6 Frequency for IdRated, Ls and Rr

This frequency is used to ramp up the motor being identified, in order to estimate the Id Rated current, stator
inductance and rotor resistance of the ACIM motor. A typical frequency used for induction motors is 5 Hz:

#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

Motor Identification and State Diagrams www.ti.com

262 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6 Full Identification of PMSM Motors
When running full identification of PMSM motors, Figure 6-8 shows the sequence of events that happen inside of
the controller and estimator state machines.

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

RoverL

EST_State_RoverL

Rs

EST_State_Rs

RampUp

EST_State_RampUp

RatedFlux_OL

EST_State_RatedFlux_OL

MotorIdentified

EST_State_MotorIdentified

RatedFlux

EST_State_RatedFlux

Ls

EST_State_Ls

RampDown

EST_State_RampDown

Idle

CTRL_State_Idle

Idle

EST_State_Idle

CTRL State Machine EST State Machine

CTRL_setFlag_enableCtrl(ctrlHandle,TRUE);

Figure 6-8. Full PMSM Identification - CTRL and EST Sequence of States

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

263

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Prior to enabling the controller, the code knows that a full motor identification will be done when these two
conditions are true:

1. motor has not been identified
2. no parameters are used from user.h.

if((EST_isMotorIdentified(obj->estHandle) == FALSE) &&
 (CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))

In the next sections of this document, each state during the identification is explained.

6.6.1 CTRL_State_Idle and EST_State_Idle

Before the controller is enabled both the controller and estimator state machines are in the idle state, denoted by
CTRL_State_Idle and EST_State_Idle. This is also known as the inactive state of both state machines.

6.6.2 CTRL_State_OffLine and EST_State_Idle (Hardware Offsets Calibrated)

As soon as the controller is enabled, and full identification starts, the first task performed by the controller
state machine is the offset calculation. This is denoted by the state of the controller state machine named:
CTRL_State_OffLine. The estimator state stays in the idle state (EST_State_Idle) during the controller offline
state.

The offsets calculation is done in order to set the zeros for current measurements and voltage measurements. In
order to calculate the offsets, a 50% duty cycle is set on the EPWM pins for a pre-configured period of time. The
time in which these offsets are calculated can be changed by the user, and it is configured in user.c file as shown
below:

pUserParams->ctrlWaitTime[CTRL_State_OffLine]=(uint_least32_t)(5.0*USER_CTRL_FREQ_Hz);

In the example above, the offsets calibration is done for a period of 5 seconds. Although 5 seconds for offset
calibration is enough for most of the hardware, if the user requires a shorter or longer time for their particular
needs, simply change the 5.0 value of the line of code above, and the time to do offset calibration will change
according to the new setting.

Once the offset calibration is done, the final result will be stored in the driver object (HAL_Obj). For more details
about HAL_Obj, see Chapter 3. Figure 6-9 shows the final results of calibrating the offsets for the DRV8312
Revision D board.

Figure 6-9. CCStudio Watch Window after Offset Calibration

The current offsets, also known as bias values, ideally should be:

bias 0.5 Current _ sƒ= ´ (11)

Note: for definitions of the variables used in the following equations, see Section 4.1.

Motor Identification and State Diagrams www.ti.com

264 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

This current scale factor (Current_sf or USER_CURRENT_SF) is calculated in the following example with values
for the DRV8312 board revision D:

USER_ADC_FULL_SCALE_CURRENT_A
USER_CURRENT_SF 1.769

USER_IQ_FULL_SCALE_CURRENT_A
= = =

17.69

10.0

1.65
Current_Bias

Ideal

3.3
= ´ USER_CURRENT_SF = 0.5 1.769 = 0.8845´

(12)

The 0.5 value comes from the fact that the current feedback circuit is bidirectional, providing an ideal zero at
VDD/2, or 1.65V.

The voltage bias is calculated as follows. First, the voltage scale factor is done as shown here:

USER_ADC_FULL_SCALE_VOLTAGE_V
USER_VOLTAGE_SF 1.3817

USER_IQ_FULL_SCALE_VOLTAGE_V
= = =

66.32

48.0

VBUS

2Voltage_Bias
Ideal

USER_VOLTAGE_SF
USER_ADC_FULL_SCALE_VOLTAGE_V

= ´ = 0.25

(13)

The ideal voltage bias is based on the fact that when introducing a 50% duty cycle to measure these offsets,
the phase voltage will present a voltage close to VBUS * 50%, and then this is scaled down depending on the
maximum voltage measured by the ADC. Considering a DRV8312 revision D board with a VBUS of 24V, the
ideal voltage bias results in 0.25, as shown below:

24

2Voltage_Bias
Ideal

1.3817 = 0.25
66.32

= ´

(14)

In the oscilloscope plot shown in Figure 6-10, the 50% duty cycle is shown, as well as the cursors measuring the
5 second period to do the offset calibration. On the left plot, no PWM can be seen due to the resolution of the
horizontal scaling. On the left side, 1.65 V of amplitude is shown, which represents a 50% duty cycle of a 3.3 V
signal. On the right side, the actual PWM signal is shown zoomed in to 50 µs per division.

Offset Recalibration

for 5 seconds

At 50% Duty Cycle

CTRL_State_Idle

EST_State_Idle

CTRL_State_OnLine

EST_State_RoverL

CTRL_State_OffLine

EST_State_Idle

Figure 6-10. 50% PWM Duty for Offset Calculation

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

265

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.3 CTRL_State_OnLine and EST_State_RoverL

Once the offsets, also known as bias, are calibrated, the estimator is enabled and the following state of the
identification process is started. The first state of the estimator state machine to be executed after being idle, is
known as the R-over-L state, or RoverL (Figure 6-11).

Start Idle RoverL

Motor Is Not

Identified

EST States

Figure 6-11. RoverL EST State

This state of the estimator is used to measure the electrical time constant of the stator circuit by dividing the
measured resistance and inductance. The RoverL time constant is used by the controller object in order to
set the current controller gains, KP and KI of both IQ and ID current controllers. If the motor identification is
bypassed, parameters provided in user.h are used to set the current controller gains.

The process of measuring the RoverL time constant is done by injecting a current of fixed amplitude, at a
fixed frequency to the stator windings. Each of the injected current parameters is described below: amplitude,
frequency and measurement time.

6.6.3.1 Amplitude of Injected Current for RoverL

In order to determine the amplitude of the current to be injected into the stator, the following parameter from
user.h (USER_MOTOR_RES_EST_CURRENT) is divided by 2.

For example, the following parameter in user.h having a value of 1.0 for USER_MOTOR_RES_EST_CURRENT
would inject ½ of the value, or 0.5 A. The ramp rate of this injected current is 0.5 seconds to reach the target
current amplitude.

#define USER_MOTOR_RES_EST_CURRENT (1.0)

As a general guideline this current needs to be high enough to produce significant number of bits in the ADC
measurement, but not too high that causes motor motion or motor overheating. This general rule results in a
current of approximately 10% to 20% of the rated phase current of the motor.

6.6.3.2 Frequency of Injected Current for RoverL

The frequency of the current injection used to calculate RoverL is set by the following parameter in user.h,
specifying the frequency in Hz.

//! \brief Defines the R/L estimation frequency, Hz
//!
#define USER_R_OVER_L_EST_FREQ_Hz (100)

For high speed motors, the default value of 100 Hz might cause the motor to spin or move back and forth. If that
is the case for the motor under test, increase this frequency to a higher value using 50 Hz increments until the
motor does not move at all during the R over L state.

6.6.3.3 Measurement Time for RoverL

The third parameter to consider when doing the R over L measurement is the time to do this measurement. This
is configured in user.c as follows, and can be changed if needed, although the default setting would work for
most of the cases:

pUserParams->estWaitTime[EST_State_RoverL] = (uint_least32_t)(5.0 * USER_EST_FREQ_Hz);

Figure 6-12 shows how this current is injected. The configured parameters are highlighter in red, 5 seconds
duration, 1.0 A / 2 = 0.5 A of current amplitude, and 100 Hz.

Motor Identification and State Diagrams www.ti.com

266 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0.5 s

Frequency = 100 Hz5 s

0.5 A

CTRL_State_OnLine

EST_State_RoverL

CTRL_State_OffLine

EST_State_Idle
CTRL_State_OnLine

EST_State_Rs

Figure 6-12. Injected Current for Measuring RoverL EST State

The resulting value of the R-over-L state can be read from the estimator by calling the following function,
returning the RoverL ratio.

// Code example to get RoverL into a variable
float_t RoverL = CTRL_getRoverL(ctrlHandle);

Another method of checking the resulting estimation of the RoverL state is by calling two functions, one for
the high frequency resistance estimation (Rhf) and one for the high frequency inductance estimation (Lhf). The
following code example uses these two functions to have local copies of the resulting value during the RoverL
state:

// Code example to get high frequency R (Rhf) and high frequency inductance
// (Lhf) to variables
float_t Rhf = CTRL_getRhf(ctrlHandle);
float_t Lhf = CTRL_getLhf(ctrlHandle);
float_t RoverL = Rhf/Lhf;

The resulting RoverL calculated in the above code example is identical to what the function CTRL_getRoverL()
returns.

If motor identification is bypassed, users can use the following code example to calculate RoverL constant based
on parameters provided in user.h file:

// Code example to get RoverL into a variable based on user.h parameters
#define USER_MOTOR_Rs (4.0)
#define USER_MOTOR_Ls_d (0.03)
float_t RoverL = USER_MOTOR_Rs/USER_MOTOR_Ls_d;

Ultimately, the RoverL ratio is used by the controller object (CTRL_Obj) to initialize the current controller gains
according to this ratio. Figure 6-13 shows how the current controller gains are internally set by the controller
object (CTRL_Obj). The code listing shown here is for illustration purposes only, to show the math behind the
initial setting of the current controllers. Since the code is implemented internally in the controller, user does not
need to implement it.

// get the full scale current and voltage values from #defines in user.h
#define USER_IQ_FULL_SCALE_CURRENT_A (10.0)
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)
// deriving controller period in seconds from #defines in user.h
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_PWM_FREQ_kHz (15.0)
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)
#define USER_ISR_PERIOD_usec USER_PWM_PERIOD_usec
#define USER_CTRL_PERIOD_usec (USER_ISR_PERIOD_usec*USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_CTRL_PERIOD_sec ((float_t)USER_CTRL_PERIOD_usec/(float_t)1000000.0)
// get Lhf and RoverL from the controller object
float_t RoverL = CTRL_getRoverL(ctrlHandle);
float_t Lhf = CTRL_getLhf(ctrlHandle);

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

267

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// get full scale current and voltage values in local variables
float_t fullScaleCurrent = USER_IQ_FULL_SCALE_CURRENT_A;
float_t fullScaleVoltage = USER_IQ_FULL_SCALE_VOLTAGE_V;
// get the controller period in seconds in a local variable
float_t ctrlPeriod_sec = USER_CTRL_PERIOD_sec;
// get the controller object handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// set the Id controller gains
Kp = _IQ((0.25*Lhf*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
Ki = _IQ(RoverL*ctrlPeriod_sec);
Kd = _IQ(0.0);
PID_setGains(obj->pidHandle_Id,Kp,Ki,Kd);
PID_setUi(obj->pidHandle_Id,_IQ(0.0));
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Id,Kp,Ki,Kd);
// set the Iq controller gains
Kp = _IQ((0.25*Lhf*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
Ki = _IQ(RoverL*ctrlPeriod_sec);
Kd = _IQ(0.0);
PID_setGains(obj->pidHandle_Iq,Kp,Ki,Kd);
PID_setUi(obj->pidHandle_Iq,_IQ(0.0));
CTRL_setGains(ctrlHandle,CTRL_Type_PID_Iq,Kp,Ki,Kd);

Figure 6-13. Internal Code that Sets Kp and Ki Initial Gains for Current Controllers

6.6.3.4 Troubleshooting Current Controller Stability During RoverL Identification

See Section 6.10.

6.6.3.5 Adjusting Resulting Current Controller Gains for High-Speeds

As can be seen, both ID and IQ current controllers are initialized with the same gains, calculated from RoverL
and Lhf. The 0.25 factor is also introduced in the proportional gain of these two controllers. This factor is to set
the proportional gain to ¼ of the theoretical limit. In applications where the motor needs to be run at much higher
speeds compared to its rated speed, that is, with field weakening, the proportional gains of both Id and Iq current
controllers need to be scaled up to 4 times to get the gains to the theoretical limit. A simple way to scale these
gains up to 4 is by using the following code example:

_iq Kp_Id = CTRL_getKp(handle,CTRL_Type_PID_Id);
_iq Kp_Iq = CTRL_getKp(handle,CTRL_Type_PID_Iq);
CTRL_setKp(handle,CTRL_Type_PID_Id, _IQmpy(Kp_Id, _IQ(4.0)));
CTRL_setKp(handle,CTRL_Type_PID_Iq, _IQmpy(Kp_Iq, _IQ(4.0)));

If the user would like to confirm that the current controller gains are set after the RoverL time constant has set
the current controller, the following code example can be used:

// declare global variables for the Id controller gains
_iq gKp_Id, gKi_Id, gKd_Id;
// declare global variables for the Iq controller gains
_iq gKp_Iq, gKi_Iq, gKd_Iq;
// get the current controller gains for the Id controller
CTRL_g etGains(ctrlHandle,CTRL_Type_PID_Id,&gKp_Id,&gKi_Id,&gKd_Id);
// get the current controller gains for the Iq controller
CTRL_g etGains(ctrlHandle,CTRL_Type_PID_Iq,&gKp_Iq,&gKi_Iq,&gKd_Iq);

If the user chooses to bypass the gains set by the RoverL constant and decides to use their own gains, user
simply needs to use the following functions to set the current controller gains, which are implemented in ctrl.h:

void CTRL_setKi(CTRL_Handle handle,const CTRL_Type_e ctrlType,const _iq Ki);
void CTRL_setKp(CTRL_Handle handle,const CTRL_Type_e ctrlType,const _iq Kp);
void CTRL_setGains(CTRL_Handle handle,const CTRL_Type_e ctrlType,
 const _iq Kp,const _iq Ki,const _iq Kd);

Motor Identification and State Diagrams www.ti.com

268 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.4 CTRL_State_OnLine and EST_State_Rs

This state of the identification process performs the identification of the stator resistance (Figure 6-14).

Idle RsRoverL
Motor Is Not

Identified

Wait Expired

EST States

Figure 6-14. Rs EST State

A DC current is injected into the D-axis with the amplitude defined in user.h as follows:

#define USER_MOTOR_RES_EST_CURRENT (1.0)

Note that this current is the same definition used for RoverL state, although RoverL uses half of this value,
and the Rs state uses the full value in the definition. The injected current should be high enough to generate
a significant measurement in the ADC converter, and at the same time low enough to avoid motor overheating.
Typically, 10% to 20% of the rated current of the motor is enough to produce an accurate estimation of the stator
resistance.

The time interval for this state is set by three time values in user.c, as follows:

pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Coarse] = (uint_least32_t)(2.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(4.0*USER_EST_FREQ_Hz);

By default, the entire process of identifying the stator resistance, Rs, takes 7 seconds. The first part of the
Rs identification process is a ramp-up time of 1 second. During this time, the defined DC current is injected
into the D-axis. Once the ramp-up time is expired, the Rs identification process starts with a coarse tuning
of the identified Rs. The coarse process takes the time defined previously by the time stored in RsWaitTime
[EST_Rs_State_Coarse]. By default this time is set to 2 seconds, and it is known to be enough time to do a
coarse calibration of all the motors tested for the InstaSPIN library release. However the time setup is flexible so
users can tune if required, although tuning is not foreseen to be required.

Once the coarse process has finished, the fine Rs recalibration starts. The time taken by the identification
process to complete the fine Rs recalibration is set by default to 4 seconds, and again the user has flexibility to
change this by modifying the value stored in RsWaitTime [EST_Rs_State_Fine].

Figure 6-15 shows the entire Rs identification process, highlighting ramp times, amplitudes and duration of the
process.

The user can monitor how the resistance is being estimated using the following code example. This is useful
especially when tuning the amount of time spent identifying the resistance.

// get the stator resistance
gMotorVars.Rs_Ohm = EST_getRs_Ohm(obj->estHandle);

For example, monitoring the resistance value while it is being identified gives the user feedback on the amount
of time required for the identified resistance to be stable. The time for the identified resistance to be stable can
be configured in file user.c so next time the motor is identified the process is faster.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

269

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1 s 2 s 4 s

CTRL_State_OnLine

EST_State_Rs

CTRL_State_OnLine

EST_State_RoverL
CTRL_State_OnLine

EST_State_RampUp

1 A

7 s

EST_Rs_State_RampUp

EST_Rs_State_Coarse

EST_Rs_State_Fine

Figure 6-15. Phase Current During Rs Identification EST State

6.6.4.1 Troubleshooting Current Controller Stability During Rs Identification

See Section 6.10.

Motor Identification and State Diagrams www.ti.com

270 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.5 CTRL_State_OnLine and EST_State_RampUp

After the stator resistance is done, a new estimator state is executed. This next state is called the Ramp-Up
state, or EST_State_RampUp. During this state of the identification process, the motor is accelerated to a certain
speed to start identification of other parameters. During this state, there is no identification of any parameters,
but the conditions are started. Several factors influence this state.

6.6.5.1 Ramp-Up Current Amplitude

The first one is the amplitude of the currents used for the ramp-up process. This current is again the amplitude
used for the stator resistance identification. Figure 6-16 shows a definition of this current, and in this case, 1 A is
used for the ramp:

#define USER_MOTOR_RES_EST_CURRENT (1.0)

Idle RsRoverL

Ramp

Up

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

EST States

Figure 6-16. Ramp-Up EST State

6.6.5.1.1 Troubleshooting Motor Shaft Stopping During Ramp-Up

See Section 6.10.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

271

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.5.2 Ramp-Up Time and Acceleration

The next parameter during the ramp-up state is the period of time while the motor is ramped up (Figure 6-17).
This is set by default to 20 seconds as shown in the next code example from user.c file:

pUserParams->estWaitTime[EST_State_RampUp] = (uint_least32_t)(20.0*USER_EST_FREQ_Hz);

a

b

c

t

Freq

a = estWaitTime[EST_State_RampUp]

b = USER_MAX_ACCEL_EST_Hzps

c = USER_MOTOR_FLUX_EST_FREQ_Hz

Figure 6-17. Ramp-Up Timing

This time can be changed to any desired value. Figure 6-18, taken using a current probe to measure phase
current, shows the ramp up state time.

CTRL_State_OnLine

EST_State_RampUp

20 sCTRL_State_OnLine

EST_State_RoverL

CTRL_State_OnLine

EST_State_Rs

CTRL_State_OffLine

EST_State_Idle

CTRL_State_OnLine

EST_State_RatedFlux

Figure 6-18. Phase Current During RampUp EST State

The acceleration of this ramp is another parameter set in user.c, which can be changed according to user
requirements. In the same example of a high inertia load, this acceleration can be changed. The default value of
the ramp-up acceleration is set to 2.0 Hz/s as shown below:

//! \brief Defines maximum acceleration for the estimation speed profiles, Hz/s
#define USER_MAX_ACCEL_EST_Hzps (2.0)

Motor Identification and State Diagrams www.ti.com

272 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.5.2.1 Troubleshooting Motor Shaft for Smoother Ramp

See Section 6.10.

6.6.5.3 Ramp-Up Final Speed for PMSM

The final speed after the ramp-up is set in user.h as part of the motor parameters. This speed, specified in Hz,
should be set depending on the phase inductance range. For single digit µH inductances this value should be
around 50 Hz. For tens to hundreds of µH inductances, a value of 20 Hz should be enough to allow an accurate
identification of the inductance.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)

Keep in mind that increasing this frequency might require increasing the ramp up time, so that the ramp up state
is long enough to allow reaching the final frequency with the specified acceleration. The previous plot also shows
the final frequency of 20 Hz.

b

t

Freq
a = estWaitTime[EST_State_RampUp]

b = USER_MAX_ACCEL_EST_Hzps

c = USER_MOTOR_FLUX_EST_FREQ_Hz

�[�< b, for high inertia loads

c ~ 20 Hz for [10 uH < Lphase < 1000 uH]

�[�~ 50 Hz for [1 uH < Lphase < 10 uH]

�[

a

 �[

c

Figure 6-19. RampUp Timing with change in Acceleration and Final Speed

6.6.6 CTRL_State_OnLine and EST_State_RatedFlux

Once the motor is running at a commanded frequency set in user.h, the rated flux identification process starts
(Figure 6-20).

Idle RsRoverL

Rated

Flux

Ramp

Up

Rated

Flux

OL

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is Not an

ACIM

Figure 6-20. PMSM Rated Flux EST State

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

273

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.6.1 Current Ramp-Down

The first thing that happens when identifying the flux is for a closed-loop to be enabled internally by the
motor identification state machine. This closed-loop is not enabled by the user. Current consumption lowers
to a minimum current value needed to keep the mechanical load spinning at the same frequency when this
closed-loop is enabled. The slope at which current is lowered is a fixed value, Rs estimation per second divided
by 3. The dividing factor of 3 was selected during design of the motor identification process to provide a slower
slope.

In order to calculate this slope, users can use the following equation. In this example, 1 A was used for
resistance identification:

USER _MOTOR _RES _EST _ CURRENT 1
RatedFlux _ CurrentSlope 0.33 A / s

1 s 3
= ´ =

(15)

The 0.33 A/s slope can be seen in Figure 6-21, showing how current is reduced as soon as the Rated Flux state
is present. Also in the same plot, the time it takes to identify the rated flux is also highlighted.

2 s

0.66 A

Current Slope =

0.66 A / 2 s = 0.33 A/s

7 s

CTRL_State_OnLine

EST_State_RatedFlux

CTRL_State_OnLine

EST_State_RampUp

CTRL_State_OnLine

EST_State_Ls

4 s

EST_Flux_State_Fine3 s

EST_Flux_State_CL1

Figure 6-21. Phase Current During Rated Flux EST State

6.6.6.2 Total Measurement Time

The time shown in this plot is based on the default setting of 3 seconds for the current ramp-down
(EST_Flux_State_CL1, CL1 stands for Closed Loop 1) and 4 seconds for the fine tuning of the rated flux
(EST_Flux_State_Fine), for a total of 7 seconds. Both of these values are set in by function calls in file user.c, as
shown below:

pUserParams->FluxWaitTime[EST_Flux_State_CL1] =(uint_least32_t)(3.0*USER_EST_FREQ_Hz);
pUserParams->FluxWaitTime[EST_Flux_State_Fine]=(uint_least32_t)(4.0*USER_EST_FREQ_Hz);

These default values are known to work for all the motors tested during the validation of the algorithm. Users can
confirm that the time to identify is enough by monitoring the rated flux identified by the algorithm, and make sure
that the identified value is stable while the state of the estimator is in EST_State_RatedFlux.

Motor Identification and State Diagrams www.ti.com

274 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The following code example shows how to monitor the value of the identified flux, and if the value does not vary
more than a typical variation of about 5% in the watch window, the identified flux can be considered to be stable:

// get the flux
gMotorVars.Flux_VpHz = EST_getFlux_VpHz(obj->estHandle);

6.6.6.3 Troubleshooting Flux Measurement

See Section 6.10.

6.6.7 CTRL_State_OnLine and EST_State_Ls

Once the rated flux is measured the stator inductance identification process starts (Figure 6-22).

Idle RsRoverL

Rated

Flux

Ramp

Up

Rated

Flux

OL

Ramp

Down

Ls

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is Not an

ACIM

Wait Expired AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is Not

an ACIM

Figure 6-22. Stator Inductance EST State

In order to identify the stator inductance of the PMSM motor, the algorithm injects a current into the D-axis, also
known as ID. The current must be negative, and it is set in user.h. As a general rule, this current should be
between 10% and 20% of the rated current of the motor, negative in sign. The following value is set for a 4 A
motor, hence the current used to identify the stator inductance was set to -0.5 A as shown:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)

And the time spent for stator inductance identification is configured in user.c as follows:

pUserParams->LsWaitTime[EST_Ls_State_Init] = (uint_least32_t)(3.0*USER_EST_FREQ_Hz);
pUserParams->LsWaitTime[EST_Ls_State_Fine] = (uint_least32_t)(30.0*USER_EST_FREQ_Hz);

Figure 6-23 shows the time it takes to run the inductance identification state. It also shows the current amplitude
injected. Although we set the current to be -0.5 A this current is injected into the D-axis, so it will be noticed in
the phase current waveform as an amplitude of 0.5 A plus the current needed to keep the load moving. Since it
is required to move all the mechanical load from the shaft, the current amplitude will be close to 0.5 A as shown.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

275

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0.5 A

33 s

CTRL_State_OnLine

EST_State_Ls

CTRL_State_OnLine

EST_State_RatedFlux

CTRL_State_OnLine

EST_State_RampDown

Figure 6-23. Injected Current for Ls Identification

6.6.7.1 Ramp-Up Current

The initial slope, when the current builds up to the specified current, is set by the current used for the resistance
estimation for every second. For example, consider a resistance estimation current of 1 A configured as follows:

#define USER_MOTOR_RES_EST_CURRENT (1.0)

And -0.5 A for the inductance estimation configured as follows:

#define USER_MOTOR_IND_EST_CURRENT (-0.5)

With these two configurations, it will take a total of 0.5 s to build up 0.5 A of current into the D-axis, as shown in
Figure 6-24.

Motor Identification and State Diagrams www.ti.com

276 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0.5 A

0.5 s
Current Slope =

0.5 A / 0.5 s = 1 A/s

Figure 6-24. Current Ramp for Ls Identification

6.6.7.2 Troubleshooting Ls Identification

See Section 6.10.

6.6.7.3 Ls_d and Ls_q, Direct and Quadrature Stator Inductance

Keep in mind that the estimated inductance will be stored in both Ls_d and Ls_q, even if these values are
different for a given motor. In other words, this version of InstaSPIN does not identify Ls_d and Ls_q separately,
but it identifies an average Ls, which is then stored into Ls_d and Ls_q with the same value. In the future,
when InstaSPIN identified Ls_d and Ls_q individually, then both functions will return a different value. If motor
parameters are set in user.h with different Ls_d and Ls_q, and motor identification is bypassed, then the
current version of InstaSPIN will also return different values when calling both functions EST_getLs_d_H and
EST_getLs_q_H.

6.6.8 CTRL_State_OnLine and EST_State_RampDown

This state does not perform any particular action as far as the estimation process goes. It can be considered
as a transition period of the state machine. Although there is a time associated with this state, as shown below,
changing this time does not affect the identified variables.

pUserParams->estWaitTime[EST_State_RampDown] = (uint_least32_t)(2.0*USER_EST_FREQ_Hz);

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

277

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.6.9 CTRL_State_OnLine and EST_State_MotorIdentified

The final state of the identification process is also a transitional state to let the internal state machine know
that the motor has been identified. After the transitional state of EST_State_MotorIdentified is over, both state
machines, CTRL and EST state machines, are put back to Idle. Users can check if the motor has been identified
by calling the following function. If this function returns a TRUE, it means that the motor has been identified,
either by going through all the described states, or by using motor parameters from a header file:

gMotorVars.Flag_MotorIdentified = EST_isMotorIdentified(obj->estHandle);

Once the motor has been fully identified, if users require running the motor identification process again, the
controller must be re-initialized to set the state machines to an initial state with the motor identified flag back to
FALSE. The following function call re-initializes the controller back to the initial state and the motor identified flag
back to FALSE:

// set the default controller parameters
CTRL_setParams(ctrlHandle,&gUserParams);

To summarize the complete state machine of the identification process, see Figure 6-25.

Idle RsRoverL

Rated

Flux

Ramp

Up

Rated

Flux

OL

Ramp

Down

Ls

Motor

Ident

Motor Is Not

Identified

Wait Expired

Wait

Expired

Wait Expired

AND

Motor Is

Identified

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is Not an

ACIM

Wait Expired AND

Motor Is Not an

ACIM

Wait Expired

AND

Motor Is Not

an ACIM

Figure 6-25. Complete PMSM Motor ID Process in EST State Diagram

The entire process of PMSM motor identification is also shown in Figure 6-26, where one phase current is
plotted.

Motor Identification and State Diagrams www.ti.com

278 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

C
T

R
L_

S
ta

te
_

O
ff

Li
n

e

E
S

T
_

S
ta

te
_

R
o

v
e

rL

E
S

T
_

S
ta

te
_

R
s

EST_State_RampUp

E
S

T
_

S
ta

te
_

R
a

te
d

F
lu

x

EST_State_Ls

~83 s

Figure 6-26. Phase Current Measurement of Entire PMSM Motor ID Process

6.6.10 CTRL_State_Idle and EST_State_Idle

After the motor is fully identified, both state machines are set to Idle.

6.7 Full Identification of ACIM Motors
When running full identification of ACIM motors, Figure 6-27 shows the sequence of events that happen inside of
the controller and estimator state machines.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

279

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

RoverL

EST_State_RoverL

Rs

EST_State_Rs

RampUp

EST_State_RampUp

IdRated

EST_State_IdRated

MotorIdentified

EST_State_MotorIdentified

RatedFlux

EST_State_RatedFlux

Ls

EST_State_Ls

RampDown

EST_State_RampDown

Idle

CTRL_State_Idle

Idle

EST_State_Idle

CTRL State Machine EST State Machine

RampDown

EST_State_RampDown

LockRotor

EST_State_LockRotor

Online

CTRL_State_OnLine

Rr

EST_State_Rr

Idle

CTRL_State_Idle

CTRL_setFlag_enableCtrl(ctrlHandle,TRUE);

Figure 6-27. Full ACIM Identification - CTRL and EST Sequence of States

Prior to enabling the controller, the code knows that a full motor identification will be done when these two
conditions are true:

1. motor has not been identified
2. no parameters are used from user.h.

if((EST_isMotorIdentified(obj->estHandle) == FALSE) &&
 (CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))

In the next sections of this document, each state during the identification will be explained in detail.

Motor Identification and State Diagrams www.ti.com

280 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.7.1 CTRL_State_Idle and EST_State_Idle

The idle state of the controller and the estimator state machines are the same for both motors. For more
information about this state, see Section 6.6.1.

6.7.2 CTRL_State_OffLine and EST_State_Idle

When the controller is in the Offline state, offsets are calibrated. For more information about this state, see
Section 6.6.2.

6.7.3 CTRL_State_OnLine and EST_State_RoverL

In order to calculate the current controller gains, the same process and operations are done as in the PMSM
motor. For more information about this state, see Section 6.6.3.

6.7.4 CTRL_State_OnLine and EST_State_Rs

When the estimator is in Rs state, the stator resistance is calibrated. For more information about this state, see
Section 6.6.4.

6.7.5 CTRL_State_OnLine and EST_State_RampUp

After the stator resistance is done, a new estimator state is executed. This next state is called the Ramp-
Up state, or EST_State_RampUp (Figure 6-28). During this state of the identification process, the motor
is accelerated to a certain speed to start identification of other parameters. During this state, there is no
identification of any parameters, but the conditions are started. Several factors influence this state.

In terms of functionality, for a detailed description of what happens during the EST_State_RampUp state, see
Section 6.6.5.

Idle RsRoverL

Ramp

Up

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

EST States

Figure 6-28. Ramp-Up EST State

6.7.5.1 Ramp-Up Final Speed for ACIM

The only difference between the PMSM and ACIM motor identification process in this state is that for ACIM
motors a typical frequency of 5 Hz is used, as opposed to a typical of 20 Hz used for PMSM motors.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (5.0)

The following oscilloscope plot shows a zoomed in plot of a phase current, where the frequency is ramped up
to 5 Hz. Note that the default ramp-up acceleration of 2.0 Hz/s, shown previously for PMSM in Section 6.6.5, is
used for the ACIM example shown in Figure 6-7.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

281

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Frequency = 5 Hz

2.5 s

Acceleration =

5 Hz / 2.5 s = 2 Hz/s 20 x Zoom

Figure 6-29. Oscilloscope Plot of ACIM RampUp Acceleration

6.7.6 CTRL_State_OnLine and EST_State_IdRated

Once the motor is running at a commanded frequency set in user.h, the IdRated identification process starts
(Figure 6-30).

Start Idle RsRoverL

Id

Rated

Ramp

Up

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait Expired

AND

Motor Is an

ACIM

Figure 6-30. ACIM Id Rated EST State

In the EST_State_IdRated state, the estimator is used to calculate the current needed to produce a certain flux.

During this state, several parameters in user.h and user.c are taken into account. The first one is the duration of
this state which is configured in user.c file as follows:

pUserParams->estWaitTime[EST_State_IdRated]=(uint_least32_t)(20.0*USER_EST_FREQ_Hz);

Motor Identification and State Diagrams www.ti.com

282 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

During this time, the injected Id will start growing by increments defined by USER_IDRATED_DELTA in user.h:

//! \brief Defines the IdRated delta to use during estimation
//!
#define USER_IDRATED_DELTA (0.00002)

Using the above delta, the current injected in the d-axis will increase until the produced flux has reached the
value specified by USER_MOTOR_RATED_FLUX in user.h:

#define USER_MOTOR_RATED_FLUX (0.8165*220.0/60.0)

For details on setting the rated flux for ACIM motors, see Section 6.5.5.4.

When the IdRated state starts the current will increase until the desired flux is present in the motor. Figure 6-31
shows the current is increase and then stabilize.

IdRated = 1.075 A

Minimum Time to be set in:

estWaitTime[EST_State_IdRated]

E
S
T
_
S
t
a
t
e
_
R
a
m
p
U
p

E
S
T
_
S
t
a
t
e
_
I
d
R
a
t
e
d

Figure 6-31. Oscilloscope Plot of Phase Current During Id Rated EST State

The time at which the Id current settles is motor dependent and it is recommended that the time configured in
pUserParams->estWaitTime[EST_State_IdRated]is adjusted to allow the current to stabilize to a certain value
without excessive oscillation.

6.7.6.1 Reducing Oscillation to Improve Id Rated Measurement

Another parameter to tune while doing IdRated identification is the delta increments for this current. If this value
is too high for a particular motor, a remaining oscillation will be present even when doing IdRated identification
for a long period. For example, Figure 6-32 shows the current when the following parameter is used.

//! \brief Defines the IdRated delta to use during estimation
//!
#define USER_IDRATED_DELTA (0.0001)

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

283

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

IdRated Oscillation a= 125 mA

E
S
T
_
S
t
a
t
e
_
R
a
m
p
U
p

EST_State_IdRated

Figure 6-32. Phase Current Oscillation During Id Rated Measurement

As can be seen in the oscilloscope plot, even though the current grows much faster, the remaining oscillation
does not allow the Id Rated to settle to a stable value. Trying a smaller value, 0.00002 instead of 0.0001
increases the stability of the steady state current as shown in Figure 6-33.

IdRated Oscillation a= 0.0 A

E
S
T
_
S
t
a
t
e
_
R
a
m
p
U
p

EST_State_IdRated

Figure 6-33. Reduced Phase Current Oscillation During Id Rated Measurement

Motor Identification and State Diagrams www.ti.com

284 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.7.6.2 Reading Id Rated Final Value

At the end of this state, users can read the identified Id Rated, also known as the rated magnetizing current of
the ACIM motor, by using the following function:

// get the Id Rated, or rated magnetizing current
IdRated = EST_getIdRated(obj->estHandle);

6.7.7 CTRL_State_OnLine and EST_State_RatedFlux

Once the Id Rated has been identified, the next state is the Rated Flux state (Figure 6-34).

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Figure 6-34. ACIM Rated Flux EST State

During this state, the previously identified Id Rated current is used in a closed loop system inside the estimator
to calculate the flux linkage between rotor and stator. Only 50% of IdRated is used. At the end of this state, the
computed rated flux using the Id Rated current is saved as the rated flux of the machine.

For the Rated Flux state, the current ramp-down and total measurement time are the same for both motors. For
more information, see Section 6.6.6.1 and Section 6.6.6.2.

Figure 6-35 shows how the loop is closed, the current is much more stable than the IdRated state, and user
might double check the estimated flux in the watch window to confirm that the flux estimation is what the original
setting in user.h was.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

285

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

IdRated = 1.075 A

EST_State_IdRated

7 s

EST_State_RatedFlux

IdRated / 2 = 0.5375 A

E
S
T
_
S
t
a
t
e
_
R
a
m
p
D
o
w
n

E
S
T
_
S
t
a
t
e
_
L
o
c
k
R
o
t
o
r

Figure 6-35. Phase Current During Id Rated EST State

6.7.7.1 Troubleshooting Flux Measurement

See Section 6.10.

6.7.8 CTRL_State_OnLine and EST_State_RampDown

In order to remove the current from the motor windings, an intermediate state is run to ramp down the current
flowing through the motor (Figure 6-36). This state is the RampDown state, with the duration set by the following
in user.c file:

pUserParams->estWaitTime[EST_State_RampDown]=(uint_least32_t)(2.0*USER_EST_FREQ_Hz);

Motor Identification and State Diagrams www.ti.com

286 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Figure 6-36. ACIM Ramp Down EST State

Figure 6-37, taken from the previous state, shows phase current being removed from the motor gradually to
allow a smooth stop of the motor.

EST_State_IdRated EST_State_RatedFlux

E
S
T
_
S
t
a
t
e
_
R
a
m
p
D
o
w
n

2 s
E
S
T
_
S
t
a
t
e
_
L
o
c
k
R
o
t
o
r

Figure 6-37. Ramp Down of ACIM Phase Current Prior to LockRotor State

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

287

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.7.9 CTRL_State_Idle and EST_State_LockRotor

During the Lock Rotor state, the state machine waits for the user to re-enable the controller once the motor's
shaft has been locked (Figure 6-38). Locking the rotor is required to identify the rest of the ACIM motor
parameters: series inductance (Ls) and rotor resistance (Rr).

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Lock

Rotor

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM
Controller

Disabled

Figure 6-38. ACIM Lock Rotor EST State

The state machine will remain in this state indefinitely until the user re-enables the controller by calling the
following instruction:

// enable or disable the control
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

6.7.9.1 Troubleshooting Locked Rotor Test

See Section 6.10.

6.7.10 CTRL_State_OnLine and EST_State_Ls

Once the locked rotor parameters are measured the stator inductance process starts (Figure 6-39).

Motor Identification and State Diagrams www.ti.com

288 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Lock

Rotor

Ls

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Controller

Enabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM

Controller

Disabled

Figure 6-39. ACIM Stator Inductance EST State

For the Stator Inductance state, the steps are the same for both motors. For more information, see Section 6.6.7.

Figure 6-40 shows how the current for an ACIM motor during the Ls state and leading into the next states.

E
S
T
_
S
t
a
t
e
_
R
r

33 s

EST_State_Ls

E
S
T
_
S
t
a
t
e
_
L
o
c
k
R
o
t
o
r

E
S
T
_
S
t
a
t
e
_
R
a
m
p
D
o
w
n

E
S
T
_
S
t
a
t
e
_
I
d
l
e

Figure 6-40. ACIM Current for the Stator Inductance EST State

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

289

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.7.11 CTRL_State_OnLine and EST_State_Rr

Once the stator inductance measurement is complete the rotor resistance process starts (Figure 6-41).

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Lock

Rotor

Ls

Rr

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired

AND

Motor Is an

ACIM

Controller

Enabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM
Controller

Disabled

Figure 6-41. Rotor Resistance EST State

The identification of the rotor resistance of the ACIM motor will be done for a period of time configured in this
array member configured in user.c:

pUserParams->estWaitTime[EST_State_Rr]=(uint_least32_t)(5.0*USER_EST_FREQ_Hz);

Figure 6-42 shows the current being injected for Rr identification. In fact, there is no difference in the current
waveform between Ls and Rr identification.

Motor Identification and State Diagrams www.ti.com

290 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

5 s

EST_State_RrEST_State_Ls

E
S
T
_
S
t
a
t
e
_
R
a
m
p
D
o
w
n

EST_State_Idle

Figure 6-42. Injected Current for Rr Identification

6.7.12 CTRL_State_OnLine and EST_State_RampDown

Once the rotor resistance measurement is complete the ramp down process starts (Figure 6-43).

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Lock

Rotor

Ls

Rr

Motor Is Not

Identified

Wait Expired

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired

AND

Motor Is an

ACIM

Controller

Enabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM

Wait

Expired

Controller

Disabled

Figure 6-43. ACIM Ramp Down EST State after Completing Rr

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

291

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 6-44 of the ACIM current waveform after full identification, note the current is removed from the motor
with a ramp. For more information about this state, see Section 6.6.8.

2 s

E
S
T
_
S
t
a
t
e
_
R
a
m
p
D
o
w
n

E
S
T
_
S
t
a
t
e
_
I
d
l
e

EST_State_Ls EST_State_Rr

Figure 6-44. ACIM Current During Rr and RampDown

6.7.13 CTRL_State_OnLine and EST_State_MotorIdentified

When the estimator is in the Motor Identified state, the full motor identification of the ACIM motor is complete
(Figure 6-45). For more information about this state, see Section 6.6.9.

Motor Identification and State Diagrams www.ti.com

292 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Start Idle RsRoverL

Id

Rated

Rated

Flux

Ramp

Up

Ramp

Down

Lock

Rotor

Ls

Motor

Ident

Rr

Motor Is Not

Identified

Wait Expired

Wait

Expired

Wait Expired

AND

Motor Is

Identified

Wait Expired

AND

Motor Is Not

Identified

Wait

Expired

Wait Expired

AND

Motor Is an

ACIM

Wait Expired AND

Motor Is an ACIM

Wait Expired

AND

Motor Is an

ACIM

Controller

Enabled

Wait Expired AND

Motor Is Not Identified AND

Motor is an ACIM

Wait

Expired

Controller

Disabled

Figure 6-45. Complete ACIM Motor ID Process in EST State Diagram

The entire process of ACIM motor identification is also shown in Figure 6-46, where one phase current is plotted.

C
T

R
L_

S
ta

te
_

O
ff

Li
n

e

E
S

T
_

S
ta

te
_

R
o

v
e

rL

E
S

T
_

S
ta

te
_

R
s

E
S

T
_

S
ta

te
_

R
a

m
p

U
p

E
S

T
_

S
ta

te
_

R
a

te
d

F
lu

x

EST_State_Ls

~100 s

EST_State_IdRated

E
S

T
_

S
ta

te
_

R
a

m
p

D
o

w
n

E
S

T
_

S
ta

te
_

Lo
ck

R
o

to
r

E
S

T
_

S
ta

te
_

R
a

m
p

D
o

w
n

E
S

T
_

S
ta

te
_

R
r

Figure 6-46. Phase Current of Entire ACIM Motor ID Process

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

293

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.7.14 CTRL_State_Idle and EST_State_Idle

After the motor is fully identified, both state machines are set to Idle.

6.8 Recalibration of PMSM and ACIM Motor Identification
Recalibration is part of the motor identification because it identifies and tunes two parameters: the offsets and
the stator resistance of the motor.

6.8.1 Recalibration of PMSM and ACIM Motors After Full Identification

This section covers the recalibration of PMSM and ACIM motors. Motor recalibration is used to fine tune or
recalibrate hardware offsets and stator resistance. In comparison with a full calibration of PMSM and ACIM
motors, recalibration only covers three states of the estimator state machine as shown in Figure 6-47. The
recalibration for PMSM and ACIM motors are identical. Recalibration for board Offsets and Stator Resistance
can be individually enabled or disabled as explained in next sections of this document.

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Rs

EST_State_Rs

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

CTRL_State_Idle

Idle

EST_State_Idle

CTRL_setFlag_enableCtrl(ctrlHandle,FALSE);

CTRL_setFlag_enableCtrl(ctrlHandle,TRUE);

Idle

Controller

Enabled

Recalibration

Motor Running

Closed-loop

Idle

Figure 6-47. PMSM and ACIM Recalibration - CTRL and EST Sequence of States

The motor runs in closed loop when both state machines are Online, and will stay Online until the controller is
disabled as shown in Figure 6-48.

Motor recalibration is executed in two cases, when the motor has been through a full identification process,
and when the motor parameters have been provided through a header file, user.h. In both scenarios the states
executed are identical and will be explained in detail next.

Motor Identification and State Diagrams www.ti.com

294 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Prior to enabling the controller, the code knows that a motor recalibration will be done when these two conditions
are true, when the motor has been identified and no parameters are used from user.h:

if((EST_isMotorIdentified(obj->estHandle) == TRUE) &&
(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == FALSE))

Start Idle Rs

Online

Motor is Identified &&

Rs Recal Enabled &&

Controller Enabled

Wait Expired &&

Motor Is Identified

Controller Enabled

Controller

Disabled

Motor is Identified &&

Rs Recal Disabled &&

Controller Enabled

Controller

Disabled

Figure 6-48. Motor Recalibration EST States

6.8.1.1 Start-Up Time Consideration

Even though recalibration takes time to execute, it is recommended to always enable both Offset Recalibration
and Rs Recalibration to make sure the parameters are more accurate before running the motor, especially if the
motor has been in idle for a long time. If the motor has not been run by the code for long periods of time, it is
likely that ambient temperature affects the stator resistance of the motor, so Rs recalibration is recommended.
Board offset recalibration is not as critical since it is hardware dependent, however, longevity of passive
components and temperature variations could potentially affect the hardware offsets, so it is recommended
that these offsets are tuned periodically.

6.8.1.2 CTRL_State_Idle and EST_State_Idle

Before the controller is enabled, both state machines, the controller and the estimator, are in the idle state,
denoted by CTRL_State_Idle and EST_State_Idle. This is also known as the inactive state of both state
machines.

6.8.1.3 CTRL_State_OffLine and EST_State_Idle

The controller is taken out of idle state by enabling it, by using the following function:

CTRL_s etFlag_enable Ctrl(ctrlHandle, TRUE);

Once the controller is enabled and with the motor already identified, the very first task performed by the
controller state machine is the Offset recalibration. This only occurs if the offset calculations are enabled. To
check if the offset recalibration flag is enabled, users can use the following code example:

if(CTRL_getFlag_enableOffset(ctrlHandle) == TRUE)

The motor identified flag is internally checked and can also be checked by the user with the following code
example:

if(EST_isMotorIdentified(obj->estHandle) == TRUE)

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

295

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Offset recalibration is enabled by default, although the following code example can be used to enable it before
the controller is enabled:

CTRL_s etFlag_enableOffset(ctrlHandle, TRUE);

And the following code example is used to disable offset recalibration.

CTRL_s etFlag_enableOffset(ctrlHandle, FALSE);

This state (CTRL_State_OffLine and EST_State_Idle) as explained in Section 6.3 is denoted by the state
of the controller state machine named: CTRL_State_OffLine. The estimator state stays in the idle state
(EST_State_Idle) during the controller offline state. Offset recalibration can be bypassed but offset calibration is
a requirement during full motor identification. It cannot be bypassed when doing full identification of the motor.

For details of offset calibration as part of the full motor identification process, see Section 6.6.2. As seen in
Figure 6-48, the "RoverL" state is not part of the recalibration process.

Figure 6-49 shows the corresponding states of the the phase current oscilloscope plots.

Offset Recalibration

for 5 seconds

At 50% Duty Cycle

CTRL_State_Idle

EST_State_Idle

CTRL_State_OnLine

EST_State_Rs Or EST_State_OnLine

CTRL_State_OffLine

EST_State_Idle

Figure 6-49. Phase Current during Offset Recalibration

6.8.1.4 CTRL_State_OnLine and EST_State_Rs

The Rs state is reached exiting the EST Idle state with the motor identified and Rs recalibration enabled (see
Figure 6-48). Note that when the controller is Offline (motor is at standstill) and Offset Recalibration is enabled,
offset recalibration will occur before entering the Rs state. Once the estimator state machine is in Rs state
(EST_State_Rs), stator resistance recalibration is started.

Rs recalibration when the motor is at stand still is also known as Offline Stator Resistance Recalibration. A
second Rs recalibration when the motor is spinning is covered in Chapter 15.

Even though the enable Rs flag is checked internally by the state machine, users can use the following code
example to check that flag:

if(EST_getFlag_enableRsRecalc(obj->estHandle) == TRUE)

Although Rs recalibration is enabled by default, the following code example can be used to enable it before
enabling the controller:

EST_ setFlag_enableRsRecalc(obj->estHandle, TRUE);

And the following code example can be used to disable Rs recalibration before enabling the controller:

EST_ setFlag_enableRsRecalc(obj->estHandle, FALSE);

Motor Identification and State Diagrams www.ti.com

296 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.8.1.4.1 Managing Time Required for Rs Recalibration

Once the estimator is in Rs state (EST_State_Rs), the stator resistance recalibration will start. The
EST_State_Rs contains three states which are executed during full motor identification:

• EST_Rs_State_RampUp
• EST_Rs_State_Coarse
• EST_Rs_State_Fine

During stator resistance recalibration only two states are executed: EST_Rs_State_RampUp and
EST_Rs_State_Fine hence the recalibration time will be shorter than the full calibration during motor
identification. In order to calculate the EST_State_Rs execution time during motor recalibration, consider the
following two wait times configured in the user.c file:

pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(3.0*USER_EST_FREQ_Hz);

Figure 6-50 shows the stator resistance recalibration. It shows the time it takes, as well as the states before and
after Rs recalibration.

4 s

CTRL_State_Idle Or CTRL_State_OffLine

EST_State_Idle

CTRL_State_OnLine

EST_State_Rs

CTRL_State_OnLine

EST_State_OnLine

1 A

3 s

1 s

EST_Rs_State_RampUp

EST_Rs_State_Fine

Figure 6-50. Phase Current Showing Rs Recalibration Timing

6.8.1.4.2 Software configuration for Rs recalibration

Configuration steps for a successful stator resistance recalibration are the same steps used during the Rs
measurement of motor identification, for details, see Section 6.6.4. The same software configuration is used for
both Rs recalibration (after motor is identified) and Rs calibration (during motor identification).

6.8.1.5 CTRL_State_OnLine and EST_State_OnLine

After the offset recalibration (if enabled) the controller state is set to Online, and after Rs recalibration (if
enabled) the estimator state is set to Online. When both the controller and estimator state machines are in the

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

297

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Online state, the motor is running in closed loop, using the estimated angle to run the field oriented control
(FOC) functional blocks, as well as the estimated speed for the speed controller.

6.8.1.5.1 Transitioning to Online State from CTRL Online and EST Rs

Start Idle Rs

Online

Motor is Identified &&

Rs Recal Enabled &&

Controller Enabled

Wait Expired &&

Motor Is Identified

Controller Enabled

Controller

Disabled

Motor is Identified &&

Rs Recal Disabled &&

Controller Enabled

Controller

Disabled

Figure 6-51. Transitioning to Online from EST Rs

Figure 6-52 shows the current of one phase with the transition from Rs recalibration to the online state.

0.75 s

CTRL_State_OnLine

EST_State_Rs

CTRL_State_OnLine

EST_State_OnLine

0.75 A

Current Slope =

0.75 A / 0.75 s = 1 A/s

Figure 6-52. Phase Current Transitioning from EST Rs to Online

As can be seen in the plot, the phase current slopes from the current injected to recalibrate Rs to the current
needed by the load. From the plot this takes 0.75 s.

In the case of no mechanical load on the motor's shaft, we can clearly see the current slope to be the current
injected for Rs recalibration per second. For example, if 1 A was used to recalibrate the stator resistance, it
will take 1 second for the controller to remove that current from the D-axis (ID) all the way to zero. The current
remaining in the motor phases will be the IQ current, which will depend on the motor's mechanical load.

Motor Identification and State Diagrams www.ti.com

298 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.8.1.5.2 Transitioning to Online state from (CTRL Idle or CTRL Offline) and EST Idle

Another transition into the online state is when the resistance recalibration is disabled. In this case, no previous
current is injected into the motor. The previous state is either offline (if the offsets recalibration is enabled) or idle,
as shown in Figure 6-53 and Figure 6-54.

Start Idle Rs

Online

Motor is Identified &&

Rs Recal Enabled &&

Controller Enabled

Wait Expired &&

Motor Is Identified

Controller Enabled

Controller

Disabled

Motor is Identified &&

Rs Recal Disabled &&

Controller Enabled

Controller

Disabled

Figure 6-53. Transitioning to Online from EST Idle

CTRL_State_Idle Or CTRL_State_OffLine

EST_State_Idle

CTRL_State_OnLine

EST_State_OnLine

Figure 6-54. Phase Current Transitioning from EST Idle to Online

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

299

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.8.1.6 CTRL_State_Idle and EST_State_Idle

The state will remain in Online until the controller is disabled by calling the following function:

CTRL_s etFlag_enable Ctrl(ctrlHandle, FALSE);

Calling the above function will disable the controller and will set both state machines for the controller and the
estimator to the idle state.

Figure 6-55 shows current and output voltage for each state. The first state is the Offsets Recalibration state
and the second is Rs Recalibration. The third stage is the online state when the commanded speed or torque is
followed in closed-loop.

CTRL_State_OffLine

EST_State_Idle

Rs Recalibration

Id
le

C
lo

se
d

 L
o

o
p

Fixed 50% Duty Cycle Variable Duty Cycle

Offsets Recalibration

CTRL_State_OnLine

EST_State_Rs

CTRL_State_OnLine

EST_State_OnLine

Figure 6-55. Timing of Complete Recalibration

6.8.2 Recalibration of PMSM and ACIM Motors after Using Parameters from user.h

This section covers the recalibration of PMSM and ACIM motors when motor parameters have been provided
through a header file. The exact state machine used in Section 6.8.1 applies to this section.

Prior to enabling the controller, the code knows that a motor recalibration will be done using motor parameters
from user.h when this condition is true:

if(CTRL_getFlag_enableUserMotorParams(ctrlHandle) == TRUE)

The same state, state transition conditions and functionality as described in Section 6.8.1 for Recalibration after
Full Identification are also used for this case, recalibration using parameters from user.h.

Motor Identification and State Diagrams www.ti.com

300 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.9 Setting PMSM Motor Parameters in user.h
The parameters provided in user.h for PMSM motors are:

#if (USER_MOTOR == User_PMSM)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rs (2.83)
#define USER_MOTOR_Ls_d (0.0115)
#define USER_MOTOR_Ls_q (0.0135)
#define USER_MOTOR_RATED_FLUX (0.502)
#define USER_MOTOR_MAX_CURRENT (4.0)

Table 6-6 summarizes all the parameters that are required in user.h header file when PMSM motor identification
is bypassed.

Table 6-6. PMSM Motor Parameters in user.h

PMSM Motor Parameter in user.h PMSM Motor Parameter and Units
PMSM Motor

Model Symbol
USER_Motor_Rs Stator Resistance (Ω) Rs

USER_Motor_Ls_d Stator Direct Inductance (H) Lsd

USER_Motor_Ls_q Stator Quadrature Inductance (H) Lsq

USER_Motor_RATED_FLUX Rated Flux (V/Hz) ψ

The following PMSM model can be referenced when pulling motor parameters from a motor's datasheet:

sd
sd s sd m sq sq sd

di
V R i L i L

dt
= - w +

sq

sq s sq m sq msd sdV
di

R i L i L
dt

= + w + + w y
(16)

Where:

Rs: Stator resistance

Lsd: D-axis stator inductance

Lsq: Q-axis stator inductance

ψ: Rotor flux

vsd: D-axis voltage component

vsq: Q-axis voltage component

isd: D-axis current component

isq: Q-axis current component

ωm: Angular frequency of the magnetic field

The following section will cover each of these parameters, and how to get them from a typical motor
manufacturer's data sheet.

6.9.1 Getting Parameters from a PMSM Datasheet

Figure 6-56 corresponds to a PMSM motor datasheet used as an example. The motor's part number is: 2310P,
from company: Teknic, Inc. (www.teknic.com)

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

301

Copyright © 2021 Texas Instruments Incorporated

http://www.teknic.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8 (4 Pairs)

Figure 6-56. Example PMSM Motor Datasheet

6.9.1.1 Number of Pole Pairs

The number of pole pairs is used to calculate speeds in revolutions per minute (RPM) and for some flux
calculations, as shown in the rated flux calculation example. We simply use the number of pole pairs from the
motor's datasheet into user.h as follows:

#define USER_MOTOR_NUM_POLE_PAIRS (4)

6.9.1.2 Stator Resistance (Rs)

The stator resistance from phase to phase shown in the previous motor's datasheet is 0.72Ω. What we need in
user.h file is the phase to neutral resistance in a Y connected motor. In this case, the operation is a simple divide
by 2 to convert from phase to phase resistance to phase to neutral resistance since the motor is known to be
connected in Y configuration. The operation from line to line (Y connected motor) to line to neutral is as follows:

phase to phase
user.h phase to phase
s s phase to neutral

1
R R 0.72 0.5 0.36

2

W
= ´ = W ´ = W

W (17)

The resulting value is then written in user.h as follows:

#define USER_MOTOR_Rs (0.36)

In the motor, if delta connected as opposed to Y connected, then a conversion from delta to Y needs to be done
to set the resistance value. For example, if the delta Rs (delta) value is known to be 3 Ohms, the Rs (Y) value
would be Rs (Y) = Rs (delta) / 3 = 1 Ohms.

6.9.1.3 Stator Inductance (Ls_d and Ls_q)

In the case of a non-salient PMSM motor, Ls_d and Ls_q are equal. In this example, a phase-to-phase stator
inductance is shown with a value of 0.40 mH. We need to convert that value to phase-to-neutral inductance in a
Y connected motor, following the same procedure as used with the previous parameter we simply divide by 2 as
follows:

phase to phase
user.h user.h phase to phase
s _ d s _ q s phase to neutral

1 H
L L L 0.40 mH 0.5 0.20 mH

2 H
= = ´ = ´ =

(18)

Motor Identification and State Diagrams www.ti.com

302 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The resulting value is then written in user.h as follows:

#define USER_MOTOR_Ls_d (0.0002)
#define USER_MOTOR_Ls_q (0.0002)

In the case of different Ls_d and Ls_q, simply set the corresponding value to the correct definition in user.h. In
the motor, if delta connected as opposed to Y connected, then a conversion from delta to Y needs to be done to
set the resistance value. For example, if the delta Ls_d (delta) value is known to be 0.3 mH, the Ls_d (Y) value
would be Ls_d (Y) = Ls_d (delta) / 3 = 0.1 mH.

6.9.1.4 Rated Flux (ψ)

The last parameter required from the motor's datasheet is the rated flux. This particular one can be calculated
from the provided parameter, Back EMF constant, or Ke, which is provided in Vpeak/kRPM. The following unit
conversion is needed in order to set the value correctly the header file:

Vpeak

user.h line to neutralkRPM
s e

line to line

user.h
s

1 V60 s 1 kRev 1 Rev
K

1 min 1000 Rev PolePairs Cycles 3 V

1 1 1
4.64 60 0.0402 V / Hz

1000 4 3

y = ´ ´ ´ ´

y = ´ ´ ´ ´ =

(19)

The resulting value is then written in user.h as follows:

#define USER_MOTOR_RATED_FLUX (0.0402)

It is also common that the rated flux of the motor is not provided by the motor manufacturer's datasheet, and
an alternative way to measure the rated flux is by measuring the phase-to-phase voltage when the motor to
be measured is spun by another motor. In other words, we run the motor in generator mode, and connect
an oscilloscope on the motor phases to see the voltage production at a given speed. The speed to run the
motor in generator mode to measure flux should be high enough to overcome any cogging torque. For example,
considering the same motor, we run it with another motor connected to its shaft, and plot the phase to phase
voltage. In this example we run the motor at about 1000 RPM, but can be any speed as long as the motor runs
at a constant speed. Figure 6-57 shows the result.

67.17 Hz

4.705 V

Figure 6-57. Determining Motor Flux from Phase Voltage of Motor in Generator Mode

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

303

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Considering 4 pole pairs, and the fact that Ke is in Vpeak/kRPM, the measured Ke with the oscilloscope is:

Vpeak

kRPM
e

4.705 V 1 min 1000 Rev PolePairs Cycles
K 4.67 Vpeak / kRPM

67.17 Hz 60 s 1 kRev 1 Rev
= ´ ´ ´ =

(20)

And to calculate what we configure in user.h is as follows, based on the measured value:

user.h

s

1 1 1
4.67 60 0.0404 V / H

1000 4 3
y = ´ ´ ´ ´ =

(21)

This can also be calculated straight from the oscilloscope measurement as follows:

user.h

s

4.705 V 1
0.0404 V / Hz

67.17 Hz 3
y = ´ =

(22)

#define USER_MOTOR_RATED_FLUX (0.0404)

6.10 Troubleshooting Motor Identification
6.10.1 Troubleshooting PMSM Motor Identification
6.10.1.1 Identifying PMSM Motors When Load Cannot be Detached

InstaSPIN-FOC requires a few parameters from the motor to run with best performance. The majority of the
time this is only done once, and requires the motor to be removed from any mechanical load so it is able
to spin freely. A few steps during the identification process require motor rotation in open loop. That is the
reason why we require no mechanical load in the motor since it is easy to stall a motor when running in
open loop control. When motor can be removed from mechanical load, there is no issue with InstaSPIN-FOC's
identification process, and at the end, motor parameters are available in a watch window for future use.

On the other hand, some applications are, by definition, attached to a mechanical load. Examples of these
applications are compressors, some direct drive washing machines, and geared motors with sealed enclosures.
For those applications, the user requires to run motor identification differently in order to extract motor
parameters with no or minimum motor rotation.

6.10.1.2 Can Motor Rotate with the Attached Load?

The first step is to make sure that the motor doesn't rotate with load. In some cases, the open loop tests can
in fact rotate the motor even with some load. If the motor stalls at any point during the identification process,
proceed to next step.

6.10.1.3 Run First Three Steps of Identification

During motor identification, there are three initial steps that don't require rotation of the shaft. The first one
calculates hardware offsets. The second one injects a high frequency current sine wave to identify what we
call high frequency resistance (Rhf) and high frequency inductance (Lhf). The third step is to identify the stator
resistance (Rs) by injecting a DC current. During this step, take note of the high frequency inductance (Lhf) and
stator resistance (Rs). The two required variables in this step are available by using the following function calls
from the library:

// get Lhf
gLhf = CTRL_getLhf(ctrlHandle);
// get the stator resistance
gRs = EST_getRs_Ohm(obj->estHandle);

Motor Identification and State Diagrams www.ti.com

304 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.10.1.4 Run Using Motor Parameters from user.h

Even though there are ways to calculate the flux of the machine without motor identification (see Section
6.9.1.4), this process describes a completely unknown motor. So far we have two parameters we can use,
a rough estimate of inductance (Lhf) and an accurate stator resistance (Rs). We are missing one parameter
from PMSM motors, the flux of the machine. For this step of the identification process, we will use the two
known parameters and an arbitrary value of the flux. Keep in mind that once the motor runs in closed loop,
the estimated flux will converge to the actual flux of the machine, so we only need to get the first guess close
enough to make it converge to the real value.

Take a look at specific defines from user.h.

#define USER_MOTOR_NUM_POLE_PAIRS (3)

The number of poles is only important to get the correct RPM reading from the library, but all the library cares
about is electrical Hz, and this is not affected by the number of pole pairs. Take your best guess on this
parameter. Once the motor is running, this can be changed with the correct number of poles, by commanding a
speed reference of 60 RPM, and making sure the motor rotates one revolution in one second.

#define USER_MOTOR_Rs (0.8)

This parameter should be the one obtained in step 2, from variable gRs.

#define USER_MOTOR_Ls_d (0.01)

#define USER_MOTOR_Ls_q (0.01)

For the inductance, we need to use the high frequency inductance obtained in step 2. This is a rough
approximation of the inductance of the motor. Having a different inductance compared to the real one limits
the performance during high dynamics. For example, if motor needs to run with torque steps, or speed steps, not
having the right inductance can be an issue, but having full torque operation with slow dynamics can be done
using high frequency inductance instead of the real inductance. So for this step, copy the value obtained from
gLhf in both Ls_d and Ls_q.

#define USER_MOTOR_RATED_FLUX (0.5)

Flux is estimated by the libraries, so user needs a value which is close enough to the real one in order to have
the real flux of the machine based on the estimator output. Using an arbitrary number can cause some saturation
of the estimated flux, since this value is limited internally. This can be easily done by looking at the estimated flux
using the following function:

// get the flux
gFlux_VpHz = EST_getFlux_VpHz(obj->estHandle);

If gFlux_VpHz is clamped to a lower than original value set in user.h, decrease the value in half, and if it
is clamped to a higher than original value, increase it by doubling the value. Once the motor runs in closed
loop with a value on the gFlux_VpHz that varies slightly, then take note of this value and put it back into the
USER_MOTOR_RATED_FLUX.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

305

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.10.1.5 Troubleshooting Motor Shaft Stopping During Ramp-Up

The motor shaft needs to start moving at all times during the ramp-up process. This means that in case of
motors with some load on the shaft, as well as motors with high cogging torque, the current used to ramp up
the motor might have to be increased, as high as needed to keep the shaft moving. Start with 10% of the rated
current of the motor, and increase by increments of 10% of the rated current until the motor shaft is in continuous
motion during the entire ramp-up process.

#define USER_MOTOR_RES_EST_CURRENT (1.0) //increase in 10% steps as needed

6.10.1.6 Troubleshooting Motor Shaft for Smoother Ramp

If the time required to ramp-up is extended, users should also consider setting a slower ramp-up acceleration to
allow a smoother ramp. For example, for high inertia loads such as direct drive washing machines, the ramp up
time can be extended to allow a smoother ramp up, as can be seen in Figure 6-58.

�[

b

c

t

Freq

a = estWaitTime[EST_State_RampUp]

b = USER_MAX_ACCEL_EST_Hzps

c = USER_MOTOR_FLUX_EST_FREQ_Hz

�[�> ���v���[�< b, for high inertia loads
�[

a

Figure 6-58. RampUp Timing with change in Acceleration

Figure 6-59, taken during the ramp up start, shows the acceleration in Hz/s.

10 s

Frequency = 20 Hz

100 x Zoom

Acceleration =

20 Hz / 10 s = 2 Hz/s

Figure 6-59. PMSM RampUp Acceleration

Motor Identification and State Diagrams www.ti.com

306 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.10.1.7 Troubleshooting Flux Measurement

The monitored value of flux is considered unstable if any of the following is observed:
• saturating and not varying
• any negative value
• more than 10% variation, when the estimator state machine moves on to the next state, EST_State_Ls

If it is unstable, it is recommended to increase the time where the fine tuning of the rated flux is done
(pUserParams->FluxWaitTime[EST_Flux_State_Fine]) in user.c.

If the motor stops spinning at any point during the identification of the flux, halt the identification process and
retry it with a higher frequency by changing the following value set in user.h:

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) (40.0)

The default frequency is set to 20 Hz and this will work for most PMSM motors. Increase with increments of
10 Hz until the motor does not stop spinning during flux identification.

6.10.1.8 Troubleshooting Ls Identification

It is important that the motor is spinning during the entire inductance identification process. If at any point
during the identification of the inductance the motor stops, increase the frequency used for Flux and inductance
estimation, for example, if 20 Hz was used, try 40 Hz. Also, the Flux estimation frequency must be increased
when the motor is known to have a low inductance. In this context, low inductance is considered when a single
digit µH motor is used. This frequency is used for both the identification of the flux, and the identification of the
inductance.

// During Motor ID, maximum commanded speed in Hz
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0) (40.0)

If a shorted identification time is needed per user's requirements, the inductance can be monitored in order
to know when the inductance identification stabilizes. A stable identified inductance would be when the watch
window value does not vary more than 5% as a general guideline. User can measure the time from the start
of the EST_State_Ls state up to when the identification of the inductance shows a stable number using the
following code example:

// get the stator inductance in the direct coordinate direction
gMotorVars.gLsd_H = EST_getLs_d_H(obj->estHandle);
// get the stator inductance in the quadrature coordinate direction
gMotorVars.gLsq_H = EST_getLs_q_H(obj->estHandle);

Once the time for a stable Ls is known, this time can be then entered into the following time so that the overall
motor identification process is shorter: pUserParams->LsWaitTime[EST_Ls_State_Fine].

6.10.1.8.1 Identifying Low Inductance PMSM Motors

There are several considerations to take into account for low-inductance PMSM motors. Some considerations
are regarding the hardware used for motor identification and some other considerations are related to the
configuration of the software.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

307

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.10.1.8.1.1 Hardware Considerations

When identifying low-inductance PMSM motors, it is recommended to have the voltage divider for the voltage
feedback as low as possible. For example if the voltage used to run the motor is 24 V, then the voltage resistor
divider should be 26 V or so. This allows the maximum number of bits of the ADC converter when measuring the
voltage feedback.

Once the hardware has been changed, update the USER_ADC_FULL_SCALE_VOLTAGE_V definition in user.h.

Usually, the low-inductance motors are high-speed motors, so the flux is small. The user needs to
update the USER_IQ_FULL_SCALE_VOLTAGE_V to a value that lets the identification process identify
the flux of the motor. The following equation can be used to determine a value for the definition of
USER_IQ_FULL_SCALE_VOLTAGE_V:

Minimum Flux that can be identified (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/ USER_EST_FREQ_Hz/0.7 (23)

6.10.1.8.1.2 Software Considerations

As far as the software configuration is concerned, it is recommended to identify R/L constant with a higher
frequency. For majority of the low inductance motors tested, a 300 Hz frequency for R/L is enough. Updates to
R/L frequency need to be updated in:

#define USER_R_OVER_L_EST_FREQ_Hz (300)

The second consideration is to have a higher frequency to identify the inductance of the motor. This is part of the
motor parameters. The following example is used to identify a motor with a few tens of µH.

#define USER_MOTOR_FLUX_EST_FREQ_Hz (60.0)

The third consideration is to call a function that overwrites a limitation on the current control loops. This function
needs to be called out of the ISR. The name of the function is: CTRL_recalcKpKi().

The fourth consideration is to call a function that calculates what the initial estimated inductance should be for a
particular motor based on the R/L information. This function also needs to be called out of the ISR, and the name
of this function is: CTRL_calcMax_Ls_qFmt().

The fifth consideration is to call a function that takes the calculated inductance from CTRL_calcMax_Ls_qFmt()
function call and initializes the estimated inductance when inductance identification is performed. The new
function call needs to be called at the end of the ISR and the name of this function is: CTRL_resetLs_qFmt().

6.10.1.8.2 Identifying Inductance of Salient PMSM Motors

There are several considerations to take into account for low-inductance PMSM motors. Some considerations
are regarding the hardware used for motor identification, and some other considerations are related to the
configuration of the software.

6.10.1.8.2.1 Hardware Considerations

When identifying low-inductance PMSM motors, it is recommended to have the voltage divider for the voltage
feedback as low as possible. For example, if the voltage used to run the motor is 24 V, then the voltage resistor
divider should be 26 V, or so. This allows the maximum number of bits of the ADC converter when measuring
the voltage feedback.

Once the hardware has been changed, update USER_ADC_FULL_SCALE_VOLTAGE_V definition in user.h.

Usually the low-inductance motors are high-speed motors, so the flux is small. The user needs to
update the USER_IQ_FULL_SCALE_VOLTAGE_V to a value that lets the identification process identify
the flux of the motor. The following equation can be used to come up with a value for the definition of
USER_IQ_FULL_SCALE_VOLTAGE_V:

Minimum Flux that can be identified (V/Hz) = USER_IQ_FULL_SCALE_VOLTAGE_V/ USER_EST_FREQ_Hz/0.7

Motor Identification and State Diagrams www.ti.com

308 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

6.10.1.8.2.2 Software Considerations

As far as the software configuration is concerned, it is recommended to identify R/L constant with a higher
frequency. For the majority of the low-inductance motors tested, a 300-Hz frequency for R/L is enough. Updates
to R/L frequency need to be updated in:

#define USER_R_OVER_L_EST_FREQ_Hz (300)

The second consideration is to have a higher frequency to identify the inductance of the motor. This is part of the
motor parameters. The following example is used to identify a motor with a few tens of µH.

#define USER_MOTOR_FLUX_EST_FREQ_Hz (60.0)

The third consideration is to call a function that overwrites a limitation on the current control loops. This function
needs to be called out of the ISR. The name of the function is: CTRL_recalcKpKi().

The fourth consideration is to call a function that calculates what the initial estimated inductance should be for a
particular motor based on the R/L information. This function also needs to be called out of the ISR, and the name
of this function is: CTRL_calcMax_Ls_qFmt().

The fifth consideration is to call a function that takes the calculated inductance from CTRL_calcMax_Ls_qFmt()
function call, and initializes the estimated inductance when inductance identification is performed. The new
function call needs to be called at the end of the ISR, and the name of this function is: CTRL_resetLs_qFmt().

6.10.1.9 Identifying High-Cogging Torque PMSM Motors

For a discussion on this topic, see Section 6.10.1.5.

6.10.2 Troubleshooting ACIM Motor Identification
6.10.2.1 Troubleshooting Flux Measurement

Troubleshooting the flux measurement is the same for both motors. For more information, see Section 6.6.3. The
default frequency is set to 20 Hz and will also work for most ACIM motors. As with PMSM motors, increase with
increments of 10 Hz until the motor does not stop spinning during flux identification.

6.10.2.2 Troubleshooting Locked Rotor Test

Is it very important to lock the rotor completely, avoiding any motion of the shaft. This is the only way the internal
variables will produce accurate motor parameters in subsequent states of the estimator state machine.

www.ti.com Motor Identification and State Diagrams

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

309

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Motor Identification and State Diagrams www.ti.com

310 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.1 Overview..312
7.2 InstaSPIN-MOTION™ Inertia Identification...313
7.3 Inertia Identification Process Overview... 315
7.4 Software Configuration for SpinTAC™ Velocity Identify.. 317
7.5 Troubleshooting Inertia Identification.. 320
7.6 Difficult Applications for Inertia Identification...321

Chapter 7
Inertia Identification

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

311

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.1 Overview
In classical mechanics, moment of inertia, also called mass moment of inertia, or rotational inertia, is the
resistance of an object to rotational acceleration around an axis. This value is typically calculated as the ratio
between the torque applied to the motor and the acceleration of the mass ridigly coupled with that motor.

There is a common misunderstanding that inertia is equivalent to load. Load usually presents as load inertia
and load torque, where load inertia is the mass that will spin simultaneously with the motor rotor, while the load
torque appears as an external torque applied on the motor rotor shaft. An easy way to differentiate the load
inertia from load torque is to consider whether the load will spin together with the rotor shaft if the rotor shaft
changes spinning direction. Direct couplers and belt pulleys with the mass rigidly mounted to the load shaft are
examples of load inertia. Load inertia and motor rotor inertia contribute to the system inertia. Example of load
torque include: gravity of a mass applied to one side of the motor rotor shaft, distributed clothes in a washing
machine drum during the spin cycle, and the fluid viscosity of a pump. Load inertia of a system should be
estimated with the load torque eliminated or minimized.

Figure 7-1 shows an example of a simple motion system. In this system, the Rotating Mass is rigidly coupled
with the Motor. This means that the Rotating Mass rotates along with the motor and is considered as part of the
inertia. The Non-Rotating Mass is not rigidly coupled with the motor and is considered as part of the load. During
the inertia identification process, this Non-Rotating Mass should not be attached to the motor.

Rotating Mass

Rotation

Motor

Load

Non-Rotating

Mass

Simple Motion System

Rotating Mass

Rotation

Motor

Non-Rotating

Mass

Identifying Inertia

Disconnected

Figure 7-1. Example of Identifying Inertia in a Simple Motion System

Inertia Identification www.ti.com

312 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.2 InstaSPIN-MOTION™ Inertia Identification
Inertia is an important piece of information needed to precisely control the mechanical system. InstaSPIN-
MOTION provides a robust inertia identification feature via SpinTAC Velocity Identify that obtains an accurate
estimation of inertia, while accounting for the influence of friction within the sensorless application. Currently,
SpinTAC Velocity Identify does not actively consider the load torque. In order to get the appropriate value, the
load torque, such as gravity for crane-type applications or compressed fluid in compressor applications, needs to
be removed or minimized.

SpinTAC Velocity Identify estimates the inertia in the units A / [krpm/s]. This is different from the traditional unit
for inertia of Kg * m2. The unit A / [krpm/s] represents the amount of torque required to accelerate the system.
It is proportional to the SI unit Kg * m2. The relationship is based on the amount of torque that the motor can
produce. The SpinTAC controller needs to know how much torque is required to accelerate the system and thus
uses this non-traditional unit for inertia.

SpinTAC Velocity Identify produces a very accurate inertia result. Figure 7-2 is a plot of the inertia identification
result of the same motor for 100 tests of the inertia identification process. As you can see the inertia identification
is extremely repeatable. The maximum and minimum values for these trials are within 0.5% of the average value
for 100 tests. Once SpinTAC Velocity Identify is correctly estimating your system inertia it will produce a result
with similar levels of repeatability.

The estimated inertia is an input to both SpinTAC speed and position controllers. However, the SpinTAC
controller is extremely robust and can tolerate a wide range of inertia variation. This feature is valuable in
applications where the inertia of the system changes over time.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Inertia Estimate [A/(krpm/s)]

Histogram of Inertia Estimates for Anaheim BLY172S

Average:

0.020756

Standard Deviation:

3.094 x 10-5

Figure 7-2. Histogram of 100 Inertia Identification Trials

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

313

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 7-3 compares the performance of the SpinTAC speed controller with a range of wrong inertia setting.
This was tested by applying a torque disturbance to a motor system. The inertia value provided to the SpinTAC
speed controller was set to different values to highlight the range of inertia error that can be tolerated by the
controller. This shows that the SpinTAC speed controller can tolerate an inertia mismatch of up to eight times.
The best performance is realized when the inertia value is match with the application, but if the inertia of the
system changes the SpinTAC speed controller remain stable.

SpinTAC Velocity Identify provides a method to quickly and easily estimate the system inertia. It applies a
continuous torque profile to the motor and uses the speed feedback to calculate the motor inertia. This is an
open loop test that is designed to run as part of the development process. Once the inertia is identified, it can be
set as the default value and does not need to be estimated again unless there is a change in your system.

During inertia identification, the motor spins in a positive direction and will then spin briefly in a negative
direction. If this cannot be accomplished in your system there are special considerations that will need to be
taken into account. The description of these considerations in discussed in Section 7.6.

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
u

rr
e

n
t

[A
]

S
p

e
e

d
[R

P
M

]

Time [sec]

SpinTAC Inertia Tolerance
Speed Feedback

Iq Reference

0.25x

Estimated Inertia

0.5x

Estimated Inertia

1x

Estimated Inertia

4x

Estimated Inertia

2x

Estimated Inertia

Figure 7-3. SpinTAC™ Speed Controller Inertia Tolerance

Inertia Identification www.ti.com

314 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.3 Inertia Identification Process Overview
The SpinTAC Inertia Identification process is very quick. It needs to accelerate and decelerate the motor in order
to build an estimate of the system inertia. Prior to the inertia identification process a couple of conditions need to
be satisfied.
• The motor should not be spinning, or should be spinning very slowly.

The estimate of the inertia could be incorrect if it begins the torque profile while the motor is already moving.
• The InstaSPIN-FOC PI speed controller must be disabled.

SpinTAC Velocity Identify needs to provide the Iq reference in order to test the inertia. This can be achieved
only if the InstaSPIN-FOC PI speed controller is disabled.

• A positive speed reference must be set in FAST.

The FAST estimator needs to know the spinning direction of the motor via speed reference in order for it to
correctly estimate the speed. The value can be any positive value for speed reference setting.

• Force Angle must be enabled.

The Force Angle provides a good start from zero speed, and produces better inertia estimates.

Figure 7-4 is a flowchart that shows the steps required prior to enabling SpinTAC Velocity Identify.

Is Motor Speed

0?

Set Speed Reference

to 0

Disable

InstaSPIN-FOC

Speed Controller

Set Positive Speed

Reference
Enable Force Angle

Is Identify Done?

Is Identify in

Error?

Provide Inertia &

Friction to SpinTAC

Speed Controller

Enable SpinTAC

Speed Controller

Exit Identify Process

Start Identify

Process

Y

Y

N

YN

N

Run SpinTAC

Identify Inertia

Identification

Figure 7-4. Flowchart for SpinTAC™ Velocity Identify Process

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

315

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 7-5 is a plot of the continuous torque curve that is applied to the motor. Both positive and negative torque
is applied during the SpinTAC Velocity Identify process. Torque is initially applied to the motor in order for the
motor rotor to be properly aligned prior to the inertia identification process.

This results in the motor spinning as described in Figure 7-6. It is important that the motor is spinning
continuously during the inertia identification process. If the motor stops during the inertia identification trial,
the configuration parameters should be adjusted and the inertia identification process should be repeated. For
more information about how to correct for common configuration errors during inertia identification, see Section
7.5.

This represents the typical case. For more information about how to identify the system inertia for motors with
high cogging force or large friction, see Section 7.6.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

T
o

rq
u

e
[A

]

Time [sec]

Inertia Estimation Torque

Figure 7-5. SpinTAC™ Velocity Identify Torque Reference

Inertia Identification www.ti.com

316 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Inertia Estimation Speed

Figure 7-6. SpinTAC™ Velocity Identify Speed Feedback

7.4 Software Configuration for SpinTAC™ Velocity Identify
Configuring SpinTAC Velocity Identify requires four steps. Lab 5c — InstaSPIN-MOTION Inertia Identification —
is an example project that implements the steps required to use SpinTAC Velocity Identify to estimate the system
inertia. The header file spintac_velocity.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

7.4.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 5c example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_vel_id.h"

7.4.2 Declare the Global Variables

This should be done with the global variable declarations in the main source file. In the Lab 5c project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTACHandle

If you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header file, use the
following example.

ST_VelId_t stVelId; // The SpinTAC Velocity Identify object
ST_VELID_Handle stVelIdHandle; // The SpinTAC Inertia Identify handle

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

317

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.4.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Velocity Identify. This step can be completed by running the functions ST_init
and ST_setupVelId that are declared in the spintac_velocity.h header file. If you do not wish to use these two
functions, the code example below can be used to configure the SpinTAC Velocity Identify component. This
configuration of SpinTAC Velocity Identify represents the typical configuration that should work for most motors.

// Initialize the SpinTAC Velocity Identify Component
stVelIdHandle = STVELID_init(&stVelId, sizeof(stVelId));
// Setup SpinTAC Velocity Identify Component
// Sample time [s]
STVELID_setSampleTime_sec(stVelIdHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// System speed limit [pu/s], (0, 1]
STVELID_setVelocityMax(stVelIdHandle, _IQ(1.0));
// System maximum (0,1] & minimum [-1,0) control signal [PU]
STVELID_setOutputMaximums(stVelIdHandle, maxCurrent_PU, -maxCurrent_PU);
// Goal Speed of the inertia identification process [pu/s], (0, 1]
STVELID_setVelocityPositive(stVelIdHandle, _IQmpy(_IQ(0.4), _IQ(1.0)));
// System control signal high (0, OutMax] & low [OutMin, 0) limit [PU]
STVELID_setOutputLimits(stVelIdHandle, maxCurrent_PU, -maxCurrent_PU);
// Low pass filter constant to smooth the speed feedback signal [tick], [1, 100]
STVELID_setLowPassFilterTime_tick(stVelIdHandle, 1);
// Configure the time out for inertia identification process [s], [100*T, 10.0]
STVELID_setTimeOut_sec(stVelIdHandle, _IQ(10.0));// Rate at which torque is applied to the
motor [s], [T, 25.0]
STVELID_setTorqueRampTime_sec(stVelIdHandle, _IQ(5.0));
// Initially ST_VelId is not in reset
STVELID_setReset(stVelIdHandle, false);
// Initially ST_VelId is not enabled
STVELID_setEnable(stVelIdHandle, false);

Inertia Identification www.ti.com

318 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.4.4 Call SpinTAC™ Velocity Identify

This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK declared in the
spintac_velocity.h header file; for more information, see Section 4.7.1.4. Before calling the SpinTAC Velocity
Identify function the speed feedback must be updated. It is also important to notice that this example implements
the flowchart from Figure 7-4 in order to make sure the system is ready to identify inertia.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
_iq speedFeedback = EST_getFm_pu(obj->estHandle); // Get the mechanical speed in pu/s
_iq iqReference = 0;
if(gMotorVars.SpinTAC.VelIdRun != false) {
 // if beginning the SpinTAC Velocity Identify process
 // set the speed reference to zero
 gMotorVars.SpeedRef_krpm = 0;
 // wait until the actual speed is zero
 if((_IQabs(speedFeedback) < _IQ(ST_MIN_ID_SPEED_PU))
 && (STVELID_getEnable(stVelIdHandle) == false)) {
 gMotorVars.Flag_enableForceAngle = true;
 EST_setFlag_enableForceAngle(obj->estHandle, gMotorVars.Flag_enableForceAngle);
 // set the GoalSpeed
 STVELID_setVelocityPositive(stVelIdHandle, gMotorVars.VelIdGoalSpeed);
 // set the Torque Ramp Time
 STVELID_setTorqueRampTime_sec(stVelIdHandle, gMotorVars.VelIdTorqueRampTime);
 // Enable SpinTAC Velocity Identify
 STVELID_setEnable(stVelIdHandle, true);
 // Set a positive speed reference to FAST to provide direction information
 gMotorVars.SpeedRef_krpm = _IQ(0.001);
 CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);
 }
}
// Run SpinTAC Velocity Identify
STVELID_setVelocityFeedback(stVelIdHandle, speedFeedback);
STVELID_run(stVelIdHandle);
if(STVELID_getDone(stVelIdHandle) != false) {
 // If inertia identification is successful
 // update the inertia setting of SpinTAC Velocity Controller
 // EXAMPLE:
 // STVELCTL_setInertia(stVelCtlHandle, STVELID_getInertiaEstimate(stVelIdHandle));
 gMotorVars.VelIdRun = false;
 // return the speed reference to zero
 gMotorVars.SpeedRef_krpm = _IQ(0.0);
 CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);
}
else if((STVELID_getErrorID(stVelIdHandle) != false)
 && (STVELID_getErrorID(stVelIdHandle) != ST_ID_INCOMPLETE_ERROR)) {
 // if not done & in error, wait until speed is less than 1RPM to exit
 if(_IQabs(speedFeedback) < _IQ(ST_MIN_ID_SPEED_PU)) {
 gMotorVars.VelIdRun = false;
 // return the speed reference to zero
 gMotorVars.SpeedRef_krpm = _IQ(0.0);
 CTRL_setSpd_ref_krpm(ctrlHandle, gMotorVars.SpeedRef_krpm);
 }
}
// Set the Iq reference that came out of SpinTAC Identify
iqReference = STVELID_getTorqueReference(stVelIdHandle);
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

319

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.5 Troubleshooting Inertia Identification
SpinTAC Velocity Identify has been tested on a wide variety of motors. Non-typical motors can have difficulty
with the inertia identification process and result in an error. This error is represented by a value in the ERR_ID
field of the SpinTAC Velocity Identify global structure. Common errors and correcting for them is discussed.

7.5.1 ERR_ID

ERR_ID provides an error code for users. A list of errors defined for SpinTAC Velocity Identify and the solutions
for these errors are shown in Table 7-1.

Table 7-1. SpinTAC™ Velocity Identify Error Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 0.01]

2 Invalid system maximum velocity value Set cfg.VelMax within (0, 1]

4 Invalid velocity loop control signal maximum value Set cfg.OutMax within (0, 1]

5 Invalid velocity loop control signal minimum value Set cfg.OutMin within [-1, 0)

22 Invalid velocity value Set cfg.VelPos within (0, cfg.VelMax]

23 Invalid velocity loop control signal positive value Set cfg.OutPos within (0, cfg.OutMax]

24 Invalid velocity loop control signal negative value Set cfg.OutNeg within [cfg.OutMin, 0)

34 Invalid acceleration ramp time value Set cfg.RampTime_sec within [cfg.T_sec, 25]

36 Invalid value for feedback type Set cfg.Sensorless within {false, true}

1010 Invalid velocity feedback low pass filter time constant Set cfg.LptTime_tick within [1, 100]

1011 Invalid time out value Set cfg.TimeOut_sec within [1, 10]

2003 Invalid inertia estimate value Adjust the configuration parameters and repeat

2004 Inertia identification process timed out Adjust the configuration parameters and repeat

2005 Identification process is discarded by setting RES = 1 or
ENB = 0

No action

2006 Motor stopped during identification process Adjust the configuration parameters and repeat

4001 Invalid SpinTAC license Use the chip with valid license

4003 Invalid ROM Version Use a chip with a valid ROM version or use the SpinTAC
library that is compatible with the current ROM version.

7.5.2 2003 Error

This error indicates that the estimated inertia value is incorrect. This is commonly caused by motors that have
a large friction or a high cogging force. To correct for this error, decrease the RampTime_sec parameter in the
configuration section of the global structure. Decreasing this parameter will increase the rate at which torque is
applied to the motor during the inertia identification process.

If the identified inertia is a valid number and the friction coefficient is a very small negative number, this error
might be caused by the precision of the calculation when the friction coefficient is very small. In such a case, the
identified inertia may still be valid.

7.5.3 2004 Error

This error represents that the inertia identification process timed out prior to completion. There are a couple of
different causes for this event.

7.5.3.1 Motor Spins Continuously

If the motor spins continuously and the inertia identification process results in this error it means that the goal
speed of the identification process is too high. This is commonly caused by the motor having a low rated speed.
The way to correct this error is to decrease the VelPos parameter in the configuration section of the global
structure. This parameter represents the goal speed of the identification process. If the VelPos value is set too
low it can result in inaccurate inertia identification.

Inertia Identification www.ti.com

320 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.5.3.2 Motor Does Not Spin Initially

If the motor does not spin initially and the inertia identification process results in this error it means that the
torque applied to the motor was too low. This is commonly caused by the motor requiring a large amount of
current to begin motion. The way to correct for this error is to increase the OutPos parameter in the configuration
section of the global structure. This parameter represents the maximum torque that is applied during the
identification process.

7.5.4 2006 Error

This error indicates that the motor failed to spin continuously during the inertia identification process. It is
important that the motor does not stop spinning until the inertia identification process is complete. The error
is commonly caused by the RampTime_sec parameter being set too high. When the motor stops during the
inertia identification process it can cause the estimated inertia value to be larger than the actual inertia value.
Decreasing the RampTime_sec parameter will increase the rate at which torque is applied to the motor during
the inertia identification process.

7.6 Difficult Applications for Inertia Identification
Some applications have features that make it difficult to identify the system inertia. The default configuration of
SpinTAC Velocity Identify is designed to work with applications that use typical motors. Applications where the
motor feature any of the following conditions, some changes need to be made to the SpinTAC Velocity Identify
configuration.

• Large Cogging Force
• Large Friction
• Low-Rated Speed
• Large Back EMF
• Large Start-Up Current

7.6.1 Automotive Pumps (Large-Cogging Force / Large Friction)

Many automotive pumps feature a large amount of cogging force or have a very large friction. For these
applications it is important to decrease the RampTime_sec parameter. This parameter is located in the
configuration structure of the SpinTAC Velocity Identify global structure. The RampTime_sec value represents
the amount of time in seconds it takes to ramp the Iq reference from 0 to 1.0 PU. Decreasing this value means
that Iq reference will increase more quickly during inertia identification. This ensures that the motor decelerates
properly. If the motor does not properly decelerate, the inertia identification process will produce a bad result.

Figure 7-7 is the speed feedback during the inertia identification process for an automotive pump with large
friction. When RampTime_sec is set to 10.0 the inertia identification process does not complete successfully.
It is important to notice that the larger RampTime_sec has a delayed start to the process and the motor stops
in the middle of the test. Both of these conditions cause the inertia identification to fail with the ERR_ID set to
2003. When RampTime_sec is set to 3.0, the inertia identification does not have a delayed start, and the motor
does not stop during the test. Both of these conditions need to be satisfied in order for the inertia identification to
complete successfully.

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

321

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

2200.00

2400.00

2600.00

2800.00

3000.00

3200.00

3400.00

3600.00

3800.00

4000.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

S
p

e
e

d
[R

P
M

]

Time [sec]

Inertia Estimation for an Automotive Pump
RampTime_sec (3.0)

RampTime_sec (10.0)

Delayed

Start

Speed Stops

in Test
No Start

Delay

Speed Does

Not Stop

Figure 7-7. Speed Feedback for Inertia Identification for an Automotive Pump

Inertia Identification www.ti.com

322 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.6.2 Direct Drive Washing Machines (Low-Rated Speed and Large Back EMF)

Most direct drive washing machine use motors with a low rated speed. In these applications it is important to
decrease the VelPos parameter. This parameter is located in the configuration structure of the SpinTAC Velocity
Identify global structure. The VelPos value represents the goal speed in pu/s of the inertia identification process.
If the goal speed is greater than twice the rated speed of the motor, inertia identification will fail because the
motor will not be able to achieve enough speed. Decreasing VelPos means that the goal speed of the inertia
identification process will be lower and will allow the process to succeed. Using field weakening to increase the
speed of the motor during the inertia identification process is not recommended. Field weakening will impact the
relationship between speed and torque.

Figure 7-8 is the speed feedback during the inertia identification process for a direct drive washing machine.
You should notice that the motor spins at its rated speed of approximately 360 rpm for longer than 5 seconds.
This means that the motor never reached the goal speed specified in the VelPos configuration parameter and
SpinTAC Velocity Identify timed out and ended the inertia identification process.

-25

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

S
p

e
e

d
[R

P
M

]

Time [sec]

Inertia Estimation for a Direct Drive Washing Machine Goal Speed 200 RPM

Goal Speed 800 RPM

Motor Decelerates

Test Timed Out

Motor Slow

Ramps to Zero

Motor Stays at Peak

Speed for Longer

than 5 Seconds

Motor Does Not

Stay at Peak Speed

Figure 7-8. Speed Feedback for Inertia Identification for a Direct Drive Washing Machine

Direct drive washing machines also feature a large amount of back emf and rapid deceleration could cause an
over-voltage condition on the DC bus. Reducing the Goal Speed will cause the motor to have less deceleration
and will generate less voltage on the DC bus. The Goal Speed is set by the VelPos parameter.

Figure 7-9 is a plot that shows the voltage on the DC bus during the inertia identification process. The speed
feedback is provided for reference. You should notice that the DC bus rises to 400 volts during the inertia
identification process when the Goal Speed is set to 400 RPM. In order to eliminate this large rise in voltage, the
VelPos configuration parameter is decreased. When the Goal Speed is set to 200 RPM, the DC bus stays below
350 volts during the entire inertia identification process.

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

323

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-50.00

-25.00

0.00

25.00

50.00

75.00

100.00

125.00

150.00

175.00

200.00

225.00

250.00

275.00

300.00

325.00

350.00

375.00

400.00

425.00

450.00

-50.00

-25.00

0.00

25.00

50.00

75.00

100.00

125.00

150.00

175.00

200.00

225.00

250.00

275.00

300.00

325.00

350.00

375.00

400.00

425.00

450.00

1 2 3 4 5 6 7 8

V
o

lt
a

g
e

[V
]

S
p

e
e

d
[R

P
M

]

Time [sec]

Inertia Estimation for a Direct Drive Washing Machine Speed Feedback Speed Feedback

DC Bus DC Bus

Goal Speed

400 RPMGoal Speed

200 RPM

DC Bus Stays

Below 350V
DC Bus

Reaches 400 V

Figure 7-9. DC Bus Voltage for Inertia Identification for a Direct Drive Washing Machine

Inertia Identification www.ti.com

324 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

7.6.3 Compressors (Large Start-Up Current)

Compressors often cannot have the load torque completely eliminated. This causes the motor to require a
large amount of Iq reference to begin spinning. For these applications it is important to increase the PosOut
parameter. This parameter is located in the configuration structure of the SpinTAC Velocity Identify global
structure. The PosOut value represents the amount of Iq reference, in PU, that will be applied as part of the
inertia identification process. Increasing this value will apply more current to the motor during the process. It
might also be important to decrease the RampTime_sec parameter. This will increase the rate at which the Iq
reference is applied to the system.

Figure 7-10 is the speed feedback during the inertia identification process for a compressor. You should notice
that the speed does not accelerate up to the goal speed very quickly. It takes a long time for it to build up to
the goal speed. This indicates that the motor needs additional torque in order to reach the goal speed. The
configuration parameter that needs to be adjusted is PosOut. This parameter should be increased in order to
supply more torque to the motor during the inertia identification process. The inertia identification process will
only use as much torque as is required to reach the goal speed. It is better to have the PosOut parameter be
larger than what is required.

Many compressors cannot run in the negative direction. The inertia identification process applies negative Iq
reference to the system in order to decelerate the motor. Even though negative Iq reference is being applied,
the motor still does not end up rotating in the negative direction due to the inertia identification process ending
before the motor would spin in the negative direction.

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

2200.00

2400.00

2600.00

2800.00

3000.00

3200.00

3400.00

3600.00

3800.00

4000.00

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S
p

e
e

d
[R

P
M

]

Time [sec]

Inertia Estimation for a Compressor
Max Torque 4A

Max Torque 0.5A

Motor Gradually

Ramps Up to Speed

Motor Rapidly

Ramps Up to

Speed

Figure 7-10. Speed Feedback for Inertia Identification for a Compressor

www.ti.com Inertia Identification

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

325

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Inertia Identification www.ti.com

326 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.1 Overview..328
8.2 InstaSPIN-Enabled Devices... 328
8.3 ROM and User Memory Overview... 330
8.4 Details on CPU Load and Memory Footprint Measurements... 333
8.5 Memory Footprint... 336
8.6 CPU Load...341
8.7 Digital and Analog Pins..366

Chapter 8
MCU Considerations

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

327

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.1 Overview
In this chapter we will review the MCU-specific considerations required to implement InstaSPIN-FOC and
InstaSPIN-MOTION:

• List of devices that are enabled with InstaSPIN and describing their specific requirements
• Memory map considerations
• Clock rates

This section provides details the microcontroller resources required by the InstaSPIN libraries. Two
implementations of InstaSPIN are discussed in this document depending on how much of the functionality is
run from secured ROM, or what functionality is run from user's memory, either RAM or FLASH:
– All of InstaSPIN-FOC from ROM, also known as full implementation.
– Only FAST™ from ROM, also known as minimum implementation.

Also, a distinction must be made depending on where the code is placed and executed from in user's
memory. Two categories are discussed:
– Library executing from ROM and loading and executing user's code from RAM
– Library executing from ROM and loading and executing user's code from FLASH

• Specifically for the library implementation and where the code is loaded and executed from, the following
resources categories are discussed in this document:
– CPU Utilization
– Memory Allocation
– Stack Utilization

• A common section at the end lists the Digital and Analog Pins Utilization, which is common to every mode of
operation of InstaSPIN.

8.2 InstaSPIN-Enabled Devices
The devices that currently include InstaSPIN-FOC or InstaSPIN-MOTION in ROM are listed in Table 8-1.

Table 8-1. InstaSPIN-Enabled Devices

Device
InstaSPIN-FOC

in ROM
InstaSPIN-MOTION

in ROM
InstaSPIN

User's Guide
Device

Data Sheet Device TRM
TMS320F28069M V1.6 V2.1.8 SPRUHJ0 SPRS698 SPRUH18

TMS320F28069F V1.6 not included SPRUHI9 SPRS698 SPRUH18

TMS320F28068M V1.6 V2.1.8 SPRUHJ0 SPRS698 SPRUH18

TMS320F28068F V1.6 not included SPRUHI9 SPRS698 SPRUH18

TMS320F28062F V1.6 not included SPRUHI9 SPRS698 SPRUH18

TMS320F28054M V1.7 V2.1.8 SPRUHW1 SPRS797 SPRUHE5

TMS320F28054F V1.7 not included SPRUHW0 SPRS797 SPRUHE5

TMS320F28052M V1.7 V2.1.8 SPRUHW1 SPRS797 SPRUHE5

TMS320F28052F V1.7 not included SPRUHW0 SPRS797 SPRUHE5

TMS320F28027F V1.7 not included SPRUHP4 SPRS523 SPRUFN3

TMS320F28026F V1.7 not included SPRUHP4 SPRS523 SPRUFN3

The devices have remained exactly the same except that InstaSPIN technology has been added to a specific
region of ROM. For detailed information on the device, see the device-specific data sheets and errata for
complete details on the device that you are using.

MCU Considerations www.ti.com

328 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUHJ0
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHI9
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHJ0
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHI9
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHI9
https://www.ti.com/lit/pdf/SPRS698
https://www.ti.com/lit/pdf/SPRUH18
https://www.ti.com/lit/pdf/SPRUHW1
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUHW0
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUHW1
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUHW0
https://www.ti.com/lit/pdf/SPRS797
https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com/lit/pdf/SPRUHP4
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com/lit/pdf/SPRUHP4
https://www.ti.com/lit/pdf/SPRS523
https://www.ti.com/lit/pdf/SPRUFN3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

softwareUpdate1p6() - Function is
Required in User Code
The function softwareUpdate1p6() is a work-around for a bug in InstaSPIN-FOC v1.6 to correct how inductance
is converted from Henries to per unit value when using the inductance from user.h. This function needs to be
called whenever motor parameters are loaded from user.h when using InstaSPIN-FOC v1.6.

The following fixes are in this patch:

• Added a maximum per inductance value. Thus, we wanted the per unit inductance values scaled with respect
to this maximum value. This would impact the Q format of the inductance value as well.

• Set the current controller gain values (Id/Iq current controllers) based on these new per unit inductance
values.

Following is the source code to the patch, it is used in every InstaSPIN-FOC v1.6 and InstaSPIN-MOTION lab
example.

void softwareUpdate1p6(CTRL_Handle handle)
{
 CTRL_Obj *obj = (CTRL_Obj *)handle;
 float_t fullScaleInductance = EST_getFullScaleInductance(obj->estHandle);
 float_t Ls_coarse_max = _IQ30toF(EST_getLs_coarse_max_pu(obj->estHandle));
 int_least8_t lShift = ceil(log(obj->motorParams.Ls_d/(Ls_coarse_max*fullScaleInductance))/
log(2.0));
 uint_least8_t Ls_qFmt = 30 - lShift;
 float_t L_max = fullScaleInductance * pow(2.0,lShift);
 _iq Ls_d_pu = _IQ30(obj->motorParams.Ls_d / L_max);
 _iq Ls_q_pu = _IQ30(obj->motorParams.Ls_q / L_max);
 float_t RoverL = obj->motorParams.Rs/obj->motorParams.Ls_d;
 float_t fullScaleCurrent = EST_getFullScaleCurrent(obj->estHandle);
 float_t fullScaleVoltage = EST_getFullScaleVoltage(obj->estHandle);
 float_t ctrlPeriod_sec = CTRL_getCtrlPeriod_sec(ctrlHandle);
 _iq Kp = _IQ((0.25*obj->motorParams.Ls_d*fullScaleCurrent)/(ctrlPeriod_sec*fullScaleVoltage));
 _iq Ki = _IQ(RoverL*ctrlPeriod_sec);
 _iq Kd = _IQ(0.0);
 // store the results
 EST_setLs_d_pu(obj->estHandle,Ls_d_pu);
 EST_setLs_q_pu(obj->estHandle,Ls_q_pu);
 EST_setLs_qFmt(obj->estHandle,Ls_qFmt);

// set the Id controller gains
 PID_setKi(obj->pidHandle_Id,Ki);
 CTRL_setGains(ctrlHandle,CTRL_Type_PID_Id,Kp,Ki,Kd);
// set the Iq controller gains
 PID_setKi(obj->pidHandle_Iq,Ki);
 CTRL_setGains(ctrlHandle,CTRL_Type_PID_Iq,Kp,Ki,Kd);
 return;
} // end of softwareUpdate1p6() function

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

329

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.3 ROM and User Memory Overview
8.3.1 InstaSPIN-FOC™ Full Implementation in ROM

When application requirements allow to run all of the field oriented control (FOC) blocks from ROM, and no
additional functionality is required (that is, a specialized current control algorithm, or Clarke transform, and so
on), a full implementation is recommended. This implementation will make use of the entire library contents
placed in ROM, and will execute the complete suite of functions and blocks, known as InstaSPIN-FOC. Full
implementation not only includes the FAST algorithm, but it also contains the rest of the FOC blocks. The
following block diagram shows how the full implementation contains several blocks allowing the entire FOC code
to run from ROM, freeing up more memory resources, and taking advantage of the 0-wait state execution from
ROM. The ROM is also execute-only ROM, providing an additional level of security, since the memory cannot be
written or read, only executed.

For F2802xF devices, some of the functional blocks are loaded in user memory due to reduced ROM size.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡�

Software Encoder

Rotor Flux Observer

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_readAdcData

HAL_run

CTRL_run

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode
CTRL_setup

HAL_acqAdcInt

Figure 8-1. InstaSPIN-FOC™ Full Implementation in ROM

8.3.1.1 Executing from ROM and RAM

Even though the entire InstaSPIN library is executed from ROM, there are a few functions that need to be loaded
and run from users' memory. These functions are the interface from the library to the hardware peripherals, as
shown in Figure 8-1. All functions related to the driver object (HAL_Obj) interface to the hardware and need to be
placed in user's memory. The performance data will depend on where these user's functions are implemented.
This section shows performance data when all users' functions are placed and run out of RAM.

MCU Considerations www.ti.com

330 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

From a CPU performance standpoint, loading and executing users' functions from RAM presents the biggest
advantage since RAM does not require wait states. On the other hand, loading users' functions to RAM
consumes volatile memory space, so users would have to consider total available RAM for variables. The stack
utilization and pins used by the library is independent of where the users' code resides, RAM or FLASH.

8.3.1.2 Executing from ROM and FLASH

Loading users' functions to FLASH helps on the RAM consumption aspect, although a portion of the available
RAM is still needed for variables and stack. Another consideration when loading users' code from FLASH is the
CPU execution time, since FLASH requires wait states.

Due to reduced ROM size for the F2802xF devices, it is impossible to execute InstaSPIN-FOC fully from ROM.
For details on running the minimum implementation of InstaSPIN-FOC, see Section 8.3.2.

Stack usage as well as pins used is the same as loading users' code to RAM. We are still listing those
parameters here to provide a complete list of resources usage for a particular implementation.

8.3.2 InstaSPIN-FOC™ Minimum Implementation in ROM

Some applications require more control of what the field oriented control is doing. Applications with this
requirement can use the minimum implementation of InstaSPIN, which consists in running only the FAST
estimator from ROM with any of the other software blocks moveable to user memory. The estimator must remain
in ROM since the source code is proprietary to TI.

Figure 8-2 highlights in different colors what runs from ROM and users' memory.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

HAL_acqAdcInt

CTRL_run

CTRL_setup

Motor Type

Figure 8-2. InstaSPIN-FOC™ Minimum Implementation in ROM

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

331

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Notice that only the function that runs the estimator (Est_run) is executed from ROM. Everything else is
executed from users' memory, either RAM or FLASH. In the following subsections, the performance of InstaSPIN
is described when a minimum implementation is used.

8.3.2.1 Executing from ROM and RAM

When the users' functions are loaded and executed from RAM, code executes faster than from FLASH, with the
penalty of using a portion of the available RAM for code. If a particular application requires maximum execution
speed, and the available RAM satisfies non volatile memory requirements, this is the best option.

8.3.2.2 Executing from ROM and FLASH

As mentioned in previous sections, loading users' functions to FLASH helps on the RAM consumption aspect.
However, the disadvantage of FLASH execution is the speed, since FLASH requires wait states to operate
properly; hence, affecting execution speed.

8.3.3 InstaSPIN-MOTION™ in ROM

InstaSPIN-MOTION, currently available on F2806xM devices, is designed in a modular structure. Customers can
determine which functions will be included in Flash memory when their system is deployed.

InstaSPIN-MOTION Control, Identify, and Move components are available in ROM InstaSPIN-MOTION Plan and
Public Library are available in RAM.

HAL_acqAdcInt

^�]vd��¡�

Velocity

Control

^�]vd��¡�

Velocity

Move

Z
a

ROM

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡�

Software Encoder

Rotor Flux Observer

Motor Parameters ID

PWM

Driver

ADC

Driver

HAL_run

+
+

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable PowerWarp¡

Motor Type

Enable Rs Online Recalibration

EST_run

ROM FLASH/RAM

FLASH/RAM

Rs

a

Rr
a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

FLASH/RAM
HAL_readAdcData

CTRL_run

CTRL_setup

ROM

STVELMOVE_run STVELCTL_run

^�]vd��¡�D}�]}v�

Control Suite

^�]vd��¡�

Velocity

Plan

Motion

Sequence

ZSP

FLASH/RAM

^�]vd��¡�

Velocity

Identify

ROM

STVELID_run

Zlim

..
Zlim

.

Velocity Mode

STVELPLAN_run

User_SpdRef
User_SpdRef

Zref

Zref

.

InstaSPIN-DKd/KE¡

Figure 8-3. InstaSPIN-MOTION™ in ROM

MCU Considerations www.ti.com

332 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.3.3.1 Executing InstaSPIN™-MOTION in the Main Interrupt

The InstaSPIN-MOTION components are individually executed in the main interrupt service routine. Each
InstaSPIN-MOTION component should be called at a fixed decimation from the main ISR. It is recommended
that the InstaSPIN-MOTION components be called at a rate at least 10 times slower than the PWM interrupt ISR
or main ISR.

The InstaSPIN-MOTION core functions, including Control, Identify and Move, can only be executed from ROM.
The user-included library and Plan can be executed from RAM or flash.

8.3.3.2 Executing Library from RAM

Loading and executing the public library from RAM presents a CPU performance advantage since RAM does not
require wait states. However, for applications that require large amounts of RAM, executing the library from flash
could be a better option.

8.3.3.3 Executing Library from Flash

Loading and executing the public library from flash helps to decrease RAM consumption, although some RAM
will be used by variables and stack. An important consideration is the flash wait states.

8.4 Details on CPU Load and Memory Footprint Measurements
8.4.1 CPU Utilization Measurement Details

In order to measure the CPU cycles as accurate as possible, one of the three available CPU timers was used.
The timer was clocked as fast as possible in order to provide the maximum number of counts per execution. So
the input clock of the timer was set to the same clock as the CPU with no prescaler. The following code example
shows how the timer's count is reloaded and then read after the function of interest is executed:

 // reload the CPU timer
 HAL_reloadTimer0(halHandle);
 // run the controller
 CTRL_run(ctrlHandle,halHandle,&gAdcData,&gPwmData);
 // get the CPU timer count
 timercount = HAL_getCountTimer0(halHandle);

Even though the functions that reload and read the timer count are as efficient as possible, there is an overflow
of about 5 CPU cycles which have to be considered when using the data provided in the following sections.

The CPU utilization tables have a minimum column (Min) calculated by running hundreds of thousands of
interrupts, and comparing each interrupt cycle time against a minimum, and if it is smaller, the minimum is
updated. The same approach was followed to calculate the maximum number of cycles, or the Max column.
The Average column was calculated by an accumulative number of cycles, and also counting the number of
interrupts used for the accumulation, and then dividing the two numbers. Similarly to the Min and Max column,
the Average is calculated over hundreds of thousands interrupts to generate a stable average.

The CPU utilization tables list a few optional configurations, changing three main things:
• The Interrupt vs. Controller (ISR vs CTRL) decimation rate, or tick rate
• The Controller vs. Estimator (CTRL vs EST) decimation rate, or tick rate
• The Rs Online recalibration feature

For the first two, related to the decimation rates, Figure 8-4 shows the entire software execution clock tree of
InstaSPIN. This diagram shows how the clocks are divided all the way from the CPU clock to the estimator.
We are only changing the highlighted tick rates, since these two are the main contributors of the CPU usage.
Changing the speed controller, current controller or trajectory generation tick rates does not change the CPU
usage significantly, so those are kept constant throughout the CPU utilization measurements.

For more information about InstaSPIN software execution clock tree, see Section 9.1.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

333

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA

/ETPS ADC

PWMFREQ

/ISRvsCTRL

ISR

/CTRLvsEST

/CTRLvsCURRENT

/CTRLvsSPEED

/CTRLvsTRAJ

CTRL

EST

CURRENT

SPEED

TRAJ

Software Decimation

Hardware Decimation

Figure 8-4. InstaSPIN™ Software Execution Clock Tree

The third parameter that is enabled and disabled for the CPU utilization measurement is the Rs Online
recalibration feature.

This is also considered since it impacts the CPU utilization considerably. To learn more about Rs Online
recalibration, see Chapter 15.

8.4.2 Memory Allocation Measurement Details

Memory allocation depends on several factors. Here are some factors that affect how the memory is allocated as
well as the configuration used for each item:
• Compiler Version: 6.1.0

• Optimization Settings: Level 4

• Additional User's Code: None. Minimal code was used to interface InstaSPIN libraries.

The entire command line showing the options of the compiler is also here:

-v28 -ml -mt -O4 -g

In order to have a minimum set of variables to interface InstaSPIN libraries, here is a list of must have global
variables in your code:

CTRL_Handle ctrlHandle;
HAL_Handle halHandle;
USER_Params gUserParams;
HAL_PwmData_t gPwmData;
HAL_AdcData_t gAdcData;

MCU Considerations www.ti.com

334 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

For a complete description of these variables and the data type, see the labs. Some other variables might be
useful to control the flow of the software, such as flags to enable or disable the system, as well as other global
variables to display motor parameters. Those variables are not included in the project built to measure memory
allocation, since they are not needed for the functionality of the libraries.

There are five different sections in the memory allocation tables:
• Library Interface (.ebss). This section of the table indicates the variables, in uninitialized memory area,

or .ebss, used to interface the InstaSPIN libraries wherever they are, in user's memory or ROM.
• Library (.ebss). This one refers to the variables used for the InstaSPIN library itself, and the memory

consumption for this area doesn't change.
• Code (.text). This section refers to the actual code being executed in user's memory. This code area will

change depending on where the code is loaded (RAM or FLASH). It would also change if the compiler
optimization settings are changed. Also, if the user is running most of the code from ROM, this code section
will be minimized.

• IQmath (.text). The memory allocated for the code related to IQmath depends on the location of the
InstaSPIN libraries. For a full implementation of InstaSPIN, where the majority of the code is in ROM, the
IQmath code is minimized, since the ROM code itself has its own math code, and does not use user's
memory for IQmath operations. For a minimum implementation of InstaSPIN, where a more math intensive
code is operated from user's memory, some additional IQmath functions are needed in user's memory so the
memory allocated to IQmath code increases for a minimum implementation of InstaSPIN.

• Max Stack Used (.ebss). This memory area is explained in a later section of this document.

8.4.3 IQ Math Built in ROM

The libraries in ROM were built with IQmath library version 1.5c. All code executable from ROM uses functions
implemented in ROM itself, so the ROM code does not rely on externally added IQ math functionality.

However, code executed from user's memory with IQ math operations need an IQ math library to be added. This
externally added IQ math library can be any released library version, not 1.5c necessarily. Users can mix their
own version of IQ math library, and still execute code from ROM which uses IQ math library version 1.5c. All
example code includes a full IQ math library in the CCStudio project.

8.4.4 Stack Utilization Measurement Details

The stack utilization was measured by the following procedure:

• Device is reset.
• The entire memory section where the stack is placed by the linker is initialized with known values,

(0x5555AAAA, 0x12345678, 0x0BADF00D, 0xCAFEBABE, 0xFEEDFACE, and so on).
• Run the code for a few minutes, exercising all branches.
• Analyze the memory area where the stack is allocated and look for the last value changed, before the

initialized values are present.
• Calculate the memory area modified.

Although the stack utilization method does not guarantee an absolute number of words needed for the stack, it
gives a good idea of the stack area needed. However, it is recommended to have a stack section bigger than the
minimum requirement to provide more robustness to the entire project. For additional details on this topic, see
the Online Stack Overflow Detection on the TMS320C28x DSP application report (SPRA820).

The number on the tables listed in the following sections represent the maximum stack utilized, not the stack
area reserved by the build options. As mentioned in this section, it is recommended to have a greater stack
area reserved to avoid potential stack overflow conditions, especially when adding more code, other interrupts,
or simply more variables.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

335

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRA820
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.4.5 InstaSPIN™ Main Interrupt

The InstaSPIN library is executed at a fixed frequency from a single interrupt service routine. By default this main
ISR is triggered by an end of conversion interrupt from the ADC. This conversion is first started by the PWM
module at a fixed rate. Once in the ISR, mainISR() for this example, a series of function calls are needed in order
to get data from the ADC and to call the functions in ROM. The following code is an example of this:

interrupt void mainISR(void)
{
 // acknowledge the ADC interrupt
 HAL_acqAdcInt(halHandle,ADC_IntNumber_1);
 // convert the ADC data
 HAL_readAdcData(halHandle,&gAdcData);

 // run the controller
 CTRL_run(ctrlHandle,halHandle,&gAdcData,&gPwmData);
 // run the driver -- set the pwm compare values
 HAL_writePwmData(halHandle,&gPwmData);
 // setup the controller
 CTRL_setup(ctrlHandle);
 return;
} // end of mainISR() function

In order to describe the performance of InstaSPIN we will consider a top-level approach first, including these five
function calls from the main ISR (see Figure 8-5).

HAL_acqAdcInt

HAL_readAdcData

CTRL_run

HAL_writePwmData

CTRL_setup

mainISR

End of Conversion Interrupt Period

EST_run

Figure 8-5. Function Calls from the Main ISR

8.4.6 Clock Rate

InstaSPIN-FOC and InstaSPIN-MOTION are real-time control systems and thus its performance is directly
linked with the CPU clock rate of the processor it is executing on. The CPU clock rate can be reduced and
the performance of InstaSPIN-FOC and InstaSPIN-MOTION can be tested to see if it meets the application
requirements. Aspects of CPU loading are covered in Section 8.6 and the software clock tree of InstSPIN-FOC
and InstaSPIN-MOTION is covered in Chapter 9.

8.5 Memory Footprint
InstaSPIN-FOC is stored in a region of the device ROM that is execute-only (EXE-only) memory such that it is
not readable by software or IDE.

Table 8-2. Allocated Memory for InstaSPIN-FOC™ Library
Features 2806xF 2806xM 2805xF 2805xM 2802xF
FAST Yes Yes Yes Yes Yes

SpinTAC No Yes No Yes No

Maximum Number of Motors that can
be controlled

2 2 2 2 1

Relocalable Controller Structure No No Yes Yes Yes

MCU Considerations www.ti.com

336 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 8-2. Allocated Memory for InstaSPIN-FOC™ Library (continued)
Features 2806xF 2806xM 2805xF 2805xM 2802xF
FAST Version 1.6 1.6 1.7 1.7 1.7

Public Library needs to be added to
project

No No No No Yes

ROM Library Start [address, hex] 3F 8000 3F 8000 3F 8808 3F 8808 3F C000

Library Required RAM [size, hex,
words]

800 800 800 800 200

Library Start RAM [address, hex] 01 3800 01 3800 00 8000 00 8000 00 0600

8.5.1 Device Memory Map
8.5.1.1 F2806xF and F2806xM Devices

For the F2806xF and F2806xM devices, InstaSPIN-FOC v1.6 and SpinTAC v2.1.8 is stored in address range
of 0x3F8000 to 0x3FBFFF and the last part of L8-RAM is reserved for InstaSPIN variables, address range
0x013800 to 0x013FFF. Note that the InstaSPIN-FOC and InstaSPIN-MOTION variable range is fixed and must
not be used. The rest of L8-RAM is available to the user (0x012000 to 0x0137FF); see Figure 8-6.

See Datasheet

FAST and SpinTAC

Variables

See Datasheet

FAST and SpinTAC

Libraries

See Datasheet

Last

Part of

L8 RAM

Execute

Only

ROM

0x013800

0x000000

0x014000

0x3F8000

0x3FC000

0x3FFFFF

Figure 8-6. F2806xF and F2806xM Allocated Memory for InstaSPIN-FOC™ and SpinTAC™ Library

In addition to InstaSPIN-FOC v1.6 and SpinTAC v2.1.8 stored in ROM, several tables in ROM have moved to
new addresses. If you are porting existing code that references for example IQmath tables in ROM, your linker
command file will require an update of the addresses as shown in Table 8-3.

Table 8-3. ROM Table Addresses
Starting Address in ROM F2806x F2806xF and F2806xM
FPUTABLES 0X03FD860 0X03FD590

IQTABLES 0X03FDF00 0X03FDC30

IQTABLES2 0X03FEA50 0X03FE780

IQTABLES3 0X03FEADC 0x03FE80C

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

337

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.5.1.2 F2805xF and F2805xM Devices

For the 2805xF and 2805xM devices, InstaSPIN-FOC v1.7 and SpinTAC v2.1.8 is stored in address range of
0x3F8808 to 0x3FC52F and L0-RAM is reserved for InstaSPIN variables, address range 0x008000 to 0x0087FF;
see Figure 8-7.

See Datasheet

FAST + SPIN

Variables

See Datasheet

FAST + SPIN

Libraries

See Datasheet

L0 RAM

Execute

Only

ROM

0x008000

0x000000

0x008800

0x3F8808

0x3FC52F

0x3FFFFF

Figure 8-7. F2805xF and F2805xM Allocated Memory for InstaSPIN-FOC™ and SpinTAC™ Library

8.5.1.3 F2802xF Devices

For the 2802xF devices, InstaSPIN-FOC v1.7 is stored in address range of 0x3FC000 to 0x3FDFFF and the
last part of M1-RAM is reserved for InstaSPIN variables, address range 0x000600 to 0x0007FF. Note that the
InstaSPIN-FOC variable range is fixed and must not be used. The rest of M1-RAM is available to the user
(0x000400 to 0x0005FF); see Figure 8-8

See Datasheet

FAST Variables

See Datasheet

FAST Libraries

See Datasheet

Last

Part of

M1 RAM

Execute

Only

ROM

0x000600

0x000000

0x000800

0x3FC000

0x3FE000

0x3FFFFF

Figure 8-8. F2802xF Allocated Memory for InstaSPIN-FOC™ Library

MCU Considerations www.ti.com

338 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.5.2 InstaSPIN™ Memory Footprint
8.5.2.1 F2806xF and F2805xF Devices

Table 8-4 summarizes the memory used for the four configurations discussed in this document. Note the code
size increase as fewer functions in ROM are used.

Table 8-4. Total Memory Usage of InstaSPIN-FOC™ for F2806xF and F2805xF Devices
Code Configurations Memory Sizes (16-bit Words) Maximum Stack Used

(16-bit Words)ROM Code User Code RAM Flash Total
Full Implementation RAM 0x1870 0x0000 0x1870 0x0120

Full Implementation FLASH 0x001E 0x186C 0x188A 0x0120

Minimum Implementation RAM 0x1F31 0x0000 0x1F31 0x0120

Minimum Implementation FLASH 0x001E 0x1F2D 0x1F4B 0x0120

8.5.2.2 F2802xF Devices

Table 8-5 summarizes the memory used for the only configuration available for F2802xF devices.

Table 8-5. Total Memory Usage of InstaSPIN-FOC™ for F2802xF Devices
Code Configurations Memory Sizes (16-bit Words) Maximum Stack Used

(16-bit Words)ROM Code User Code RAM Flash Total
Minimum Implementation FLASH 0x06B2 0x2DD8 0x348A 0x0120

8.5.2.3 F2806xM and F2805xM Devices

To calculate the memory usage for InstaSPIN-MOTION, add the InstaSPIN-FOC memory usage to the SpinTAC
memory usage in Table 8-6. The different memory requirements of SpinTAC Velocity Plan and SpinTAC Position
Plan represent how many configuration functions are used in the project. RAM size is taken from the linker
section ".ebss" and FLASH size from ".text".

Table 8-6. Code Size and RAM Usage for SpinTAC™ Components
Component Code (.text) (16-Bit Words) RAM (.ebss) (16-Bit Words)
Velocity Control 0X2E6 0x4C

Velocity Move 0x488 0x5C

Velocity Plan (Minimum) 0x666 0x4E
Velocity Plan (Maximum) 0x14BA 0x4E

Velocity Identify 0x392 0x3C

Position Converter 0x21C 0x4C

Position Control 0x416 0x62

Position Move 0x13A4 0xCC

Position Plan (Minimum) 0x7AE 0x60
Position Plan (Maximum) 0x16F4 0x60

Table 8-7 breaks down the maximum stack utilization of SpinTAC components when run individually. The stack
consumption of InstaSPIN-FOC is included.

Table 8-7. Stack Utilization of SpinTAC™
Components + InstaSPIN-FOC™

Configuration
(InstaSPIN-FOC is running in all cases)

Maximum Stack Used
(16-bit Words)

Velocity Control 0x0120

Velocity Move 0x0120

Velocity Plan + Move + Control 0x0120

Velocity Identify 0x0120

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

339

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 8-7. Stack Utilization of SpinTAC™
Components + InstaSPIN-FOC™ (continued)

Configuration
(InstaSPIN-FOC is running in all cases)

Maximum Stack Used
(16-bit Words)

Position Converter 0x0120

Position Control 0x0120

Position Move 0x0120

Position Plan + Move + Control 0x0120

8.5.3 Memory Wait-States

For additional wait-state options, refer to the device-specific data sheet for the device that you are using.

8.5.3.1 F2806xF/M Devices

The wait states shown in Table 8-8 were set for the CPU execution time measurements when executing code
from FLASH at 90 MHz for the F2806xF/M devices.

Table 8-8. CPU Execution Time Wait States (F2806xF and F2806xM Devices)
Page Wait State Random Wait State OTP Wait State

3 3 5

8.5.3.2 F2805xF/M Devices

The wait states shown in Table 8-9 were set for the CPU execution time measurements when executing code
from FLASH at 60 MHz for the F2805xF/M devices.

Table 8-9. CPU Execution Time Wait States (F2805xF and F2805xM Devices)
Page Wait State Random Wait State OTP Wait State

2 2 3

8.5.3.3 F2802xF Devices

The wait states shown in Table 8-10 were set for the CPU execution time measurements when executing code
from FLASH at 60 MHz for the F2802xF devices.

Table 8-10. CPU Execution Time Wait States (F2802xF Devices)
Page Wait State Random Wait State OTP Wait State

2 2 3

8.5.4 Flash Configuration Required Even for RAM-Only Execution

InstaSPIN-FOC and InstaSPIN-MOTION execute from ROM, but also access the OTP on the F2806xF and
F2806xM and the OTP is a flash-based technology which requires the flash memory to be configured. Therefore,
when you are running the labs from this guide you will notice that the file Flash.c is included in the project. The
function FLASH_init() is called from HAL_init() which is called from main() in the lab. MotorWare provides drivers
for all the peripherals on the device, including flash.

MCU Considerations www.ti.com

340 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.5.5 Debug (IDE) of EXE-Only Memory

Even though InstaSPIN-FOC and InstaSPIN-MOTION are stored in EXE-only ROM the debug experience is
much the same except that you will not be able to see the contents of memory. Viewing memory from CCStudio
using the Memory Browser, contents of EXE-only memory will be all 0s.

If you single-step through EXE-only memory with the Disassembly window open, it will display the opcode for
reading all 0s (ITRAP0). Below is an example of this, single-stepping into the function CTRL_initCtrl() from
Lab02A.

8.6 CPU Load
8.6.1 F2806xF Devices
8.6.1.1 CPU Cycles

The following tables summarize all of the performance data per function, when users' code is loaded and
executed from FLASH, on a minimum implementation of InstaSPIN library. Note that the number of cycles does
not change significantly between the different implementations since the FAST estimator block remains in ROM
for each of these configurations. This estimator block consumes the most cycles of all the InstaSPIN-FOC
blocks. For more details on managing execution time in the ISR, see Section 9.1.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

341

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.1.1 User Code in RAM
8.6.1.1.1.1 Full Implementation

Table 8-11. Full Implementation Memory Usage Executing in RAM

Section
Memory Usage (16-bit Words)

RAM Flash
Library Interface (.ebss) 0x018C ×

Library (.ebss) 0x0800 ×

Code (.text) 0x1870 ×

IQmath (.text) 0x0014 ×

Table 8-12 summarizes all of the performance data per function, when users' code is loaded and executed from
RAM, on a full implementation of InstaSPIN library.

Table 8-12. Full Implementation Executing in RAM

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 23 23 23 × ✓ ×

HAL_readAdcData 106 106 106 × ✓ ×

Ctrl_run

✓ × ×

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 2345 2355 2425
CTRL vs EST = 2 1154 1760 2425
CTRL vs EST = 3 1154 1562 2425

ISR vs CTRL = 2, CTRL vs EST = 1 58 1207 2425
CTRL vs EST = 2 58 909 2425
CTRL vs EST = 3 58 810 2425

ISR vs CTRL = 3, CTRL vs EST = 1 58 824 2425
CTRL vs EST = 2 58 626 2425
CTRL vs EST = 3 58 560 2425

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 2807 2821 2894
CTRL vs EST = 2 1154 1993 2894
CTRL vs EST = 3 1154 1717 2894

ISR vs CTRL = 2, CTRL vs EST = 1 58 1439 2894
CTRL vs EST = 2 58 1025 2894
CTRL vs EST = 3 58 887 2894

ISR vs CTRL = 3, CTRL vs EST = 1 58 979 2894
CTRL vs EST = 2 58 702 2894
CTRL vs EST = 3 58 610 2894

HAL_writePwmData 62 62 62 × ✓ ×

CTRL_setup 37 51 178 ✓ × ×

MCU Considerations www.ti.com

342 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.1.1.2 Minimum Implementation

Table 8-13. Minimum Implementation Memory Usage Executing in RAM

Section
Memory Usage (16-bit Words)

RAM Flash
Library Interface (.ebss) 0x018C ×

Library (.ebss) 0x0800 ×

Code (.text) 0x1F31 ×

IQmath (.text) 0x0064 ×

Table 8-14 summarizes all of the performance data per function, when users' code is loaded and executed from
RAM, on a minimum implementation of InstaSPIN library. Notice that CTRL_run is executed from both ROM and
RAM. That is because CTRL_run has some function calls to the estimator. For instance, the EST_run function
call is executed from CTRL_run, so that will be executed from ROM. Similarly, CTRL_setup has some code that
calls some InstaSPIN state machine code, which needs to be executed from ROM because it contains some
interaction with the FAST estimator. The difference in Code from the full implementation running from RAM is an
additional Offset object added as well as the entire FOC code inlined in the code.

Table 8-14. Minimum Implementation Executing in RAM

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 23 23 23 × ✓ ×

HAL_readAdcData 106 106 106 × ✓ ×

Ctrl_run

✓ × ×

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 2361 2372 2454
CTRL vs EST = 2 1171 1777 2454
CTRL vs EST = 3 1171 1579 2454

ISR vs CTRL = 2, CTRL vs EST = 1 59 1215 2454
CTRL vs EST = 2 59 918 2454
CTRL vs EST = 3 59 819 2454

ISR vs CTRL = 3, CTRL vs EST = 1 59 830 2454
CTRL vs EST = 2 59 631 2454
CTRL vs EST = 3 59 565 2454

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 2825 2840 2925
CTRL vs EST = 2 1171 2012 2925
CTRL vs EST = 3 1171 1736 2925

ISR vs CTRL = 2, CTRL vs EST = 1 59 1450 2925
CTRL vs EST = 2 59 1035 2925
CTRL vs EST = 3 59 897 2925

ISR vs CTRL = 3, CTRL vs EST = 1 59 986 2925
CTRL vs EST = 2 59 710 2925
CTRL vs EST = 3 59 618 2925

HAL_writePwmData 62 62 62 × ✓ ×

CTRL_setup 36 50 178 ✓ ✓ ×

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

343

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.1.2 User Code in FLASH
8.6.1.1.2.1 Full Implementation

Table 8-15. Full Implementation Memory Usage Executing in FLASH

Section
Memory Usage (16-bit Words)

RAM Flash
Library Interface (.ebss) 0x018C ×

Library (.ebss) 0x0800 ×

Code (.text) 0x001E 0x186C

IQmath (.text) × 0x0014

Table 8-16 shows the resource utilization when a full implementation of InstaSPIN is done, as well as users'
code is loaded to FLASH. The Code section now adds a couple of functions that initialize the FLASH memory,
which need to be run from RAM (loaded under ram functions). That is the reason of the new code from RAM,
and not all of it from FLASH. There is a memCopy function added to the code when running from FLASH, which
increases the code section as well.

Table 8-16. Full Implementation Executing in FLASH

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 25 25 25 × × ✓
HAL_readAdcData 108 108 108 × × ✓
Ctrl_run

✓ × ×

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 2345 2355 2425
CTRL vs EST = 2 1154 1760 2425
CTRL vs EST = 3 1154 1562 2425

ISR vs CTRL = 2, CTRL vs EST = 1 58 1207 2425
CTRL vs EST = 2 58 909 2425
CTRL vs EST = 3 58 810 2425

ISR vs CTRL = 3, CTRL vs EST = 1 58 824 2425
CTRL vs EST = 2 58 626 2425
CTRL vs EST = 3 58 560 2425

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 2807 2821 2894
CTRL vs EST = 2 1154 1993 2894
CTRL vs EST = 3 1154 1717 2894

ISR vs CTRL = 2, CTRL vs EST = 1 58 1439 2894
CTRL vs EST = 2 58 1025 2894
CTRL vs EST = 3 58 887 2894

ISR vs CTRL = 3, CTRL vs EST = 1 58 979 2894
CTRL vs EST = 2 58 702 2894
CTRL vs EST = 3 58 610 2894

HAL_writePwmData 64 64 64 × × ✓
CTRL_setup 37 51 178 ✓ × ×

MCU Considerations www.ti.com

344 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.1.2.2 Minimum Implementation

Table 8-17. Minimum Implementation Memory Usage Executing in FLASH

Section
Memory Usage (16-bit Words)

RAM Flash
Library Interface (.ebss) 0x018C ×

Library (.ebss) 0x0800 ×

Code (.text) 0x001E 0x1F2D

IQmath (.text) × 0x0064

Table 8-18 shows the resource utilization when a minimum implementation of InstaSPIN is done and the users'
code is loaded to FLASH.

Table 8-18. Minimum Implementation Executing in FLASH

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 25 25 25 × × ✓
HAL_readAdcData 108 108 108 × × ✓
Ctrl_run

✓ × ✓

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 2447 2459 2544
CTRL vs EST = 2 1257 1864 2544
CTRL vs EST = 3 1257 1665 2544

ISR vs CTRL = 2, CTRL vs EST = 1 71 1265 2544
CTRL vs EST = 2 71 967 2544
CTRL vs EST = 3 71 868 2544

ISR vs CTRL = 3, CTRL vs EST = 1 71 867 2544
CTRL vs EST = 2 71 668 2544
CTRL vs EST = 3 71 602 2544

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 2911 2927 3015
CTRL vs EST = 2 1258 2098 3015
CTRL vs EST = 3 1258 1822 3015

ISR vs CTRL = 2, CTRL vs EST = 1 71 1499 3015
CTRL vs EST = 2 71 1084 3015
CTRL vs EST = 3 71 946 3015

ISR vs CTRL = 3, CTRL vs EST = 1 71 1022 3015
CTRL vs EST = 2 71 746 3015
CTRL vs EST = 3 71 654 3015

HAL_writePwmData 64 64 64 × × ✓
CTRL_setup 46 60 188 ✓ × ✓

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

345

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.2 CPU Load with PWM = 10 kHz

Table 8-19. Full Implementation Executing from ROM and FLASH
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs
PWM = 10 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 28.86 25.97 64.03
CTRL vs EST = 2 22.24 20.02 69.98
CTRL vs EST = 3 20.04 18.04 71.96

ISR vs CTRL = 2, CTRL vs EST = 1 16.1 14.49 75.51
CTRL vs EST = 2 12.79 11.51 78.49
CTRL vs EST = 3 11.69 10.52 79.48

ISR vs CTRL = 3, CTRL vs EST = 1 11.84 10.66 79.34
CTRL vs EST = 2 9.64 8.68 81.32
CTRL vs EST = 3 8.91 8.02 81.98

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 34.03 30.63 59.37
CTRL vs EST = 2 24.83 22.35 67.65
CTRL vs EST = 3 21.77 19.59 70.41

ISR vs CTRL = 2, CTRL vs EST = 1 18.68 16.81 73.19
CTRL vs EST = 2 14.08 12.67 77.33
CTRL vs EST = 3 12.54 11.29 78.71

ISR vs CTRL = 3, CTRL vs EST = 1 13.57 12.21 77.79
CTRL vs EST = 2 10.49 9.44 80.56
CTRL vs EST = 3 9.47 8.52 81.48

Table 8-20. Minimum Implementation Executing from ROM and FLASH
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs
PWM = 10 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 30.01 27.01 62.99
CTRL vs EST = 2 23.4 21.06 68.94
CTRL vs EST = 3 21.19 19.07 70.93

ISR vs CTRL = 2, CTRL vs EST = 1 16.74 15.07 74.93
CTRL vs EST = 2 13.43 12.09 77.91
CTRL vs EST = 3 12.33 11.1 78.9

ISR vs CTRL = 3, CTRL vs EST = 1 12.32 11.09 78.91
CTRL vs EST = 2 10.11 9.1 80.9
CTRL vs EST = 3 9.38 8.44 81.56

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 35.21 31.69 58.31
CTRL vs EST = 2 26 23.4 66.6
CTRL vs EST = 3 22.93 20.64 69.36

ISR vs CTRL = 2, CTRL vs EST = 1 19.34 17.41 72.59
CTRL vs EST = 2 14.73 13.26 76.74
CTRL vs EST = 3 13.2 11.88 78.12

ISR vs CTRL = 3, CTRL vs EST = 1 14.04 12.64 77.36
CTRL vs EST = 2 10.98 9.88 80.12
CTRL vs EST = 3 9.96 8.96 81.04

MCU Considerations www.ti.com

346 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.3 CPU Load with PWM = 20 kHz

Table 8-21. Full Implementation Executing from ROM and FLASH
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs
PWM = 20 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 57.71 51.94 38.06
CTRL vs EST = 2 44.49 40.04 49.96
CTRL vs EST = 3 40.09 36.08 53.92

ISR vs CTRL = 2, CTRL vs EST = 1 32.2 28.98 61.02
CTRL vs EST = 2 25.58 23.02 66.98
CTRL vs EST = 3 23.38 21.04 68.96

ISR vs CTRL = 3, CTRL vs EST = 1 23.69 21.32 68.68
CTRL vs EST = 2 19.29 17.36 72.64
CTRL vs EST = 3 17.82 16.04 73.96

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 68.07 61.26 28.74
CTRL vs EST = 2 49.67 44.7 45.3
CTRL vs EST = 3 43.53 39.18 50.82

ISR vs CTRL = 2, CTRL vs EST = 1 37.36 33.62 56.38
CTRL vs EST = 2 28.16 25.34 64.66
CTRL vs EST = 3 25.09 22.58 67.42

ISR vs CTRL = 3, CTRL vs EST = 1 27.13 24.42 65.58
CTRL vs EST = 2 20.98 18.88 71.12
CTRL vs EST = 3 18.93 17.04 72.96

Table 8-22. Minimum Implementation Executing from ROM and FLASH
F2806xF CPU = 90 MHz

Available MIPs = 90 MIPs
PWM = 20 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 60.02 54.02 35.98
CTRL vs EST = 2 46.8 42.12 47.88
CTRL vs EST = 3 42.38 38.14 51.86

ISR vs CTRL = 2, CTRL vs EST = 1 33.49 30.14 59.86
CTRL vs EST = 2 26.87 24.18 65.82
CTRL vs EST = 3 24.67 22.2 67.8

ISR vs CTRL = 3, CTRL vs EST = 1 24.64 22.18 67.82
CTRL vs EST = 2 20.22 18.2 71.8
CTRL vs EST = 3 18.76 16.88 73.12

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 70.42 63.38 26.62
CTRL vs EST = 2 52 46.8 43.2
CTRL vs EST = 3 45.87 41.28 48.72

ISR vs CTRL = 2, CTRL vs EST = 1 38.69 34.82 55.18
CTRL vs EST = 2 29.47 26.52 63.48
CTRL vs EST = 3 26.4 23.76 66.24

ISR vs CTRL = 3, CTRL vs EST = 1 28.09 25.28 64.72
CTRL vs EST = 2 21.96 19.76 70.24
CTRL vs EST = 3 19.91 17.92 72.08

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

347

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.1.4 CPU Load Examples

From the tables discussed in the previous section, CPU usage can be computed by adding up the cycles and
calculating a percentage of use.

Example 8-1. F2806xF Devices Example 1

Consider the following scenario:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– Full implementation, libraries in ROM and user's code in RAM (Section 8.3.1)
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs EST = 1

The percentage of CPU used by the interrupt is calculated, where:

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup

Maximum % of CPU Used by InstaSPIN =

100% * ((Maximum Cycles) / 90 MHz) * PWM Frequency =

100% * ((23 + 106 + 2425 + 62 + 178) / 90 MHz) * 10 kHz =

31.04%

Average % of CPU Used by InstaSPIN =

100% * ((Average Cycles) / 90 MHz) * PWM Frequency =

100% * ((23 + 106 + 2355 + 62 + 51) / 90 MHz) * 10 kHz =

28.86%

Another useful calculation is the number of MIPS used by the application. This can be calculated as follows:

Average MIPS used by InstaSPIN =

(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =

(28.86% / 100%) * 90 MIPS =

25.97 MIPS

And then, we can calculate the average available MIPS for other tasks:

Average user's available MIPS =

Total Available MIPS – Average MIPS used by InstaSPIN =

90 MIPS – 25.97 MIPS =

64.03 MIPS Available for other tasks

MCU Considerations www.ti.com

348 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Example 8-2. F2806xF Devices Example 2

Typically Rs Online needs to be enabled and often the PWM frequency needs to be increased. To free-up CPU
bandwidth, ISR vs CTRL is set to 2.

Consider the following conditions:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 20 kHz
• InstaSPIN Implementation:

– Minimum implementation, libraries in ROM and user's code in RAM (Section 8.3.2)
– Rs Online Enabled
– ISR vs CTRL = 2
– CTRL vs EST = 1

First, we need to calculate the average MIPS used by InstaSPIN under the given conditions:

Average % of CPU Used by InstaSPIN =

100% * ((Average Cycles) / 90 MHz) * PWM Frequency =

100% * ((23 + 106 + 1450 + 62 + 50) / 90 MHz) * 20 kHz =

37.58%

Second, the number of average MIPS used by InstaSPIN under the given conditions:

Average MIPS used by InstaSPIN =

(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =

(37.58% / 100 %) * 90 MIPS =

33.82 MIPS

And then, we can calculate the average available MIPS for other tasks:

Average user's Available MIPS =

Total Available MIPS - Average MIPS used by InstaSPIN =

90 MIPS – 33.82 =

56.18 MIPS Available for other tasks

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

349

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.2 F2806xM Devices
8.6.2.1 CPU Cycles

InstaSPIN-MOTION combines the functionality of InstaSPIN-FOC with the SpinTAC Motion Control Suite from
LineStream Technologies. CPU usage can be computed by adding the InstaSPIN-FOC cycles and the SpinTAC
cycles presented in the following sections, and calculating a percentage of use. Examples are provided in
subsequent sections.

8.6.2.1.1 RAM Execution - SpinTAC™ Library and User Code

Table 8-23 summarizes all of the performance data per function, when the SpinTAC library is loaded and
executed from RAM. Note that each function makes calls into the ROM memory to run core SpinTAC functions.
The typical cases for each component are highlighted in bold.

Table 8-23. CPU Cycle Utilization for SpinTAC™ with Library Executing in RAM on F2806xM Devices

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = 0, ENB = 0 158 158 158

✓ ✓ ×

RES = 0, ENB = 1 573 573 573
First call after ENB = 1 1010 1010 1010

786 786 786
Change Inertia parameter 786 786 786
RES = 1, ENB = 1 289 289 289

STVELMOVE_run (Velocity Move)
RES = 0, ENB = 0 202 202 202

✓ ✓ ×
stcurve RES = 0, ENB = 1 675 704 1346
scurve RES = 0, ENB = 1 638 669 1312
trap RES = 0, ENB = 1 509 576 1039

RES = 1, ENB = 1 421 421 421

STVELPLAN_run (Velocity Plan)
RES = 1, ENB = 0 159 159 159

✓ ✓ ×

RES = 0, ENB = 1 169 169 169
First call after ENB = 1 285 285 285
STAY FSM State 194 194 194

Condition FSM State
Calculation must be done for each
State

374 (fixed)
+ 274 * Number of Transitions

+ 334 * Number of EXIT Actions
Transition FSM State
Calculation must be done for each
State

229 (fixed)
+ 378 * Number of ENTER Actions

STVELPLAN_runTick (Velocity Plan) 58 78 78

STVELID_run (Velocity Identify)
RES = 0, ENB = 0 142 142 142

✓ ✓ ×
RES = 0, ENB = 1 332 341 658
First call after ENB = 1 1063 1063 1063
RES = 1, ENB = 1 249 249 249

STPOSCONV_run (Position Converter)
RES = 0, ENB = 0 110 110 110

✓ ✓ ×
RES = 0, ENB = 1 322 341 343
First call after ENB = 1 1060 1060 1060
RES = 1, ENB = 1 118 118 118

MCU Considerations www.ti.com

350 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 8-23. CPU Cycle Utilization for SpinTAC™ with Library Executing in RAM on F2806xM Devices
(continued)

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STPOSCTL_run (Position Control)

RES = 0, ENB =0 166 166 166

✓ ✓ ×

RES = 0, ENB = 1 1120 1125 1140
First call after ENB = 1 1903 1903 1903
Change Bandwidth parameter 1611 1611 1611
Change Inertia parameter 1611 1611 1611
RES = 1, ENB = 1 385 385 385

STPOSMOVE_run (Position Move)
RES = 0, ENB = 0 406 406 406

✓ ✓ ×

stcurve RES = 0, ENB = 1 616 1383 2733
First call after ENB = 1 1270 1377 2368

scurve RES = 0, ENB = 1 616 1333 2561
First call after ENB = 1 1219 1337 2324

trap RES = 0, ENB = 1 616 1253 2501
First call after ENB = 1 1319 1608 2049
RES = 1, ENB = 1 877 877 877

STPOSPLAN_run (Position Plan)
RES = 1, ENB = 0 166 166 166

✓ ✓ ×

RES = 0, ENB = 1 201 201 201
First call after ENB = 1 325 325 325
STAY FSM State 209 209 209

Condition FSM State
Calculation must be done for each
State

436 (fixed)
+ 276 * Number of Transitions

+ 334 * Number of EXIT Actions
Transition FSM State
Calculation must be done for each
State

245 (fixed)
+ 378 * Number of ENTER Actions

STPOSPLAN_runTick (Position Plan) 58 78 78

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

351

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.2.1.2 FLASH Execution - SpinTAC™ Library and User Code

Table 8-24 summarizes all of the performance data per function, when the SpinTAC library is loaded and
executed from Flash. InstaSPIN-FOC is in Full Implementation.

Table 8-24. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2806xM Devices

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = , ENB = 0 216 216 216

✓ × ✓

RES = 0, ENB = 1 672 672 672
First call after ENB = 1 1183 1183 1183
Change Bandwidth 925 925 925
Change Inertia parameter 925 925 925
RES = 1, ENB = 1 396 396 396

STVELMOVE_run (Velocity Move)
RES = 0, ENB = 0 258 258 258

✓ × ✓
stcurve RES = 0, ENB = 1 780 816 1625
scurve RES = 0, ENB = 1 743 781 1589
trap RES = 0, ENB = 1 616 700 1309

RES = 1, ENB = 1 554 554 554

STVELPLAN_run (Velocity Plan)
RES = 1, ENB = 0 219 219 219

✓ × ✓

RES = 0, ENB = 1 266 266 266
First call after ENB = 1 393 393 393
STAY FSM State 280 280 280

Transition FSM State
Calculation must be done for each
State

488 (fixed)
+ 368 * Number of Transitions

+ 440 * Number of EXIT Actions
Condition FSM State
Calculation must be done for each
State

337 (fixed)
+ 503 * Number of ENTER Actions

STVELPLAN_runTick (Velocity Plan) 91 119 119

STVELID_run (Velocity Identify)
RES = 1, ENB = 0 198 198 198

✓ × ✓
RES = 0, ENB = 1 311 332 822
First call after ENB = 1 1366 1366 1366
RES = 1, ENB = 1 338 338 338

STPOSCONV_run (Position Converter)
RES = 0, ENB = 0 145 145 145

✓ × ✓
RES = 0, ENB = 1 443 448 450
First call after ENB = 1 1372 1372 1372
RES = 1, ENB = 1 170 170 170

MCU Considerations www.ti.com

352 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 8-24. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2806xM Devices
(continued)

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STPOSCTL_run (Position Control)

RES = 0, ENB =0 246 246 246

✓ × ✓

RES = 0, ENB = 1 1311 1316 1326
First call after ENB = 1 2236 2236 2236
Change Bandwidth parameter 1909 1909 1909
Change Inertia parameter 1909 1909 1909
RES = 1, ENB = 1 509 509 509

STPOSMOVE_run (Position Move)
RES = 0, ENB = 0 520 520 520

✓ × ✓

stcurve RES = 0, ENB = 1 790 1611 3630
First call after ENB = 1 1467 1588 2778

scurve RES = 0, ENB = 1 790 1564 3205
First call after ENB = 1 1415 1551 2734

trap RES = 0, ENB = 1 790 1501 3130
First call after ENB = 1 1540 1903 2438
RES = 1, ENB = 1 1100 1100 1100

STPOSPLAN_run (Position Plan)
RES = 1, ENB = 0 229 229 229

✓ × ✓

RES = 0, ENB = 1 297 297 297
First call after ENB = 1 450 450 450
STAY FSM State 297 297 297

Condition FSM State
Calculation must be done for each
State

548 (fixed)
+ 363 * Number of Transitions

+ 450 * Number of EXIT Actions
Transition FSM State
Calculation must be done for each
State

345 (fixed)
+ 508 * Number of ENTER Actions

STPOSPLAN_runTick (Position Plan) 86 115 115 ✓ × ✓

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

353

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.2.2 CPU Load Examples
Example 8-3. F2806xM Devices Example 1

Consider the following scenario:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.3.1)
– SpinTAC Library: Velocity Control. Library in ROM and user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:

Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run

Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles

Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 = 3170 cycles

For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.

Cycles in 1 millisecond = 2597 * 9 + 3170 * 1 = 26543 cycles

The CPU usage is now

100% * (26543 / 90 MHz) * (10 kHz / 10) = 29.49%

Another useful calculation is the number of MIPS used by InstaSPIN. This can be calculated as follows:

Average MIPS used by InstaSPIN =

(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =

(29.49 % / 100 %) * 90 MIPS =

26.54 MIPS

And then, we can calculate the average available MIPS for other tasks:

Average user's available MIPS =

Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =

90 MIPS – 26.54 MIPS =

63.46 MIPS Available for other tasks

MCU Considerations www.ti.com

354 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Example 8-4. F2806xM Devices Example 2

For example, consider the following scenario:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.3.1)
– SpinTAC Library: Velocity Control + Velocity Move (stcurve). Library in ROM and user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:

Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run

Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles

Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 = 3874 cycles

For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.

Cycles in 1 millisecond = 2597 * 9 + 3874 * 1 = 27247 cycles

The CPU usage is now

100% * (27247 / 90 MHz) * (10 kHz / 10) = 30.27%

Another useful calculation is the number of MIPS used by the application. This can be calculated as follows:

Average MIPS used by InstaSPIN =

(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =

(30.27 % / 100 %) * 90 MIPS =

27.24 MIPS

And then, we can calculate the average available MIPS for other tasks:

Average user's available MIPS =

Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =

90 MIPS – 27.24 MIPS =

62.76 MIPS Available for other tasks

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

355

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Example 8-5. F2806xM Devices Example 3

For this example, consider the following scenario:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.3.1)
– SpinTAC Library: Velocity Control + Velocity Move (stcurve) + Velocity Plan. Library in ROM and user

library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

SpinTAC Velocity Plan is used to generate a motion sequence between 4 states (see Figure 8-9). Note that in
this example, both the Plan functions STVELPLAN_run and STVELPLAN_runTick are being run from the ISR. In
a final implementation, STVELPLAN_run can be run from a slower ISR or background loop.

State 0

Action 0

Action 1

Transition

State

Action

Condition

State 1

State 2

State 3

Action 2

Action 3

Action 4

Action 5

Action 6

Action 7

Condition 0 ||

Condition 1

Condition 2 ||

Condition 3

Condition 4 ||

Condition 5

Figure 8-9. SpinTAC™ Velocity Plan Example

MCU Considerations www.ti.com

356 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The maximum cycles for STVELPLAN_run are contributed either by the Condition FSM state or the Transition
FSM state but never both at the same time.

1. Maximum cycles in Condition FSM state are determined by:
• The number of transitions that originate from a given state.
• The number of conditions being checked for a transition (worst case is two conditions)
• The conditions compare a variable to a value or a variable to another variable (worst case)
• The number of EXIT actions configured for that state.

If the code is running in RAM, then Maximum cycles = 374 (fixed cycles for Condition FSM state) + (Number
of Transitions * 274) + (Number of EXIT actions * 334).

The example plan in Figure 8-9 configures three transitions leaving State 0. All transitions check conditions
that compare variables with variables (worst case), and 2 EXIT actions are configured to this state. So the
maximum cycles occurs when the last transition is taken = 374 + (3 * 274) + (2 * 334) = 1864.

2. Maximum cycles in Transition FSM state are determined by the number of ENTER actions that are
configured to the state being entered.

If the code is running in RAM, then Maximum cycles = 229 (fixed cycles for Transition FSM state) + Number
of ENTER actions * 378.

The above example shows the State3 having 3 ENTER actions. This will cause the Transition FSM State to
have maximum cycles = 229 + (3 * 378) = 1368.

Compare the two cases that can cause maximum cycles for STVELPLAN_run. In this instance, the
maximum possible cycles are 1330, contributed by the Condition FSM state. Use that value as the worst
case when calculating the percentage of CPU used by the interrupt.

The percentage of CPU used by the interrupt is calculated, where:

Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick + STVELPLAN_run

Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles

Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 + 78 + 1864 = 5738 cycles

For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.

Cycles in 1 millisecond = 2597 * 9 + 5738 * 1 = 29111 cycles

The CPU usage is now

100% * (29111 / 90 MHz) * (10 kHz / 10) = 32.35%

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

357

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The previous calculation is where the main component of SpinTAC Velocity Plan is being ran from the
ISR. When SpinTAC Velocity Plan is called from the background loop, the percentage of CPU used by the
interrupt is calculated:

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STVELCTL_run + STVELMOVE_run + STVELPLAN_runTick + STVELPLAN_run

Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles

Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 573 + 704 + 78 = 3952 cycles

For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.

Cycles in 1 millisecond = 2597 * 9 + 5738 * 1 = 27325 cycles

The CPU usage is now

100% * (27325 / 90 MHz) * (10 kHz / 10) = 30.36%

MCU Considerations www.ti.com

358 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Example 8-6. F2806xM Devices Example 4 (SpinTAC™ Position)

For this example, consider the following scenario:

• CPU Clock = 90 MHz
• Available MIPS = 90 MIPS
• PWM Frequency = 10 kHz
• InstaSPIN Implementation:

– InstaSPIN-FOC: Full implementation, libraries in ROM and user's code in RAM (Section 8.3.1)
– SpinTAC Library: Position Converter + Position Control + Position Move (stcurve). Library in ROM and

user library code in RAM.
– Rs Online Disabled
– ISR vs CTRL = 1
– CTRL vs SPEED = 10

The percentage of CPU used by the interrupt is calculated, where:

Minimum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup

Maximum Cycles = HAL_acqAdcInt + HAL_readAdcData + Ctrl_run + HAL_writePwmData + Ctrl_setup +
STPOSCONV_run + STPOSCTL_run + STPOSMOVE_run

Minimum Cycles = 23 + 106 + 2355 + 62 + 51 = 2597 cycles

Maximum Cycles = 23 + 106 + 2355 + 62 + 51 + 341 + 1125 + 1383 = 5446 cycles

For each millisecond, the Minimum Cycles are used 9 times and the Maximum Cycles are used once.

Cycles in 1 millisecond = 2597 * 9 + 5446 * 1 = 28819 cycles

The CPU usage is now

100% * (28819 / 90 MHz) * (10 kHz / 10) = 32.02%

Another useful calculation is the number of MIPS used by the application. This can be calculated as follows:

Average MIPS used by InstaSPIN =

(Average % of CPU Used by InstaSPIN/100%) * Available MIPS =

(32.02 % / 100 %) * 90 MIPS =

28.82 MIPS

And then, we can calculate the average available MIPS for other tasks:

Average user's available MIPS =

Total Available MIPS – Average MIPS used by InstaSPIN(FOC + MOTION) =

90 MIPS – 28.82 MIPS =

61.18 MIPS Available for other tasks

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

359

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.3 F805xF Devices
8.6.3.1 CPU Cycles

The F2805xF cycle count will be essentially the same as the F2806xF cycle.

8.6.3.2 CPU Load with PWM = 10 kHz

Table 8-25. Full Implementation Executing from ROM and FLASH
F2805xF CPU = 60 MHz

Available MIPs = 60 MIPs
PWM = 10 kHz CPU Utilization [%] MIPs Used [MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 43.28 25.97 34.03
CTRL vs EST = 2 33.37 20.02 39.98
CTRL vs EST = 3 30.07 18.04 41.96

ISR vs CTRL = 2, CTRL vs EST = 1 24.15 14.49 45.51
CTRL vs EST = 2 19.18 11.51 48.49
CTRL vs EST = 3 17.53 10.52 49.48

ISR vs CTRL = 3, CTRL vs EST = 1 17.77 10.66 49.34
CTRL vs EST = 2 14.47 8.68 51.32
CTRL vs EST = 3 13.37 8.02 51.98

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 51.05 30.63 29.37
CTRL vs EST = 2 37.25 22.35 37.65
CTRL vs EST = 3 32.65 19.59 40.41

ISR vs CTRL = 2, CTRL vs EST = 1 28.02 16.81 43.19
CTRL vs EST = 2 21.12 12.67 47.33
CTRL vs EST = 3 18.82 11.29 48.71

ISR vs CTRL = 3, CTRL vs EST = 1 20.35 12.21 47.79
CTRL vs EST = 2 15.73 9.44 50.56
CTRL vs EST = 3 14.20 8.52 51.48

MCU Considerations www.ti.com

360 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.3.3 CPU Load with PWM = 20 kHz

Table 8-26. Full Implementation Executing from ROM and FLASH
F2805xF CPU = 60 MHz

Available MIPs = 60 MIPs
PWM = 20 kHz CPU Utilization [%] MIPs Used [MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 86.57 51.94 8.06
CTRL vs EST = 2 66.73 40.04 19.96
CTRL vs EST = 3 60.13 36.08 23.92

ISR vs CTRL = 2, CTRL vs EST = 1 48.3 28.98 31.02
CTRL vs EST = 2 38.37 23.02 36.98
CTRL vs EST = 3 35.07 21.04 38.96

ISR vs CTRL = 3, CTRL vs EST = 1 35.53 21.32 38.68
CTRL vs EST = 2 28.93 17.36 42.64
CTRL vs EST = 3 26.73 16.04 43.96

Rs Online Enabled, ISR vs CTRL = 1
CTRL vs EST = 2 74.5 44.7 15.3
CTRL vs EST = 3 65.3 39.18 20.82

ISR vs CTRL = 2, CTRL vs EST = 1 56.03 33.62 26.38
CTRL vs EST = 2 42.23 25.34 34.66
CTRL vs EST = 3 37.63 22.58 37.42

ISR vs CTRL = 3, CTRL vs EST = 1 40.7 24.42 35.58
CTRL vs EST = 2 31.47 18.88 41.12
CTRL vs EST = 3 28.4 17.04 42.96

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

361

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.4 F2805xM Devices
8.6.4.1 CPU Cycles
8.6.4.1.1 FLASH Execution - SpinTAC™ Library and User Code

Table 8-27. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2805xM Device

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STVELCTL_run (Velocity Control)

RES = 1, ENB = 0 189 189 189

✓ × ✓

RES = 0, ENB = 1 614 614 614
First call after ENB = 1 1077 1077 1077
Change Bandwidth 842 842 842
Change Inertia parameter 842 842 842
RES = 1, ENB = 1 347 347 347

STVELMOVE_run (Velocity Move)
RES = 1, ENB = 0 220 220 220

✓ × ✓
stcurve RES = 0, ENB = 1 724 759 1468
scurve RES = 0, ENB = 1 687 724 1435
trap RES = 0, ENB = 1 561 636 1167

RES = 1, ENB = 1 494 494 494

STVELPLAN_run (Velocity Plan)
RES = 1, ENB = 0 183 183 183

✓ × ✓

RES = 0, ENB = 1 238 238 238
First call after ENB = 1 333 333 333
STAY FSM State 238 238 238

Transiation FSM State
Calculation must be done for each
State

436 (fixed)
+ 320 * Number of Transitions

+ 388 * Number of EXIT Actions
Condition FSM State
Calculation must be done for each
State

283 (fixed)
+ 438 * Number of ENTER Actions

STVELPLAN_runTick (ISR function) 76 100 100

STVELID_run (Velocity Identify)
RES = 1, ENB = 0 198 198 198

✓ × ✓
RES = 0, ENB = 1 256 278 723
First call after ENB = 1 1196 1196 1196
RES = 1, ENB = 1 292 292 292

STPOSCOV_run (Position Converter)
RES = 1, ENB = 0 127 127 127

✓ × ✓
RES = 0, ENB = 1 391 398 400
First call after ENB = 1 1209 1209 1209
RES = 1, ENB = 1 140 140 140

STPOSCTL_run (Position Control)
RES = 0, ENB =0 201 201 201

✓ × ✓

RES = 0, ENB = 1 1207 1212 1225
First call after ENB = 1 2043 2043 2043
Change Bandwidth parameter 1729 1729 1729
Change Inertia parameter 1729 1729 1729
RES = 1, ENB = 1 449 449 449

MCU Considerations www.ti.com

362 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 8-27. CPU Cycle Utilization for SpinTAC™ Library Executing in Flash on F2805xM Device
(continued)

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
STPOSMOVE_run (Position Move)

RES = 0, ENB = 0 520 520 520

✓ × ✓

stcurve RES = 0, ENB = 1 790 1611 3630
Velocity Controlled Profile 1467 1588 2778

scurve RES = 0, ENB = 1 790 1564 3205
Velocity Controlled Profile 1415 1551 2734

trap RES = 0, ENB = 1 790 1501 3130
Velocity Controlled Profile 1540 1903 2438
RES = 1, ENB = 1 996 996 996

STPOSPLAN_run (Position Plan)
RES = 1, ENB = 0 202 202 20

✓ × ✓

RES = 0, ENB = 1 255 255 255
First call after ENB = 1 373 373 373
STAY FSM State 255 255 255

Condition FSM State
Calculation must be done for each
State

501 (fixed)
+ 323 * Number of Transitions

+ 382 * Number of EXIT Actions

Transition FSM State
Calculation must be done for each
State

301 (fixed)
+ 432 * Number of ENTER Actions

STPOSPLAN_runTick (ISR function) 86 115 115

Note: The difference in the CPU cycles is due to the lower Flash wait states in the F2805xM device as compared
to the F2806xM device.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

363

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.5 F2802xF Devices
8.6.5.1 CPU Cycles

Table 8-28. Minimum Implementation Memory Usage Executing in FLASH

Section
Memory Usage (16-bit Words)

RAM Flash
Library Interface (.ebss) 0x0326 ×

Library (.ebss) 0x0200 ×

Code (.text) 0x06B6 0x2ED7

.cinit × 0x007A

Constants (.econst) × 0x0080

IQmath (.text) × 0x00C9

Table 8-29 summarizes all of the performance data per function, when users' code is loaded and executed from
FLASH, on a minimum implementation of InstaSPIN library. Note that the number of cycles does not change
significantly between the different implementations since the FAST estimator block remains in ROM for each of
these configurations. This estimator block consumes the most cycles of all the InstaSPIN-FOC blocks. For more
details on managing execution time in the ISR, see Section 9.1.

Table 8-29. Minimum Implementation Executing in FLASH

Function Name
CPU Cycles Executed From

Min Avg Max ROM RAM FLASH
HAL_acqAdcInt 17 17 17 × ✓ ×

HAL_readAdcData 94 94 94 × ✓ ×

Ctrl_run

✓ ✓ ✓

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 2320 2331 2413
CTRL vs EST = 2 1131 1735 2413
CTRL vs EST = 3 1131 1536 2413

ISR vs CTRL = 2, CTRL vs EST = 1 51 1191 2413
CTRL vs EST = 2 51 893 2413
CTRL vs EST = 3 51 793 2413

ISR vs CTRL = 3, CTRL vs EST = 1 51 811 2413
CTRL vs EST = 2 51 612 2413
CTRL vs EST = 3 51 544 2413

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 2766 2781 2882
CTRL vs EST = 2 1129 1969 2882
CTRL vs EST = 3 1129 1692 2882

ISR vs CTRL = 2, CTRL vs EST = 1 51 1424 2882
CTRL vs EST = 2 51 1010 2882
CTRL vs EST = 3 51 871 2882

ISR vs CTRL = 3, CTRL vs EST = 1 51 966 2882
CTRL vs EST = 2 51 689 2882
CTRL vs EST = 3 51 596 2882

HAL_writePwmData 110 110 110 × ✓ ×

CTRL_setup 26 36 188 × ✓ ✓

MCU Considerations www.ti.com

364 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.6.5.2 CPU Load with PWM = 10 kHz

Table 8-30. Minimum Implementation Executing from ROM, RAM, and FLASH
F2802xF CPU = 60 MHz

Available MIPs = 60 MIPs
PWM = 10 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 43.13 25.88 34.12
CTRL vs EST = 2 33.2 19.92 40.08
CTRL vs EST = 3 29.88 17.93 42.07

ISR vs CTRL = 2, CTRL vs EST = 1 24.13 14.48 45.52
CTRL vs EST = 2 19.17 11.5 48.5
CTRL vs EST = 3 17.5 10.5 49.5

ISR vs CTRL = 3, CTRL vs EST = 1 17.8 10.68 49.32
CTRL vs EST = 2 14.48 8.69 51.31
CTRL vs EST = 3 13.35 8.01 51.99

Rs Online Enabled, ISR vs CTRL = 1, CTRL vs EST = 1 50.63 30.38 29.62
CTRL vs EST = 2 37.1 22.26 37.74
CTRL vs EST = 3 32.48 19.49 40.51

ISR vs CTRL = 2, CTRL vs EST = 1 28.02 16.81 43.19
CTRL vs EST = 2 21.12 12.67 47.33
CTRL vs EST = 3 18.8 11.28 48.72

ISR vs CTRL = 3, CTRL vs EST = 1 20.38 12.23 47.77
CTRL vs EST = 2 15.77 9.46 50.54
CTRL vs EST = 3 14.22 8.53 51.47

8.6.5.3 CPU Load with PWM = 20 kHz

Table 8-31. Minimum Implementation Executing from ROM, RAM and FLASH
F2802xF CPU = 60 MHz

Available MIPs = 60 MIPs
PWM = 20 kHz

CPU Utilization
[%]

MIPs Used
[MIPS]

MIPS Available
[MIPS]

Rs Online Disabled, ISR vs CTRL = 1, CTRL vs EST = 1 86.27 51.76 8.24
CTRL vs EST = 2 66.4 39.84 20.16
CTRL vs EST = 3 59.77 35.86 24.14

ISR vs CTRL = 2, CTRL vs EST = 1 48.27 28.96 31.04
CTRL vs EST = 2 38.33 23 37
CTRL vs EST = 3 35 21 39

ISR vs CTRL = 3, CTRL vs EST = 1 35.6 21.36 38.64
CTRL vs EST = 2 28.97 17.38 42.62
CTRL vs EST = 3 26.7 16.02 43.98

Rs Online Enabled, ISR vs CTRL = 1,
CTRL vs EST = 2 74.2 44.52 15.48
CTRL vs EST = 3 64.97 38.98 21.02

ISR vs CTRL = 2, CTRL vs EST = 1 56.03 33.62 26.38
CTRL vs EST = 2 42.23 25.34 34.66
CTRL vs EST = 3 37.6 22.56 37.44

ISR vs CTRL = 3, CTRL vs EST = 1 40.77 24.46 35.54
CTRL vs EST = 2 31.53 18.92 41.08
CTRL vs EST = 3 28.43 17.06 42.94

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

365

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8.7 Digital and Analog Pins
8.7.1 Pin Utilization

Table 8-32 lists the pins used by InstaSPIN.

Table 8-32. Pin Utilization Per Motor

Pin Type Pin Name
Pins Usage Per Motor

Minimum Maximum
Digital PWM1A 3

(Requires External Fault and
External Complementary Mode

with Dead Time)

7

PWM1B (Optional)

PWM2A

PWM2B (Optional)

PWM3A

PWM3B (Optional)

TZ1 (Optional)

Analog IA 5
(Only two currents and no VBUS

ripple compensation)

7

IB

IC (Optional)

VA

VB

VC

VBUS (Optional)

8.7.2 F2805x Analog Front-End (AFE)
8.7.2.1 Consideration of AFE Module

In InstaSPIN applications, motor line current and phase voltage are required by the algorithm. Before these
analog signals are sampled by the processor, all signals are processed by an analog circuit. The external analog
circuits add component cost and increase board size. The 2805x series of processors addresses this issue
by adding internal analog conditioning components for the motor feedback signals, called the analog front end
(AFE).

For more detailed information about the 2805x device, see the TMS320x2805x Technical Reference Manual.

8.7.2.2 Routing Current Signals

Before addressing about the implementation and usage of the PGAs and comparators, it is recommended to
consider how current feedback signals are routed from the shunt and then to the input of the PGA. When a shunt
resistor is used to measure line current, its value must be small to reduce the amount of power dissipated in
the shunt. Because the value is small, so is the resulting voltage drop across the shunt. There is a significant
amount of current flowing through the shunt resistors. Copper traces that connect the shunts from the bottom of
the power device and then to ground become a resistor in series with the shunt. The parasitic resistance that
forms on the copper trace must be taken into consideration when measuring motor line currents with a shunt
resistor.

The AFE can have up to three different grounds. The 2805x device has multiple groups of amplifier blocks. Each
group of amplifiers has a different ground. M1 ground is used for the group of three PGAs that will feedback
three-phase motor currents for this document. For systems with power factor correction, there is another single
PGA and its ground is PFC ground. The fixed-gain amplifier block uses M2 ground for its reference and is used
in this document for three motor voltage feedbacks.

MCU Considerations www.ti.com

366 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUHE5
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Two options for the feedback of motor shunt current signals to the M1 PGA block of the AFE are discussed.
The first option is to use only the internal op-amps for the current feedback as shown in Figure 8-10. All three
op-amps share the same ground for the inverting input and therefore a differential signal of the shunt current
cannot be created. With single-ended signals, careful layout must be done when grounding the shunts to reduce
the amount of differing trace resistance between shunts. It is advised to have the shunt grounds as close
together as possible. A trace must run from the point that the shunts come together to the M1gnd pin of the
integrated circuit. Because common mode noise can be added to the amplifier, the M1gnd pin and PGA inputs
must be made as short as possible. The three phase current traces must be routed as close to the M1gnd trace
as possible to reduce the size of the Faraday loop. The Faraday loop is created around the phase current trace
that starts from the top of the shunt to the IC and then back on the M1gnd trace to the bottom of the shunt,
through the shunt and back to the top of the shunt.

Phase U

Tie the negative terminal of

the shunts as close to each

other as possible

2805x

Ia

Ib

Ic

Ia

Ib

Ic

Route the phase current

feedback lines close to the

M1GND line

M1GND

A1PGA

B1PGA

A3PGA

VSSA

VREFOUT

Phase V Phase W

+

-

VDCBUS

filter

The filter is either a capacitor, ferrite

bead combination or a long trace that

separates analog grounds from noisy

digital and power stage grounds.
Analog GND

Keep This Distance Small

Figure 8-10. Current Signal Routing Directly to PGAs With Single-Ended Connections

The second, and most noise immune option, is to use external op-amps in a differential amplifier configuration.
A true Kelvin connection can feedback directly to the differential amplifier, and then the output of the differential
amplifier is sent into the PGA input. Figure 8-11 shows a typical layout when using external differential op-amps.
Since the Kelvin connection has low impedance and is a truly differential signal, it provides excellent noise
immunity. The external op-amp circuit converts the differential circuit into a single-ended output. The single-
ended output is more susceptible to noise and therefore it is best to place the output of the op-amp as close to
the AFE input of the processor.

Why use the PGAs when external amplifiers are already being used? One case would be if many different
current rated motors are powered with the same inverter. Amplification of the current signal can be adjusted to
best suit the motor size that is controlled. The output of the PGA block is the input of the comparator windows.
The PGA still needs to be connected to enable the use of the fault detection circuitry.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

367

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Phase U

2805x

Ibu

M1GND

A1PGA

B1PGA

A3PGA

Iau Icu

Ial Ibl Icl

Iau

Ial +

-

Ibu

Ibl +

-

Icu

Icl +

-

Vrefout

filter

Feedback op-amps must be physically

close to the 2805x chip and ground

paths must be as short as possible to

VSSA and M1GND.

The filter is either a capacitor, ferrite

bead combination or a long trace that

separates analog grounds from noisy

digital and power stage grounds.

Analog GND

VSSA

Keep Kelvin

differential pair

traces close

together.

Phase V Phase W

+

-

VDCBUS

Figure 8-11. Feedback of Phase Currents Using External Differential Amplifiers

8.7.2.3 Voltage Reference Connection

Current can flow through the shunt in both positive and negative directions which will create both a positive and
negative voltage that is fed back to the shunt amplifier circuit. Most cost-effective motor inverters do not have
both positive and negative power supplies that can handle this bipolar signal. A bipolar current signal is brought
into an amplifier that will only be effective from zero to the positive voltage supply. To allow the unipolar op-amp
circuit to measure a bipolar signal, a voltage reference is summed into the non-inverting side of the current
feedback op-amps. The AFE of the 2805x device contains a 6-bit DAC with a voltage follower for providing an
output reference for this reason. A circuit configuration that can use a voltage reference to measure the bipolar
current signal is shown in Figure 8-12.

MCU Considerations www.ti.com

368 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

VBIPOLAR

DAC6VAL

1R

2R

VSSA

G=3,6,11

PGA

VSSAAnalog

GND

Analog

GND

+

-

VREF

Refout

VADCIN

VREFHI
AFE

+

-

VPGA

Figure 8-12. Using the AFE's Built-In Voltage Reference For Measuring a Bipolar Signal

Equation 24 shows how to calculate the voltage at VPGA. As an example, set the PGA gain = 3. VADCIN will be
2VBIPOLAR + VREF. Assume the system's VREFHI is 3.3 V. To allow for maximum voltage swing in both directions,
VREF is set to 1.65 V. Now the maximum peak VBIPOLAR voltage that can be measure is ±0.825 V.

VPGA=
�5Â:VBIPOLAR-VREF;

:1R+2R;
+VREF=

2

3
VBIPOLAR+

1

3
VREF

(24)

Suppose the same hardware is used and a higher resolution is required. The PGA gain = 6. VADCIN is 4VBIPOLAR
+ 2VREF. VREF must be adjusted to be 0.825 V. The maximum peak VBIPOLAR voltage that can be measured is
±0.4125 V.

The voltage reference output is adjusted by a 6-bit DAC. The VREFOUTCTL register controls the DAC's voltage
output by Equation 25 below.

VREF=
VREFHIÂ:VREFOUTCTLDACVAL+1;

64

(25)

8.7.2.4 Routing Voltage Signals

In sinusoidal motor control drives, the voltage signals vary slowly when compared to current signals. Therefore,
larger hardware filters can be applied to the voltage feedback signal which helps to make it less susceptible to
noise. Voltage signals are unipolar, so no special circuit and reference have to be used. Lower voltage motors
(under 400 VDCBUS) typically only require resistor dividers with a capacitive low-pass filter. For a brushless DC
motor control the voltage needs as little phase shift as possible and, therefore, the low-pass filtering depends
on the maximum speed achieved by the motor. The only critical layout of voltage feedback signals is that the
low-pass filter capacitor must be located as close to the AFE or A/D input pin as possible.

www.ti.com MCU Considerations

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

369

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

MCU Considerations www.ti.com

370 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.1 InstaSPIN™ Software Execution Clock Tree..372
9.2 Decimating in Software for Real-Time Scheduling..375
9.3 Decimating in Hardware...390

Chapter 9
Real-Time Structure

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

371

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.1 InstaSPIN™ Software Execution Clock Tree
There are several clock decimations when using InstaSPIN. The first clock that needs to be considered is the
interrupt clock, which is generated by a peripheral clocked with the CPU clock. Typically, the interrupt service
routine (ISR) is triggered by the end of conversion (EOC) of the ADC. This conversion is triggered by the PWM
module.

First of all, let us review how the PWM frequency is configured based on user's parameters from user.h. Starting
from the CPU clock, user defines, in MHz, what the CPU clock rate is:

//! \brief Defines the system clock frequency, MHz (6xF and 6xM devices)
//!
#define USER_SYSTEM_FREQ_MHz (90)
//! \brief Defines the system clock frequency, MHz (2xF devices)
//!
#define USER_SYSTEM_FREQ_MHz (60)

Then, the PWM frequency in kHz is defined, which results in the interrupt frequency.

//! \brief Defines the Pulse Width Modulation (PWM) frequency, kHz
//!
#define USER_PWM_FREQ_kHz (15.0)
//! \brief Defines the Pulse Width Modulation (PWM) period, usec
//!
#define USER_PWM_PERIOD_usec (1000.0/USER_PWM_FREQ_kHz)
//! \brief Defines the Interrupt Service Routine (ISR) frequency, Hz
//!
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz *1000.0)
//! \brief Defines the Interrupt Service Routine (ISR) period, usec
//!
#define USER_ISR_PERIOD_usec USER_PWM_PERIOD_usec

So far, the CPU clock sets the PWM frequency, which also sets the frequency of the ISR. Now the ISR is actually
not triggered by the PWM timer itself, but it is triggered by the end of conversion of the ADC which was started
by the PWM timer.

Figure 9-1 is a timing diagram of the clocks from the CPU all the way to the ISR generation.

This timing diagram represents the interrupt triggering scenario that Texas Instruments delivers for InstaSPIN
software package because this is the safest way the conversions will be ready when fetching the interrupt. Other
scenarios might be considered by the user, such as ADC early interrupt, PWM interrupt or CPU timer interrupt.
The only requirement is that those interrupts are generated at a fixed period.

Note that the execution time can be measured in several different ways. Here are some examples on how to
measure execution time:
• GPIO Toggle. An easy but not so accurate execution time measurement is to simply set a GPIO at the very

beginning of the code to be measured and the clearing the same GPIO right after it. This method is very
graphical since it can be displayed in a scope, and sine the interrupts are periodic, it will give a good trigger
for the scope to measure execution time. The time can then be converted to CPU cycles if needed. One thing
to consider using this method though is the time it takes for a particular architecture to set and clear a GPIO,
as well as the interrupt fetch and return times.

• CPU Timer Capture. A much more accurate execution time measurement is with a CPU timer. This can be
done by running a CPU timer at the same clock as the CPU clock, with no prescaler or postcaler, and then
read the timer after the code has been executed. This will give us the CPU cycles needed to execute the
code of interest.

Real-Time Structure www.ti.com

372 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-1. Clock Timing - CPU to ISR Generation

From the InstaSPIN execution timing, there are several decimation values, also known as tick rates that allow
different execution clock rates for different portions of control code within InstaSPIN. The following tick rates are
available for InstaSPIN:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)
//! \brief Defines the number of isr ticks per controller clock tick
//!
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
//! \brief Defines the number of controller clock ticks per current controller clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_CURRENT_TICK (1)
//! \brief Defines the number of controller clock ticks per estimator clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
//! \brief Defines the number of controller clock ticks per speed controller clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_SPEED_TICK (10)
//! \brief Defines the number of controller clock ticks per trajectory clock tick
//!
#define USER_NUM_CTRL_TICKS_PER_TRAJ_TICK (10)

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

373

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

In order to show all these tick rates, see Figure 9-2. The following acronyms are defined for easier reference
within the software execution clock tree diagram:

USER_NUM_PWM_TICKS_PER_ISR_TICK -> /ETPS

USER_NUM_ISR_TICKS_PER_CTRL_TICK -> /ISRvsCTRL

USER_NUM_CTRL_TICKS_PER_CURRENT_TICK -> /CTRLvsCURRENT

USER_NUM_CTRL_TICKS_PER_EST_TICK -> /CTRLvsEST

USER_NUM_CTRL_TICKS_PER_SPEED_TICK -> /CTRLvsSPEED

USER_NUM_CTRL_TICKS_PER_TRAJ_TICK -> /CTRLvsTRAJ

In the case of the F2806x device, the software execution clock tree starts with a SYSCLKOUT of 90 MHz, and
everything else is decimated from that clock. For the F2805x amd F2802x devices, the maximum frequency is 60
MHz, instead of 90 MHz.

After a clock prescaler, which is set to one by default, to get the best resolution of the PWM generator, we
have the TBPRD register (see Figure 9-2). This register has a period value so that the output creates the PWM
frequency.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA

/ETPS ADC

PWMFREQ

/ISRvsCTRL

ISR

/CTRLvsEST

/CTRLvsCURRENT

/CTRLvsSPEED

/CTRLvsTRAJ

CTRL

EST

CURRENT

SPEED

TRAJ

Software Decimation

Hardware Decimation

Figure 9-2. Software Execution Clock Tree

The first decimation of the software execution clock tree is in hardware. Depending on the value of the ETPS
register (Event Trigger Prescale Register), the PWM frequency can be divided 1, 2 or 3 times. This is useful
when the ADC start of conversion signal needs to be triggered every PWM cycle, or every 2 or every 3 PWM
cycles. This hardware decimation is controlled by the USER_NUM_PWM_TICKS_PER_ISR_TICK definition in
user.h.

The second decimation block is done in software and will be explained in detail in the following section.

Real-Time Structure www.ti.com

374 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.2 Decimating in Software for Real-Time Scheduling
The highlighted software tick rates shown in Figure 9-3 are used to decimate the execution of InstaSPIN in
software, also known as real-time scheduling tick rates.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA

/ETPS ADC

PWMFREQ

/ISRvsCTRL

ISR

/CTRLvsEST

/CTRLvsCURRENT

/CTRLvsSPEED

/CTRLvsTRAJ

CTRL

EST

CURRENT

SPEED

TRAJ

Software Decimation

Figure 9-3. Real-Time Scheduling Tick Rates

9.2.1 USER_NUM_ISR_TICKS_PER_CTRL_TICK

The first tick rate defines the main rate at which InstaSPIN as a whole will be executed from the end of
conversion ISR. When this tick rate is greater than one, every time InstaSPIN is executed there will be a check in
an internal counter, and if this counter hasn't reached the tick rate value, it will return from InstaSPIN execution.
There is no code executed inside InstaSPIN library other than the check of this counter. Figure 9-4 shows how
the tick counter is checked in the ISR.

Reset Tick Counter

Start of Tick

Counter Check

Tick Counter >=

Count Max

Tick Counter++

Execute Scheduled

Process

End of Tick

Counter Check

YES

NO

Figure 9-4. Tick Counter Flowchart

Figure 9-5 shows InstaSPIN execution with a tick rate of 2.

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

375

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-5. InstaSPIN™ Timing

Figure 9-6 can also be represented as a software execution clock tree. Notice how the highlighted block has a
value of two, causing a divide by two in the software execution clock tree.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 2

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-6. InstaSPIN™ Timing Software Execution Clock Tree

There are two main reasons why a tick rate from the interrupt to the controller might be higher than 1:
• The first reason is to reduce the CPU usage.
• The second one is to allow a higher PWM frequency and reduce the tick rate so that InstaSPIN can still be

executed at higher frequencies.

For example, if the PWM frequency is 50 kHz, if no hardware decimation is used (which will be discussed later
in this document) the end of conversion ISR is at the same rate, 50 kHz. There needs to be enough time in
1/50 kHz = 20 µs to execute all the functions. If the functions within the ISR take 30 µs, then:

Execution time > ISR Period → 30 µs > 20 µs

This will lead to interrupt overrun, causing ADC samples to be overwritten, and control timing will also be
affected.

In cases where the interrupt is shorter than the execution time, it is safe to use different ISR to CTRL tick rates if
the following guidelines are taken into consideration.

Real-Time Structure www.ti.com

376 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Verify there is enough time in the interrupt to execute InstaSPIN.

This is because when executing InstaSPIN in the interrupt service routine there has to be enough time to avoid
conversion overrun. For example, if an ISR hasn't been serviced, and a second one comes in, the first one was
completely lost, and the timing is affected. A good example is shown in Figure 9-7, when the ISR has enough
time so that InstaSPIN completes execution with no ISR overrun.

Figure 9-7. InstaSPIN™ Timing Completes Execution with No ISR Overrun

Figure 9-8 shows the software execution clock tree representation of this timing diagram.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 3

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-8. InstaSPIN™ Timing Software Execution Clock Tree - No ISR Overrun

Another example using decimation rates with a higher PWM frequency, leads to a shorter ISR, but even though
one ISR is not serviced right away, it eventually does with no ISR overrun (Figure 9-9). This would work ok as
well, without affecting performance.

Figure 9-9. InstaSPIN™ Timing with a Higher PWM Frequency

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

377

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

On the other hand, if the PWM frequency is setup too high, the end of conversion interrupt might be overrun by
a second interrupt. An overrun condition is undesirable since it will cause a complete set of ADC samples to be
lost. In addition to that, an interrupt overrun causes a complete interrupt to be missed and as a result of that,
the timing of the InstaSPIN state machine will be wrong, since it depends on the periodicity of the interrupts.
Not keeping a good timing schedule in the InstaSPIN library causes issues such as angle estimation not being
accurate, speed estimation being off, speed and current controllers not performing as desired, just to list a
few. The following example shows an interrupt overrun condition. Keep in mind that InstaSPIN execution is the
same, what we are changing is the PWM frequency (hence the end of conversion interrupt frequency) and the
decimation number. The first example of interrupt overrun is without decimation, so all of InstaSPIN executed at
every interrupt (Figure 9-10).

Figure 9-10. Interrupt Overrun without Decimation Timing

Figure 9-11 shows the software execution clock tree values of this timing diagram.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-11. Interrupt Overrun without Decimation Software Execution Clock Tree

Notice how after a few interrupts a complete interrupt is overrun. The problem with this is that now the timing is
shifted, so internally in the InstaSPIN state machine and controllers, timing is now slower than it really is.

Another example is using decimation rates. In Figure 9-12 a decimation rate of 2 is used, and as you can see,
even using decimation rates we have the limitation of interrupt overrun.

Real-Time Structure www.ti.com

378 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-12. Interrupt Overrun with Decimation Timing

Figure 9-13 shows the software execution clock tree values of this timing diagram.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 2

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-13. Interrupt Overrun with Decimation Software Execution Clock Tree

Set frequency of InstaSPIN to at least 10 times the electrical frequency of the motor.

The second aspect to be considered when setting PWM frequency and ISR vs. CTRL tick rate is the number
of InstaSPIN runs versus the electrical frequency of the motor. This is because when running in a closed loop
system, where field oriented control depends on an electrical angle, there should be enough estimated angle
updates per electrical cycle to keep the field properly oriented. An analogy of this requirement is when an
AC signal needs to be digitally sampled. This is related to Nyquist frequency, where a frequency just above
the sampled frequency is enough to avoid aliasing. In a field oriented control system Nyquist frequency is not
enough to provide an efficient motor control. The recommended InstaSPIN run rate is at least 10 times of the
electrical frequency of the motor. In order to know the electrical frequency of a motor, that is, for a Permanent
Magnet Synchronous Motor (PMSM) we need to know the speed and the number of poles.

For example:

Pole Pairs: 4

Speed: 7500 RPM

Electrical Frequency: Speed in RPM * Pole Pairs / 60 = 7500 * 4 / 60 = 500 Hz

Minimum Recommended InstaSPIN run rate = 10 * Electrical Frequency = 5000 Hz

In this example, we have chosen an ISR vs. CTRL tick rate of 3, resulting in an ISR frequency of 5000 * 3 =
15000 Hz.

Figure 9-14 shows the resulting waveforms from this example.

Figure 9-15 shows the software execution clock tree numbers for this example.

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

379

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-14. ISR Frequency Waveforms

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 3

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

90 MHz 90 MHz 15 kHz 15 kHz 15 kHz 5 kHz 5 kHz

5 kHz

500 Hz

500 Hz

Figure 9-15. Software Execution Clock Tree for ISR Waveforms

Real-Time Structure www.ti.com

380 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.2.2 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK

The second tick rate to be discussed is the controller tick per current tick. This tick rate is used to slow down the
current controllers with respect to the InstaSPIN execution rate. This tick rate only reduces the rate at which the
current controllers are executed, which doesn't really help alleviate the CPU loading since there are only two PI
controllers. It does reduce the current control performance though, so it is recommended to keep this tick rate
equal to one, which means that the current controllers will be executed at the same rate as InstaSPIN execution.
In order to show an example of how this tick rate can be used, consider the Figure 9-16. Also in this example we
have chosen an ISR tick per CTRL tick rate of 3 to show how the CTRL per current tick is cascaded from the first
tick rate.

Figure 9-16. Tick Rate Timing

Figure 9-17 shows the values for this example in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 3

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 2

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-17. Tick Rate Software Execution Clock Tree

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

381

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.2.3 USER_NUM_CTRL_TICKS_PER_EST_TICK

The third decimation rate is to execute the estimator inside of InstaSPIN, also known as the FAST™ algorithm.
This is one of the most popular tick rates available in InstaSPIN since it decimates the most time consuming
part of InstaSPIN, which is the FAST estimator. As shown in the previous tick rate that decimates the current
controllers, this tick rate decimates the estimator execution. To show an example of how this is cascaded from
the InstaSPIN execution clock, consider Figure 9-18. It shows an ISR per CTRL tick rate of 1, a CTRL per
CURRENT tick rate of 2, and a CTRL per EST tick rate of 2 as well. This shows how several tick rates can
be combined to achieve a desired CPU bandwidth, and it also shows dependencies of other clocks within
InstaSPIN.

Figure 9-18. FAST™ Estimator Tick Rate Timing

Figure 9-19 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 2

/CTRLvsCURRENT

= 2

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-19. FAST™ Estimator Tick Rate Software Execution Clock Tree

9.2.4 Practical Example

A case example is shown next, where the CPU loading is restricted by the application and the PWM frequency
requirement is fixed. For example, consider the following parameters for our case study:

InstaSPIN Execution time only checking the tick rate counters: 2.7 µs

FAST estimator execution time: 12.9 µs

InstaSPIN Execution time without the FAST estimator: 14.2 µs

Real-Time Structure www.ti.com

382 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Total of InstaSPIN with FAST: 27.1 µs = 12.9 µs + 14.2 µs

PWM Frequency requirements: 50 kHz (TISR = 20 µs)

A typical example where such a high PWM frequency is needed is when the motor has a very low inductance.
Having a low PWM frequency would create undesirable current ripple due to the low inductance. A solution for
these applications is to have a higher PWM frequency. In the example a 50 kHz PWM frequency is required.

The first configuration we should try is with the ISR to CTRL, CTRL to CURRENT and CTRL to EST all to 1, so
that we get the best performance. If we try these tick rates to one, we get Figure 9-20.

Figure 9-20. Tick Rates Timing

As can be seen from the timing diagram, the interrupt is shorter than what needs to be executed, so this will lead
to interrupt overrun, hence undesirable behavior.

TISR < TInstaSPIN → 20 µs < 27.1 µs → this leads to ISR overrun, hence unexpected InstaSPIN results

Figure 9-21 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

50 kHz Target = 50 kHz

Actual ~= 36 kHz

Figure 9-21. Tick Rates Software Execution Clock Tree

Notice how the interrupt time is not enough to execute InstaSPIN at the same rate and it never catches up
with execution. In fact, after a few interrupts there are missing interrupts, which will cause unexpected results. A
solution to this problem is to use the tick rates so that the FAST estimator runs at a lower rate compared to the

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

383

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

rest of InstaSPIN. In Figure 9-22, let's see if we can solve the overrun problem with a CTRL vs. EST tick rate of
2.

Figure 9-22. CTRL vs. EST Timing - Tick Rate = 2

In this case, two interrupts have to be considered to measure timing since there is a tick rate of two being used
for the estimator, and as can be seen from the diagram, the time for 2 interrupts is shorter than what needs to be
executed without and with FAST, so this will lead to interrupt overrun, hence undesirable behavior.

2 * TISR < (TInstaSPIN without FAST + TInstaSPIN with FAST) → 40 µs < 41.3 µs → unexpected InstaSPIN results

Figure 9-23 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 2

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

50 kHz < 25 kHz

Figure 9-23. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 2

As can be shown, every time InstaSPIN with FAST is executed there is an increasing latency. In three cycles we
see how this latency increases from 0 µs, to 1.3 µs and then 2.6 µs. We can predict that in a few more cycles
there will be an interrupt overrun, since the execution time is not catching up with the interrupt rate.

The solution for this case study is to increase the CTRL vs. EST tick rate even further, to three, so that the
latency is back to zero every InstaSPIN cycle as can be shown in Figure 9-24.

Real-Time Structure www.ti.com

384 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-24. CTRL vs. EST Timing - Tick Rate = 3

In this case, three interrupts have to be considered to measure timing since there is a tick rate of three being
used for the estimator, and as can be seen from the diagram, the time for 3 interrupts is longer than what needs
to be executed without and with FAST, so this will avoid interrupt overrun.

3 * TISR < (2 * TInstaSPIN without FAST + TInstaSPIN with FAST) → 60 µs > 55.5 µs → expected InstaSPIN results

The available CPU for other tasks outside the ISR or other lower priority interrupts can be calculated as follows:

3 * TISR - (2 * TInstaSPIN without FAST + TInstaSPIN with FAST) = 4.5 µs

CPU % left = 100 % * 4.5 µs / 60 µs = 7.5 %

2806x MIPS left = CPU % left * Max MIPS = 7.5 % * 90 MIPS = 6.75 MIPS

Figure 9-25 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 3

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

50 kHz 16.67 kHz

Figure 9-25. CTRL vs. EST Software Execution Clock Tree - Tick Rate = 3

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

385

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Another solution to this problem is to change the ISR vs. CTRL tick rate to 2. Considering an InstaSPIN run of
2.7 µs when only the tick counters are checked, we have Figure 9-26. As can be seen, selecting a tick rate of 2
for the ISR vs. CTRL tick rate is enough to avoid any conversion overrun.

Figure 9-26. ISR vs. CTRL Timing - Tick Rate = 2

In this case, two interrupts have to be considered to measure timing since there is a tick rate of two being used
for the controller (CTRL), and as can be seen from the diagram, the time for 2 interrupts is longer than what
needs to be executed without and with the controller, so this will avoid interrupt overrun.

2 * TISR < (TInstaSPIN without CTRL + TInstaSPIN with CTRL) → 40 µs > 29.8 µs → expected InstaSPIN results

The available CPU for other tasks outside the ISR or other lower priority interrupts can be calculated as follows:

2 * TISR - (TInstaSPIN without CTRL + TInstaSPIN with CTRL) = 10.2 µs

CPU % left = 100 % * 10.2 µs / 40 µs = 25.5 %

2806x MIPS left = CPU % left * Max MIPS = 25.5 % * 90 MIPS = 22.95 MIPS

Figure 9-27 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 2

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

50 kHz 25 kHz

25 kHz

Figure 9-27. ISR vs. CTRL Software Execution Clock Tree - Tick Rate = 2

Real-Time Structure www.ti.com

386 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.2.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK

This decimation rate is to execute the speed controller inside of InstaSPIN with respect to the controller (CTRL).
A typical value of the speed controller tick rate is between 5 and 10. This is to allow the current controllers
to settle at a faster rate compared to a speed controller. The time constant of the speed controller is set by
the mechanical load coupled to the motor's shaft, which is much slower than the time constant set by the
inductances in the motor. The following example shows a typical value of 10 in the speed controller tick rate, and
the timing diagram shows how this is decimated from the controller (CTRL).

A typical value of 10 is used, so that the current controllers are executed at a rate 10 times faster than the
speed controller. This is typical since the speed controller usually sets the reference of the current controller, and
current controller needs to have some time to control to a specific set point.

Figure 9-28 shows how a speed controller tick rate of 10 is used.

Figure 9-28. Speed Controller Timing - Tick Rate = 10

Figure 9-29 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-29. Speed Controller Software Execution Clock Tree - Tick Rate = 10

9.2.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK

The last decimation rate in the software is related to the trajectory generation within InstaSPIN. The trajectory
module is used in the library to provide timing. One example of the trajectories used inside the library is to create
a ramp of the speed reference. Another example of the trajectories used is when the motor is being accelerated

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

387

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

during the identification process. All of these timings are done by trajectories inside InstaSPIN. All these times
are based on the CTRL vs. TRAJ tick rate. Having a different decimation value in this tick rate does not help very
much with CPU loading, so it is recommended to match the Speed Controller rate (default of 10) for this tick rate.
For illustration purposes, Figure 9-30 shows the CTRL vs TRAJ tick rate.

Figure 9-30. CTRL vs TRAJ Tick Rate Timing

Figure 9-31 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-31. CTRL vs TRAJ Tick Rate Software Execution Clock Tree

In summary, all the tick rates, and their dependencies are shown in Figure 9-32 with the following times
referenced in the diagram.

SYSCLKOUT = 90 MHz

FOC (InstaSPIN without FAST) = 14.2 µs

FAST = 12.9 µs

Current Control = 1.0 µs

Speed Control = 0.5 µs

Trajectory Run = 0.4 µs

Real-Time Structure www.ti.com

388 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-32. All Tick Rates and Dependencies Timing

Figure 9-33 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 2

/CTRLvsCURRENT

= 3

/CTRLvsSPEED

= 8

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-33. All Tick Rates and Dependencies Software Execution Clock Tree

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

389

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

9.3 Decimating in Hardware
The highlighted tick rate shown in Figure 9-34 is used to decimate the execution of InstaSPIN in hardware.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA

/ETPS ADC

PWMFREQ

/ISRvsCTRL

ISR

/CTRLvsEST

/CTRLvsCURRENT

/CTRLvsSPEED

/CTRLvsTRAJ

CTRL

EST

CURRENT

SPEED

TRAJ

Hardware Decimation

Figure 9-34. Hardware Decimation Software Execution Clock Tree

The only decimation in hardware possible is to trigger the conversions of the ADC at a different rate, other than
every PWM cycle. The following configuration in file <user.h>:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (1)

With the above example, a start of conversion (SOC) event is triggered every single PWM period, leading to
Figure 9-35.

Real-Time Structure www.ti.com

390 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-35. SOC Event Timing

Figure 9-36 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 1

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-36. SOC Event Software Execution Clock Tree

If a requirement to have a higher PWM frequency in the application, a way of doing this in hardware is by
triggering conversions every second or every third PWM cycle. The following example shows how to configure
the PWM to trigger conversions on every second PWM cycle:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (2)

Figure 9-37 shows the respective timing diagram.

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

391

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-37. PWM Conversions on Every Second PWM Cycle Timing

Figure 9-38 represents the values of this timing diagram in highlighted boxes.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 2

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-38. PWM Conversions on Every Second PWM Cycle Software Execution Clock Tree

If even higher frequency is required, the PWM module can also trigger conversions every third PWM cycles,
configured as follows:

//! \brief Defines the number of pwm clock ticks per isr clock tick
//! Note: Valid values are 1, 2 or 3 only
#define USER_NUM_PWM_TICKS_PER_ISR_TICK (3)

Figure 9-39 shows the respective timing diagram.

Real-Time Structure www.ti.com

392 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 9-39. PWM Conversions on Every Third PWM Cycle Timing

Figure 9-40 represents the values of this timing diagram in highlighted boxes. Notice how the interrupt period
changes with respect to the PWM period. This allows a higher PWM frequency maintaining a higher interrupt
period. A higher interrupt period allows InstaSPIN to execute in time, even though the PWM frequency is higher.

Clock

Prescale
TBPRDSYSCLKOUT

TBCLK EPWMxSOCA
/ETPS

= 3

PWMFREQ
/ISRvsCTRL

= 1

ISR
/CTRLvsEST

= 1

/CTRLvsCURRENT

= 1

/CTRLvsSPEED

= 10

/CTRLvsTRAJ

= 10

CTRL

EST

CURRENT

SPEED

TRAJ

ADC

Figure 9-40. PWM Conversions on Every Third PWM Cycle Software Execution Clock Tree

www.ti.com Real-Time Structure

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

393

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Real-Time Structure www.ti.com

394 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Once the motor has been fully identified, or motor parameters have been loaded from user.h file, there are four
possible startup times depending on the enabled recalibration features. These recalibration features are:

• Offset Recalibration
• Stator Resistance (Rs) Recalibration

These two features can be enabled or disabled independently from each other. The main motivation for the user
to experiment with different startup methods is to meet the startup requirements of an application. For more
details about enabling or disabling these recalibration features, as well as configuring the times and currents for
each recalibration feature, see Section 6.8.

10.1 Startup with Offsets and Rs Recalibration...396
10.2 Startup with Only Offsets Recalibration...397
10.3 Startup with Rs Recalibration..398
10.4 Startup with No Recalibration... 400
10.5 Bypassing Inertia Estimation.. 401

Chapter 10
Managing Startup Time

www.ti.com Managing Startup Time

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

395

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

10.1 Startup with Offsets and Rs Recalibration
This is the slowest but most accurate startup. It consists of three stages before the motor is spun to a
commanded torque or speed reference. Figure 10-1 shows the controller and estimator state machines when a
startup is done with offsets and Rs recalibration enabled.

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Rs

EST_State_Rs

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

Offsets

Recalibration

Rs

Recalibration

Motor Running

Closed-loop

Figure 10-1. Startup with Offsets and Rs Recalibration

Figure 10-2 shows current and output voltage for each state. The first state is the Offsets Recalibration state
and the second is Rs Recalibration. The third stage is the online state when the commanded speed or torque is
followed in closed-loop.

Offsets Recalibration Rs Recalibration

Id
le

C
lo

se
d

 L
o

o
p

Fixed 50% Duty Cycle Variable Duty Cycle

PWM Phase A

Current Phase A

Figure 10-2. Current and Output Voltage for Each State

Managing Startup Time www.ti.com

396 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The timing associated with each state, as well as the current used for Rs recalibration is explained in detail in
Chapter 6. In order to enable both offset and Rs recalibration the following two functions must be called prior to
enabling the controller:

// Enable Offset Recalibration
CTRL_setFlag_enableOffset(handle, TRUE);
// Enable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.2 Startup with Only Offsets Recalibration
This startup method, with Rs recalibration disabled, is commonly utilized when offsets might have changed,
but the motor has not changed. A typical scenario when this approach is used is when different boards run
the same motor. Another example is when the same board has been running for a long period of time and
the hardware components for the voltage and current feedback might have changed in value due to ambient
conditions or component tolerances. In this last example it is recommended to run the offsets recalibration as
needed depending on the quality of the hardware components used in a particular board.

Figure 10-3 shows the states when running only offsets recalibration before running in closed loop.

Idle

CTRL_State_Idle

Offline

CTRL_State_OffLine

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

Offsets

Recalibration

Motor Running

Closed-loop

Figure 10-3. Startup with Only Offsets Recalibration

Figure 10-4 shows the current and output voltage waveform associated with the offset state. Before running the
motor in closed loop, the offsets are recalibrated with a fixed 50% duty cycle. After that, the motor is then run in
closed loop, where the voltage and current would depend on the commanded speed as well as the mechanical
load.

www.ti.com Managing Startup Time

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

397

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Offsets Recalibration

Id
le

Closed Loop

Fixed 50% Duty Cycle Variable Duty Cycle

PWM Phase A

Current Phase A

Figure 10-4. Offset State Current and Output Voltage

The timing associated with the offset state is explained in detail in Chapter 6. In order to enable offset
recalibration and disable Rs recalibration the following two functions must be called prior to enabling the
controller:

// Enable Offset Recalibration
CTRL_setFlag_enableOffset(handle, TRUE);
// Disable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.3 Startup with Rs Recalibration
This startup method, with offsets recalibration disabled, is typical when resistance has changed but the offsets
have not changed. An example of this condition is if the ambient temperature has changed, causing the stator
resistance to change. Also, if the system has been in the field for a long time, it is recommended to run periodic
updates to the stator resistance to make sure the software has an accurate representation of the motor model
before startup up the motor in closed loop. Figure 10-5 shows the states before closing the loop when only the
stator resistance (Rs) is recalibrated.

Managing Startup Time www.ti.com

398 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Idle

CTRL_State_Idle

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Rs

EST_State_Rs

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

Rs

Recalibration

Motor Running

Closed-loop

Figure 10-5. Startup with Rs Recalibration

Figure 10-6 shows the current and output voltage waveforms when only Rs is recalibrated before running in
closed loop.

Rs Recalibration

Idle Closed Loop

Variable Duty Cycle

PWM Phase A

Current Phase A

Figure 10-6. Rs Recalibration Current and Output Voltage

The timing associated with the Rs recalibration state as well as the current used to recalibrate Rs is explained in
detail in Chapter 6. In order to disable offset recalibration and enable Rs recalibration the following two functions
must be called prior to enabling the controller:

// Disable Offset Recalibration
CTRL_setFlag_enableOffset(handle, FALSE);
// Enable Rs Recalibration
EST_setFlag_enableRsRecalc(obj->estHandle, TRUE);

www.ti.com Managing Startup Time

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

399

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.4 Startup with No Recalibration
This startup approach is the fastest method to get the motor running in closed loop. It does not recalibrate offsets
or resistance. As soon as the controller is enabled, the motor is run in closed loop. This method should only be
used when the offsets and stator resistance are well known. For details of how to handle full-load conditions at
start-up, see Chapter 14. Figure 10-7 shows how the motor is run in closed loop right after the idle state, without
any recalibration.

Idle

CTRL_State_Idle

Online

CTRL_State_OnLine

Idle

EST_State_Idle

Online

EST_State_OnLine

CTRL State Machine EST State Machine

Idle

Motor Running

Closed-loop

Figure 10-7. Startup with No Recalibration

Figure 10-8 shows the current and output voltage waveforms when offsets and Rs recalibration is bypassed.

Idle Closed Loop

Variable Duty Cycle

PWM Phase A

Current Phase A

Figure 10-8. Rs Recalibration Bypass Current and Output Voltage

Managing Startup Time www.ti.com

400 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

In order to disable both offset and Rs recalibration, the following two functions must be called prior to enabling
the controller:

// Disable Offset Recalibration
CTRL_setFlag_enableOffset(handle, FALSE);
// Disable Rs Recalibration
 EST_setFlag_enableRsRecalc(obj->estHandle, FALSE);

The controller is enabled by calling the following function:

// enable the controller
CTRL_setFlag_enableCtrl(ctrlHandle, TRUE);

10.5 Bypassing Inertia Estimation
If the motor inertia has been previously estiamted, or the motor inertia is known, you can accelerate the system
start-up time by bypassing the inertia estimation process. The inertia estimation process should be done during
development with a representative inertia attached to the motor shaft. Since the motor inertia is configured
during development, SpinTAC Velocity Identify does not need to be included in the final product.

The motor inertia is required for the SpinTAC speed controller. In MotorWare labs, motor inertia is configured
as a default value in ST_MOTOR_INERTIA_A_PER_KRPM, located in spintac.h. This definition is covered in
greater detail in Section 4.7.1.1. More information on SpinTAC Velocity Identify can be found in Chapter 7.

If your project does not use MotorWare, the motor inertia is set in the SpinTAC speed controller during the
initialization process using the Inertia parameter in the SpinTAC speed controller global structure. The unit for
Inertia is PU/(pu/s2). Where PU is the user unit for current [A] and pu/s2 is the user unit for acceleration [krpm/s].
Typically inertia is specified in Kg*m2 or N*m*s2. The user must convert the real world inertia unit into the scaled
unit that is used by the SpinTAC speed controller.

Equation 26 can be used to convert between inertia specified in Kg*m2 and the scaled units that are needed for
the SpinTAC speed controller. The result of this equation should be provided as the Inertia input to the SpinTAC
speed controller.

PU 2NORM

pu
EMF NORM

2

2
Inertia Inertia Kg m

A PP
s

é ù
w ´ pê ú

= ´ ´ê ú j ´ ´ê ú
ë û

é ù
ë û

(26)

In this equation, the following symbols are used:

• ωNORM is defined as the scale between frequency in Hz and frequency in pu. The value is defined as
USER_IQ_FULL_SCALE_FREQ_Hz in user.h. For more information, see Section 4.1.1.

• φEMF is defined as the Back EMF in Webers of the motor. This value is defined as
USER_MOTOR_RATED_FLUX in user.h. For more information, see Section 4.6.7.

• ANORM is defined as the scale between current in amps and current in PU. The value is defined as
USER_IQ_FULL_SCALE_CURRENT_A in user.h. For more information, see Section 4.1.5.

• PP is defined as the number of pole pairs in the motor. The value is defined as
USER_MOTOR_NUM_POLE_PAIRS in user.h. For more information, see Section 4.6.2.

While you can use this equation to calculate the inertia of your system, it is always preferred to use SpinTAC
Velocity Identify to estimate the system inertia. This will provide the most accurate value of the system inertia
and will take into account objects that might be difficult to calculate the inertia of.

www.ti.com Managing Startup Time

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

401

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Managing Startup Time www.ti.com

402 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

11.1 PI Controllers Introduction.. 404
11.2 PI Design for Current Controllers..406
11.3 PI Design for Speed Controllers..410
11.4 Calculating PI Gains Based On Stability and Bandwidth..412
11.5 Calculating Speed and Current PI Gains Based on Damping Factor.. 415
11.6 Considerations When Adding Poles to the Speed Loop...419
11.7 Speed PI Controller Considerations: Current Limits, Clamping and Inertia...421
11.8 Considerations When Designing PI Controllers for FOC Systems..424
11.9 Sampling and Digital Systems Considerations... 429

Chapter 11
Tuning Regulators

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

403

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

11.1 PI Controllers Introduction
Looking back at some history, this is how the PI controller was invented in the 1920s. An engineer named
Nicolas Minorsky was designing automatic steering systems for the US Navy in the early 1920s by observing
how a helmsman steered a ship under different conditions. According to Wikipedia.org, he noticed that the
actions of the helmsman could be approximated by a simple amplification of the error signal under calm
conditions, but this simple model was inadequate to describe the helmsman's response during a steady
disturbance like a stiff gale. This finally led to the addition of an integral term to correct for continuous steady-
state errors. Later, the derivative term was added to improve controllability even further.

Continuing with the Wikipedia.org narrative, test trials of his automatic steering system based on a PI controller
were carried out on the USS New Mexico. After some adjustments, he was able to control the angular error to
less than two degrees. When the D term was added, the error improved to within one sixth of a degree, which
was better than what most helmsmen could achieve manually. Minorsky published his findings (also in the early
1920s). We know today that his discovery launched a new era in the design of control systems.

Figure 11-1. USS New Mexico Around the Time it was Retrofitted with PID Control

A very common question we get in our seminars is, "How do you tune a PI controller?" We typically show Bode
plots or show some simulation data to show that the process is somewhat empirical, and very subjective to the
kind of response for which you are looking.

This section of InstaSPIN User's Guide is put together to help customers design and tune PI control loops
(regardless of whether they are speed loops or current loops) in a much more deterministic way. Granted, there
are still plenty of degrees of freedom depending on what kind of response users are looking for, as well as an
endless litany of subtle variations on the basic PI structure itself. But by following some basic rules that will be
explained later in this document, users should be able to tune a PI loop.

This analysis is limited to loads having only real poles. If the load under consideration has prominent complex
poles resulting from excessive torsional resonance between the motor and load, then the controller will have to
be more sophisticated than a simple PI structure anyway to cancel the resonance effects. But in most cases,
a stiff shaft coupler should tame the torsional resonance to the point where the use of a standard PI control
structure is acceptable. Also, it is assumed that the load has no viscous damping. In most designs these
assumptions are valid. However, if the tuning process described in this section does not work for a given design,
it is likely that complex poles or viscous damping exist somewhere in the load which is affecting the results.

Figure 11-2 shows a parallel path topology of a PI controller. The error signal is split into two separate paths:
one which is directly amplified and the other is amplified and then integrated. The integrator is included to drive

Tuning Regulators www.ti.com

404 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

the steady-state error of the system to zero, since any non-zero steady-state error will result in a boundless
integrator output. These two signal paths are then combined at the output once again via a simple addition
operation.

Figure 11-2. Parallel Path Topology

But how do you set the values for Kp and Ki? This has been the subject for much debate, and it is rather difficult
to intuitively understand the effect that each term has on your motor control system. The Kp term sets the high
frequency gain of the control loop, as shown above. The Ki term sets the low frequency gain, and theoretically
has infinite gain at DC. The frequency which delineates the high frequencies from the low frequencies is referred
to as the "zero" of the controller and corresponds to the inflection point in the frequency plot.

While the integrator plays a crucial role in the operation of the PI controller, it also brings a set of challenges with
it. For example, let's say that the error in your control loop is zero, which means the controlled signal is equal to
the commanded signal. Now add a small offset to the controlled signal and watch what happens. Since the error
signal is no longer zero, the integrator output will start growing, and growing in an attempt to null the error signal
again.

Now remove the offset and watch what happens. The controlled signal will eventually return to the commanded
value once again, but not right away. The integrator output is still very large, which causes the controlled signal
to wildly overshoot the commanded value while the integrator output is cleared. During this time, the profile of
the "controlled" signal is not controlled at all, and may even result in damage to your system if not constrained. It
is like winding up a spring tightly and then suddenly releasing it. That is why this effect in PI controllers is called
windup. There are many ways to mitigate the windup effect, but most techniques involve some sort of limiting of
the integrator's output. We will discuss this in more detail later in this section.

Another popular form of the PI controller (and the one we will use for our analysis) is the "series" topology which
is shown in Figure 11-3.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

405

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-3. Series Topology

From this diagram, we can see that:

series
p p

series i
i

p

K K

K
K

K

=

=

(27)

But in this structure,
series
pK sets the gain for ALL frequencies, and

series

iK directly defines the inflection point
(zero) of the controller in rad/sec. Both forms are pretty much equal in terms of software complexity. However,

many engineers prefer the series form over the parallel form since
series
pK and

series

iK directly correlate to tangible

system parameters. It's pretty easy to understand the effect that
series
pK has on the controller's performance,

since it is simply a gain term in your open-loop transfer function. But what is the system significance of the zero
inflection point? This will be discussed next.

11.2 PI Design for Current Controllers
In the previous section, we briefly reviewed the history of the PI controller and presented two forms that are
commonly used today. Regardless of which form you use, the frequency responses look identical, as shown in
Figure 11-4. As can be seen from the graph, the gain of the PI controller has a pronounced effect on system
stability. But it turns out that the inflection point in the graph (the "zero" frequency) also plays a significant but,
perhaps, more subtle role in the performance of the system. To understand this, we will need to dive into some
math to derive the transfer function for the PI controller, and understand how the controller's "zero" plays a role
in the overall system response.

Tuning Regulators www.ti.com

406 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-4. Frequency Response

Using the series form of the PI controller, we can define its "s-domain" transfer function from the error signal to
the controller output as:

()

series series
p iseries series series

p i iseries
p

s
K K 1

K K K
PI s K

s s

æ ö
´ +ç ÷ç ÷´ è ø= + =

(28)

From this expression, we can clearly see the pole at s = 0, as well as the zero at
series

is K rad / sec= . So, why is
the value of this zero so important? To answer this question, let's drop the PI controller into a current controller
which is regulating the current of a motor, as shown in Figure 11-5.

Figure 11-5. PI Controller in a Current Controller

We will use a first-order approximation of the motor winding to be a simple series circuit containing a resistor, an
inductor, and a back-EMF voltage source. Assuming that the back-EMF voltage is a constant for now (since it
usually changes slowly with respect to the current), we can define the small-signal transfer function from motor
voltage to motor current as:

()
() ()

1
I s

R

LV s 1 s
R

=

+
(29)

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

407

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

If we also assume that the bus voltage and PWM gain scaling are included in the
series
pK term, we can now define

the "loop gain" as the product of the PI controller transfer function and the V-to-I transfer function of the RL
circuit:

() ()
() ()

series series
p i series

i
loop L

R

s
K K 1 1

I s K RG (s) PI s
V s s 1 s

æ öæ ö
ç ÷´ +ç ÷ æ öç ÷ç ÷ç ÷è ø= ´ = ç ÷ç ÷+ç ÷ç ÷

è øç ÷
è ø (30)

To find the total system response (closed-loop gain), we must use the following expression which you probably
remember from your college control systems class:

()
()

()
loop

loop

G s
G s (Assuming the feedback term H(s) 1)

1 G s
= =

+ (31)

Substituting Equation 30 into Equation 31 yields:

()

()

()

series series
p i series 1

i R

L
R

series series
p i series 1

i R

L
R

s
K K 1

K

s 1 s

G s

s
K K 1

K
1

s 1 s

æ öæ ö
ç ÷´ +ç ÷ æ öç ÷ç ÷è ø ç ÷ç ÷ç ÷+ç ÷è ø
ç ÷
è ø=

æ öæ ö
ç ÷´ +ç ÷ æ öç ÷ç ÷è ø ç ÷+ ç ÷ç ÷+ç ÷è ø
ç ÷
è ø (32)

Notice that the expression is getting bigger and bigger, however with some algebra, we can reduce this
expression to the following:

()
series
i

2

series series series series series
p i p i i

s
1

K
G s

L R 1
s s 1

K K K K K

æ ö
+ç ÷ç ÷

è ø=
æ ö æ ö
ç ÷ ç ÷+ + +
ç ÷ ç ÷´ ´è ø è ø (33)

The denominator is a second order expression in "s" which means there are two poles in the transfer function. If

we are not careful with how we select
series
pK and

series

iK , we can easily end up with complex poles. Depending
on how close those complex poles are to the jω axis, our system could have some resonant peaks. So let's

assume right away that we want to select
series
pK and

series

iK in such a way as to avoid complex poles. In other
words, we can factor the denominator into an expression as follows, where C and D are real numbers:

()()2

series series series series series
p i p i i

L R 1
s s 1 1 Cs 1 Ds

K K K K K

æ ö æ ö
ç ÷ ç ÷+ + + = + +
ç ÷ ç ÷´ ´è ø è ø (34)

If we multiply out the expression on the right side of the equation, and compare the results with the left side of
the equation, we see that in order to obtain real poles, the following conditions must be satisfied:

Tuning Regulators www.ti.com

408 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

series series
p i

L
C D

K K
= ´

´ (35)

And:

series series series
p i i

R 1
C D

K K K
+ = ´

´ (36)

As a first attempt to solve Equation 35 and Equation 36, let's simply equate the terms on both sides of Equation
36. In other words:

series series series
p i i

R 1
C and D

K K K
= =

´ (37)

The reason we recommended these substitutions will now become clear. If we replace the denominator of
Equation 33 with its factored equivalent expression as shown in Equation 34, and then make the substitutions
recommended in Equation 37, we get the following:

()
series
i

series series series
p i i

s
1

K
G s

R s
1 s 1

K K K

æ ö
+ç ÷ç ÷

è ø=
æ öæ ö
ç ÷+ +ç ÷ç ÷ç ÷´ è øè ø (38)

Notice that the "D" substitution results in a pole which cancels out the zero in the closed-loop gain expression.
By choosing C and D correctly, we not only end up with real poles, but we can create a closed-loop system
response that has only one real pole and no zeros. No peaky frequency responses or resonant conditions, just a
simple single-pole low-pass response.

Additionally, by substituting the expressions for C and D recommended in Equation 37 back into Equation 35, we
get the following equality:

series

i

R
K

L
 = ü

(39)

Keep in mind that
series

iK is the frequency at which the controller zero occurs. So in order to get the response
described in Equation 38, all we have to do is to set

series

iK (the controller zero frequency) to be equal to the pole
of the plant.

So, now we know how to set
series

iK . But how do we set
series
pK ? Let's rewrite the closed-loop system response

G(s), making all of the substitutions we have discussed up to now, and see what we get:

() series
p

series
p

1
G s K L Bandwidth

L
s 1

K

 = Þ = ´

+

ü

(40)

In summary, there are some simple rules you can use to help you design your PI controller for your current loop:
series

iK sets the zero of the PI controller. When controlling a plant parameter with only one real pole in its transfer
function (for example, the current in a motor),

series

iK should be set to the value of this pole. Doing so will result

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

409

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

in pole/zero cancellation, and create a closed-loop response that also only has a single real pole. In other words,
very stable response with no resonant peaking.

series
pK sets the bandwidth of the closed-loop system response. As seen by Equation 40, the higher

series
pK is,

the higher the current loop bandwidth will be. We will discuss how to select an appropriate bandwidth in a later

section. It happens that
series
pK is equal to the inductive impedance for whatever bandwidth frequency you select.

In the following section we will discuss how to design a cascaded PI speed loop which contains a PI current
controller as the inner loop.

11.3 PI Design for Speed Controllers

In the last section we explained how to calculate the P and I coefficients (actually the
series
pK and

series

iK

coefficients in a series structure) for a current loop controller for a motor. We saw that
series

iK could be used to
eliminate the zero in the closed-loop system response, resulting in a system having only one real pole (that is,

well behaved and stable).
series
pK sets the bandwidth of the closed-loop system response.

In this section let's back out and take a look at the speed control loop, which contains another PI controller. Can
designing the speed loop be just as simple? Do the coefficient values perform the same system functions they
did with the current controller?

It turns out that closing the speed loop is a little more complicated than closing the current loop. Also, to properly
design the speed loop, we need to know more system parameters than we did for the current loop. This can
be seen in Figure 11-6 which shows all of the components that comprise a cascaded speed control loop. By
"cascaded," we mean a control system that consists of an outer loop with one or more inner loops. It bears
mentioning again that we are only considering the case of a load with a single lumped sum inertia which is tightly
coupled to the motor shaft and no viscous damping.

Figure 11-6. Cascaded Speed Control Loop

Let's start with the current control loop since this is where we left off in our last section. Assuming we design the
current loop as discussed in my previous section, the closed-loop transfer function is:

()current

series
p

1
G s

L
s 1

K

=

+

(41)

Where
series
pK is the error multiplier term in the current regulator's PI structure.

series

iK is not visible to the outside world since it is set to cause pole/zero cancellation within the current
controller's transfer function. To avoid confusing the coefficients of the speed controller with those of the current

Tuning Regulators www.ti.com

410 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

controller, we will call the speed controller's coefficients
series
pspdK and

series
ispdK as shown in Figure 11-6. In the

series form of the PI controller,
series
pspdK is the error multiplier term (

series
pspdK), and

series
ispdK is the integrator

multiplier term (
series
ispdK). We can use the same equation we did in the last section to define the transfer

function of the speed PI controller:

()

series series
p iseries series series

p i iseries
speed p

s
spdK spdK 1

spdK spdK spdK
PI s spdK

s s

æ ö
´ +ç ÷ç ÷´ è ø= + =

(42)

The transfer function from motor current to motor torque will vary as a function of what type of motor you are
using. For a Permanent Magnet Synchronous Motor under Field Oriented Control, the transfer function between
q-axis current and motor torque is:

() r r

3 P 3
Mtr s P

2 2 4
= l = l

(43)

Where:

P = the number of rotor poles

λr = the rotor flux (which is also equal to the back-EMF constant (Ke) in SI units)

For an AC Induction machine, the transfer function between q-axis current and motor torque would be:

()
2

d

3 Lm
Mtr s P I

4 Lr
=

(44)

Where:

P = the number of stator poles

Lm = the magnetizing inductance

Lr = the rotor inductance

Id = the component of current that is lined up with the rotor flux

For now, let's assume we are using a Permanent Magnet Synchronous Motor.

Finally, the load transfer function from motor torque to load speed is:

()
1 1

Load s
J s

=
(45)

Where:

J = the inertia of the motor plus the load

Multiplying all these terms together results in the composite open-loop transfer function:

series series
p i series

i
r

series
i

s
spdK spdK 1

spdK 1 3 1 1
GH(s) P

Ls 4 J s
s 1

K

æ öæ ö æ öç ÷´ +ç ÷ ç ÷ç ÷ç ÷ æ öæ öè ø ç ÷= lç ÷ ç ÷ç ÷ç ÷è øè øç ÷ +ç ÷ç ÷è øè ø (46)

Let's combine all the motor and load parameters at the end of this equation into a single constant K:

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

411

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

r3P
K

4J

l
=

(47)

Simplifying, we get:

series series
p i series

i

2

series
p

s
K spsK spdK 1

spdK
GH(s)

L
s 1 s

K

æ ö
´ ´ +ç ÷

ç ÷
è ø=

æ ö
ç ÷+
ç ÷
è ø (48)

From inspection of Equation 48, we can determine the following characteristics of the speed controller's open-
loop transfer function:

• Two poles at s = 0, resulting in an attenuation rate at low frequencies of 40 dB per decade of frequency.

• An additional pole at

series
pK

s
L

=

 (the current controller's pole)
• A zero at i

seriess spdK=

In order for stable operation, the pole at

series
pK

s
L

=

 must be higher in frequency than the zero at i
seriess spdK= .

Other than that, there is an infinite number of combinations of
series
pspdK and

series
ispdK which could be used to

yield different system responses, depending on whether you want higher bandwidth or better stability. There is
a procedure to define a single parameter which is proportional to system stability and inversely proportional to

bandwidth, which can be used to set both
series
pspdK and

series
ispdK automatically to yield the maximum phase

margin for the selected bandwidth. We will cover the details of this procedure in the next section.

11.4 Calculating PI Gains Based On Stability and Bandwidth
At the end of last section, we discussed the possibility of using a single parameter that could help tune the speed
PI loop in a motor control system. To develop this parameter, let's review the open-loop transfer function for the
entire speed loop:

series series
p i series

i

2

series
p

s
K spsK spdK 1

spdK
GH(s)

L
s 1 s

K

æ ö
´ ´ +ç ÷

ç ÷
è ø=

æ ö
ç ÷+
ç ÷
è ø (49)

Where:

• K is the coefficient that contains several terms related to the motor and load

•
series
pspdK and

series
ispdK are the PI coefficients for the speed loop

• L is the motor inductance

•
series
pK is one of the PI coefficients for the current loop

• s is the Laplace frequency variable

Assuming that the pole at

series
pK

s
L

=

 occurs at a higher frequency than the zero at i
seriess spdK= , and that the

unity gain frequency occurs somewhere in-between these two frequencies, we should end up with a Bode plot
that looks something like Figure 11-7.

Tuning Regulators www.ti.com

412 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-7. Bode Plot

The reason the shape of this curve is so important is because the phase shift at the 0 dB frequency determines
the stability of the system. In order to achieve maximum phase margin (phase shift: 180°) for a given separation
of the pole and zero frequencies, the 0 dB frequency should occur exactly half way in-between these frequencies
on a logarithmic scale. In other words,

0dB zerow = d ´ w (50)

and,

pole 0 dBw = d ´ w (51)

Combining Equation 50 and Equation 51 we can establish that:

2
pole zerow = d ´ w (52)

From Equation 49, we see that ωpole and ωzero are already defined in terms of the PI coefficients. Therefore,

series
pseries

i 2

K
spdK

L
=

d

ü

(53)

Where "δ" we will define as the damping factor. The larger δ is, the further apart the zero corner frequency and
the current loop pole will be. And the further apart they are, the phase margin is allowed to peak to a higher
value in-between these frequencies. This improves stability at the expense of speed loop bandwidth. If δ = 1,
then the zero corner frequency and the current loop pole are equal, which results in pole/zero cancellation and
the system will be unstable. Theoretically, any value of δ > 1 is stable since phase margin > 0. However, values
of δ close to 1 result in severely underdamped performance.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

413

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

We will talk more about δ later, but for now, let's turn our attention towards finding the last remaining coefficient:
series
pspdK . From Equation 50 we see that the open-loop transfer function of the speed loop from Equation 49 will

be unity gain (0 dB) at a frequency equal to the zero inflection point frequency multiplied by δ. In other words,

series
i

series series
p i series

i

2

2 series
i s j spdK

s
K spdK spdK 1

spdK
1

s
s 1

spdK
= ´d´

æ ö
´ ´ +ç ÷

ç ÷
è ø =

æ ö
+ç ÷

ç ÷d ´è ø (54)

By performing the indicated substitution for "s" in Equation 54 and solving, we obtain:

series
p

series
p2

2

K spdK
1

K

L

d ´ ´
=

æ ö
ç ÷d
ç ÷d ´è ø (55)

Finally, we can solve for
series
pspdK :

series series
pseries i

p

K spdK
spdK

L K K

d ´
= =

´ d ´
ü

(56)

At this point, let's step back and try to see the forest for the trees. We have just designed a cascaded speed
controller for a motor which contains two separate PI controllers: one for the inner current loop and one for the
outer speed loop. In order to get pole/zero cancellation in the current loop, we chose

series

iK as follows:

series

i

R
K

L
=

(57)

series
pK sets the bandwidth of the current controller:

series
pK

Bandwidth
L

=

(58)

Once we have defined the parameters for the inner loop current controller, we select a value for the damping
factor (δ) which allows you to precisely quantify the tradeoff between speed loop stability and bandwidth. Then it

is a simple matter to calculate
series
pspdK and

series
ispdK :

series
pseries

i 2

K
spdK

L
=

d ´ (59)

series
series i
p

spdK
spdK

K

d ´
=

(60)

The benefit of this approach is that instead of trying to empirically tune four PI coefficients which have
seemingly little correlation to system performance, you just need to define two meaningful system parameters:
the bandwidth of the current controller and the damping coefficient of the speed loop. Once these are selected,
the four PI coefficients are calculated automatically.

Tuning Regulators www.ti.com

414 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The current controller bandwidth is certainly a meaningful system parameter, but in speed controlled systems,
it is usually the bandwidth of the speed controller that we would like to specify first, and then set the current
controller bandwidth based on that. In the next section, let's take a closer look at the damping factor, and we will
come up with a way to set the current loop bandwidth based on the desired speed loop bandwidth.

11.5 Calculating Speed and Current PI Gains Based on Damping Factor
So far in this series, we have discussed how to distill the design of a cascaded speed controller from four PI
coefficients down to two "system" parameters. One of those parameters is simply the bandwidth of the current
controller. The other is the damping factor (δ). The damping factor represents the tradeoff between system
stability and system bandwidth in a single number. Keep in mind that we are only considering loads which
contain only torque and inertial components (that is, no torsional resonance or viscous damping). Let's move
forward by taking a closer look at the damping factor in both the time and frequency domains.

Figure 11-8 illustrates the open-loop magnitude and phase response for a system where the current controller
bandwidth is arbitrarily set to 100 Hz. For our purposes, it really doesn't matter what the current bandwidth
is, as it only serves to provide a reference point on the frequency axis. However, the shape of the curves
won't change, regardless of what the current bandwidth is. The damping factor is swept from 1.5 to 70 in 8
discrete steps to show how it affects system response. A value of 1.0 corresponds to the condition where the
open-loop gain intercepts 0 dB right at the frequency of the current controller bandwidth. This results in pole/zero
cancellation at this frequency with a phase margin of zero. It goes without saying that zero phase margin equals
bad things for your system.

Figure 11-8. Speed Controller Open Loop Magnitude and Phase Response as a Function of δ

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

415

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

One of the goals with the damping factor equations is to achieve the maximum stability possible for a given
bandwidth. This is seen on the open-loop phase plots which indicate the phase margin peaks to its maximum
value right at the frequency where the open-loop gain plots cross 0 db. As the stability factor is increased, you
eventually reach a point of diminishing returns as the signal phase shift approaches -90 degrees. However, the
gain margin continues to improve at the expense of a much slower system response.

Figure 11-9 illustrates the closed loop magnitude response of the speed loop, again assuming a current
controller bandwidth of 100 Hz. Just like the open-loop response, the actual current controller bandwidth is
irrelevant in determining the shape of the curves and only serves to associate the curves with a specific
frequency reference point.

Figure 11-9. Speed Controller Closed Loop Bandwidth as a Function of δ

The required frequency separation between the -3 dB cutoff point of the speed closed loop response and
the current controller pole is clearly seen along the bottom of the graph for various values of the damping
factor. As the damping factor approaches unity, the complex poles in the speed loop approach the required
frequency sepdamped ringing. This is perhaps better visualized in Figure 11-10, which shows the normalized
step response of the system for various values of the damping factor. Values below 2 are usually unacceptable
due to the large amount of overshoot. At the other end of the scale, values much above 30 usually unacceptable
due to the large amount of overshoot. At the other end of the scale, values much above 30 usually don't work
either because of the extremely long rise and settling times, as seen in the step response curves. In-between
these values is usually your design target window.

Tuning Regulators www.ti.com

416 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-10. Step Response of Speed Controller as a Function of δ

So what should you do if you picked the lowest value you can tolerate for the damping factor, but you still
aren't satisfied with the system response times? Your best recourse might be to increase the bandwidth of your
current loop. But the problem with this is that it appears to be an iterative approach since you need to determine
the current loop bandwidth first before you can determine what speed loop bandwidth is created from a given
damping factor. However, we can take advantage of the fact that the frequency curves shown here can be
normalized with respect to the current loop bandwidth irrespective of frequency. In other words, if your motor
control system has a form similar to the one discussed in this section, irrespective of actual parameter values,
you will get frequency curves (and transient step curves) that look like this, with only the frequency scaling (and
time scaling) being different. So let's exploit this fact to develop a procedure which will minimize the iterative
nature of the design process and allow us to set the current loop bandwidth as a function of the speed loop
bandwidth:

• Pick the frequency response (-3 dB cutoff frequency) you want for your speed loop (BWs).
• Using the shape of the curves in Figure 11-10, find the lowest value of damping factor that will produce a

satisfactory response for your speed loop. We have found that it is OK to pick a damping factor with a little
more overshoot than you prefer, since integrator clamping will remove most of it anyway. At this point, the
scaling of the frequency and time axes is irrelevant.

• Calculate the required current loop bandwidth to support the design requirements using the following formula
(obtained by curve fit analysis):

2.8

series
p

c s

K
BW BW 2.16 e 1.86 (rad / sec)

L

d
-æ ö

= = d + ´ -ç ÷
è ø (61)

Where:

• BWc is the current controller bandwidth

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

417

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

•
series
pK = one of the current loop PI coefficients

• L = the motor inductance
• BWs is the speed controller bandwidth
• δ is the damping factor.

Proceed with calculating the four PI coefficients as discussed previously in this section.

EXAMPLE

An Anaheim Automation 24V permanent magnet synchronous motor has the following characteristics:

• Rs = 0.4 ohms
• Ls = 0.6 mH
• Back-EMF = 0.0054 v-sec/radians (peak voltage phase to neutral, which also equals flux in Webers in the SI

system)
• Inertia = 2E-4 kg-m2

• Rotor poles = 8

The desired speed bandwidth = 800 rad/sec, and we would like a damping factor (δ) of 4. Find the required
current loop bandwidth to support the speed loop bandwidth, and then calculate the four PI coefficients.

SOLUTION

The required current bandwidth can be found directly from Equation 61:

4

2.8

series
p

c

K
BW 800 4 2.16 e 1.86 2126rad / sec

0.6E 3

-æ ö
= = + ´ - =ç ÷

- è ø (62)

From Equation 62, we find

serie
p

sK 1.28= (63)

Recall that

series

i

R
667

L
K = =

(64)

Also recall that

series
pseries

i 2

K
spdK 133

L
= =

d ´ (65)

Finally, recall that

r3P
K 162

4J

l
= =

(66)

and,

series
pseries

p

K
spdK 3.29

L K
= =

´ d ´ (67)

The simulated speed transient step response for this example is shown in Figure 11-11 where the time axis is
now scaled appropriately for this design example.

Tuning Regulators www.ti.com

418 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-11. Simulated Step Response of Speed Controller Design from the Above Example

Our analysis so far has assumed that the only poles in the speed loop are the two at s = 0, and the one
associated with the current controller. But what if other poles exist? For example, the speed feedback signal in
many systems is often processed by a low-pass filter. So how does this affect our tuning procedure? This will be
covered in the following section.

11.6 Considerations When Adding Poles to the Speed Loop
At the end of last section, we presented a problem that could potentially derail this whole discussion. Throughout
the PI tuning sections, we have been discussing a way to find the values for the PI coefficients in a theoretical
system where the speed loop contains two poles at "s" equals zero, and a third pole from the current controller.
Usually there are one or more additional poles in the transfer function. For example, a very common deviation
from this utopian situation is when the speed feedback signal requires filtering, as shown in Figure 11-12.

Figure 11-12. Speed Controller with Filtered Speed Feedback

Creating a good quality high-bandwidth speed signal without spending too much design time and without adding
too much system cost can be a real challenge. Techniques have been developed to glean information from the

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

419

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

encoder edge transitions, and also using observer technology. But still, the speed signal is usually filtered. This
alters the open-loop transfer function of the speed loop to the form shown in Equation 68.

series series
p i series

i

2

series
spd _ filterp

s
K spdK spdK 1

spdK
GH(s)

L s
s 1 s 1

KK

æ ö
´ ´ +ç ÷

ç ÷
è ø=

æ ö æ ö
ç ÷+ ´ +ç ÷

ç ÷ç ÷ è øè ø (68)

Where:

• K is a coefficient that contains several terms related to the motor and load

•
series
pspdK and

series
ispdK are the PI coefficients for the speed loop

• L is the motor inductance

•
series
pK is one of the PI coefficients for the current loop

• Kspd_filter is the pole of the speed feedback filter
• s is the Laplace frequency variable.

So what does this do to the tuning procedure? There are several dimensions to this problem, as well as possible
solutions. The selected damping factor and the relative location of the poles all contribute to these challenges.
So let's target these challenges one at a time.

The procedure outlined in the last section assumes that a suitable speed bandwidth and damping factor are
chosen based on application requirements, and then using the equation presented in step 3, we can calculate
the required current controller bandwidth to satisfy these design requirements. But it turns out that the pole
calculated in step 3 defines the minimum frequency of any pole which occurs above the unity gain frequency.
Armed with this knowledge, we can define a more general expression for

series
ispdK :

series
i 2

p
spdK =

d (69)

Where:

p = the lowest value pole above the 0 dB frequency in the speed open-loop frequency response.

The value of p could be set by the current controller, the speed filter, or something else. Since
series
pspdK is

referenced to
series
ispdK , then its value will also be potentially affected:

series
series i
p

spdK
spdK

K

d ´
=

(70)

If you can't meet the required frequency separation between the desired closed-loop speed bandwidth and p as
dictated by your chosen value for δ, then something has got to give. It's like a water balloon—you can squeeze
one part of the balloon, but it will pop out somewhere else. In this case, you can have your bandwidth at the
expense of the damping factor, or vice versa.

The problem is exacerbated when the current controller pole and the speed filter pole are within a half decade
of each other and δ is less than 3. With both poles so close to the 0 dB frequency and fighting together to
bring down the phase margin, you will get a more underdamped response than you might otherwise expect.
For example, Figure 11-13 shows the step response of a system where we used a damping factor of 2.5 to
calculate the PI coefficients as described in the last section. The green curve assumes there is no filtering of
the speed signal. The red curve shows the addition of a speed feedback filter where the value of the filter's pole
equals the current controller's pole. The system is still stable, but the damping is much less than expected for a
δ value of 2.5. At this point, we have two options, either increase the damping factor (and consequently lower
the speed loop frequency response), or move one of the poles to a higher frequency. The cyan curve shows the

Tuning Regulators www.ti.com

420 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

first option where we increase the damping factor from 2.5 to 3.8 in order to bring the overshoot down to the
original expected value. Unfortunately this reduces the bandwidth as indicated by the increased transient time.
The yellow curve shows the latter option where we increase the value of one of the poles by a factor of 3 (about
half a decade). In this case, the transient time is relatively unaffected, but the damping is still not as good as the
green waveform. You can continue to increase the pole value, and at about one decade of separation you get a
response that looks pretty close to the green waveform again. But in many cases, moving one of the poles this
drastically has other negative effects on your system.

Figure 11-13. Step Response of a System with Variable Damping and Pole Placement

Up to now, we have only dealt with "small signal" conditions (that is, linear operation with no saturation effects).
But in the real world, step transient responses almost always involve saturation of the system's voltage or
current levels, which tends to lengthen the response times. When this happens, you can increase the PI gains
all you want, but it won't speed up the response. In fact, it will usually just make the overshoot worse, since the
integrator is acting on a gained-up error signal, which it will just have to dump eventually. So how do we deal
with this problem? Are we doomed to simply using low integrator gains? It turns out that there is another solution
which doesn't involve changing your integrator gains, which we will cover in the next section.

11.7 Speed PI Controller Considerations: Current Limits, Clamping and Inertia
Up to now, we have only discussed the tuning problem in the context of a linear system. This is because under
steady-state conditions when the system settles out, you will most likely find that you are operating in the linear
region, and the AC signal content will be very small. Therefore, performing a small-signal (linear) analysis will
tell you how stable your system will be when it is not operating in saturation. But in most real-life scenarios, the
system will saturate because of limits on your voltage and/or current, especially under large transient conditions.
This saturation effect can play an important role in the PI controller; especially the integrator. Since the maximum
torque the motor can produce is limited by your current limit, the acceleration of the system is also limited. But
the integrator doesn't know this, and it thinks it can make the motor speed up faster by increasing its output. This
increased integrator output can't help the situation since the system is already saturated. All it does is create a
very large output that will cause the system to overshoot when it does come out of saturation. For this reason,
most PI integrator outputs are clamped to keep them from continuing to integrate needlessly when the system is
saturated.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

421

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

A simple static clamping scheme is illustrated in Figure 11-14. The most common scenario is to set the clamp
values equal to the PI output limit values. For example, the output limit of a PI controller that regulates speed is
usually what sets your current limit value since the speed PI output is the reference input signal for the current
PI controller. However, there is nothing that says that the integrator limit must equal the PI output limit, and many
designs use different clamp values based on the specific application.

Figure 11-14. PI Controller with Static Integrator Clamping

Figure 11-15 shows a dynamic clamping scheme which provides superior performance over the static scheme.
The thinking behind the design of this scheme is based on the rationale that if the system is already saturated
by the P gain output, then why continue integrating? Only during conditions where changes in the integrator
output would result in changes in the PI controller output is the integrator allowed to continue to integrate error
unconstrained.

Figure 11-15. PI Controller with Dynamic Integrator Clamping

The effectiveness of integrator clamping can be seen by the simulated curves in Figure 11-16. Let's stimulate
the system we designed in Chapter 5 with a commanded speed step from zero to a target speed of 1500
RPM. Shown are the effects of system overshoot under the conditions of no clamping, static clamping where
the integrator clamp values equal the output clamp values and finally, dynamic clamping. As you can see, no
integrator clamping at all is unacceptable as it results in extremely high overshoot which triggers further system
saturation and oscillation. Static integrator clamping dramatically improves this situation. However, dynamic
clamping improves performance even further, resulting in a 6 times improvement in the overshoot peak value
compared to static clamping in this example.

Tuning Regulators www.ti.com

422 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-16. Example Comparison of Integrator Clamping Techniques

At this point, let's double-back and talk about a very important part of this whole discussion. Everything we have
talked about in these seven sections is not very significant without knowing one critical piece of the system
which is the inertia. Without this knowledge, there is no definitive way of stabilizing the speed loop. In many
cases, you can calculate the inertia by knowing the form factor and mass distribution of your rotating load. If a
gearhead is present on the motor shaft with a big enough gear ratio, the load inertia can often be ignored since
transferred inertia is inversely proportional to the square of the turns ratio, and just deal with the motor inertia
which is listed on most motor data sheets. If neither of these options is valid, there are several techniques used
to measure inertia which usually involve some type of controlled acceleration, deceleration, or both. However,
it is not common to see techniques which also take into consideration static torque loading on the motor shaft
("static," loads in this context mean loads which don't change as a function of time, such as friction or an elevator
load). The following is a proposed (but at the time of this writing, untested) technique which should yield a better
inertia estimate than the techniques mentioned above:

1. Design the current controller using techniques discussed in the PI tuning sections.
2. Set the PI coefficients for the speed loop to conservative values that will just allow spinning the motor up to

speed (that is, having sluggish dynamic response should not be a concern at this point).
3. Spin the motor up to a low speed and allow it to settle (so that inertia torque equals zero). Then take a

reading of the average motor torque (Figure 11-17).
4. Repeat step 3 at successively higher speeds, and generate a graph of average torque readings as a function

of speed (Graph 1). Record the average current required for the highest speed setting. Then turn off the
motor and allow it to stop.

5. Disable the speed loop and using current mode only, apply about 1.2x to 1.5x the current from step 4 to
the motor. As the speed hits each speed for which a torque value was recorded in step 4, record the torque
again (Graph 2), and also take a time stamp.

6. Subtract graph 1 from graph 2 (this should be the acceleration torque only) (Graph 3).
7. For each point in graph 3, calculate the delta speed and delta time between the points before and after the

target point. Divide delta speed by delta time to get the local acceleration value for that point.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

423

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

8. For each torque value in graph 3, divide it by the local acceleration for that point from step 7, to create a
graph of inertia (J) as a function of speed.

9. Average the inertia values at different speeds to obtain a single estimate for system inertia.

This process can be done a priori on a bench dynamometer test, or, if there is a way to measure torque in the
control algorithm such as the torque output of InstaSPIN-FOC, this can be done as part of the commissioning
process of the motor in its target application.

Up to now, we have only discussed PI tuning in generic terms which are independent of the control topology. In
the next section, we will focus on some of the subtle points to consider when designing PI controllers for use in a
Field-Oriented Control (FOC) system.

Figure 11-17. Average Motor Torque Readings

11.8 Considerations When Designing PI Controllers for FOC Systems
Let's see how the different PI tuning topics we have discussed so far apply to Field-Oriented Control (FOC)
systems. Figure 11-18 shows a typical field oriented system which utilizes three PI controllers: two for controlling
the quadrature components of current, and one for controlling the speed.

Figure 11-18. Typical FOC Speed Control of a PMSM

The design of the speed controller doesn't change much in a field oriented system compared to other control
algorithms. Just make sure to use the q-axis current controller values when calculating the coefficients for the

Tuning Regulators www.ti.com

424 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

speed controller. But there a subtle differences which affect how the current controllers should be designed,
which are covered next.

11.8.1 FOC Differences Between Motor Types

The motor's equivalent RL circuit that is seen by the controller (which determines the PI coefficients) will vary
depending on the motor type. For BLDC and Permanent Magnet Synchronous Motors (PMSMs), R is simply the
stator resistance, and L is the stator inductance. But with AC Induction Motors (ACIMs), this is not the case. The
equivalent inductance value that is needed to use for both axes is not the stator inductance value, but rather the
"series" inductance (or sometimes called the "leakage" inductance) which is defined as follows:

2

m
s s

s r

L
L L 1 L

L L

æ ö
= - = ´ sç ÷

ç ÷
è ø (71)

Where:

• L = the equivalent series inductance
• Ls = the stator inductance
• Lm = the magnetizing inductance
• Lr = the rotor inductance
• σ = the "leakage factor" of the induction motor

Also, the resistor value seen by the current controllers for an ACIM will be different between the d and q axes.
For the d-axis controller, the equivalent resistance is simply the stator resistance Rs. However, for the q-axis, the
equivalent resistance is the sum of the stator resistance plus the rotor resistance (Rs + Rr). If these subtleties

are not taken into consideration when calculating
series
pK and

series

iK , you could end up with a PI controller that is
incompatible with your motor, resulting in less than optimal control.

11.8.2 Coupling Between Q-Axis and D-Axis

It turns out that the control of the d-axis and q-axis currents are not independent from one another. Within
the motor, the q-axis current has an effect on the d-axis current and vice-versa. This is substantiated by the
differential equations below for a PMSM.

()s d s qi R DL V L i
d

+ = + w (72)

() ()q s q s d ei R DL V L i K+ = - w + (73)

Where:

• R = the stator resistance
• Ls = the stator inductance
• D = the differential operator
• ω = the electrical frequency
• Ke = the Back EMF constant

From Equation 72 we see that the d-axis current is not only affected by the output voltage of the d-axis current
regulator (Vd), but also a voltage which is a function of iq. From Equation 73, Vq is also competing with the
voltage "ω(Ls id + Ke)" for control of the iq level. For both regulators, this cross-coupling effect manifests itself as
an unwanted disturbance which is most prominent during transient conditions at high speeds. To correct for this
situation, feed-forward decoupling should be applied to each axis which exactly cancels these competing voltage
terms. This correction results in each regulator acting on the equivalent of a simple RL circuit, just like we have
with a DC motor. The result is the regulator topology shown in Figure 11-19. To judge the effectiveness of this
technique, consider the simulation results of Figure 11-20 which show a step response in Q-axis current and how
it affect the d-axis current, with and without decoupling compensation.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

425

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-19. Decoupled PI Controllers for a PMSM

Tuning Regulators www.ti.com

426 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-20. Simulated Effectiveness of Current Regulator Decoupling

For AC Induction Motors, the correction becomes a little more complicated. The differential equations defining
AC induction motor operation are shown below:

() m
d s s d s q rd

r

L
i R DL V L i D

L
+ s = + w s - l

(74)

() m
q s s q s d rd

r

L
i R DL V L i

L
+ s = - w s - w l

(75)

Where:

• Rs = the stator resistance
• Ls = the stator inductance
• σ = the leakage factor defined in Equation 71
• D is the differential operator
• ω = the electrical frequency
• Lm = the magnetizing inductance
• Lr = the rotor inductance
• λrd = the d-axis rotor flux

Similar to the situation with a PMSM machine, we see that there are other voltages besides Vd and Vq
competing for control of id and iq respectively. As a result, compensation voltages are added to Vd and Vq which
nullify these other voltage terms. This results in each axis acting on the equivalent of a simple RL circuit, again
just like we have with a DC motor. But with an ACIM, please remember that the inductance value used for

calculating
series
pK and

series

iK is the stator inductance multiplied by the leakage factor σ, as indicated by Equation
71. The compensation block used to provide correction voltages to the outputs of the Id and Iq regulators is
shown in Figure 11-21.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

427

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

+

-

+

+

∫

Lm
L

R

r

r

rm LL /

rr LR/

iq

ω

r

m
s

L

L
L

2

−

+

-

id

r

m
s

L

L
L

2

−

rm LL /

Vd compensation

Vq compensation

Σ

Σ

Σ

Figure 11-21. Compensation Block Used for Axis Decoupling with ACIMs

Tuning Regulators www.ti.com

428 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

11.9 Sampling and Digital Systems Considerations
Throughout the PI tuning sections we have discussed a practical and efficient way to tune the PI controllers
in a cascaded speed loop by simply specifying the desired bandwidth of the speed loop, and a factor which
determines the desired damping of the system. From these two parameters, plus a rudimentary knowledge of
some of the motor and load parameters, the PI coefficients for the speed loop and the inner current loop can be
calculated. But nowhere have we discussed what limits are imposed upon the system, especially when dealing
with a digital system. Obviously, to get a stiffer response, we would like higher gains, which also translate into
higher bandwidth. But how high can we go?

To answer this question, take a look at Figure 11-22, which shows a high level view of a digital FOC based
Variable Frequency Drive (VFD). To simplify the discussion, we will assume that the entire control loop is clocked
by a common sampling signal, although this limitation is not imposed on real-world applications. In many cases,
the speed loop is clocked at a much lower frequency than the current loop, since the frequencies associated with
the speed loop are typically much lower.

Figure 11-22. Digital Field-Oriented Control System for a PMSM

In an analog system, any change in the motor feedback signals immediately starts having an effect on the output
control voltages. But with the digital control system of Figure 11-22, the motor signals are sampled via the ADC
at the beginning of the PWM cycle, the control calculations are performed, and the resulting control voltages
are deposited into double-buffered PWM registers. These values sit unused in the PWM module until they are
clocked to the PWM output at the start of the next PWM cycle. From a system modeling perspective, this looks
like a sample-and-hold function with a sampling frequency equal to the PWM update rate frequency. The fixed
time delay from the sample-and-hold shows up as a lagging phase angle which gets progressively worse at
higher frequencies. Figure 11-23 shows a normalized frequency plot for a sample-and-hold function, where the
sampling frequency is assumed to be 1. The phase plot is the most important graph, as it shows that the phase
delay from the sample-and-hold can reach down into frequencies much lower than the sampling frequency. For
example, even at one tenth the sampling frequency, the S&H is still affecting a phase shift of -18 degrees.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

429

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 11-23. Magnitude and Phase Plots for a Sample-and-Hold

Since the current controller processes higher bandwidth signals than the speed loop, it is usually the current
loop that suffers most by the S&H effect of the PWM module. Since the S&H is in series with the signal path for
the current loop, its magnitude and phase contributions add directly to the open-loop response for the current
controller. If we rewrite the equation for the open loop response of the current controller (assuming we have
already made the substitutions recommended in the PI tuning sections), we end up with Equation 76.

() ()
()

c
loop

I s BW
G (s) PI s

V s s

æ ö
= ´ = ç ÷

è ø (76)

Where:

BWc is the chosen closed-loop bandwidth for the current controller.

The 0 dB frequency obviously occurs when s = BWc. The single pole at s = 0 implies that the 0 dB frequency will
have a 90 degree phase margin. While there is no magic ratio that exists, it is usually preferred to use the rule
of thumb that the sampling frequency should be at least 10 times the bandwidth (BWc) of the current controller.
This ensures that the impact of the S&H's phase delay will only subtract 18 degrees from the phase margin of
the current controller, resulting in a very stable 72 degree margin. You can obviously have a higher sampling
frequency if desired, but this typically comes at the expense of a more expensive processor with higher MIPS.

Finally, let's look at the other end of the frequency range. At low frequencies, viscous damping may affect your
speed loop response times by changing the phase margin at the 0 dB frequency. Recall from Section 11.3, the
following transfer function between motor torque and load speed was established:

()
()

s 1 1

T s J s

w
=

(77)

Tuning Regulators www.ti.com

430 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

However, when viscous damping is present, it uses part of the motor's torque to do work to move fluid. Since
viscous torque is directly proportional to the speed of the load, we can rewrite Equation 77 to be:

()
() v

v

v

s 1 1

T s Js k J
k s 1

k

w
= =

+ æ ö
+ç ÷

è ø (78)

Where:

kv is the viscous damping factor.

As you can see from Equation 78, adding the viscous damping term moves the pole that was at s = 0 to s = kv/J.
Figure 11-24 shows how the addition of viscous damping changes the load's Bode plot.

Figure 11-24. Effect of Viscous Damping (kv) on the Load Bode Plot

From Figure 11-24, we see that as viscous damping increases from zero, low frequency gain plateaus to a value
of 1/kv. The net effect on the phase plot is to add more phase margin at lower frequencies, since the phase
lag of a load with viscous damping will always be less than a load with inertia only. As a result, stability should
actually improve for non-zero values of kv. However, the response time may take a hit, depending on where the
speed open-loop 0 dB frequency is with respect to the pole frequencies shown in Figure 11-24. So if your system
response is sluggish and the motor doesn't seem to put out as much torque as it is rated for, you could have
excessive viscous damping in your system.

Before closing out this series of PI Tuning sections, there is one more topic to be discussed. In many cases
an engineer correctly calculates PI coefficients. After using those coefficients in their code, the motor spins out
of control, or sit there and does nothing. So what happened? It is most likely the fault of one of the following
situations:

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

431

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

11.9.1 Sampling Period Considerations in the Integral Gain

It was forgotten to take into consideration the sampling frequency effect on the I gain term. Figure 11-25 shows
how to implement a typical integrator for a PI controller. To scale the output to match what an analog integrator
would provide, we must multiply the signal by the sampling period "T". In order to avoid two separate multiply
operations, most code examples simply lump T together with the I gain term. If T is not accounted for, the
integrator gain will be much larger than you anticipated.

Figure 11-25. Typical Implementation of a Digital Integrator

11.9.2 Number Format Considerations

Up until now we have assumed there are no limitations on the number format itself. If a floating-point processor
is used, then there is no need to worry about the fractional component of the PI terms. But most motor control
applications are implemented on fixed-point machines for cost reasons. The good news is that TI has developed
a linkable library which is in ROM of most C2000 processors which solves this problem. It is called the "IQ
Math" library which stands for "Integer Quotient". This allows the user to handle floating point values with ease
on a fixed-point machine without suffering from the performance hit you typically get with a full floating-point
support device. IQ math creates a new variable type in the code which is designated by an "IQ" followed by a
number. For example, say you have a 32 bit variable which is typed as an "IQ24" variable type. This means that
any variable of this type is assumed to have a 24-bit fractional component, and an 8-bit integer part. But what
occasionally happens is that someone copies TI code into their design without realizing that the coefficients are
represented in IQ format. For example, if the I-gain was calculated to be 10,000 (0x00002710 in IQ0 format), but
it is not realized that the code assumed the variable to be in IQ24 format, you will end up with an integrator gain
of 0.596E-3 instead of 10,000. The two values are obviously very different. If the same mistake is made for all of
the PI coefficients, the motor will most likely just sit there and do nothing since all the gains are way too low. So,
it is advised to make sure that the numerical format your coefficients are in is well known.

Tuning Regulators www.ti.com

432 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

11.9.3 PI Coefficients Scaling Considerations

Finally, the scaling of the PI coefficients throughout this series of PI Tuning sections has been done assuming
we want to represent real system values throughout the signal chain. For example, the output of the speed PI
controller equals the actual input reference current in amperes for the current controller. The output of the current
controller equals the actual voltage applied to the motor windings. But in many designs, the PI controller outputs
are normalized to per unit scaling where a value of 1 represents the maximum value possible, and a value of -1
represents the minimum value possible. For example, a current regulator's output might be scaled in such a way
that 1 corresponds to 100% PWM, and -1 corresponds to 0% PWM. In these cases, it is required to know the
exact scale factor between the PI output and the actual system parameter you are controlling so that you can
adjust the PI coefficients accordingly.

www.ti.com Tuning Regulators

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

433

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Tuning Regulators www.ti.com

434 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.1 Overview..436
12.2 Stability..437
12.3 Software Configuration for the SpinTAC™ Velocity Control..444
12.4 Optimal Performance in Speed Control... 446
12.5 Software Configuration for SpinTAC™ Position Control..456
12.6 Optimal Performance in Position Control.. 459

Chapter 12
InstaSPIN-MOTION™ Controllers

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

435

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.1 Overview
For most motion systems the speed and/or position of that system requires regulation. The industry standard
speed controller is a PI controller, as discussed in Chapter 11. There are a number of inherent deficiencies with a
PI controller.

• It has multiple parameters that need to be adjusted in order to tune the control for a specific speed and
load operating point. These multiple parameters produce a multidimensional solution set, and the gains are
usually determined experimentally, which makes tuning difficult.

• The range of speed and load that work for that specific tuning can be very small. If your system is highly
dynamic and has many different speed and load operating points, you might need to tune a PI controller for
each point.

The SpinTAC speed controller solves these challenges. SpinTAC provides advanced speed and position control
and features Active Disturbance Rejection Control (ADRC), which reduces all gains to a single tuning parameter.
ADRC accommodates for high degree of model uncertainties, which means that it is robust against system
variations.

Disturbance is defined as any undesired behavior in the system. Error resulting from unmodeled dynamics and
disturbances are estimated and compensated by a SpinTAC controller. The controller is unique in that it treats
any undesired behavior of the system as disturbance that can be estimated and rejected. This allows SpinTAC
controllers to control a wide range of positions, speeds and loads with a single tuning parameter.

The single tuning parameter, called bandwidth, determines the stiffness of the system and dictates how
aggressively the system will reject disturbances. This single parameter makes it very easy to adjust the tuning of
the SpinTAC speed controller.

The major considerations in tuning a controller for dynamic systems are stability and performance.

InstaSPIN-MOTION™ Controllers www.ti.com

436 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2 Stability
Stability of a control system is a safety issue in engineering systems. There are multiple definitions of system
stability: Lyapunov stability, bounded-input bounded-output stability, and input-to-state stability. For simplicity, in
this document, the criterion of stability is Lyapunov asymptotic stability, which means that the system has the
nature to converge to the equilibrium point asymptotically.

In speed control, the equilibrium point is the target speed of a step response, or the speed trajectory while
tracking a changing reference speed. In position control, the equilibrium point is either the end position of a step
response or the changing position reference during a transition.

One simple way to assess the stability of the system is to see if the step response eventually converges to the
setpoint. Typical step responses of stable and unstable systems are illustrated in Figure 12-1.

0 5 10 15 20
0

1

2

setpoint

0 5 10 15 20
0

1

2

case 1: stable

0 5 10 15 20
0

1

2

case 2: stable

0 5 10 15 20
0

1

2

case 3:unstable

0 5 10 15 20
0

1

2

case 4: unstable

0 5 10 15 20
0

1

2

case 5: unstable

Figure 12-1. Typical Step Responses of Stable and Unstable Systems

The figures show the system responses when a unit step input is applied. Top left is the set point input signal.
Cases 1 and 2 are stable systems; Cases 3, 4, and 5 are unstable systems. Case 3 is defined as marginally
stable in some instances since the response is bounded oscillation.

12.2.1 Quantifying Stability

Classic control design models the system and derives the linear expressions close to the operating point, and
uses Bode analysis to assess the stability through the gain margin and phase margin. Gain margin is the
negative of the magnitude curve value at the frequency where the phase curve crosses -180°. Phase margin is
the phase curve value above -180° at the frequency where the magnitude curve crosses 0 dB.

In order to allow the system to tolerate some non-linearity and model mismatch, typically 6- to 12-dB gain margin
and 30- to 45-degree phase margin are needed.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

437

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2.1.1 SpinTAC™ Velocity Control Stability

Given a motor's speed loop dynamics without consideration of uncertainties such as resonant mode, sample
time, and output saturation, the open loop Bode of a speed loop controlled by SpinTAC is always stable, which
can be illustrated by the open loop Bode in Figure 12-2. The phase curve does not cross -180°, which means
there is no limit on the gain margin. The phase margin is always positive.

-50

0

50

100

150

M
a
g
n
itu

d
e

(d
B

)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

-180

-150

-120

-90

P
h
a
s
e

(d
e
g
)

Frequency (rad/s)

Figure 12-2. Typical Open Loop Bode of SpinTAC™ Velocity Control

However, most mechanical systems have resonant mode, typically at high frequency, which will cause 180°
change in the phase curve and spikes in the magnitude curve.

The output saturation and sample time will also limit the adjustable range of the controller gains in order to keep
system stable.

InstaSPIN-MOTION™ Controllers www.ti.com

438 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2.1.2 SpinTAC™ Position Control Stability

SpinTAC Position Control controls both the position loop and the speed loop.

Position control is more complex than speed control. There is a -180° cross-over in the phase curve, where the
gain margin is measured. SpinTAC Position Control gives a fairly good negative gain margin to tolerate system
changes. Typically, this negative gain margin represents the degree to which the configured inertia value can be
greater than the real system inertia if the inertia is measured incorrectly (see Figure 12-3).

-50

0

50

100

150

M
a
g
n
itu

d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

10
4

-270

-225

-180

-135

-90

P
h
a
s
e

(d
e
g
)

SpinTAC POS CTL Open-loop Bode

Frequency (rad/s)

Figure 12-3. Typical Open Loop Bode of SpinTAC™ Position Control

Like speed control, position control is also subject to high-frequency resonant mode and noise, which limits the
adjustable range of the controller gains in order to keep the system stable. These are general control design
considerations for any type of controller.

12.2.2 Performance

The performance of a controller is usually evaluated by two criteria: reference tracking performance and
disturbance rejection performance.

Reference tracking performance shows how closely the system can follow the desired trajectory. In cases where
the setpoint changes, it shows how fast the system can reach a new setpoint with reasonable overshoot.

Disturbance rejection performance shows how little deviation the system can have when a disturbance is applied
to the system and how fast the system can compensate for it.

The performance of a controller can be evaluated in time domain and frequency domain.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

439

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2.2.1 Frequency Domain Analysis

If the approximate linear model of the system is achieved, the performance can be evaluated in frequency
domain. The purpose of this section is to visually illustrate the SpinTAC Velocity Control and SpinTAC Position
Control performance in engineering language (Bode analysis) not to ask users to do the analysis of a given
system.

The SpinTAC Velocity Control is designed to optimize disturbance rejection performance and trajectory tracking
performance together and tune the control with one single parameter: the bandwidth. The typical reference
tracking performance Bode and disturbance rejection performance Bode are illustrated in Figure 12-4.

-100

-80

-60

-40

-20

M
a
g
n
itu

d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

10
4

-90

-45

0

45

90

P
h
a
s
e

(d
e
g
)

SpinTAC CTL E(s)/R(s)Bode

Frequency (rad/s)

-60

-50

-40

-30

-20

-10

0

M
a
g
n
itu

d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

10
4

-90

-45

0

45

90

P
h
a
s
e

(d
e
g
)

SpinTAC CTL Input Disturbance Sensitivity Bode

Frequency (rad/s)

Figure 12-4. Typical Performance Bode of SpinTAC™ Velocity Control

As shown in Figure 12-4, the magnitude of Error/Reference Bode and Input Disturbance Sensitivity Bode are
negative values with the unit dB. The more negative values on the magnitude curves, the better the system
performance.

The performance analysis of SpinTAC Position Control is similar to SpinTAC Velocity Control. The typical
performance Bodes are shown in Figure 12-5.

-140

-120

-100

-80

-60

-40

-20

M
a
g
n
itu

d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

10
4

180

270

360

450

540

P
h
a
s
e

(d
e
g
)

SpinTAC POS CTL E(s)/R(s)Bode

Frequency (rad/s)

-140

-120

-100

-80

-60

-40

M
a
g
n
itu

d
e

(d
B

)

10
-1

10
0

10
1

10
2

10
3

10
4

-180

-90

0

90

P
h
a
s
e

(d
e
g
)

SpinTAC POS CTL Input Disturbance Sensitivity Bode

Frequency (rad/s)

Figure 12-5. Typical Performance Bode of SpinTAC™ Position Control

InstaSPIN-MOTION™ Controllers www.ti.com

440 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2.2.2 Time Domain Analysis

The performance can be easily evaluated in the time domain. The time domain common criteria are listed in
Table 12-1.

Table 12-1. Time Domain Common Criteria
Performance Criteria Description
Overshoot Maximum value deviated from the setpoint after first crossing of the setpoint

Settling Time The time from start to finally entering a defined percentage (typically 2% ~ 5%)
range around the step setpoint

Maximum Absolute Error (MAE) Maximum absolute value of deviation from the setpoint, indicate the worst case
value

Integral Absolute Error (IAE) Integrated absolute value of deviation from the setpoint, indicates the deviation
over time

12.2.3 Trade-Off Between Stability and Performance

Typically there is a trade-off between system stability and performance. Real systems always have noise and
uncertainties (high-order unknown dynamics such as resonant mode). Aggressively-tuned controllers exhibit
better performance. This is true until the controller reaches the level that the system approaches unstable
conditions or the noise allowed into the system is too high and degrades the performance.

12.2.4 Tuning the SpinTAC™ Controller

With single coefficient tuning, SpinTAC allows you to quickly test and tune your speed or position control from
soft to stiff response. This single gain (bandwidth) works across the entire variable speed and load range of an
application, reducing complexity and system tuning time. Multi-variable PID based systems often require a dozen
or more speed and load tuned coefficient sets to handle all possible dynamic conditions.

12.2.4.1 Considerations

Noise, resonant mode, and sample time are considered in tuning the close-loop controllers. SpinTAC simplifies
the tuning process with one tuning parameter. By adjusting the bandwidth, it is straightforward to find desired
performance while keeping the stability margins. As the bandwidth is increased, there is less deviation from the
setpoint with the same amount of disturbance load applied. However as the bandwidth increases, this increases
the noise that the controller is using to determine the output. Finding the correct tuning is often a balance
between disturbance rejection and resultant noise that is generated.

The sample time is taken into account automatically by the SpinTAC controller. It uses the sample time of your
system as a limit on the available bandwidth. This limit prevents your system from going unstable by preventing
it from having a very high bandwidth and a very small sample time which can cause some instability in your
system.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

441

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.2.4.2 Tuning the InstaSPIN™-MOTION Controller

SpinTAC controllers are tuned via a single parameter. This parameter is called bandwidth. The bandwidth of
the SpinTAC controller is adjusted via the configuration parameter Bandwidth Scale. This value should be used
to adjust the value of the bandwidth in the controller to meet the control requirements of your application. For
position control applications, a single bandwidth is used to set the gain for both position and speed.

Figure 12-6 shows the SpinTAC Velocity Control response to a torque disturbance as the bandwidth is
increased. As the bandwidth is increased, the response to the torque disturbance becomes faster and has
less overshoot. When the bandwidth is increased too much it begins to oscillate around the goal speed when the
torque disturbance is removed from the system. This indicates that the bandwidth has been set too high. In this
example the ideal bandwidth is 40 rad/s. This is due to the response having minimal oscillation around the goal
speed when the torque is removed.

-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
To

rq
u

e
[A

]

S
p

e
e

d
[R

P
M

]

Time [sec]

SpinTAC Velocity Control Bandwidth Comparison

60

rad /s

10

rad /s

20

rad/s

30

rad/s

40

rad/s

50

rad/s

Figure 12-6. Comparison of Bandwidths for SpinTAC™ Velocity Control

Figure 12-7 shows SpinTAC Position Control response to a torque disturbance. As the bandwidth is increased,
the response to the torque disturbance becomes faster and has less overshoot. When the bandwidth has been
increased too much the motor begins to hum and oscillate. This indicates that the output of SpinTAC Position
Control has begun to oscillate. In this example the ideal bandwidth is 50 rad/s. This is because it has a very
good response to the disturbances while having a minimal output oscillation.

InstaSPIN-MOTION™ Controllers www.ti.com

442 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

-1
-0.95

-0.9
-0.85

-0.8
-0.75

-0.7
-0.65

-0.6
-0.55

-0.5
-0.45

-0.4
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12

To
rq

u
e

[A
]

P
o

si
ti

o
n

E
rr

o
r

[M
R

e
v

]

Time [sec]

SpinTAC Position Control Bandwidth Comparison

20

rad/s

30

rad/s

40

rad/s

50

rad/s

60

rad/s

70

rad/s

Figure 12-7. Comparison of Bandwidths for SpinTAC™ Position Control

To tune a SpinTAC controller, the first step is to set the speed reference to zero. Once the motor
is at zero speed, manually rotate the motor shaft with your hand to feel how tightly the motor is
holding zero, this is an indication of how aggressively the motor is tuned. Increase the bandwidth scale
"gMotorVars.SpinTAC.VelCtlBwScale" or "gMotorVars.SpinTAC.PosCtlBwScale" in steps of 1, continuing to feel
how tightly the motor is holding zero speed. For motors where the shaft is not accessible, give the motor a
reference step. Change the reference and monitor how aggressively the controller tries to achieve the new
setpoint. Once the SpinTAC controller is tightly holding zero the bandwidth scale has been tuned for zero
hold. At this point it is important to run the motor in order to ensure that this bandwidth will work across your
application's operating range.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

443

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.3 Software Configuration for the SpinTAC™ Velocity Control
Configuring SpinTAC Velocity Control requires four steps. Lab 5d — InstaSPIN-MOTION Speed Controller
— is an example project that implements the steps required to use SpinTAC Velocity Control. The header
file spintac_velocity.h, included in MotorWare, allows you to quickly include the SpinTAC components in your
project.

12.3.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 5d example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h

#include "sw/modules/spintac/src/32b/spintac_vel_ctl.h"

12.3.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 5d project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header
file.

ST_VelCtl_t stVelCtl; // The SpinTAC Speed Controller object
ST_VELCTL_Handle stVelCtlHandle; // The SpinTAC Speed Controller Handle

12.3.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into the SpinTAC Velocity Control. This step can be completed by running the functions ST_init
and ST_setupVelCtl that are declared in the spintac_velocity.h header file. If you do not wish to use these
two functions, the code example below can be used to configure SpinTAC Velocity Control component. This
configuration of SpinTAC Velocity Control represents the typical configuration that should work for most motors.

// Initialize the SpinTAC Speed Controller Component
stVelCtlHandle = STVELCTL_init(&stVelCtl, sizeof(stVelCtl));
// Setup the maximum current in PU
_iq maxCurrent_PU = _IQ(USER_MOTOR_MAX_CURRENT / USER_IQ_FULL_SCALE_CURRENT_A);
// Instance of the velocity controller
STVELCTL_setAxis(stVelCtlHandle, ST_AXIS0);
// Sample time [s], (0, 1)
STVELCTL_setSampleTime_sec(stVelCtlHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// System inertia upper (0, 127.9999] and lower (0, SgiMax] limits [PU/(pu/s^2)]
STVELCTL_setInertiaMaximums(stVelCtlHandle, _IQ(10.0), _IQ(0.001));
// System control signal high (0, OutMax] & low [OutMin, 0) limits [PU]
STVELCTL_setOutputMaximums(stVelCtlHandle, maxCurrent_PU, -maxCurrent_PU);
// System maximum (0, 1.0] and minimum [-1.0, 0) velocity [pu/s]
STVELCTL_setVelocityMaximums(stVelCtlHandle, _IQ(1.0), _IQ(-1.0));
// System upper (0, 0.2/(T*20)] and lower [0, BwScaleMax] limits for bandwidth scale
STVELCTL_setBandwidthScaleMaximums(stVelCtlHandle,
 _IQ24((0.2) / (ST_SPEED_SAMPLE_TIME * 20.0)), _IQ24(0.01));
// System inertia [PU/(pu/s^2)], [SgiMin, SgiMax]
STVELCTL_setInertia(stVelCtlHandle, _IQ(USER_SYSTEM_INERTIA));
// Controller bandwidth scale [BwMin, BwMax]
STVELCTL_setBandwidthScale(stVelCtlHandle, _IQ24(USER_SYSTEM_BANDWIDTH_SCALE));
// Initially ST_VelCtl is not enabled
STVELCTL_setEnable(stVelCtlHandle, false);
// Initially ST_VelCtl is not in reset
STVELCTL_setReset(stVelCtlHandle, false);

InstaSPIN-MOTION™ Controllers www.ti.com

444 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.3.4 Call SpinTAC™ Velocity Control

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more information, see
Section 4.7.1.4. Before calling the SpinTAC Velocity Control function the speed reference, acceleration reference
and speed feedback must be updated. This example uses SpinTAC Velocity Move to provide the references to
SpinTAC Velocity Control. For more information on SpinTAC Velocity Move, see Chapter 13.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
// Get the mechanical speed in pu/s
_iq speedFeedback = EST_getFm_pu(obj->estHandle); // Get the mechanical speed in pu/s
// Update the Velocity Reference
STVELCTL_setVelocityReference(stVelCtlHandle,
 STVELMOVE_getVelocityReference(stVelMoveHandle));
//Update the Acceleration Reference
STVELCTL_setAccelerationReference(stVelCtlHandle,
 STVELMOVE_getAccelerationReference(stVelMoveHandle));
//Update the Velocity Feedback
STVELCTL_setVelocityFeedback(stVelCtlHandle, speedFeedback);
// Run the SpinTAC Speed Controller
STVELCTL_run(stVelCtlHandle);
// Get the Torque Reference from the SpinTAC Speed Controller
iqReference = STVELCTL_getTorqueReference(stVelCtlHandle);
// Set the Iq reference that came out of SpinTAC Velocity Control
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

12.3.5 Troubleshooting SpinTAC™ Velocity Control
12.3.5.1 ERR_ID

ERR_ID provides an error code for users. A list of errors defined for SpinTAC Velocity Control and the solutions
for these errors are shown in Table 12-2.

Table 12-2. SpinTAC™ Velocity Control ERR_ID Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 1]

2 Invalid reference maximum value Set cfg.VelMax within (0, 1]

3 Invalid reference minimum value Set cfg.VelMin within (0, 1]

4 Invalid control signal maximum value Set cfg.OutMax within (0, 1]

5 Invalid control signal minimum value Set cfg.OutMin within [-1, 0)

16 Invalid inertia maximum value Set cfg.InertiaMax as a positive _iq24 value

17 Invalid inertia minimum value Set cfg.InertiaMin within (0, cfg.InertiaMax]

18 Invalid bandwidth maximum value Set cfg.BwMax within [0, min(2000, 0.2/cfg.T)]

19 Invalid bandwidth minimum value Set cfg.BwMin within [0, cfg.BwMax]

32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

1012 Invalid inertia value No action. Inertia will be saturated by the bound [cfg.InertiaMin,
cfg.InertiaMax]

1014 Bandwidth × Inertia is greater than 2000 No action. The actual bandwidth is saturated by the value of 2000/
Inertia

1016 Friction is out of bounds No action. The friction will be saturated by the adjusted friction
bounds [0, 5]

4001 Invalid SpinTAC license Use a chip with a valid license

4003 Invalid ROM version Use a chip with a valid ROM version or use the SpinTAC library
that is compatible with the current ROM version.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

445

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4 Optimal Performance in Speed Control
12.4.1 Introduction

Getting the best possible performance out of your motion system is important. A poorly tuned regulator can
result in wasted energy, wasted material, or an unstable system. It is important that for any speed controller the
performance is evaluated at many different speed and load operating points in order to determine how well it
works in your application.

12.4.2 Comparing Speed Controllers

Speed controllers can be compared on a number of different factors. However, two metrics - disturbance
rejection and profile tracking - can be used to test performance and determine how well your controller is tuned
for your application.

12.4.3 Disturbance Rejection

Disturbance rejection tests a controller's resistance to external disturbances, which will impact the motor speed.
Disturbance rejection is measured using the maximum speed error and settling time. The maximum speed error
shows the deviation from the goal speed, and is an indication of how aggressively your controller is tuned.
Aggressive tuning will produce a low maximum error.

Settling time refers to the amount of time from the point when the disturbance happens until the speed returns
to a fixed band around the goal speed. This is also an indication of how aggressively your control loop is tuned.
If the controller is tuned too aggressively it will have a long settling time because it will oscillate around the goal
speed before settling.

Figure 12-8 and Figure 12-9 show the difference between poor tuning and optimal tuning of the same controller.
As you can see by tuning the speed controller, when torque is applied or removed from a motor system the
tuned controller greatly reduces the maximum error and settling time. This is an exaggerated example, but it is
used to highlight the importance of getting a good tuning for your system.

When doing disturbance rejection testing it is important to test at multiple speed and load combinations. Speed
controllers have different performance characteristics when placed into different situations. In order to properly
evaluate the effectiveness of your speed controller, tests should be done across the entire application range. The
test results will indicate whether the controller will meet the application specifications, or whether the controller
needs to be tuned multiple times for different operating points.

It is also important to be able to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating repeatable disturbance is an important factor when evaluating
multiple controllers. If test conditions cannot be replicated, it is difficult to adequately compare the responses of
two controllers.

InstaSPIN-MOTION™ Controllers www.ti.com

446 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Applied Torque Disturbance (75% Rated Speed and 50% Rated Load)
Poor Tuning

Optimal Tuning

Maximum Error:

192 RPM

Maximum Error:

1858 RPM

Settling Time:

0.536 sec
Setting Time:

1.17 sec

Figure 12-8. Velocity Tuning Comparison for Applied Torque Disturbance

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

447

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2500

2700

2900

3100

3300

3500

3700

3900

4100

4300

4500

4700

4900

5100

5300

5500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Removed Torque Disturbance (75% Rated Speed and 50% Rated Load)
Poor Tuning

Optimal Tuning

Maximum Error:

656 RPM

Maximum Error:

2255 RPM

Settling Time:

0.204 sec

Setting Time:

1.241 sec

Figure 12-9. Velocity Tuning Comparison for Removed Torque Disturbance

12.4.4 Profile Tracking

Profile tracking tests how well the controller follows a changing target speed. The two metrics to evaluate in this
testing are the maximum error and the absolute average error. The maximum speed error shows how much the
controller overshoots while changing speeds. This is an indication of how aggressively your controller is tuned.
If you controller is not tuned aggressively enough, the speed will overshoot the target, and will take a long time
to recover. If the controller is tuned too aggressively it will overshoot, and then oscillate as it settles on the goal
speed. If the controller is correctly tuned, it will overshoot and then smoothly return to the goal speed.

Absolute average error is an average of the absolute value of the instantaneous speed error over the entire
profile. This measure shows the amount of deviation throughout the entire profile. It takes into account all of
the little errors as the motor is running. If the controller is tuned too aggressively it will result in larger absolute
average error because the controller will be oscillating throughout the profile. If the controller is not tuned
aggressively enough, it will result in a larger absolute average error because it is continuously falling behind
what the profile is commanding the motor to do.

Figure 12-10 shows the difference between the default tuning and the optimal tuning of the same controller. As
you can see by tuning the speed controller, you are able to make your motion system much more closely track
the reference. By tuning the controller, it greatly reduces the maximum error, the absolute average error, and the
maximum overshoot.

InstaSPIN-MOTION™ Controllers www.ti.com

448 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
p

e
e

d
E

rr
o

r
[R

P
M

]

S
p

e
e

d
[R

P
M

]

Time [sec]

Profile Tracking Tuning Comparison
Speed Reference Poor Tuning
Optimal Tuning Poor Tuning Error
Optimal Tuning Error

Speed Reference
Acceleration: 2.4 kRPM/s

Jerk: 120 kRPM/s2

Maximum Error:

31 RPM

Maximum Overshoot:

3 RPM

Average Error:

14 RPM

Maximum Error:

72 RPM

Maximum Overshoot:

60 RPM

Average Error:

46 RPM

Figure 12-10. Velocity Tuning Comparison for Profile Tracking

It is important to test multiple speeds and accelerations in your profile as well as multiple different loads.
Speed controllers have different performance characteristics when placed into different situations. In order
to properly evaluate the effectiveness of your speed controller, tests should be conducted across the entire
application range. This includes when you design the profile for testing. Care needs to be taken to ensure that
the application speeds and accelerations are built into the profile. The results of these tests will inform you if your
controller will meet the application specifications or if your controller needs to be tuned multiple times for different
operating points.

It is also important to be able to create repeatable profiles and loads. Creating a repeatable profile can be done
using SpinTAC Velocity Move and SpinTAC Velocity Plan; for more information, see Chapter 13. Repeatable
profiles are required so that all controllers will be tested using the same reference in the same order and for
the same length of time. This ensures that test conditions are as identical as possible. When applying load
during a profile tracking test it is important to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating a repeatable disturbance is an important factor when evaluating
controllers. If test conditions cannot be replicated, it is difficult to adequately compare the responses of two
controllers.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

449

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4.5 InstaSPIN-MOTION™ Velocity Control Advantage
12.4.5.1 Single Parameter Tuning

InstaSPIN-MOTION presents numerous advantages in achieving optimal performance for your application. The
SpinTAC Velocity Control helps you achieve optimal performance by offering single parameter tuning over a
wide operating range. Having a single tuning parameter allows you to quickly zero in on the right tuning settings
for your application. The Active Disturbance Rejection Control (ADRC) at the core of the SpinTAC Velocity
Control allows that single tuning parameter to work across a very wide operating range. In most cases a single
tuning setting can work across the entire operating range of an application. Compare that with a PI controller
that requires at least two tuning parameters and both of those tuning parameters need to be tuned for multiple
different operating points in an application. This results in a much longer amount of time spent tuning your
application than with the SpinTAC Velocity Control.

To compare the differences between the SpinTAC Velocity Control and a traditional PI speed controller, we
attached an Anaheim Automation BLY172S motor that comes with the DRV8312 Rev D evaluation kit to a
Magtrol HD-400 dynamometer. The PI tuning parameters were arrived at using the example in Section 11.5. The
following characteristics were used to calculate the Speed PI gains:
• Rs = 0.4 ohms
• Ls = 0.6 mH
• Back-EMF = 0.0054 V-sec / radians
• Inertia = 335E-4 kg-m2 (To include the Inertia of the motor and the dynamometer)
• Rotor poles = 8
• Speed bandwidth = 800 radians / sec
• Damping factor = 4

This resulted in the following Speed PI gains:
• spdKpseries = 5.495
• spdKiseries = 132.88

The SpinTAC Velocity Control was tuned experimentally by the method outlined in Section 12.2.4. This tuning
resulted in the following gain:
• Bandwidth = 45 radians / sec

The above gains for the PI speed controller and the SpinTAC Velocity Control were using for the following tests.

InstaSPIN-MOTION™ Controllers www.ti.com

450 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4.5.2 Disturbance Rejection Test

The ADRC technology in the SpinTAC Velocity Control has excellent disturbance rejection. It is actively
estimating disturbances in real-time and compensating for these disturbances (see Figure 12-11 and Figure
12-12). When the SpinTAC Velocity Control detects a disturbance in the system, it applies a correction to quickly
and smoothly bring the speed of the motor back in line with the target speed.

The SpinTAC Velocity Control features a much faster recovery time and smaller maximum error than a traditional
PI controller. This results in your application experiencing fewer speed fluctuations. This reduction in speed
fluctuation results in your application running at a more consistent speed and can lead to less power consumed
in your application.

2700

2725

2750

2775

2800

2825

2850

2875

2900

2925

2950

2975

3000

3025

3050

3075

3100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Applied Torque Disturbance (75% Rated Speed and 50% Rated Torque)
PI Controller

SpinTAC Controller

Maximum Error:

293 RPM

Maximum Error:

196 RPM

Settling Time:

0.831 sec

Settling Time:

0.536 sec

Figure 12-11. PI and SpinTAC™ Comparison for Applied Torque Disturbance Velocity Control

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

451

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2900

2950

3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

3550

3600

3650

3700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Removed Torque Disturbance (75% Rated Speed and 50% Rated Torque)
PI Controller

SpinTAC Controller

Maximum Error:

656 RPM

Settling Time:

0.642 sec

Settling Time:

0.204 sec

Maximum Error:

652 RPM

Figure 12-12. PI and SpinTAC™ Comparison for Removed Torque Disturbance Velocity Control

InstaSPIN-MOTION™ Controllers www.ti.com

452 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4.5.3 Feedforward

The SpinTAC Velocity Control also features feedforward. This allows for excellent profile tracking (see Figure
12-13). Feedforward tells the SpinTAC Velocity Control how fast it should be accelerating or decelerating. This
allows the SpinTAC Velocity Control to react to profile changes much quicker than a PI controller. It results in
less maximum error and less absolute average error.

The SpinTAC Velocity Control features reduced maximum error and absolute average error. This results in much
improved tracking performance over a traditional PI controller. This results in less wasted motion and wasted
energy while the controller is attempting and overacting to try and track the changing reference. This feature
becomes even more important when combined with the disturbance rejection capabilities discussed in Section
12.4.5.2. If your system encounters a disturbance while tracking a changing speed reference, that could result in
a large amount of overshoot and wasted energy or material.

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
p

e
e

d
[R

P
M

]

S
p

e
e

d
[R

P
M

]

Time [sec]

Feedforward Impact on Profile Tracking
Speed Reference PI Controller

SpinTAC Controller PI Controller Error

SpinTAC Controller Error

Speed Reference

Acceleration: 2.4 kRPM/s

Jerk: 120 kRPM/s2

Maximum Error:

148 RPM

Maximum Error:

31 RPM

Maximum Overshoot:

62 RPM

Maximum Overshoot:

3 RPM

Average Error:

14 RPM

Average Error:

82 RPM

Figure 12-13. PI and SpinTAC™ Comparison for Feedforward Impact on Velocity Profile Tracking

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

453

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4.5.4 No Integrator Windup

Integrator windup is an issue where the integrator component of a standard PI controller has built up a large
reserve of error. This happens when the controller goes into saturation and there is a steady state error in
the speed. This steady state error will continue to build up the value in the integrator and when the condition
causing the saturation is removed, this error will cause the speed to drastically overshoot the speed reference.
The SpinTAC Velocity Control does not have this issue. The ADRC technology is estimating the system error in
real-time and does not rely on an integrator that can cause integrator windup issues.

Figure 12-14 shows a case where a traditional PI controller experiences integrator windup. In this case the motor
could not overcome the torque disturbance and it was forced to run at the speed slower than the setpoint. This
placed the controller into saturation where the PI controller's integrator term built up over time. Once this torque
disturbance was removed, the integrator term of the PI caused it to have a very large overshoot and take a much
longer time to settle back to the speed setpoint. The SpinTAC controller did not see any of these ill effects since
it does not contain an integrator term that can build up and cause integrator windup issues. It is also interesting
to compare Figure 12-14 with Figure 12-12. You should notice that SpinTAC's response to removing the torque
disturbance is very similar for the 50% rated torque disturbance and the 80% rated torque disturbance.

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
C

u
rr

e
n

t
[A

]

S
p

e
e

d
[R

P
M

]

Time [sec]

Disturbance Rejection with Integrator Windup
(75% Rated Speed and 80% Rated Torque)

Speed Feedback PI Speed Feedback SpinTAC

Iq Reference PI Iq Reference SpinTAC

Maximum Overshoot:

2308 RPM

Settling Time:

1.05 secMaximum Overshoot:

629 RPM

Settling Time:

0.286 sec

Wasted Power due to

Integrator Windup

Large Overshoot due

to Integrator Windup

Figure 12-14. PI and SpinTAC™ Comparison for Integrator Windup During Disturbance Rejection
Velocity Control

InstaSPIN-MOTION™ Controllers www.ti.com

454 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.4.5.5 Minimum Startup Overshoot

InstaSPIN-MOTION features a controller that produces minimum overshoot during startup. This results in your
application spending less energy when starting the motor and less time to recover and run at the target speed.
For compressors that cycle on and off this can be a critical point to save energy.

Figure 12-15 compares the step response of the SpinTAC Velocity Control with a traditional PI speed controller.
From the plot you can see that the traditional PI speed controller has a much greater overshoot and settling time
than the SpinTAC Velocity Control. The large overshoot by the PI speed controller results in wasted power and
wasted motion. It is not the ideal response for your system. The SpinTAC Velocity Control has a much better
response and results in less overshoot and a faster settling time.

-500

-250

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

4250

4500

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
p

e
e

d
[R

P
M

]

Time [sec]

Step Response (75% Rated Speed) Speed Reference Speed Feedback PI Speed Feedback SpinTAC

Maximum Overshoot:

1104 RPM

Maximum Overshoot:

339 RPM

Settling Time:

0.37 sec

Settling Time:

0.273 sec

Figure 12-15. PI and SpinTAC™ Comparison for Step Response Velocity Control

12.4.5.6 Conclusions

The SpinTAC Velocity Control included in InstaSPIN-MOTION directly replaces the traditional PI speed
controller. It results in better performance across the entire range of your application. It is less complex to
tune than a PI controller, since it features a single tuning parameter. This results in less development effort being
spent tuning the speed controller, allowing you to focus on the rest of your application. It results in less overshoot
and faster settling time. It also features better profile tracking. All of these features combine to reduce the energy
consumed by your application due to wasted motion.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

455

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.5 Software Configuration for SpinTAC™ Position Control
Configuring SpinTAC Position Control requires four steps. Lab 13a — Tuning the InstaSPIN-MOTION Position
Controller — is an example project that implements the steps required to use SpinTAC Position Control. The
header file spintac.h, included in MotorWare, allows you to quickly include the SpinTAC components in your
project.

12.5.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 13a example project this
file is included in the spintac_position.h header file. For your project, this step can be completed by including
spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_ctl.h"

12.5.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 13a project this
structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h header
file.

ST_PosCtl_t stPosCtl; // The SpinTAC Position Controller object
ST_POSCTL_Handle stPosCtlHandle; // The SpinTAC Position Controller Handle

InstaSPIN-MOTION™ Controllers www.ti.com

456 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.5.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Control. This step can be completed by running the functions ST_init
and ST_setupPosCtl that are declared in the spintac_position.h header file. If you do not wish to use these
two functions, the code example below can be used to configure SpinTAC Position Control component. This
configuration of SpinTAC Position Control represents the typical configuration that should work for most motors.

// Initialize SpinTAC Position Control
stPosCtlHandle = STPOSCTL_init(&stPosCtl, sizeof(stPosCtl));
// Setup the maximum current in PU
_iq maxCurrent_PU = _IQ(USER_MOTOR_MAX_CURRENT / USER_IQ_FULL_SCALE_CURRENT_A);
// Instance of the position controller
STPOSCTL_setAxis(stPosCtlHandle, ST_AXIS0);
// Sample time [s], (0, 1)
STPOSCTL_setSampleTime_sec(stPosCtlHandle, _IQ(ST_SAMPLE_TIME));
// System inertia upper (0, 127.9999] and lower (0, InertiaMax] limits [PU/(pu/s^2)]
STPOSCTL_setInertiaMaximums(stPosCtlHandle, _IQ(10.0), _IQ(0.001));
// System velocity limit (0, 1.0] [pu/s]
STPOSCTL_setVelocityMaximum(obj->;posCtlHandle, _IQ24(1.0));
// System control signal high (0, 1] & low [-1, 0) limits [PU]
STPOSCTL_setOutputMaximums(stPosCtlHandle, maxCurrent_PU, -maxCurrent_PU);
// System maximum (0, 1.0] and minimum [-1.0, 0) velocity [pu/s]
STPOSCTL_setVelocityMaximums(stPosCtlHandle, _IQ(1.0), _IQ(-1.0));
// System maximum value for mechanical revolutions [MRev]
STPOSCTL_setPositionRolloverMaximum_mrev(stPosCtlHandle, _IQ24(ST_MREV_ROLLOVER));
// Sets the values used for converting between pu and MRev
STPOSCTL_setUnitConversion(stPosCtlHandle, USER_IQ_FULL_SCALE_FREQ_Hz,
 USER_MOTOR_NUM_POLE_PAIRS);
// System maximum allowable error [MRev]
STPOSCTL_setPositionErrorMaximum_mrev(stPosCtlHandle,
 _IQ24(ST_POS_ERROR_MAXIMUM_MREV));
// Disturbance type {true: Ramp; false: Square}
STPOSCTL_setRampDisturbanceFlag(stPosCtlHandle, false);
// System upper (0, 0.1/(cfg.T_sec*20)] and lower [0, BwScaleMax] limits for BWScale
STPOSCTL_setBandwidthScaleMaximums(stPosCtlHandle,
 _IQ24((0.1) / (ST_SAMPLE_TIME * 20.0)), _IQ24(0.01));
// Enables the feedback filter
STPOSCTL_setFilterEnableFlag(stPosCtlHandle, true);
// System inertia [PU/(pu/s^2)], [InertiaMin, InertiaMax]
STPOSCTL_setInertia(stPosCtlHandle, _IQ(USER_MOTOR_INERTIA));
// Controller bandwidth scale [BwScaleMin, BwScaleMax]
STPOSCTL_setBandwidthScale(stPosCtlHandle, _IQ24(USER_SYSTEM_BANDWIDTH_SCALE));
// Initially ST_PosCtl is not enabled
STPOSCTL_setEnable(stPosCtlHandle, false);
// Initially ST_PosCtl is not in reset
STPOSCTL_setReset(stPosCtlHandle, false);

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

457

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.5.4 Call SpinTAC™ Position Control

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more information,
see Section 4.7.1.4. Before calling SpinTAC Position Control function the position reference, speed reference,
acceleration reference, and position feedback must be updated. This example uses SpinTAC Position Move to
provide the references to the SpinTAC Position Control. For more information on SpinTAC Position Move, see
Chapter 13.

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle; // Get pointer to CTRL object
// Get the mechanical speed in pu/s
_iq speedFeedback = EST_getFm_pu(obj->estHandle);
STPOSCTL_setPositionReference_mrev(stPosCtlHandle,
 STPOSMOVE_getPositionReference_mrev(stPosMoveHandle));
// Update the Velocity Reference
STPOSCTL_setVelocityReference(stPosCtlHandle,
 STPOSMOVE_getVelocityReference(stPosMoveHandle));
// Update the Acceleration Reference
STPOSCTL_setAccelerationReference(stPosCtlHandle,
 STPOSMOVE_getAccelerationReference(stPosMoveHandle));
// Update the Position Feedback
STPOSCTL_setPositionFeedback_mrev(stObj->posCtlHandle,
 STPOSCONV_getPosition_mrev(stPosConvHandle));
// Run SpinTAC Position Control
STPOSCTL_run(stPosCtlHandle);
// Get the Torque Reference from SpinTAC Position Control
iqReference = STPOSCTL_getTorqueReference(stPosCtlHandle);
// Set the Iq reference that came out of SpinTAC Position Control
CTRL_setIq_ref_pu(ctrlHandle, iqReference);

InstaSPIN-MOTION™ Controllers www.ti.com

458 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.5.5 Troubleshooting SpinTAC™ Position Control
12.5.5.1 ERR_ID

ERR_ID provides an error code for users. A list of errors defined for SpinTAC Position Control and the solutions
for these errors are shown in Table 12-3.

Table 12-3. SpinTAC™ Position Control ERR_ID Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 1]

2 Invalid velocity reference maximum value Set cfg.VelMax within (0, 1]

4 Invalid control signal maximum value Set cfg.OutMax within (0, 1]

5 Invalid control signal minimum value Set cfg.OutMin within [-1, 0)

13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]

14 Invalid mechanical revolution [MRev] to [pu] ratio
value

Set cfg.mrev_TO_pu within [0.002, 1]

15 Invalid position error maximum value Set cfg.PosErrMax_mrev within [0, cfg.ROMax_mrev/2]

16 Invalid inertia maximum value Set cfg.InertiaMax as a positive _iq24 value

17 Invalid inertia minimum value Set cfg.InertiaMin within (0, cfg.InertiaMax]

18 Invalid bandwidth maximum value Set cfg.BwMax within [0, min(2000, 0.2/cfg.T)]

19 Invalid bandwidth minimum value Set cfg.BwMin within [0, cfg.BwMax]

20 Invalid value for disturbance specification Set cfg.RampDist within {false, true}

32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

35 Invalid value for filter enable Set cfg.FiltEN within {false, true}

1012 Invalid inertia value No action. Inertia will be saturated by the bound [cfg.InertiaMin,
cfg.InertiaMax]

1014 Bandwidth × Inertia is greater than 2000 No action. The actual bandwidth is saturated by the value of 2000/
Inertia

1016 Friction is out of bounds No action. The friction will be saturated by the adjusted friction
bounds [0, 5]

2002 Position error exceeds maximum Increase bandwidth to get less position error or make profile
velocity, acceleration, and jerk slower

4001 Invalid SpinTAC license Use a chip with a valid license

4003 Invalid ROM version Use a chip with a valid ROM version or use the SpinTAC library
that is compatible with the current ROM version.

12.6 Optimal Performance in Position Control
12.6.1 Introduction

Getting the best possible performance out of your motion system is important. A poorly tuned regulator can
result in wasted energy, wasted material, or an unstable system. It is important that for any position controller
the performance is evaluated at many different operating points in order to determine how well it works in your
application.

12.6.2 Comparing Position Controllers

Position controllers can be compared on a number of different factors. However, two metrics - disturbance
rejection and profile tracking - can be used to test performance and determine how well your controller is tuned
for your application.

12.6.3 Disturbance Rejection

Disturbance rejection tests a controller's resistance to external disturbances, which will impact the motor speed
and position. Disturbance rejection is measured using the maximum error and settling time. The maximum error
shows the deviation from the goal position, and is an indication of how aggressively your controller is tuned.
Aggressive tuning will produce a low maximum error.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

459

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Settling time refers to the amount of time from the point when the disturbance happens until the position returns
to a fixed band around the goal position. This is also an indication of how aggressively your control loop is tuned.
If the controller is tuned too aggressively it will have a long settling time because it will oscillate around the goal
position before settling.

Figure 12-16 and Figure 12-17 show the difference between poor tuning and optimal tuning of the same
controller. As you can see by tuning the position controller, when torque is applied or removed from a motor
system the tuned controller greatly reduces the maximum error and settling time. This is an exaggerated
example, but it is used to highlight the importance of getting a good tuning for your system.

When doing disturbance rejection testing it is important to test at multiple speed and load combinations. Position
controllers have different performance characteristics when placed into different situations. In order to properly
evaluate the effectiveness of your position controller, tests should be done across the entire application range.
The test results will indicate whether the controller will meet the application specifications, or whether the
controller needs to be tuned multiple times for different operating points.

It is also important to be able to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating repeatable disturbance is an important factor when evaluating
multiple controllers. If test conditions cannot be replicated, it is difficult to adequately compare the responses of
two controllers.

-0.05

-0.025

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti

o
n

E
rr

o
r

[M
R

e
v

]

Time [sec]

Applied Torque Disturbance
Poor Tuning

Optimal TuningMaximum Error:

0.448 MRev

Settling Time:

0.593 sec

Settling Time:

0.304 sec

Maximum Error:

0.047 MRev

Figure 12-16. Position Tuning Comparison for Applied Torque Disturbance

InstaSPIN-MOTION™ Controllers www.ti.com

460 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti

o
n

E
rr

o
r

[M
R

e
v

]

Time [sec]

Removed Torque Disturbance
Poor Tuning

Optimal Tuning

Maximum Error:

-0.614 MRev

Settling Time:

0.376 sec

Settling Time:

0.134 sec

Maximum Error:

-0.096 MRev

Figure 12-17. Position Tuning Comparison for Removed Torque Disturbance

12.6.4 Profile Tracking

Profile tracking tests how well the controller follows a changing target position. The two metrics to evaluate in
this testing are the maximum error and the absolute average error. The maximum error shows how much the
controller overshoots while changing positions. This is an indication of how aggressively your controller is tuned.
If you controller is not tuned aggressively enough, the position will overshoot the target, and will take a long time
to recover. If the controller is tuned too aggressively it will overshoot, and then oscillate as it settles on the goal
position. If the controller is correctly tuned, it will overshoot and then smoothly return to the goal position.

Absolute average error is an average of the absolute value of the instantaneous error over the entire profile.
This measure shows the amount of deviation throughout the entire profile. It takes into account all of the little
errors as the motor is running. If the controller is tuned too aggressively it will result in larger absolute average
error because the controller will be oscillating throughout the profile. If the controller is not tuned aggressively
enough, it will result in a larger absolute average error because it is continuously falling behind what the profile is
commanding the motor to do.

Figure 12-18 shows the difference between the default tuning and the optimal tuning of the same controller. As
you can see by tuning the position controller, you are able to make your motion system much more closely track
the reference. By tuning the controller, it greatly reduces the maximum error, the absolute average error, and the
maximum overshoot.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

461

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0.33

0.36

0.39

0.42

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
o

si
ti

o
n

E
rr

o
r

[M
R

e
v

]

P
o

si
ti

o
n

[M
R

e
v

]

Time [sec]

Profile Tracking Tuning Comparison
Reference Poor Tuning

Optimal Tuning Poor Tuning Error

Optimal Tuning Error
Position Reference:

Velocity: 4.0 kRPM

Acceleration / Deceleration: 25 kRPM/s

Jerk: 100 kRPM/s2

Average Error:

0.032 MRev

Average Error:

0.002 MRev

Maximum Error:

0.075 MRev

Maximum Error:

0.011 MRev

Maximum Overshoot:

0 MRev

Maximum Overshoot:

0 MRev

Figure 12-18. Position Tuning Comparison for Profile Tracking

It is important to test multiple speeds and accelerations in your profile as well as multiple different loads.
Position controllers have different performance characteristics when placed into different situations. In order
to properly evaluate the effectiveness of your position controller, tests should be conducted across the entire
application range. This includes when you design the profile for testing. Care needs to be taken to ensure that
the application speeds and accelerations are built into the profile. The results of these tests will inform you if your
controller will meet the application specifications or if your controller needs to be tuned multiple times for different
operating points.

It is also important to be able to create repeatable profiles and loads. Creating a repeatable profile can be done
using SpinTAC Position Move and SpinTAC Position Plan; for more information, see Chapter 13. Repeatable
profiles are required so that all controllers will be tested using the same reference in the same order and for
the same length of time. This ensures that test conditions are as identical as possible. When applying load
during a profile tracking test it is important to create repeatable disturbances. This can be accomplished using a
dynamometer or a disturbance motor. Creating a repeatable disturbance is an important factor when evaluating
controllers. If test conditions cannot be replicated, it is difficult to adequately compare the responses of two
controllers.

InstaSPIN-MOTION™ Controllers www.ti.com

462 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.6.5 InstaSPIN-MOTION™ Position Control Advantage
12.6.5.1 Single Parameter Tuning

InstaSPIN-MOTION presents numerous advantages in achieving optimal performance for your application.
Traditional PI position control requires three cascaded control loops — one for current, one for speed, and
one for position — while SpinTAC Position Control requires two loops — one for current and one combined
position-velocity loop (see Table 12-4). Because of these cascaded control loops, the PI controllers for velocity
and position require at least four tuning parameters, all of which need to be tuned for each operating point in the
application.

Table 12-4. InstaSPIN-MOTION™ Position Control Advantage
Control Loop Traditional PI Control SpinTAC Position Control
Current Automatically identified during parameter identification Automatically identified during parameter identification

Velocity Suggested starting values are provided, but require
adjustments and testing to validate.
Calculations are provided in Section 11.5.

Tuned via a single parameter and is effective across
the operating range.
Single parameter tunes position and speed, and is
effective across the operating range.Position No suggested starting values.

No calculations provided.

SpinTAC Position Control helps you achieve optimal performance by offering single parameter tuning for both
position and velocity. Having a single tuning parameter allows you to quickly zero in on the right tuning settings
for your application. The Active Disturbance Rejection Control (ADRC) at the core of SpinTAC Position Control
allows that single tuning parameter to work across a very wide operating range. SpinTAC Position Control
reduces the time and complexity required to optimize your application.

To compare the differences between SpinTAC Position Control and a traditional PI control system, the Teknic
M2310PLN04K motor (available in the TI eStore) was coupled with a Magtrol HD-400 dynamometer. The PI
tuning parameters determined from the example tuning in Section 11.5 were used as a starting point. In order to
tune the position PI regulator, the velocity PI regulator had to be re-tuned. This was an iterative process. Each
time the velocity gains were modified, the impact on the position gains was evaluated.

SpinTAC Position Control was tuned experimentally by the method outlined in Section 12.5. Prior to tuning
SpinTAC Position Control, the system inertia was identified by the procedure outlined in Lab 05c.

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

463

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.6.5.2 Disturbance Rejection

The ADRC technology in SpinTAC Position Control has excellent disturbance rejection. It actively estimates and
compensates for disturbances in real-time (see Figure 12-19 and Figure 12-20). When SpinTAC Position Control
detects a disturbance in the system; it applies a correction to quickly and smoothly bring the motor position back
to the target.

SpinTAC Position Control features a much faster recovery time and smaller maximum error than a traditional
PI controller. This results in fewer position fluctuations, more consistent performance, and reduced power
consumption.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti

o
n

E
rr

o
r

[M
e

ch
a

n
ic

a
l

R
e

v
o

lu
ti

o
n

s]

Time [sec]

PI Controller

SpinTAC Controller

Maximum Error:

0.095 Revolutions

Maximum Error:

0.006 Revolutions

Settling Time:

0.11 sec

Settling Time:

0.17 sec

Figure 12-19. PI and SpinTAC™ Position Control Comparison for Applied Torque Disturbance

InstaSPIN-MOTION™ Controllers www.ti.com

464 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti

o
n

E
rr

o
r

[M
e

ch
n

ic
a

l
R

e
v

o
lu

ti
o

n
s]

Time [sec]

PI Controller

SpinTAC Controller

Maximum Error:

-0.054 Revolutions

Maximum Error:

-0.002 Revolutions

Settling Time:

0.22 sec

Settling Time:

0.11 sec

Figure 12-20. PI and SpinTAC™ Position Control Comparison for Removed Torque Disturbance

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

465

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.6.5.3 Feedforward

SpinTAC Position Control also features feedforward. This allows for excellent profile tracking (see Figure 12-21).
Feedforward tells SpinTAC Position Control how fast it should be accelerating or decelerating toward the position
target. This allows SpinTAC Position Control to react to profile changes much quicker than a PI controller. It
results in less maximum error and less absolute average error.

SpinTAC Position Control features reduced maximum error and absolute average error. This results in much
improved tracking performance over a traditional PI controller. This results in less wasted motion and wasted
energy during a reference change.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

P
o

si
ti

o
n

E
rr

o
r

[M
R

e
v

]

P
o

si
ti

o
n

[M
R

e
v

]

Time [sec]

Position Reference SpinATC Position Feedback

PI Position Feedback SpinTAC Position Error

PI Position Error

Position Reference:
Velocity: 4.0 kRPM

Acceleration / Deceleration 25 kRPM/s

Jerk: 100kRPM/s2

Average Error:

0.013 MRev

Average Error:

0.002 MRev

Maximum

Error:

0.052 MRev

Maximum

Error:

0.009 MRev

Maximum Overshoot:

0 MRev

Maximum Overshoot:

0.009 MRev

Figure 12-21. PI and SpinTAC™ Comparison for Feedforward Impact on Position Profile Tracking

InstaSPIN-MOTION™ Controllers www.ti.com

466 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.6.5.4 Low-Speed Operation and Smooth Startup

Some applications, such as high-end security and conference room cameras operate at very low speeds (for
example, 0.1 rpm) and require accurate and smooth position control to pan, tilt, and zoom. The motors that drive
these cameras are difficult to tune for low speed and they usually require a minimum of 4 tuning sets to control
both position and speed.

It can be difficult to overcome the system inertia at low speeds, which results in choppy movement at startup,
and a shaky or unfocused picture. Figure 12-22 is an example of a very small position movement at a very low
speed. SpinTAC is able to more accurately track the reference position resulting in smoother motion than the
PI controller. SpinTAC Position Control is equally effective at overcoming system inertia at low speeds and high
speeds, and results in very smooth low speed movements.

0

0.00075

0.0015

0.00225

0.003

0.00375

0.0045

0.00525

0.006

0.00675

0.0075

0.00825

0.009

0.00975

0.0105

0.01125

0.012

0.06

0.0625

0.065

0.0675

0.07

0.0725

0.075

0.0775

0.08

0.0825

0.085

0.0875

0.09

0.0925

0.095

0.0975

0.1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5
P

o
si

ti
o

n
E

rr
o

r
[M

R
e

v
]

P
o

si
ti

o
n

[M
R

e
v

]

Time [sec]

Position Reference Position Feedback SpinTAC

Position Feedback PI Position Error SpinTAC

Position Error PI

Position Reference:
Velocity: 1 RPM

Acceleration / Deceleration : 25 kRPM/s

Jerk: 100kRPM/s2

Average Error:

0.0011 MRev

Average Error:

0.0001 MRev

Maximum Error:

0.0026 MRev

Maximum Error:

0.0007 MRev

Figure 12-22. PI and SpinTAC™ Comparison for Low Speed Position Profile Tracking

www.ti.com InstaSPIN-MOTION™ Controllers

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

467

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

12.6.5.5 Minimum Step Response Settling Time

SpinTAC Position Control features less settling time for step responses. This results in the system being more
responsive to control changes. The system will spend more time at the goal position, which results in less delay.
Both controllers have been tuned with zero overshoot, but in situations with changing dynamics, SpinTAC will
respond better and will continue to have minimal overshoot when compared with a PI controller.

Figure 12-23 compares the step response of SpinTAC Position Control with a traditional PI position control
system. From the plot you can see that the traditional PI position control system has a much longer settling time
than SpinTAC Position Control. Longer setting time means that it will take longer for the application to reach the
goal position.

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

P
o

si
ti

o
n

[M
e

ch
a

n
ic

a
l

R
e

v
o

lu
ti

o
n

]

Time [sec]

Position Reference Position Feedback SpinTAC

Position Feedback PI

Settling Time:

0.088 sec

Settling Time:

0.154 sec

Figure 12-23. PI and SpinTAC™ Position Control Comparison for Step Response

12.6.5.6 Conclusions

SpinTAC Position Control included with InstaSPIN-MOTION replaces the traditional PI controller for speed and
position. It results in better performance across the entire range of your application. It is less complex to tune
than a PI controller, since it features a single tuning parameter. This reduces development effort spent tuning the
position controller, allowing you to focus on the rest of your application. It results in less overshoot and faster
settling time. It also features better profile tracking. All of these features combine to reduce the energy consumed
by your application due to wasted motion.

InstaSPIN-MOTION™ Controllers www.ti.com

468 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Controlling the speed or position of a motor is the first step to establishing a motion system. The next step
is to establish a method to transition between different speeds and positions, then to sequence the motion of
the motor to accomplish the application tasks. InstaSPIN-MOTION allows you to quickly build complex motion
sequences with logic-based state transitions.

13.1 InstaSPIN-MOTION™ Profile Generation..470
13.2 Software Configuration for SpinTAC™ Velocity Move..472
13.3 Software Configuration for SpinTAC™ Position Move... 474
13.4 InstaSPIN-MOTION™ Sequence Planning..477
13.5 Software Configuration for SpinTAC™ Velocity Plan... 483
13.6 Troubleshooting SpinTAC™ Velocity Plan...487
13.7 Software Configuration for SpinTAC™ Position Plan...489
13.8 Troubleshooting SpinTAC™ Position Plan.. 493
13.9 Conclusion.. 495

Chapter 13
Trajectory Planning

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

469

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.1 InstaSPIN-MOTION™ Profile Generation
SpinTAC Move is a constraint-based, time-optimal profile generator. This profile generator calculates the motion
profile during run-time without using FLASH lookup tables. This results in a small memory footprint. The user
provides constraints (velocity limit [Position Only], acceleration/deceleration limit, and jerk limit) and SpinTAC
Move calculates the optimal profile between the current setpoint and the target setpoint. This allows you greater
flexibility in designing your application motion profiles.

In addition to the industry standard trapezoidal and s-curve profiles, SpinTAC Move provided the Linestream
proprietary st-curve. This curve provides smoother motion changes than either trapezoidal or s-curve profiles.
The main feature of the st-curve is the continuous jerk.

Figure 13-1 compares the different curve types available in SpinTAC Position Move. The most notable difference
between s-curve and st-curve is the bottom plot, the jerk plot, which shows how the st-curve continuously adjusts
the jerk in order to provide even smoother motion than the s-curve. For speed transitions, only the lower three
graphs in Figure 13-1 need to be considered

SpinTAC Move uses sample time based profile generation. This aligns the motion profile with the speed sample
time and guarantees that the time to complete a profile will always be a multiple of the sample time. This
determinism ensures that for a given set of constraints, SpinTAC Move will always generate an identical profile.

Figure 13-1. Comparison of Curves Provided by SpinTAC™ Position Move

Trajectory Planning www.ti.com

470 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.1.1 Jerk Impact on System Performance

Jerk represents the rate of change of acceleration. So a larger jerk will allow the acceleration to increase at a
faster rate. Jerk is an important factor to consider in applications where fragile objects can only tolerate a limited
amount of acceleration changes. Jerk is also critical in applications where rapid changes in acceleration of a
cutting tool can lead to premature tool wear or result in uneven cuts. For applications where the system jerk
needs to be considered, using SpinTAC Move with the st-curve is essential. Jerk will also have an impact on
the amount of current the motor consumes when changing speeds. Lower jerk will cause the motor to consume
less current when changing speeds. This is due to the smaller jerk reducing the rate of acceleration increase.
For applications where the jerk does not directly need to be considered, it can still have an impact on system
performance.

Figure 13-2 compares three trajectory curves. They have the same start and end velocity and the same
acceleration. The jerk for each of these curves has been modified. As the jerk increases the curve reaches the
goal speed faster. A consequence of this faster movement is that the motor consumed more current while it was
executing the trajectory curve. The maximum current is displayed on the graph. This test was done without any
load in the system. If there were a load attached to the system, the increased jerk would have an even more
dramatic impact on the maximum current.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u

rr
e

n
t

[A
]

S
p

e
e

d
[R

P
M

]

Time [sec]

Jerk Impact on Iq Reference Speed Reference Speed Reference Speed Reference

Iq Reference Iq Reference Iq Reference

Acc: 6000 RPM/s^2

Jerk: 7200 RPM/s^3

Jerk: 36000 RPM/s^3

Jerk: 180000 RPM/s^3

Max Current: 0.284 A Max Current: 0.220 A Max Current: 0.169 A

Figure 13-2. Impact of Jerk on Iq Reference

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

471

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.2 Software Configuration for SpinTAC™ Velocity Move
Configuring SpinTAC Velocity Move requires four steps. Lab 6a — Smooth system movement with SpinTAC
Move — is an example project that implements the steps required to use SpinTAC Velocity Move to generate
trajectory changes. The header file spintac.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

13.2.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 6a example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h.

#include"sw/modules/spintac/src/32b/spintac_vel_move.h"

13.2.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 8a project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header
file.

ST_VelMove_t stVelMove; // The SpinTAC Velocity Move object
ST_VELMOVE_Handle stVelMoveHandle; // The SpinTAC Velocity Move Handle

13.2.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Velocity Move. This step can be completed by running the functions ST_init and
ST_setupVelMove that are declared in the spintac_velocity.h header file. If you do not wish to use these two
functions, the code example below can be used to configure the SpinTAC Velocity Move component. This
configuration of SpinTAC Velocity Move represents the typical configuration that should work for most motors.

// Initialize the SpinTAC Velocity Move Component
stVelMoveHandle = STVELMOVE_init(&stVelMove, sizeof(ST_VelMove_t));
// Instance of SpinTAC Velocity Move
STVELMOVE_setAxis(stVelMoveHandle, ST_AXIS0);
// Sample time [s], (0, 1]
STVELMOVE_setSampleTime_sec(stVelMoveHandle, _IQ24(ST_SAMPLE_TIME));
// System maximum limit for:
// speed [pu/s] [IQ24(0.001), _IQ24(1)],
// acceleration [pu/s^2] [IQ24(0.002), _IQ24(120)],
// jerk references [pu/s^3] [_IQ20(0.0005), IQ20(2000)]
STVELMOVE_setProfileMaximums(stVelMoveHandle, _IQ24(1.0), _IQ24(10.0), _IQ20(62.5));
// Acceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STVELMOVE_setAccelerationLimit(stVelMoveHandle, _IQ24(0.4));
// Jerk limit for the profile [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]
STVELMOVE_setJerkLimit(stVelMoveHandle, _IQ20(1.0));
// Set profile curve type { ST_MOVE_CUR_TRAP, ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV }
STVELMOVE_setCurveType(stVelMoveHandle, ST_MOVE_CUR_STCRV);
// ST_VelMove is not in test mode
STVELMOVE_setTest(stVelMoveHandle, FALSE);
// Initially ST_VelMove is not enabled
STVELMOVE_setEnable(stVelMoveHandle, FALSE);
// Initially ST_VelMove is not in reset
STVELMOVE_setReset(stVelMoveHandle, FALSE);

Trajectory Planning www.ti.com

472 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.2.4 Call SpinTAC™ Velocity Move

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more information,
see Section 4.7.1.4. Before calling SpinTAC Velocity Move function the speed target, acceleration limit, jerk limit,
and curve type need to be updated.

// If we are not in reset, and the SpeedRef_krpm has been modified
if((STVELMOVE_getReset(stVelMoveHandle) == FALSE)
 && (_IQmpy(gMotorVars.SpeedRef_krpm, _IQ24(ST_SPEED_PU_PER_KRPM))
 != STVELMOVE_getVelocityEnd(stVelMoveHandle)))
{
 // Get the configuration for SpinTAC Velocity Move
 STVELMOVE_setCurveType(stVelMoveHandle, gMotorVars.SpinTAC.VelMoveCurveType);
 STVELMOVE_setVelocityEnd(stVelMoveHandle,
 _IQmpy(gMotorVars.SpeedRef_krpm, _IQ24(ST_SPEED_PU_PER_KRPM)));
 STVELMOVE_setAccelerationLimit(stVelMoveHandle,
 _IQmpy(gMotorVars.MaxAccel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
 STVELMOVE_setJerkLimit(stVelMoveHandle,
 _IQ20mpy(gMotorVars.MaxJrk_krpmps2, _IQ20(ST_SPEED_PU_PER_KRPM)));
 // Enable SpinTAC Move
 STVELMOVE_setEnable(stVelMoveHandle, TRUE);
 //If starting from zero speed, enable ForceAngle, otherwise disable ForceAngle
 if(_IQabs(STVELMOVE_getVelocityStart(stVelMoveHandle)) < _IQ24(ST_MIN_ID_SPEED_PU))
 {
 EST_setFlag_enableForceAngle(ctrlObj->estHandle, TRUE);
 gMotorVars.Flag_enableForceAngle = TRUE;
 }
 else
 {
 EST_setFlag_enableForceAngle(ctrlObj->estHandle, FALSE);
 gMotorVars.Flag_enableForceAngle = FALSE;
 }
}
// Run SpinTAC Move
STVELMOVE_run(stVelMoveHandle);

13.2.5 Troubleshooting SpinTAC™ Velocity Move
13.2.5.1 ERR_ID

ERR_ID provides an error code for users. A list of errors defined in SpinTAc Velocity Move and the solutions for
these errors are shown in Table 13-1.

Table 13-1. SpinTAC™ Velocity Move ERR_ID Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 0.01]

2 Invalid system maximum velocity value Set cfg.VelMax within (0, 1]

10 Invalid system maximum acceleration value Set cfg.AccMax within [0.001, 120]

12 Invalid system maximum jerk value Set cfg.JrkMax within [0.0005, 1000]

32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

1002 Invalid acceleration limit value Set AccLim within [0.002, cfg.AccMax]

1004 Invalid jerk limit value Set JrkLim within [0.001, cfg.JrkMax]

1005 Invalid curve type Set cfg.CUR_MOD within {ST_PRO_TRAP, ST_PRO_SCRV,
ST_PRO_STCRV}

1006 Invalid velocity start value Set cfg.VelStart within [-cfg.VelMax, cfg.VelMax]

1007 Invalid velocity end value Set VelEnd within [-cfg.VelMax, cfg.VelMax]

4001 Invalid SpinTAC license Use the chip with valid license

4003 Invalid ROM Version Use a chip with a valid ROM version or use the SpinTAC library
that is compatible with the current ROM version.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

473

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.3 Software Configuration for SpinTAC™ Position Move
Configuring SpinTAC Position Move requires four steps. Lab 13b — Position Transitions with SpinTAC Move —
is an example project that implements the steps required to use SpinTAC Position Move to generate trajectory
changes. The header file spintac_position.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

13.3.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 6a example project, this
file is included in the spintac_position.h header file. For your project, this step can be completed by including
spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_move.h"

13.3.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 13b project this
structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h header
file.

ST_PosMove_t stPosMove; // The SpinTAC Position Move object
ST_POSMOVE_Handle stPosMoveHandle; // The SpinTAC Position Move Handle

13.3.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Move. This step can be completed by running the functions ST_init and
ST_setupPosMove that are declared in the spintac_position.h header file. If you do not wish to use these two
functions, the code example below can be used to configure the SpinTAC Position Move component. This
configuration of SpinTAC Position Move represents the typical configuration that should work for most motors.

// Initialize the SpinTAC Speed Controller Component
stPosMoveHandle = STPOSMOVE_init(&stPosMove, sizeof(stPosMove));
// Instance of SpinTAC Move
STPOSMOVE_setAxis(stPosMoveHandle, ST_AXIS0);
// Sample time [s], (0, 1]
STPOSMOVE_setSampleTime_sec(stPosMoveHandle, _IQ24(ST_SAMPLE_TIME));
// Set the type of profile to generate {ST_POS_MOVE_VEL_TYPE , ST_POS_MOVE_POS_TYPE}
STPOSMOVE_setProfileType(stPosMoveHandle, ST_POS_MOVE_POS_TYPE);
// Set the maximum value for mechanical revolutions before rollover [MRev]
STPOSMOVE_setMRevMaximum_mrev(stPosMoveHandle, _IQ24(10.0));
// Set the unit conversion values, this will convert between Mrev and pu
STPOSMOVE_setUnitConversion(stPosMoveHandle, USER_IQ_FULL_SCALE_FREQ_Hz,
 USER_MOTOR_NUM_POLE_PAIRS);
// System maximum limit for:
// speed [pu/s] [IQ24(0.002), _IQ24(1)]
// acceleration [pu/s^2] [IQ24(0.001), _IQ24(120)]
// deceleration [pu/s^2] [IQ24(0.001), _IQ24(120)]
// jerk references [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]
STPOSMOVE_setProfileMaximums(obj->posMoveHandle,
 _IQ24(USER_MOTOR_MAX_SPEED_KRPM * ST_SPEED_PU_PER_KRPM),
 _IQ24(10), _IQ24(10), _IQ20(62.5));
// Velocity limit for the profile [pu/s] [IQ24(0.002), _IQ24(1)]
STPOSMOVE_setVelocityLimit(obj->posMoveHandle,
 _IQ24(USER_MOTOR_MAX_SPEED_KRPM * ST_SPEED_PU_PER_KRPM));
// Acceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STPOSMOVE_setAccelerationLimit(stPosMoveHandle, _IQ24(0.4));
// Deceleration limit for the profile [pu/s^2] [IQ24(0.001), _IQ24(120)]
STPOSMOVE_setDecelerationLimit(obj->posMoveHandle, _IQ24(0.4));
// Jerk limit for the profile [pu/s^3] [_IQ20(0.0005), _IQ20(2000)]

Trajectory Planning www.ti.com

474 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

STPOSMOVE_setJerkLimit(stPosMoveHandle, _IQ20(1.0));
// Set profile curve type { ST_MOVE_CUR_TRAP, ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV }
STPOSMOVE_setCurveType(stPosMoveHandle, ST_MOVE_CUR_STCRV);
// ST_PosMove is not in test mode
STPOSMOVE_setTest(stPosMoveHandle, false);
// Initially ST_PosMove is not enabled
STPOSMOVE_setEnable(stPosMoveHandle, false);
// Initially ST_PosMove is not in reset
STPOSMOVE_setReset(stPosMoveHandle, false);

13.3.4 Call SpinTAC™ Position Move

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more information,
see Section 4.7.1.4. Before calling SpinTAC Position Move function the speed target, acceleration limit, jerk limit,
and curve type need to be updated.

// If we are not running a profile, and the PosStep_MRev has been modified
if((STPOSMOVE_getStatus(stObj->posMoveHandle) == ST_MOVE_IDLE)
&& (gMotorVars.PosStepInt_MRev != 0 || gMotorVars.PosStepFrac_MRev != 0)) {
// Get the configuration for SpinTAC Position Move
 STPOSMOVE_setCurveType(stObj->posMoveHandle, gMotorVars.SpinTAC.PosMoveCurveType);
 STPOSMOVE_setPositionStep_mrev(stObj->posMoveHandle, gMotorVars.PosStepInt_MRev,
 gMotorVars.PosStepFrac_MRev);
 STPOSMOVE_setVelocityLimit(stObj->posMoveHandle,
 _IQmpy(gMotorVars.MaxVel_krpm, _IQ24(ST_SPEED_PU_PER_KRPM)));
 STPOSMOVE_setAccelerationLimit(stObj->posMoveHandle,
 _IQmpy(gMotorVars.MaxAccel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
 STPOSMOVE_setDecelerationLimit(stObj->posMoveHandle,
 _IQmpy(gMotorVars.MaxDecel_krpmps, _IQ24(ST_SPEED_PU_PER_KRPM)));
 STPOSMOVE_setJerkLimit(stObj->posMoveHandle,
 _IQ20mpy(gMotorVars.MaxJrk_krpmps2, _IQ20(ST_SPEED_PU_PER_KRPM)));
 // Enable the SpinTAC Position Profile Generator
 STPOSMOVE_setEnable(stObj->posMoveHandle, true);
 // clear the position step command
 gMotorVars.PosStepInt_MRev = 0;
 gMotorVars.PosStepFrac_MRev = 0;
}
STPOSMOVE_run(stObj->posMoveHandle);

13.3.5 Troubleshooting SpinTAC™ Position Move
13.3.5.1 Position Profile Limits

There are some combinations of limits that will not produce a valid profile. This will only happen when very small
limits are provided to SpinTAC Position Move.

• If the velocity limit is set below 0.001 pu/s, the profile is not guaranteed.

This can result in the motor not moving due to a minimal velocity limit or an error condition. This can also
result in the motor moving in the opposite direction of intended motion; this is due to mathematical overflow.
There are cases where setting a velocity limit less than 0.001 pu/s will generate a valid profile and any profile
with a velocity limit greater than or equal to 0.001 pu/s will be valid.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

475

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.3.5.2 ERR_ID

ERR_ID provides an error code for users. A list of errors defined in SpinTAC Position Move and the solutions for
these errors are shown in Table 13-2.

Table 13-2. SpinTAC™ Position Move ERR_ID Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 0.01)

2 Invalid system maximum velocity value Set cfg.VelMax within [0.002, 1]

10 Invalid system maximum acceleration value Set cfg.AccMax within [0.002, 120]

11 Invalid system maximum deceleration value Set cfg.DecMax within [0.002, 120] and cfg.DecMax / cfg.AccMax
within [1, 10]

12 Invalid system maximum jerk value Set cfg.JrkMax within [0.001, 2000]

13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]

14 Invalid mechanical revolution [MRev] to [pu] ratio
value

Set cfg.mrev_TO_pu within [0.008, 1]

32 Invalid axis ID Set cfg.Axis within {ST_AXIS0, ST_AXIS1}

1001 Invalid velocity limit value Set VelLim within (0, cfg.VelMax]

1002 Invalid acceleration limit value Set AccLim within [0.001, cfg.AccMax]

1003 Invalid deceleration limit value Set DecLim within [0.001, cfg.DecMax], and DecLim / AccLim
within [1, 10]

1004 Invalid jerk limit value Set JrkLim within [0.0005, cfg.JrkMax]

1005 Invalid curve type Set cfg.CurveType within {ST_MOVE_CUR_TRAP,
ST_MOVE_CUR_SCRV, ST_MOVE_CUR_STCRV}

1006 Invalid velocity start value Set cfg.VelStart within [-cfg.VelMax, cfg.VelMax]

1007 Invalid velocity end value Set VelEnd within [-cfg.VelMax, cfg.VelMax]

1008 Invalid position start value Set cfg.PosStart_mrev within [-cfg.ROMax, cfg.ROMax]

1009 Invalid position step value Set PosStepInt_mrev within [-2147483647, 2147483647] and
PosStepFrac_mrev within (-1, 1)

1101 Calculation overflow, VelLim out of the range This error occurs when the fixed-point calculation overflows.
Typical cases are: VelLim or PosStep is too small. The action is to
increase the values.1102 Calculation overflow, AccLim out of the range

1103 Calculation overflow, DecLim out of the range

1104 Calculation overflow, JrkLim out of the range

1105 Invalid profile mode value Set cfg.ProfileType within {ST_POS_MOVE_VEL_TYPE,
ST_POS_MOVE_POS_TYPE}

2001 Invalid mode switching from
ST_POS_MOVE_VEL_TYPE to
ST_POS_MOVE_POS_TYPE

Set the profile to reach zero speed, and then switch
to position-controlled profile by setting cfg.ProfileType =
ST_POS_MOVE_POS_TYPE

4001 Invalid SpinTAC license Use the chip with valid license for SpinTAC

4003 Invalid ROM Version Use a chip with a valid ROM version or use the SpinTAC library
that is compatible with the current ROM version.

Trajectory Planning www.ti.com

476 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4 InstaSPIN-MOTION™ Sequence Planning
SpinTAC Velocity Plan is a motion sequence planner. This allows you to build the motion sequence of your
application without constructing a finite state machine. SpinTAC Velocity Plan contains many advanced features
to enable complex finite state machines. It features conditional transitions allowing your motor to transition to
one of many possible states. It also features variables that can be used to interface with external components
(like sensors or actuators) or used as internal counters (to track the number of events within a particular state).
SpinTAC Velocity Plan can be configured at run-time and can switching between multiple state machines.

SpinTAC Plan can work in either a position solution or a velocity solution. The features and functionality of
SpinTAC Plan is the same. The only difference is during configuration for SpinTAC Position Plan there are some
additional fields that need to be configured.

13.4.1 SpinTAC™ Velocity Plan Elements

SpinTAC Velocity Plan features elements that work together to generate a motion sequence. The different
elements are: States, Transitions, Conditions, Variables, and Actions. Each of these elements is configured
through separate API calls. The API details can be found in Section 3.6

13.4.1.1 States

States describe the steady operation of the profile. The user specifies the end speed (SpinTAC Velocity Plan) or
position step (SpinTAC Position Plan) and the minimum time that SpinTAC Velocity Plan should remain in a state
before transitioning to another state. In the example of a washing machine the states are defined as: Idle, Fill,
Agitate CW, Agitate CCW, Drain, and Spin.

13.4.1.2 Transitions

Transitions define the allowable moves between states. They establish the connections between the states.
Transitions allow the move between states to occur if a condition has been fulfilled. The user specifies the initial
and target states, the profile limits, and the conditions to be evaluated prior to the transition.

13.4.1.3 Conditions

Conditions provide logical checks within transitions or action. A transition or action may have a maximum of two
conditions. The condition(s) must be satisfied before the motor can transition from one state to the next or for the
action to occur. To determine whether a condition is satisfied, a variable is compared against a specific value or
value range. This returns a true or false value based on the criteria.

13.4.1.4 Variables

Variables allow SpinTAC Velocity Plan to interact with the rest of the project. There are three types of variables
in SpinTAC Velocity Plan: input, output, and input-output. Input variables are used to receive values from outside
SpinTAC Velocity Plan, and to evaluate conditions. Output variables are used to interact with the rest of the
system. Output variables can be modified by SpinTAC Velocity Plan, but will not be used by SpinTAC Velocity
Plan to check conditions. Note: The user must write the code that performs the event associated with the output
variable (for example, open a valve). Input-output variables are typically used as counters or timers and are used
by actions or conditions.

13.4.1.5 Actions

Actions change the value of variables. Actions set a variable equal to a value, or add a value to a variable.
Actions may take place within a specified state, or when SpinTAC VelocityPlan enters or exits that state. Actions
may have associated conditions. This allows an action to occur only when the condition is satisfied. If an
action is configured as an ENTER action, SpinTAC Plan will start evaluating the conditions of that action upon
entering the state. The action will take place once, only after the conditions are satisfied. Similarly, if an action is
configured as an EXIT action, SpinTAC Plan will start evaluating the conditions of that action when leaving the
state. When the conditions are satisfied, the actions take place once.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

477

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4.2 SpinTAC™ Velocity Plan Element Limits

SpinTAC Velocity Plan does not have a maximum number of elements that can be configured. The limit is based
on the amount of memory that you would like to commit to the configuration of SpinTAC Velocity Plan. This is
done in order to be both efficient as to how SpinTAC Velocity Plan is using the system memory and be flexible to
allow for custom configurations of the element. Each element of SpinTAC Velocity Plan has a different memory
foot print. These are collected in Table 13-3.

Table 13-3. Memory Requirements for SpinTAC™ Velocity Plan Elements

Plan Element
SpinTAC Velocity Plan (double
words)

SpinTAC Position Plan (double
words)

Actions 5 5

Conditions 3 3

Variables 2 2

Transitions 5 7

States 4 7

This additional flexibility requires you to declare a configuration array whose address needs to be passed into
SpinTAC Velocity Plan. This configuration array needs to be sized according to how many elements are in
your Plan. Table 13-3 provides the memory requirements for each element. It is a best practice to declare
enumerations for the Plan elements that you wish to use. This makes it simple to calculate the amount of
memory that is required for the configuration array.

13.4.2.1 Example of Sizing SpinTAC™ Velocity Plan Configuration Array

Our example state machine features the following elements:

• 4 Actions
• 3 Conditions
• 3 Variables
• 6 Transitions
• 3 States

This will require 83 double words of configuration space. This value is calculated from the above number of
elements and the memory usage contained in Table 13-3.

4 Actions * 5 Double Words = 20 Double Words
3 Conditions * 3 Double Words = 9 Double Words
3 Variables * 2 Double Words = 6 Double Words
6 Transitions * 5 Double Words = 30 Double Words
3 States * 4 Double Words = 12 Double Words
Adding this together
20 + 9 + 6 + 30 + 12 = 83 Double Words
The declaration of the SpinTAC Velocity Plan configuration array should be as follows
uint32_t stVelPlanCfgArray[83];

An additional example can be found in the project Lab 6c, Motion Sequence Real World Example: Washing
Machine. This also provides an excellent example of how to use enumerations in order to simplify the sizing of
the SpinTAC Velocity Plan configuration array.

To size the configuration array for SpinTAC Position Plan you would need to follow the same procedure as
outlined above, but use the memory usage for SpinTAC Position Plan.

Trajectory Planning www.ti.com

478 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4.3 SpinTAC™ Velocity Plan Example: Washing Machine Agitation

Another example to introduce the basic elements of SpinTAC Velocity Plan is the agitation stage of a washing
machine. The agitation cycle is a basic motion profile. In this example SpinTAC Velocity Plan does not interface
to any external sensors or valves and has no conditional transitions. This motion sequence can easily be
implemented in SpinTAC Velocity Plan. Figure 13-3 shows the state transition map for the washing machine
agitation.

Wash Stage

Agitation

State 1

Agitation

State 2

Idle Stage

Idle

State

Start Button not

pushed

Start

Button

pushed

Transition

State

Condition

Figure 13-3. State Transition Map of Example Washing Machine Agitation

The washing machine agitation has two stages: Idle and Wash. The washing machine will stay in the idle state
until the start button is pushed. Once the start button is pushed the machine will go into the wash stage where it
will agitate between a positive and a negative speed until the washing machine agitation state machine is told to
stop.

Figure 13-6 describes the motor velocity during the entire washing machine motion sequence, but it can also be
used to describe the motor velocity during the washing machine agitation motion sequence. Refer to the wash
stage section of Figure 13-6 and you should see the motor velocity run in the positive direction followed by the
negative direction. This represents the washing machine agitation stage.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

479

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4.4 SpinTAC™ Velocity Plan Example: Garage Door

An example to introduce the basic elements of SpinTAC Plan is a garage door system. The garage door is
a basic motion profile that includes conditional transitions, variables, and actions. This introduces all of the
different components of SpinTAC Velocity Plan. This motion sequence can be easily implemented in SpinTAC
Velocity Plan. Figure 13-4 shows the state transition map of the example garage door.

The garage door has three stages: Idle, Up, and Down. The garage door will stay in the idle state until the
Button is pressed. Once the Button is pressed, the garage door will transition either Up or Down depending on
the current position. If the Button is pressed while the garage door is transitioning up or down, it will change
direction.

Down Stage

Down

State

Idle Stage

Idle

State
Button == 1

&&

Up Sensor == 1

A Variable

Transition

State

Action

Condition

Up Stage

Up State Button == 1

Down Sensor == 1

Up Sensor == 1
Button == 1

&&

Down Sensor == 1

Down Sensor = 0

Button = 0

Up Sensor = 0

Button = 0

Button == 1

Figure 13-4. State Transition Map of Example Garage Door

Trajectory Planning www.ti.com

480 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4.5 SpinTAC™ Velocity Plan Example: Washing Machine

A great example of the use for SpinTAC Velocity Plan is in a washing machine. A washing machine has a
complex motion sequence. In this example, SpinTAC Velocity Plan interfaces to sensors and valves, and has
conditional state transitions. This entire motion sequence can be easily implemented in SpinTAC Velocity Plan.
Figure 13-5 shows the state transition map for the washing machine.

Wash Stage

Fill Stage

Drain Stage

Dry Stage

Agitation

State 1

Agitation

State 2

Dry

State

Drain

State

Fill

State

Agitation

Counter > 0

Drain_Flag == 0

Drain_Flag == 1

Fill_Flag == 0

Agitation

Counter

decreases by 1

Idle Stage

Idle

State

Start Button not

pushed

Start

Button

pushed

Agitation

Counter <= 0

Set Agitation

Counter Fill_Valve

Open

Fill_Valve

Closed

Drain_Valve

Open

Drain_Valve

Closed

Fill_Flag == 1

A Variable

Transition

State

Action

Condition

Figure 13-5. State Transition Map of Example Washing Machine

The washing machine has five stages: Idle, Fill, Wash, Drain, and Dry.

The washing machine stays in idle state until the start button is pushed. Once the start button is pressed, it will
enter the fill stage and the agitation counter is set to the configured value, representing the number of agitation
cycles to be performed.

Upon entering the fill stage, the water fill valve is open. A water level sensor is used to indicate when the tub is
full of water. When the water is filled, the water fill valve is closed and the application goes into the wash stage.

In the wash stage, the motor agitates between a positive speed and a negative speed until the agitation counter
reaches 0. Then it goes into drain stage.

When entering the drain stage, the drain valve is opened. A drain sensor is used to indicate when the water is
drained. When the water is finished draining, the drain valve is turned closed, and it enters the dry stage.

In dry stage, the motor spins at a certain speed for a configured time. Once the time elapses, it will enter idle
stage. At this point the operation is finished.

Figure 13-6 describes the motor velocity profile during the washing machine motion sequence. The motor will
wait at 0 RPM until the fill stage is complete. At this point it will go through 20 agitation cycles oscillating between

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

481

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

250 RPM and -250 RPM. After the 20 agitations, the motor will return to 0 RPM until the water has finished
draining from the washing machine. Upon exiting the drain stage, the motor will spin up to 2000 RPM in order to
dry the clothes. At the conclusion of the dry stage, the motor will return to 0 RPM and the idle state.

0 2 4 6 8 10 12 14 16 18 20
-0.2

-0.1

0

0.1

0.2

0.3

0.4

V
E

L
 [

p
u
/s

]

Time [s]

Drain State:

VelSP = 0

Timer = 2000

CW Agitation

State:

VelSP = 250

Timer = 0

CCW

Agitation

State:

VelSP= -250

Timer = 0

Dry State:

VelSP = 2000

Timer = 2000

Idle State:

VelSP = 0

Timer = 2000

Fill

Stage

Wash

Stage

Drain

Stage
Dry

Stage

Fill State:

VelSP = 0

Timer = 2000

End

Stage

VelSP VelRef

Agitating 20 times

AccLim = 1.2 KRPM/s

JrkLim = 12 KRPM/s2
AccLim = 1.2 KRPM/s

JrkLim = 12 KRPM/s2

AccLim = 12 KRPM/s

JrkLim = 24 KRPM/s2

V
e

l
[R

P
M

]

0

Figure 13-6. Velocity Profile During Example Washing Machine

Trajectory Planning www.ti.com

482 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.4.6 SpinTAC™ Position Plan Example: Vending Machine

An example for the use of SpinTAC Position Plan is a vending machine. In this example the vending machine
rotates in a circle and will only vend one item at a time. The state transition map for this example is in Figure
13-7.

Item 3

Item 2

Item 4

Item 3

State
Item 4

State

Item 2

State

FwdButton = 0

Item 1

Init

State

A Variable

Transition

State

Action

Condition

Item 1

State

FwdButton == 1

|| Item1Inv == 0

FwdButton == 1

|| Item1Inv == 0

FwdButton == 1

|| Item2Inv == 0

FwdButton == 1

|| Item3Inv == 0

FwdButton == 1

|| Item4Inv == 0

FwdButton = 0

FwdButton = 0

FwdButton = 0

TotalInv == 0

Figure 13-7. State Transition Map of Example Vending Machine

In this example the vending machine will display one item until the user presses the Forward Button
(FwdButton). Once that button is detected the vending machine will advance one item and display the next
item that is can vend.

When the user removes an item from the vending machine, the application will update that item’s inventory.
When the inventory is reduced to zero, the vending machine will skip that state. If all item’s inventories are
reduced to zero, the vending machine will return to the Init state and SpinTAC Position Plan will stop. This
indicates that the vending machine needs to be refilled.

This example of SpinTAC Position Plan is implemented in Lab 13d, Motion Sequence Real World Example:
Vending Machine.

13.5 Software Configuration for SpinTAC™ Velocity Plan
Configuring SpinTAC Velocity Plan requires seven steps. Lab 6c — Motion Sequence Real World Example:
Washing Machine — is an example project that implements the steps required to use SpinTAC Velocity
Plan. The header file spintac_velocity.h, included in MotorWare, allows you to quickly include the SpinTAC
components in your project.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

483

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.5.1 Include the Header File

This should be done with the rest of the module header file includes. In Lab 6c example project this file
is included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_vel_plan.h"

13.5.2 Define the Size of the Configuration Array

This should be done with the rest of the MACRO defines. In the Lab 6c example project, this is done at the top
of the main source file. Typically it is a best practice to use enumerations to define and label the states in your
Plan. This allows you to easily size the configuration array to meet your application requirements. In the Lab 6c
example project this step is done for you. Sizing the configuration array for your motion sequence is covered in
Section 13.4.2.

#define ST_VELPLAN_CFG_ARRAY_DWORDS ((ST_VEL_PLAN_ACT_DWORDS * 6) + \
 (ST_VEL_PLAN_COND_DWORDS * 4) + \
 (ST_VEL_PLAN_VAR_DWORDS * 5) + \
 (ST_VEL_PLAN_TRAN_DWORDS * 7) + \
 (ST_VEL_PLAN_STATE_DWORDS * 6))

13.5.3 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 6c project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle
unsigned long gWaterLevel = 0; // Stores the water level in the washer
_iq gVelPanVar[ST_PLAN_MAX_VAR_NUM]; // Stores the values of SpinTAC Plan variables
// Configuration array for SpinTAC Plan
uint32_t stVelPlanCfgArray[ST_VELPLAN_CFG_ARRAY_DWORDS];

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header
file.

ST_VelPlan_t stVelPlan; //The SpinTAC Plan Object
ST_VELPLAN_Handle stVelPlanHandle; // The SpinTAC Plan Handle
uint32_t gWaterLevel = 0; // Stores the water level in the washer
_iq gVelPanVar[ST_PLAN_MAX_VAR_NUM]; // Stores the values of SpinTAC Plan variables
// Configuration array for SpinTAC Plan
uint32_t stVelPlanCfgArray[ST_VELPLAN_CFG_ARRAY_DWORDS];

13.5.4 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the default
values into SpinTAC Velocity Plan. This step can be completed by running the function ST_init that is declared
in the spintac_velocity.h header file and the function ST_setupVelPlan that is declared in the main.c. If you do
not wish to use these two functions, the code example below can be used to configure the SpinTAC Velocity
Plan component. This example loads the washing machine profile that is discussed in Section 13.4.5. For more
information about the SpinTAC Plan API, see Section 3.6.3.1.

// init the ST VelPlan object
stVelPlanHandle = STVELPLAN_init(&stVelPlan, sizeof(ST_VelPlan_t));
// Pass the configuration array pointer into SpinTAC Velocity Plan
// Parameters: handle, pointer to array, size of array, number of actions, number of
conditions, number of variables, number of transitions, number of states
STVELPLAN_setCfgArray(stVelPlanHandle, &stVelPlanCfgArray[0], sizeof(stVelPlanCfgArray), 6, 4, 5,
7, 6);
// Establish the Velocity, Acceleration, and Jerk Maximums
_iq velMax = STVELMOVE_getVelocityMaximum(stVelMoveHandle);
_iq accMax = STVELMOVE_getAccelerationMaximum(stVelMoveHandle);
_iq jrkMax = STVELMOVE_getJerkMaximum(stVelMoveHandle);

Trajectory Planning www.ti.com

484 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// Configure SpinTAC Velocity Plan: Sample Time, VelMax, AccMax, DecMax, JrkMax, LoopENB
STVELPLAN_setCfg(stVelPlanHandle, _IQ24(ST_SPEED_SAMPLE_TIME),
 velMax, accMax, jrkMax, FALSE);
// Configure halt state: VelEnd, AccMax, JrkMax, Timer
STVELPLAN_setCfgHaltState(stVelPlanHandle, 0, accMax, jrkMax, 1000L);
//Example: STVELPLAN_addCfgState(handle, VelSetpoint[pups], StateTimer[ticks]);
//StateIdx0: Idle
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx1: Fill
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx2: AgiCW
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(0.25 * ST_SPEED_PU_PER_KRPM), 200L);
// StateIdx3: AgiCCW
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(-0.25 * ST_SPEED_PU_PER_KRPM), 200L);
// StateIdx4: Drain
STVELPLAN_addCfgState(stVelPlanHandle, 0, 2000L);
// StateIdx5: Dry
STVELPLAN_addCfgState(stVelPlanHandle, _IQ24(2 * ST_SPEED_PU_PER_KRPM), 2000L);
//Example: STVELPLAN_addCfgVar(handle, VarType, InitialValue);
// VarIdx0: FillSensor {0: not filled; 1: filled}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_IN, 0);
// VarIdx1: DrainSensor {0: not drained; 1: drained}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_IN, 0);
// VarIdx2: CycleCounter
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_INOUT, 0);
// VarIdx3: FillValve {0: valve closed; 1: valve open}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_OUT, 0);
// VarIdx4: DrainValve {0: valve closed; 1: valve open}
STVELPLAN_addCfgVar(stVelPlanHandle, ST_VAR_OUT, 0);
//Example: STVELPLAN_addCfgCond(handle, VarIdx, Comparison, Value1, Value2)
// CondIdx0: WaterFull Water is filled
STVELPLAN_addCfgCond(stVelPlanHandle, 0, ST_COMP_EQ, 1, 0);
// CondIdx0: AgiNotDone SgitCycleCounter is greater than 0 (not done)
STVELPLAN_addCfgCond(stVelPlanHandle, 2, ST_COMP_GT, 0, 0);
// CondIdx1: AgiDone SgitCycleCounter is equal or less than 0 (done)
STVELPLAN_addCfgCond(stVelPlanHandle, 2, ST_COMP_ELW, 0, 0);
// CondIdx0: WaterEmpty Water is drained
STVELPLAN_addCfgCond(stVelPlanHandle, 1, ST_COMP_EQ, 1, 0);
// Note: Set Value2 to 0 if Comparison is for only one value.
//Example: STVELPLAN_addCfgTran(handle, FromState, ToState, CondOption, CondIdx1,
CondiIdx2, AccLim[pups2], JrkLim[pups3]);
// From IdleState to FillState
STVELPLAN_addCfgTran(stVelPlanHandle, 0, 1, ST_COND_NC, 0, 0, _IQ24(0.1), _IQ20(1));
// From FillState to AgiState1
STVELPLAN_addCfgTran(stVelPlanHandle, 1, 2, ST_COND_FC, 0, 0, _IQ24(0.1), _IQ20(1));
// From AgiState1 to AgiState2
STVELPLAN_addCfgTran(stVelPlanHandle, 2, 3, ST_COND_NC, 0, 0, _IQ24(1), _IQ20(1));
// From AgiState2 to AgiState1
STVELPLAN_addCfgTran(stVelPlanHandle, 3, 2, ST_COND_FC, 1, 0, _IQ24(1), _IQ20(1));
// From AgiState2 to DrainState
STVELPLAN_addCfgTran(stVelPlanHandle, 3, 4, ST_COND_FC, 2, 0, _IQ24(0.1), _IQ20(1));
// From DrainState to DryState
STVELPLAN_addCfgTran(stVelPlanHandle, 4, 5, ST_COND_FC, 3, 0, _IQ24(0.2), _IQ20(1));
// From DryState to IdleState
STVELPLAN_addCfgTran(stVelPlanHandle, 5, 0, ST_COND_NC, 0, 0, _IQ24(0.1), _IQ20(1));
// Note: set CondIdx1 to 0 if CondOption is ST_COND_NC; set CondIdx2 to 0 if CondOption is
ST_COND_NC or ST_COND_FC
//Example: STVELPLAN_addCfgAct(handle, StateIdx, VarIdx, Operation, Value, ActionTriger);
// In IdleState, preset AgiCycleCounter to 20
STVELPLAN_addCfgAct(stVelPlanHandle, 0, ST_COND_NC, 0, 0, 2, ST_ACT_EQ, 20, ST_ACT_EXIT);
// Decrease AgiCycleCounter by 1 every time enters AgiState1
STVELPLAN_addCfgAct(stVelPlanHandle, 2, ST_COND_NC, 0, 0, 2, ST_ACT_ADD, -1, ST_ACT_ENTR);
// In FillState, set VarIdx3 to 1 to open FillValve
STVELPLAN_addCfgAct(stVelPlanHandle, 1, ST_COND_NC, 0, 0, 3, ST_ACT_EQ, 1, ST_ACT_ENTR);
// In FillState, set VarIdx3 to 0 to close FillValve when FillSensor = 1
STVELPLAN_addCfgAct(stVelPlanHandle, 1, ST_COND_NC, 0, 0, 3, ST_ACT_EQ, 0, ST_ACT_EXIT);
// In DrainState, set VarIdx4 to 1 to open DrainValve
STVELPLAN_addCfgAct(stVelPlanHandle, 4, ST_COND_NC, 0, 0, 4, ST_ACT_EQ, 1, ST_ACT_ENTR);
// In DrainState, set VarIdx4 to 0 to close DrainValve when DrainSensor = 1
STVELPLAN_addCfgAct(stVelPlanHandle, 4, ST_COND_NC, 0, 0, 4, ST_ACT_EQ, 0, ST_ACT_EXIT);
// If there was an error during the configuration, force Plan into the Halt State
if(STVELPLAN_getErrorID(stVelPlanHandle) != FALSE) {
 // Configure FSM: Ts, VelMax, AccMax, DecMax, JrkMax, LoopENB
 STVELPLAN_setCfg(stVelPlanHandle, _IQ24(ST_SPEED_SAMPLE_TIME),
 velMax, accMax, jrkMax, FALSE);

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

485

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// Configure halt state: VelEnd, AccMax, JrkMax, Timer
STVELPLAN_setCfgHaltState(stVelPlanHandle, 0, accMax, jrkMax, 1000L);}

13.5.5 Call SpinTAC™ Velocity Plan

This can be done in the main loop. This code example includes the code required to interface with the fill and
drain valves and sensors. It will also update the water level as part of the washing machine simulation.

if(gMotorVars.VelPlanRun == TRUE) {
 STVELPLAN_setEnable(stVelPlanHandle, TRUE);
}
// Run SpinTAC Velocity Plan
STVELPLAN_run(stVelPlanHandle);
// Update sensor values for SpinTAC Plan
// Get values for washer valve components
STVELPLAN _getVar(stVelPlanHandle, 3, &gVelPanVar[3]); // Get value of FillVale
STVELPLAN _getVar(stVelPlanHandle, 3, &gVelPanVar[4]); // Get value of DrainValve
if(gVelPanVar[3] == TRUE) {
 // if FillValve is open, increase water level
 gWaterLevel += 1;
}
else if(gVelPanVar[4] == TRUE) {
 // if DrainValve is open, decrease water level
 gWaterLevel -= 1;
}
if(gWaterLevel >= WASHER_MAX_WATER_LEVEL) {
 // if water level is greater than maximum, set fill sensor to true
 gWaterLevel = WASHER_MAX_WATER_LEVEL;
 gVelPanVar[0] = TRUE;
}
else {
 // if water level is less than maximum, set FillSensor to false
 gVelPanVar[0] = FALSE;
}
if(gWaterLevel <= WASHER_MIN_WATER_LEVEL) {
 // if water level is at the minimum & set DrainSensor to true
 gWaterLevel = WASHER_MIN_WATER_LEVEL;
 gVelPanVar[1] = TRUE;
}
else {
 // if water level is greater than minimum, set DrainSensor to false
 gVelPanVar[1] = FALSE;
}
// Set values for washer sensor components
STVELPLAN _getVar(stVelPlanHandle, 0, gVelPanVar[0]); // Set value for FillSensor
STVELPLAN _getVar(stVelPlanHandle, 1, gVelPanVar[1]); // Set value for DrainSensor
if(STVELPLAN_getStatus(stVelPlanHandle) != ST_PLAN_IDLE) {
 // Send the profile configuration to SpinTAC Move
 gMotorVars.SpeedRef_krpm = _IQmpy(STVELPLAN_getVelocitySetpoint(stVelPlanHandle),
 _IQ24(ST_SPEED_KRPM_PER_PU));
 gMotorVars.MaxAccel_krpmps = _IQmpy(STVELPLAN_getAccelerationLimit(stVelPlanHandle),
 _IQ24(ST_SPEED_KRPM_PER_PU));
 gMotorVars.MaxJrk_krpmps2 = _IQ20mpy(STVELPLAN_getJerkLimit(stVelPlanHandle),
 _IQ20(ST_SPEED_KRPM_PER_PU));
}
else {
 STVELPLAN_setEnable(stVelPlanHandle, FALSE);
}

13.5.6 Call SpinTAC™ Velocity Plan Tick

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK; for more information,
see Section 4.7.1.4.

// Run SpinTAC Velocity Plan Tick
STVELPLAN_runTick(stVelPlanHandle);

Trajectory Planning www.ti.com

486 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.5.7 Update SpinTAC™ Velocity Plan with SpinTAC™ Velocity Move Status

This should be done in the main ISR. This function needs to be called when SpinTAC Velocity Move has
completed a profile. This is to alert SpinTAC Velocity Plan that we have reached the goal speed that it provided
to SpinTAC Velocity Move. This should be placed after the function call for SpinTAC Velocity Move.

// Update Plan when the profile is completed
if(STVELMOVE_getDone(stVelMoveHandle) != FALSE) {
STVELPLAN_setUnitProfDone(stVelPlanHandle, TRUE);
}
else {
 STVELPLAN_setUnitProfDone(stVelPlanHandle, FALSE);
}

13.6 Troubleshooting SpinTAC™ Velocity Plan
13.6.1 ERR_ID

ERR_ID provides an error code for users to identify the specific SpinTAC Velocity Plan function that caused the
error. A list of ERR_IDs defined in SpinTAC Velocity Plan is shown in Table 13-4.

Table 13-4. SpinTAC™ Velocity Plan ERR_ID
ERR_ID Plan Function

3000 STVELPLAN_addCfgCond

3001 STVELPLAN_delCfgCond

3002 STVELPLAN_setCfgCond

3003 STVELPLAN_getCfgCond

3004 STVELPLAN_addCfgTran

3005 STVELPLAN_delCfgTran

3006 STVELPLAN_setCfgTran

3007 STVELPLAN_getCfgTran

3008 STVELPLAN_addCfgAct

3009 STVELPLAN_delCfgAct

3010 STVELPLAN_setCfgAct

3011 STVELPLAN_getCfgAct

3012 STVELPLAN_addCfgVar

3013 STVELPLAN_delCfgVar

3014 STVELPLAN_setCfgVar

3015 STVELPLAN_getCfgVar

3016 STVELPLAN_addCfgState

3017 STVELPLAN_delCfgState

3018 STVELPLAN_setCfgState

3019 STVELPLAN_setVar

3020 STVELPLAN_getVar

3021 STVELPLAN_setCfg

3022 STVELPLAN_setCfgHaltState

3023 STVELPLAN_setCfgArray

3024 STVELPLAN_addCfgVarCond

3025 STVELPLAN_delCfgVarCond

3026 STVELPLAN_setCfgVarCond

3027 STVELPLAN_getCfgVarCond

4001 STVELPLAN_run (Invalid SpinTAC license. Use the chip with valid license for SpinTAC.)

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

487

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 13-4. SpinTAC™ Velocity Plan ERR_ID (continued)
ERR_ID Plan Function

4003 STVELPLAN_run (Invalid ROM version. Use a chip with a valid ROM version or use the SpinTAC library
that is compatible with the current ROM version.)

13.6.2 Configuration Errors

The configuration errors are reported via the CfgError structure included in the main SpinTAC Velocity Plan
structure. This structure contains elements that store additional information about the error. The elements are
described below:

• CfgError.ERR_idx: Identifies the instance of configured element at which the error occurred.
• CfgError.ERR_code: Identifies the specific error condition that caused the error.

The ERR_code for a specific condition remains the same for all Plan functions. A list of ERR_codes and
conditions defined in SpinTAC Velocity Plan is shown in Table 13-5.

Table 13-5. SpinTAC™ Velocity Plan ERR_code
ERR_code Description Solution

1 SpinTAC Plan is running Place SpinTAC Plan into the idle status prior to running the
configuration.

2 Maximum State number exceeded The maximum number of States has been configured.

3 Maximum Condition number exceeded The maximum number of Conditions has been configured.

4 Maximum Transition number exceeded The maximum number of Transitions has been configured.

5 Maximum Action number exceeded The maximum number of Actions has been configured.

6 Maximum Variable number exceeded The maximum number of Variables has been configured.

7 Invalid sample time value Set sample time, cfg.T_sec, within (0, 0.01].

8 Invalid VelMax value Choose VelMax within (0, 1].

9 Invalid AccMax value Choose AccMax within [0.001, 120].

10 Invalid JrkMax value Choose JrkMax within [0.0005, 2000].

11 Invalid LoopENB value Choose LoopENB within { false, true }.

12 Invalid VelEnd value Choose VelEnd within [(0, VelMax].

13 Invalid AccLim value Choose AccLim within [0.001, AccMax].

14 Invalid JrkLim value Choose JrkLim within [0.0005, JrkMax].

15 Invalid Timer_tick value Choose a positive integer value.

16 Invalid State index The index should be for a configured State index.

17 Invalid Condition index The index should be for a configured Condition index.

18 Invalid Transition index The index should be for a configured Transition index.

19 Invalid Action index The index should be for a configured Action index.

20 Invalid Variable index The index should be for a configured Variable index.

21 Invalid Variable type Choose variable type from the values in ST_PlanVar_e.

22 Invalid value of Comparison Choose comparison from the values in ST_PlanComp_e.

23 Invalid Operation Choose operation from the values in ST_PlanActOptn_e.

24 Invalid AndOr value Choose AndOr from the values in ST_PlanCond_e.

25 Improper Variable type ST_VAR_OUT Variables cannot have a value set to them .
ST_VAR_OUT Variables cannot be used in Conditions .
ST_VAR_IN Variables cannot be used in Actions.

26 Improper values in Comparison Value1 should be less than or equal to Value2.

27 Improper State index In Transitions FromState cannot be equal to ToState, and these
States must be equal to a configured State.

28 Improper Condition index in Transition In Transitions: CondIdx1 cannot be equal to CondIdx2, and these
Conditions must be equal to a configured Condition

29 Improper EnterExit value Choose EnterExit from the values in ST_PlanActTrgr_e

Trajectory Planning www.ti.com

488 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 13-5. SpinTAC™ Velocity Plan ERR_code (continued)
ERR_code Description Solution

30 Improper AndOr during Variable deletion The AndOr value conflicts with the value of VarIdx. When deleting
a Variable, it causes a configuration error in a Transition.

31 Cannot delete Variable as an Action depends on
it

Remove Variable from Action configuration before deleting the
Variable.

37 Plan Configuration array declared is too small for
plan elements

Remove an Element from the configuration or declare a larger
configuration array.

38 Cannot delete a State as a Transition depends
on it

Remove State from Transition configuration before deleting the
State.

39 Cannot delete a State as an Action depends on it Remove State from Action configuration before deleting the State.

40 Improper values for variable comparison Variable comparison conditions cannot have comparison enum
greater than ST_COMP_ELW.

41 Cannot compare a variable to itself Ensure that the variable indexes passed to the function are
different and valid.

42 Cannot get a variable based Condition from the
index of a value based type of Condition

Pass an index that is known to contain a variable based
Condition.

43 Cannot delete a Condition as a Transition
depends on it

Remove Condition from Transition configuration before deleting
the Condition.

13.7 Software Configuration for SpinTAC™ Position Plan
Configuring SpinTAC Position Plan requires seven steps. Lab 13d – Motion Sequence Real World Example:
Vending Machine is an example project that implements the steps required to use SpinTAC Position Plan. The
header file spintac_position.h, included in MotorWare, allows you to quickly include the SpinTAC components in
your project.

13.7.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 13d example project this
file is included in the spintac_position.h header file. For your project, this step can be completed by including
spintac_position.h.

#include "sw/modules/spintac/src/32b/spintac_pos_plan.h"

13.7.2 Define the Size of the Configuration Array

This should be done with the rest of the MACRO defines. In the Lab 13d example project this is done at the top
of the main source file. Typically it is a best practice to use enumerations to define and label the states in your
Plan. This allows you to easily size the configuration array to meet your application requirements. In the Lab 13d
example project this step is done for you. Sizing the configuration array for your motion sequence is covered in
Section 13.4.2.

#define ST_POSPLAN_CFG_ARRAY_DWORDS ((ST_POS_PLAN_ACT_DWORDS * 4) + \
 (ST_POS_PLAN_COND_DWORDS * 6) + \
 (ST_POS_PLAN_VAR_DWORDS * 6) + \
 (ST_POS_PLAN_TRAN_DWORDS * 6) + \
 (ST_POS_PLAN_STATE_DWORDS * 5))

13.7.3 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 13d project this
structure is included in the ST_Obj structure that is declared as part of the spintac_position.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_Handle stHandle; // The SpinTAC Handle
_iq gVendFwdButton = 0; // Button to advance the displayed item
_iq gVendSelectButton = 0; // Button to vend the displayed item
uint16_t gVendInventory[4] = {VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY,
 VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY};

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

489

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

VEND_State_e gVendAvailableItem = VEND_ITEM0; // Current item available to vend
// Configuration array for SpinTAC Position Plan
uint32_t stPosPlanCfgArray[ST_POSPLAN_CFG_ARRAY_DWORDS];

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_position.h header
file.

ST_PosPlan_t stPosPlan; //The SpinTAC Position Plan Object
ST_POSPLAN_Handle stPosPlanHandle; //The SpinTAC Position Plan Handle
_iq gVendFwdButton = 0; // Button to advance the displayed item
_iq gVendSelectButton = 0; // Button to vend the displayed item
uint16_t gVendInventory[4] = {VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY,
 VEND_INITIAL_INVENTORY, VEND_INITIAL_INVENTORY};
VEND_State_e gVendAvailableItem = VEND_ITEM0; // Current item available to vend
// Configuration array for SpinTAC Position Plan
uint32_t stPosPlanCfgArray[ST_POSPLAN_CFG_ARRAY_DWORDS];

13.7.4 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the default
values into SpinTAC Position Plan. This step can be completed by running the function ST_init that is declared
in the spintac_position.h header file and by running the function ST_setupPosPlan that is declared in the main.c.
If you do not wish to use this function, the code example below can be used to configure the SpinTAC Position
Plan component. This example loads the vending machine profile that is discussed in Section 13.4.6. For more
information about the SpinTAC Plan API, see Figure 3-19.

// Pass the configuration array pointer into SpinTAC Velocity Plan
STPOSPLAN_setCfgArray(stPosPlanHandle, &stPosPlanCfgArray[0],
 sizeof(stPosPlanCfgArray), 4, 6, 6, 6, 5);
// Establish the Velocity, Acceleration, Deceleration, and Jerk Maximums
velMax = STPOSMOVE_getVelocityMaximum(stPosMoveHandle);
accMax = STPOSMOVE_getAccelerationMaximum(stPosMoveHandle);
decMax = STPOSMOVE_getDecelerationMaximum(stPosMoveHandle);
jrkMax = STPOSMOVE_getJerkMaximum(stPosMoveHandle);
// Establish the Velocity, Acceleration, Deceleration, and Jerk Limits
velLim = _IQ24(0.1 * ST_SPEED_PU_PER_KRPM);
accLim = _IQ24(0.5 * ST_SPEED_PU_PER_KRPM);
decLim = _IQ24(0.5 * ST_SPEED_PU_PER_KRPM);
jrkLim = _IQ24(1.0 * ST_SPEED_PU_PER_KRPM);
// Configure SpinTAC Velocity Plan: Sample Time, VelMax, AccMax, DecMax, JrkMax, LoopENB
STPOSPLAN_setCfg(stPosPlanHandle, _IQ24(ST_SAMPLE_TIME), velMax, accMax, decMax, jrkMax, false);
// Configure halt state: PosStepInt, PosStepFrac, VelMax, AccMax, JrkMax, Timer
STPOSPLAN_setCfgHaltState(stPosPlanHandle, 0, 0, velMax, accMax, jrkMax, 1000L);
//Example: STPOSPLAN_addCfgState(handle, PosStepInt[MRev], PosStepFrac[MRev], StateTimer[ticks]);
STPOSPLAN_addCfgState(stPosPlanHandle, 0, 0, 200L); // StateIdx0: Init
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx1: Item0
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item1
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item2
STPOSPLAN_addCfgState(stPosPlanHandle, 0, _IQ24(0.25), 200L); // StateIdx2: Item3
//Example: STPOSPLAN_addCfgVar(handle, VarType, InitialValue);
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_INOUT, 0); // VarIdx0: FwdButton
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx1: Item0Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx2: Item1Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx3: Item2Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 10); // VarIdx4: Item3Inv
STPOSPLAN_addCfgVar(stPosPlanHandle, ST_VAR_IN, 40); // VarIdx5: TotalInv
//Example: STPOSPLAN_addCfgCond(handle, VarIdx, Comparison, Value1, Value2)
// CondIdx0: Fwd Button Pressed
STPOSPLAN_addCfgCond(stPosPlanHandle, 0, ST_COMP_EQ, 1, 0);
// CondIdx1: Item0 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 1, ST_COMP_ELW, 0, 0);
// CondIdx2: Item1 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 2, ST_COMP_ELW, 0, 0);
// CondIdx3: Item2 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 3, ST_COMP_ELW, 0, 0);
// CondIdx4: Item3 Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 4, ST_COMP_ELW, 0, 0);
// CondIdx5: TotalInv Empty
STPOSPLAN_addCfgCond(stPosPlanHandle, 5, ST_COMP_ELW, 0, 0);
//Example: STPOSPLAN_addCfgTran(handle, FromState, ToState, CondOption, CondIdx1, CondIdx2,
VelLim[pups], AccLim[pups2], DecLim[pups2], JrkLim[pups3]);

Trajectory Planning www.ti.com

490 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// NOTE: The deceleration limit must be set between the following bounds [acceleration limit,
10*acceleration limit]
// From Init to Item1
STPOSPLAN_addCfgTran(stPosPlanHandle, 0, 2, ST_COND_OR, 0, 2, velLim, accLim, decLim, jrkLim);
// From Item3 to Init
STPOSPLAN_addCfgTran(stPosPlanHandle, 1, 0, ST_COND_FC, 5, 0, velLim, accLim, decLim, jrkLim);
// From Item0 to Item1
STPOSPLAN_addCfgTran(stPosPlanHandle, 1, 2, ST_COND_OR, 0, 1, velLim, accLim, decLim, jrkLim);
// From Item1 to Item2
STPOSPLAN_addCfgTran(stPosPlanHandle, 2, 3, ST_COND_OR, 0, 2, velLim, accLim, decLim, jrkLim);
// From Item2 to Item3
STPOSPLAN_addCfgTran(stPosPlanHandle, 3, 4, ST_COND_OR, 0, 3, velLim, accLim, decLim, jrkLim);
// From Item3 to Item0
STPOSPLAN_addCfgTran(stPosPlanHandle, 4, 1, ST_COND_OR, 0, 4, velLim, accLim, decLim, jrkLim);
//Example: STPOSPLAN_addCfgAct(handle, StateIdx, VarIdx, Operation, Value, ActionTriger);
// In Item1, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 1, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item2, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 2, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item3, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 3, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
// In Item4, clear Fwd Button
STPOSPLAN_addCfgAct(stPosPlanHandle, 4, ST_COND_NC, 0, 0, 0, ST_ACT_ENTR);
if(STPOSPLAN_getErrorID(stPosPlanHandle) != false) {
 // Configure FSM: Ts, VelMax, AccMax, DecMax, JrkMax, LoopENB
 STPOSPLAN_setCfg(stPosPlanHandle, _IQ24(ST_SAMPLE_TIME), velMax, accMax, decMax, jrkMax, false);
 // Configure halt state: PosStepInt[MRev], PosStepFrac[MRev], VelMax, AccMax, JrkMax, Timer
 STPOSPLAN_setCfgHaltState(stPosPlanHandle, 0, 0, velMax, accMax, jrkMax, 1000L);
}

13.7.5 Call SpinTAC™ Position Plan

This can be done in the main loop. This code example includes the code required to interface with the fill and
drain valves and sensors. It will also update the item inventory as part of the vending machine simulation.

// SpinTAC Position Plan
if(gPosPlanRunFlag == ST_PLAN_STOP
 && gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START) {
 if(STPOSMOVE_getDone(stPosMoveHandle) == true) {
 if(STPOSPLAN_getErrorID(stPosPlanHandle) != false) {
 STPOSPLAN_setEnable(stPosPlanHandle, false);
 STPOSPLAN_setReset(stPosPlanHandle, true);
 gMotorVars.SpinTAC.PosPlanRun = gPosPlanRunFlag;
 }
 else {
 STPOSPLAN_setEnable(stPosPlanHandle, true);
 STPOSPLAN_setReset(stPosPlanHandle, false);
 gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
 }
 }
}
if(gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_STOP) {
 STPOSPLAN_setReset(stPosPlanHandle, true);
 gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
}
if(gPosPlanRunFlag == ST_PLAN_START
 && gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_PAUSE) {
 STPOSPLAN_setEnable(stPosPlanHandle, false);
 gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
}
if(gPosPlanRunFlag == ST_PLAN_PAUSE
 && gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START) {
 STPOSPLAN_setEnable(stPosPlanHandle, true);
 gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
}
// if we have selected an item from the machine
if(gVendSelectButton == 1) {
 if(STPOSPLAN_getStatus(stPosPlanHandle) != ST_PLAN_IDLE) {
 // decrease our inventory
 gVendInventory[gVendAvailableItem - 1]--;
 }
 // toggle the select button off
 gVendSelectButton = 0;
}

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

491

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// Update variables passed into Plan
STPOSPLAN_setVar(stPosPlanHandle, VEND_Fwd, gVendFwdButton);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item0Inv, gVendInventory[VEND_ITEM0 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item1Inv, gVendInventory[VEND_ITEM1 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item2Inv, gVendInventory[VEND_ITEM2 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_Item3Inv, gVendInventory[VEND_ITEM3 - 1]);
STPOSPLAN_setVar(stPosPlanHandle, VEND_TotalInv,
 gVendInventory[0] + gVendInventory[1] + gVendInventory[2] + gVendInventory[3]);
// Run SpinTAC Position Plan
STPOSPLAN_run(stPosPlanHandle);
// display the selected item
if(STPOSPLAN_getCurrentState(stPosPlanHandle) > 0) {
 gVendAvailableItem = (VEND_State_e)STPOSPLAN_getCurrentState(stPosPlanHandle);
}
else {
 gVendAvailableItem = VEND_ITEM0;
}
// Update variables passed out of Plan
if(STPOSPLAN_getFsmState(stPosPlanHandle) == ST_FSM_STATE_STAY) {
 STPOSPLAN_getVar(stPosPlanHandle, VEND_Fwd, &gVendFwdButton);
}
if(STPOSPLAN_getStatus(stPosPlanHandle) != ST_PLAN_IDLE) {
 // Send the profile configuration to SpinTAC Position Profile Generator
 STPOSPLAN_getPositionStep_mrev(stPosPlanHandle,
 (_iq24 *)&gMotorVars.PosStepInt_MRev, (_iq24 *)&gMotorVars.PosStepFrac_MRev);
 gMotorVars.MaxVel_krpm = _IQmpy(STPOSPLAN_getVelocityLimit(stPosPlanHandle),
 _IQ24(ST_SPEED_KRPM_PER_PU));
 gMotorVars.MaxAccel_krpmps =_IQmpy(STPOSPLAN_getAccelerationLimit(stPosPlanHandle),
 _IQ24(ST_SPEED_KRPM_PER_PU));
 gMotorVars.MaxDecel_krpmps =_IQmpy(STPOSPLAN_getDecelerationLimit(stPosPlanHandle),
 _IQ24(ST_SPEED_KRPM_PER_PU));
 gMotorVars.MaxJrk_krpmps2 = _IQ20mpy(STPOSPLAN_getJerkLimit(stPosPlanHandle),
 _IQ20(ST_SPEED_KRPM_PER_PU));
}
else {
 if(gPosPlanRunFlag == ST_PLAN_START
 && gMotorVars.SpinTAC.PosPlanRun == ST_PLAN_START)
 {
 gMotorVars.SpinTAC.PosPlanRun = ST_PLAN_STOP;
 gPosPlanRunFlag = gMotorVars.SpinTAC.PosPlanRun;
 }
}

13.7.6 Call SpinTAC™ Position Plan Tick

This should be done in the main ISR. This function needs to be called at the proper decimation rate for this
component. The decimation rate is established by ISR_TICKS_PER_SPINTAC_TICK; for more information, see
Section 4.7.1.4.

// Run SpinTAC Position Plan Tick
STPOSPLAN_runTick(stPosPlanHandle);

13.7.7 Update SpinTAC™ Position Plan with SpinTAC™ Position Move Status

This should be done in the main ISR. This function needs to be called when SpinTAC Position Move has
completed a profile. This is to alert SpinTAC Position Plan that we have reached the goal position that it provided
to SpinTAC Position Plan. This should be placed after the function call for SpinTAC Position Move.

// Update SpinTAC Position Plan when the profile is completed
if(STPOSMOVE_getDone(stPosMoveHandle) != false) {
 STPOSPLAN_setUnitProfDone(stPosPlanHandle, true);
}
else {
 STPOSPLAN_setUnitProfDone(stPosPlanHandle, false);
}

Trajectory Planning www.ti.com

492 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.8 Troubleshooting SpinTAC™ Position Plan
13.8.1 ERR_ID

ERR_ID provides an error code for users to identify the specific SpinTAC Position Plan function that caused the
error. A list of ERR_IDs defined in SpinTAC Position Plan is shown in Table 13-6.

Table 13-6. SpinTAC™ Position Plan ERR_ID
ERR_code Plan Function

3000 Configuration error in STPOSPLAN_addCfgCond

3001 Configuration error in STPOSPLAN_delCfgCond

3002 Configuration error in STPOSPLAN_setCfgCond

3003 Configuration error in STPOSPLAN_getCfgCond

3004 Configuration error in STPOSPLAN_addCfgTran

3005 Configuration error in STPOSPLAN_delCfgTran

3006 Configuration error in STPOSPLAN_setCfgTran

3007 Configuration error in STPOSPLAN_getCfgTran

3008 Configuration error in STPOSPLAN_addCfgAct

3009 Configuration error in STPOSPLAN_delCfgAct

3010 Configuration error in STPOSPLAN_setCfgAct

3011 Configuration error in STPOSPLAN_getCfgAct

3012 Configuration error in STPOSPLAN_addCfgVar

3013 Configuration error in STPOSPLAN_delCfgVar

3014 Configuration error in STPOSPLAN_setCfgVar

3015 Configuration error in STPOSPLAN_getCfgVar

3016 Configuration error in STPOSPLAN_addCfgState

3017 Configuration error in STPOSPLAN_delCfgState

3018 Configuration error in STPOSPLAN_setCfgState

3019 Configuration error in STPOSPLAN_setVar

3020 Configuration error in STPOSPLAN_getVar

3021 Configuration error in STPOSPLAN_setCfg

3022 Configuration error in STPOSPLAN_setCfgHaltState

3023 Configuration error in STPOSPLAN_setCfgArray

3024 Configuration error in STPOSPLAN_addCfgVarCond

3025 Configuration error in STPOSPLAN_delCfgVarCond

3026 Configuration error in STPOSPLAN_setCfgVarCond

3027 Configuration error in STPOSPLAN_getCfgVarCond

4001 STPOSPLAN_run (Invalid SpinTAC license. Use the chip with valid license for
SpinTAC.)

4003 STPOSPLAN_run (Invalid ROM version. Use a chip with a valid ROM version or
use the SpinTAC library that is compatible with the current ROM version.)

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

493

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

13.8.2 Configuration Errors

The configuration errors are reported via the CfgError structure included in the main SpinTAC Position Plan
structure. This structure contains elements that store additional information about the error. The elements are:
• CfgError.ERR_idx: Identifies the instance of configured element at which the error occurred.
• CfgError.ERR_code: Identifies the specific error condition that caused the error.

The ERR_code for a specific condition remains the same for all Plan functions. A list of ERR_codes and
conditions defined in SpinTAC Position Plan is shown in Table 13-7.

Table 13-7. SpinTAC ™Position Plan ERR_code
ERR_code Description Solution

1 SpinTAC Plan is running Place SpinTAC Plan into the idle status prior to running the
configuration.

2 Maximum State number exceeded The maximum number of States has been configured.

3 Maximum Condition number exceeded The maximum number of Conditions has been configured.

4 Maximum Transition number exceeded The maximum number of Transitions has been configured.

5 Maximum Action number exceeded The maximum number of Actions has been configured.

6 Maximum Variable number exceeded The maximum number of Variables has been configured.

7 Invalid sample time value Set sample time, cfg.T_sec, within (0, 0.01].

8 Invalid VelMax value Choose VelMax within (0, 1].

9 Invalid AccMax value Choose AccMax within [0.001, 120].

10 Invalid JrkMax value Choose JrkMax within [0.0005, 2000].

11 Invalid LoopENB value Choose LoopENB within { false, true }.

12 Invalid VelEnd value Choose VelEnd within (0, VelMax].

13 Invalid AccLim value Choose AccLim within [0.001, AccMax].

14 Invalid JrkLim value Choose JrkLim within [0.0005, JrkMax].

15 Invalid Timer_tick value Choose a positive integer value.

16 Invalid State index The index should be for a configured State index.

17 Invalid Condition index The index should be for a configured Condition index.

18 Invalid Transition index The index should be for a configured Transition index.

19 Invalid Action index The index should be for a configured Action index.

20 Invalid Variable index The index should be for a configured Variable index.

21 Invalid Variable type Choose variable type from the values in ST_PlanVar_e.

22 Invalid value of Comparison Choose comparison from the values in ST_PlanComp_e.

23 Invalid Operation Choose operation from the values in ST_PlanActOptn_e.

24 Invalid AndOr value Choose AndOr from the values in ST_PlanCond_e.

25 Improper Variable type ST_VAR_OUT Variables cannot have a value set to them.
ST_VAR_OUT Variables cannot be used in Conditions.
ST_VAR_IN Variables cannot be used in Actions.

26 Improper values in Comparison Value1 should be less than or equal to Value2.

27 Improper State index In Transitions FromState cannot be equal to ToState, and these
States must be equal to a configured State.

28 Improper Condition index in Transition In Transitions: CondIdx1 cannot be equal to CondIdx2, and these
Conditions must be equal to a configured Condition.

29 Improper EnterExit value Choose EnterExit from the values in ST_PlanActTrgr_e.

30 Improper AndOr during Variable deletion The AndOr value conflicts with the value of VarIdx. When deleting
a Variable, it causes a configuration error in a Transition.

31 Cannot delete Variable as an Action depends on
it

Remove Variable from Action configuration before deleting the
Variable.

32 Invalid VelLim value Choose VelLim within (0, VelMax).

Trajectory Planning www.ti.com

494 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Table 13-7. SpinTAC ™Position Plan ERR_code (continued)
ERR_code Description Solution

33 Invalid DecLim value Choose DecLim within [0.001, DecMax] and keep the ratio
DecLim/AccLim within [0.1, 10].

34 Invalid DecMax value Choose DecLim within [0.001, 120] and keep the ratio DecLim/
AccLim within [0.1, 10].

35 Invalid PosStepInt_mrev or PosStepFrac_mrev
for HaltState

Choose PosStepInt_mrev within [-2, 2] and PosStepFrac_mrev
within (-1, 1).

36 Invalid PosStepInt_mrev or PosStepFrac_mrev
for State

Choose PosStepInt_mrev within [-2147483647, 2147483647] and
PosStepFrac_mrev within (-1, 1).

37 Plan Configuration array declared is too small for
plan elements

Remove an Element from the configuration or declare a larger
configuration array.

38 Cannot delete a State as a Transition depends
on it

Remove State from Transition configuration before deleting the
State.

39 Cannot delete a State as an Action depends on it Remove State from Action configuration before deleting the State.

40 Improper values for variable comparison Variable comparison conditions cannot have comparison enum
greater than ST_COMP_ELW.

41 Cannot compare a variable to itself Ensure that the variable indexes passed to the function are
different and valid.

42 Cannot get a variable based Condition from the
index of a value based type of Condition

Pass an index that is known to contain a variable based
Condition.

43 Cannot delete a Condition as a Transition
depends on it

Remove Condition from Transition configuration before deleting
the Condition.

44 The first State must have a PosStep of 0 [MRev] Configure the first State to have PosStepInt and PosStepFrac
both equal to 0.

13.9 Conclusion
InstaSPIN-MOTION provides an easy way to design trajectory changes and motion sequences. This allows
you to quickly implement your application. It allows you to get your motion sequence designed and tested very
quickly. SpinTAC Velocity Move generates constraint-based, time-optimal, repeatable trajectory profiles. These
profiles are triggered by SpinTAC Velocity Plan which implements the application motion sequence.

www.ti.com Trajectory Planning

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

495

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Trajectory Planning www.ti.com

496 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.1 Overview..498
14.2 Low-Speed Operation with Full Load... 500
14.3 Speed Reversal with Full Load..511
14.4 Motor Startup with Full Load...518
14.5 Rapid Acceleration from Standstill With Full Load... 527
14.6 Overloading and Motor Overheating.. 536
14.7 InstaSPIN-MOTION™ and Low-Speed Considerations...541

Chapter 14
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

497

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.1 Overview
The FAST algorithm included in InstaSPIN-FOC has certain aspects that need to be considered
while operating at low speeds with mechanical load attached to the motor shaft. This document
describes several aspects of typical motor control problems while operating sensorless control during
low speed operation. Comprehensive lab results for the performance of FAST are documented in the
TMS320F28069F, TMS320F28068F, TMS320F28062F InstaSPIN-FOC Software Technical Reference Manual,
the TMS320F28054F, TMS320F28052F InstaSPIN-FOC Software Technical Reference Manual, and the
TMS320F28026F, TMS320F28027F InstaSPIN-FOC Software Technical Reference Manual.

The motor control scenarios to be covered in this section are:

1. Low-speed operation with full load
2. Speed reversal with full load
3. Motor startup with full load
4. Rapid acceleration from standstill with full load
5. Overloading and motor overheating.

The system used in these experiments includes the following components:

• Texas Instruments C2000 Processor: TMS320F28069F with InstaSPIN-FOC Version 1.6
• Texas Instruments Inverter Model: TMDSHVMTRPFCKIT Version 1.1
• IPM Motor with the following characteristics:

– Rated Voltage = 300 V
– Rated Current = 4 A
– Motor Maximum Current = 6 A
– Stator Resistance (Rs) = 2.6 Ω
– Stator Quadrature Inductance (Ls_q) = 13.5 mH
– Stator Direct Inductance (Ls_d) = 11.5 mH
– Rotor Flux (ψ) = 0.5 V/Hz = 0.08 Wb
– Rated Torque = 1.9 N.m

• Magtrol Dynamometer Model: HD-715-8N
• Magtrol Dynamometer Controller Model: DSP6001

The motor under test is coupled to a Dynamometer as shown in Figure 14-1.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

498 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUHI9
https://www.ti.com/lit/pdf/SPRUHW0
https://www.ti.com/lit/pdf/SPRUHP4
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 14-1. Photograph of Test Fixture

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

499

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.2 Low-Speed Operation with Full Load
In order to operate at low speeds, first let us discuss the low speed operation with no mechanical load. The
lowest speed we can control with no load can be seen visually in the motor rotation as well as in the current
waveform. For example, running the motor under test down to 30 RPM, or 2 Hz, is possible with a speed
variation of 30 ±3 RPM. However, in order to get to a speed fairly constant we must have the speed controller
responsive enough to compensate against speed variations.

14.2.1 Low Speed with Full Load Considerations

In summary the following considerations are needed when operating at low speeds:

• Enable offsets recalibration; described in Section 14.2.1.1.
• Enable stator Rs recalibration; described in Section 14.2.1.2.
• Disable forced angle; described in Section 14.2.1.3.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

14.2.1.1 Enable Offsets Recalibration

For low speed and full load performance to be as expected, the offsets for the currents and voltages need to
be well calibrated. In order to do this, the offset recalibration in the controller object should be enabled prior to
running the motor in closed loop. The following code example enables the offsets recalibration.

// enable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle, TRUE);

Keep in mind that the enable-function of the offsets recalibration must be called prior to enabling the controller,
which is done by calling the CTRL_setFlag_enableCtrl(ctrlHandle, TRUE) function.

Offsets recalibration is critical for low speed performance.

Offsets recalibration is critical for low speed performance, especially the voltage offsets, since in the low speed
range, the voltage feedback from the motor tend to be very small values, so having well calibrated offsets is a
must.

14.2.1.2 Enable Stator Rs Recalibration

Another important factor to consider when operating in low speeds is the motor model represented in software.
The stator resistance plays a significant role in the accuracy of the estimated parameters. Hence Rs recalibration
should be enabled prior to enabling the controller. The following code example enabled Rs recalibration.

// enable Rs recalibration
EST_setFlag_enableRsRecalc(obj->estHandle,TRUE);

14.2.1.3 Disable Forced Angle

When running in low speeds, forced-angle must be turned off in order to allow the estimator to converge to
the estimated values with no intervention of an external angle being forced. In order to disable forced-angle the
following code example can be used:

Forced-angle must be turned off to allow estimator to converge.

// disable the forced angle
EST_setFlag_enableForceAngle(obj->estHandle,FALSE);

14.2.1.4 Tune Speed Controller to Avoid Motor Stall

In order to continue driving the motor at low speeds, without stalling the motor, user must tune the speed
controller so that the reaction of the speed controller is fast enough to prevent the motor from completely

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

500 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

stopping during torque transients. The following functions can be used to update the speed controller inside of
InstaSPIN:

_iq New_Kp_spd;
_iq New_Ki_spd;
// set the kp and ki speed controller gains
CTRL_setKp(handle,CTRL_Type_PID_spd, New_Kp_spd);
CTRL_setKi(handle,CTRL_Type_PID_spd, New_Ki_spd);

14.2.1.5 Tune Voltage Feedback Circuit

Low speed operation assumes that the back EMF voltage coming back from the motor will be very small.
Since the FAST algorithm requires the phase voltages as inputs to the algorithm, it is encouraged to have the
maximum number of ADC bits per volt. For example, if the maximum input voltage to the system is 400 V, then
it is highly recommended to have a voltage feedback that only goes up to that voltage, so when low voltage is
present in the motor's back EMF (during low-speed operation) the maximum number of bits are present in the
ADC converter output so that the estimation has more information to support the motor model.

In order to illustrate the importance of having the maximum number of bits per volt, consider the
TMDSHVMTRPFCKIT Version 1.1 for the voltage feedback as shown in Figure 14-2.

Figure 14-2. Voltage Feedback Circuit of High-Voltage Kit (TMDSHVMTRPFCKIT)

This circuit with jumpers J1, J2, J3 and J4 open (see section M5 of the PCB), would give us a maximum
Vfb-Bus of 3.3 V when DC-BUS is at 409.9 V. This means that this setup provides the best ADC resolution for
motors with input of 409.9 V. However if the motor's operating voltage is only 100 V, then the ADC resolution
to represent the motor's internal voltage will be very small, in fact, around ¼ of what it could be. If the motor's
operating voltage is known to be 100 V, then the above circuit should be changed so that a maximum Vfb-Bus of
3.3 V is present in the ADC pin when DC-BUS is 100 V.

Scale voltage feedback circuit to maximize ADC 3.3V input range.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

501

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Changing the voltage feedback value affects two parameters configured in user.h. For example in the above
schematic, with J1, J2, J3 and J4 open, the following parameters in user.h are defined:

#define USER_ADC_FULL_SCALE_VOLTAGE_V(409.9)
#define USER_VOLTAGE_FILTER_POLE_Hz(375.5)

This can be derived as follows (J1, J2, J3 and J4 open):

ADC_INmax = 3.3 V

R1 = 300 kΩ + 820 kΩ = 1120 kΩ

R2 = 9.09 kΩ

max 1 2

2

ADC _IN R R
USER _ ADC _FULL _ SCALE _ VOLTAGE _ V 409.9 V

R

´ +

= =

2 1
Parallel

2 1

R R
R 9.017 k

R R

C 47 nF

´
= = W

+

=

Parallel

1
USER _ VOLTAGE _FILTER _POLE _Hz 375.5 Hz

2 R C
= =

´ p ´ ´

With J1, J2, J3 and J4 shorted, the following parameters in user.h are redefined:

#define USER_ADC_FULL_SCALE_VOLTAGE_V(112.2)
#define USER_VOLTAGE_FILTER_POLE_Hz(383.8)

This can be derived as follows:

ADC_INmax = 3.3 V

R1 = 300 kΩ

R2 = 9.09 kΩ

max 1 2

2

ADC _IN R R
USER _ ADC _FULL _ SCALE _ VOLTAGE _ V 112.2 V

R

´ +

= =

(79)

2 1
Parallel

2 1

R R
R 8.823 k

R R

C 47 nF

´
= = W

+

=

Parallel

1
USER _ VOLTAGE _FILTER _POLE _Hz 383.8 Hz

2 R C
= =

´ p ´ ´

14.2.2 Low Speed With Full Load Transient Examples

After considering the above requirements, let us look at a few examples of low speed response with the motor
under test using a dynamometer.

14.2.2.1 4-Hz, No-Load to Full-Load Transient

Figure 14-3 shows the current waveform under these conditions:

• Dynamometer = 1.9 N·m (full load)
• Speed Controller = 4Hz (60 RPM ± 1 RPM)

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

502 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Load Applied Here Load Removed Here

Figure 14-3. 4-Hz, No-Load to Full-Load Transient Plot

A torque transient of the motor's rated torque of 1.9 N·m is applied to the motor shaft, resulting in a current of
4 A. The electrical frequency as seen in the oscilloscope plot is 4 Hz. For a 4-pole pair motor, this frequency
results in a speed of 60 ± 1 RPM once it has stabilized. Notice that the time where the load is applied might be
different compared with the time of the capture variables. However the conditions of applied torque shown in the
scope plot compared to captured variables is identical. The difference in time is due to the fact that the capture
current was captured in a different test although having the same parameters.

FAST stands for Flux, Angle, Speed and Torque. Figure 14-4, Figure 14-5, Figure 14-6, and Figure 14-7 show
the behavior of the FAST algorithm and how the torque step command affects the FAST output variables.

FAST variables are consistent even with a 100% step- load.

Figure 14-4 is the estimated flux of the motor. It is actually the flux linkage provided by FAST, and it is shown to
be fairly constant. The variation of this flux is a result of different aspects such as motor parameter accuracy as
well as how well the magnetic circuit of the motor is designed for a particular load.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-4. Flux Plot

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

503

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 14-5, Figure 14-6, and Figure 14-7 show the flux angle provided by FAST. As can be seen, the angle is
tracked through the increase of motor load, and also the decrease of motor load.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-5. Angle Plot

If the angle is zoomed in where the motor is loaded, it can be seen how the rate of change of the angle changes
to a very low rate of change, and once the speed controller corrects for this, the rate of change is picked back up
to the commanded speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Angle

(pu)

Time (s)

Angle

Figure 14-6. Zoom-in on Angle Plot - Motor Loaded

The same behavior can be seen when the load is removed from the motor shaft. The speed is increased due to
the torque command provided by the speed controller, and after some time, the speed controller regulates the
speed down to the 4 Hz (60 RPM) command.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

504 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-7. Zoom-in on Angle Plot - Load Removed

It is worth mentioning that the purpose of showing the speed variation is not to show the performance of the
speed controller. In fact, the speed controller has nothing to do with the FAST estimator. Figure 14-8 shows how
the estimator tracks the speed of the motor even when the torque demand stalls the motor for a small period of
time.

0

20

40

60

80

100

120

140

160

180

200

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-8. Speed Plot

Figure 14-9 shows the torque signal produced by FAST. This torque signal is useful to know the instantaneous
torque on the motor shaft, and calculate motor loading without a torque sensor. This high bandwidth signal
shows tracking of the torque even when steps are commanded.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

505

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-0.5

0

0.5

1

1.5

2

2.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-9. Torque Plot

Also, we plot the Iq current waveform to show the field oriented control performance that FAST allows when
torque steps are commanded. As can be seen in the current plot for Iq (Figure 14-10), the response to the
current demand can follow a step as in the example, where a step load is applied to the shaft. The angle tracking
capability of the estimator allows this step response in the Iq controller. You might also notice that the torque
curve is not as flat as the current curve. This is due to the variation of the flux linkage seen in the previous flux
plot, possibly due to a mismatch on the motor model compared to what the reality of the model is.

-1

0

1

2

3

4

5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-10. Iq Current Plot

In the previous example it can be seen that when the load changes so drastically, the speed of the motor can
fall all the way to zero. This response can be improved with the speed controller loop itself, but the point of the
test is to show how the variables provided by FAST are consistent and valid even with a 100% step on the load
command.

14.2.2.2 2-Hz, No-Load to Full-Load Transient

Figure 14-11 shows the current waveform under these conditions:

• Dynamometer = 1.9 N·m (full load)
• Speed Controller = 2 Hz (30 RPM ± 3 RPM)

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

506 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Load Applied Here Load Removed Here

Figure 14-11. 2-Hz, No-Load to Full-Load Transient Plot

A torque transient of the motor's rated torque of 1.9 N·m is applied to the motor shaft, resulting in a current
of 4 A. The electrical frequency as seen in the oscilloscope plot is 2.2 Hz, which is about 3 RPM higher than
commanded by the speed reference. For a 4-pole pair motor, this frequency results in a speed of 30 ± 3 RPM
once it has stabilized.

The challenge we run into when using hysteresis dynamometers is that the torque production and the detent
torque present in the dynamometer shaft produce an instantaneous torque higher than the commanded torque,
causing the motor to be stalled from time to time. This is the main reason why we increased the torque
command of the dynamometer at a lower rate compared to the previous example, to avoid the dynamometer to
produce more torque than commanded when the motor is stalled temporarily.

Figure 14-12, Figure 14-13, Figure 14-14, and Figure 14-15 show the behavior of the FAST algorithm. FAST
stands for Flux, Angle, Speed and Torque, and this is how the torque step command affects those variables. The
first variable is the flux linkage of the motor.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-12. Flux Plot

Figure 14-13, Figure 14-14, and Figure 14-15 show the flux angle provided by FAST. As was seen with the
previous test, the angle is tracked through the increase of motor load, and also the decrease of motor load.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

507

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-13. Angle Plot

Zooming in the angle plot, we can see transients when the motor is being loaded, and when the load is removed.
As we get lower in speed, the quality of the signals, combined with the torque pulsations of the hysteresis
dynamometer, makes the angle not look like a perfect saw tooth. Even then, the angle information provides good
enough information to run a full FOC control at 2 Hz and a full load transient.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.3 1.5 1.7 1.9 2.1 2.3 2.4 2.6 2.8 3.0 3.2

Angle

(pu)

Time (s)

Angle

Figure 14-14. Zoom-in on Angle Plot - Increased Motor Load

Zooming in when the load is removed from the shaft, we can see an instantaneous angle tracking.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

508 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-15. Zoom-in on Angle Plot - Decreased Motor Load

The speed plot is shown in Figure 14-16. The target speed is 30 RPM, and we can see higher ripple on
the estimated speed compared to 60 RPM. This is due to the pulsating torque present in the hysteresis
dynamometer and also, the estimated speed output is instantaneous as opposed to every electrical cycle. So
any distortion on the angle ramp will be reflected in a speed oscillation.

FAST variables consistently enable FOC system to apply full torque even with a 100% step-load at low
speeds.

Also, when the load is completely removed, which is done by turning off the dynamometer controller, the speed
estimation follows the real speed even when there is rapid acceleration, as shown in Figure 14-11.

0

30

60

90

120

150

180

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-16. Speed Plot

The torque signal is shown in Figure 14-17. Oscillations are due to the low frequency of the estimator, as well as
the torque pulsations present in the hysteresis dynamometer at low speeds.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

509

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-17. Torque Plot

The current controller follows the curve of the commanded torque as can be seen in Figure 14-18, taking the
current to the rated 4 A in Iq.

-2

-1

0

1

2

3

4

5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-18. Iq Current Plot

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

510 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.3 Speed Reversal with Full Load
In order to do a speed reversal, either from high or low positive speed to high or low negative speed, at any
acceleration rate, it is important to consider the same points we considered for the torque transient response
example.

14.3.1 Low Speed with Full Load Speed Reversal Considerations

These considerations are required for this mode of operation:

• Enable offsets recalibration; described in Section 14.2.1.1.
• Enable stator Rs recalibration; described in Section 14.2.1.2.
• Disable forced angle; described in Section 14.2.1.3.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

14.3.2 Low Speed with Full Load Speed Reversal Examples

Once the above items are covered, let us look at a few examples of speed reversal response with the motor
under test using the dynamometer.

14.3.2.1 From -4 to +4 Hz with Full Load

Figure 14-19 shows the current waveform under these conditions. Notice how the current changes phase
indicating a change in direction.

Speed Reversal

Commanded Here

Figure 14-19. -4 to +4 Hz with Full Load Plot

The flux estimation can be seen to have a transient when it changes direction, although it stabilizes after a few
seconds. A constantly growing flux can be noticed from the plot shown in Figure 14-20. This can indicate a
slight mismatch between the motor model represented in software compared to the real system. The error in flux
might be due to inaccuracies of the modeled motor compared to the actual motor, possibly due to overheating
or current and voltage sensing tolerances. In cases where the flux is constantly growing, this might indicate that
the stator resistance is converging into a new value due to the motor load causing the motor to warm up. It is
recommended to try the Rs Online feature of InstaSPIN in such a case. For an example on how to run Rs Online
feature, see Chapter 15.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

511

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-20. Flux Plot

In Figure 14-21, we can see the flux angle changing phases when it is going through zero speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-21. Angle Plot

If we zoom-in when the motor is changing direction (Figure 14-22), we can see more clearly how this transition is
done. We can actually see that it changes direction twice. This is because at near zero, the algorithm tries to find
the direction in which the angle is rotating.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

512 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

Angle

(pu)

Time (s)

Angle

Figure 14-22. Zoom-in on Angle Plot

The estimated speed of the motor also shows how the speed when it crosses zero can have some error in sign
(Figure 14-23). This is when it is within ±10 RPM, which translates to ±0.66 Hz.

-80

-60

-40

-20

0

20

40

60

80

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-23. Speed Plot

The torque signal coming from FAST can be seen continuously growing from -1.9 Nm to +1.9 Nm (Figure 14-24),
with a small overshoot on the positive side. That overshoot might have been the accumulation of current in
the hysteresis dynamometer while going through zero speed, which is an expected behavior of these types of
dynamometers.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

513

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-3

-2

-1

0

1

2

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-24. Torque Plot

The quadrature current, Iq, is displayed in Figure 14-25. It can be seen how this follows a very similar waveform
compared to the estimated torque waveform. Not too much noticeable in this plot, but we can see that the
current is flatter than the torque. This is due to a flux estimation converging to a new value after some time
driving full load.

-6

-4

-2

0

2

4

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-25. Iq Current Plot

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

514 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.3.2.2 From -2 to +2 Hz with Full Load

Figure 14-26 shows the current waveform under these conditions. Notice how the current changes phase
indicating a change in direction.

Figure 14-26. -2 to +2 Hz with Full Load Plot

In this example the actual speed is about 2.5 Hz (37 RPM), so we have a total error of about 7 RPM in
this example. This error in the speed calculation is due to the error in flux. The error in flux might be due to
inaccuracies of the modeled motor compared to the actual motor, possibly due to overheating or current and
voltage sensing tolerances.

For best speed-reversal performance: enable Offsets and Rs Recal, disable forced angle, tune speed
controller to avoid stalls, tune voltage feedback circuit.

The flux is higher in this test, as shown in Figure 14-27. This again might be a difference in motor model
inaccuracies due to motor overheating after many tests under load.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-27. Flux Plot

The angle can be seen as it changes direction in Figure 14-28.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

515

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-28. Angle Plot

If we zoom-in on the angle (Figure 14-29), when it changes direction, we can see how FAST provides a stable
angle even when doing speed reversals with full load.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

Angle

(pu)

Time (s)

Angle

Figure 14-29. Zoom-in on Angle Plot

The speed has a double change in sign here as well (Figure 14-30), and again this is because at near zero
speed, especially with full load, the speed estimator chases the sign of the speed and in a transient, we can see
how it changes signs from ±10 RPM, or ±0.66 Hz.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

516 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-50

-40

-30

-20

-10

0

10

20

30

40

50

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-30. Speed Plot

The torque estimator provides a clean zero crossing, and final values (Figure 14-31). However, as the estimation
of the torque depends on the estimation of the flux, there is a small offset as the flux changed as per Figure
14-26 in this example.

-3

-2

-1

0

1

2

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-31. Torque Plot

The current, Iq, is also shown in Figure 14-32.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

517

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-32. Iq Current Plot

14.4 Motor Startup with Full Load
In this section we will discuss a set of considerations to have in order to allow a full load startup with InstaSPIN
and the FAST algorithm. After looking at the consideration we will look at a few practical examples.

14.4.1 Motor Startup with Full Load Considerations

The considerations discussed in the previous sections also apply to this mode of operation:

• Enable offsets recalibration; described in Section 14.2.1.1.
• Enable stator Rs recalibration; described in Section 14.2.1.2.
• Enable forced angle; described in Section 14.4.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

14.4.1.1 Enable Forced Angle

In order to start up the motor with full load from stand still, the estimator needs an initial rotating angle to allow
some back EMF to be present in the motor, as shown in Figure 14-33. Typically, less than 1 electrical cycle is
required for FAST to lock on the real angle. In order to enable a rotating angle, user must enable the forced
angle feature of InstaSPIN. Once the motor has gone through a startup, it is recommended to disable forced
angle so that the motor can go through a speed reversal. However, if the motor is stalled for a few seconds
during any of the low speeds or speed reversal tests, it is recommended to re-enable the forced angle mode to
get out of a stalled motor condition.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

518 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Fe_min

Frequency

T1
time

Forced delta Angle

FAST estimator

θ̂S

1

θ̂∆

Delta Angle

()

Estimated Angle

()

Figure 14-33. Enable Forced Angle

• The forced angle is applied to force the estimator's d-axis angle at low rotor speeds. The forced angle is
active from zero to the Fe_min frequency with the default setting of 1 Hz

• Closed loop vector control starts after time T1 by using the angle information from the FAST estimator output.
• The FAST algorithm converges on the rotor angle within one-cycle of electrical frequency. The FAST

algorithm is stable at all speeds, even at zero speed.
• For smooth transitions when changing speed direction, turn the forced angle off

The following code example enables forced angle prior to enabling the controller.

// enable the forced angle
EST_setFlag_enableForceAngle(obj->estHandle,TRUE);

FAST configuration different for best start-up performance: enable forced angle.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

519

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.4.2 Motor Startup with Full Load Examples

Once the above items are covered, let us look at a few examples of motor startup with full load using the
dynamometer.

14.4.2.1 From Standstill to 4 Hz with Full Load

Figure 14-34 shows the current waveform under these conditions. Notice how the current grows from 0 A all
the way to 6 A, which is set as the maximum output of the speed controller, or maximum Iq current controller
reference (see max current in Chapter 5). It can also be seen that within one cycle of forced angle, the motor
current goes back to 4 A, which is the rated current to produce full torque. Keep in mind that in this case the
maximum current of the motor is 6 A, while the rated current to produce rated torque is 4 A.

Figure 14-34. Standstill to 4 Hz with Full Load Plot

Figure 14-35. Speed Controller Cycle

Figure 14-36 is the flux plot, where we can see how it has a transient, and then it stabilizes.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

520 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-36. Flux Plot

As far as the angle goes, it can be seen that at the beginning, a forced angle is done for less than one cycle
(Figure 14-37).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-37. Angle Plot

In fact if we zoom-in we are able to tell how many cycles, or actually what percentage of one cycle, the angle
was forced. In this example only half of one electrical cycle was used for forced angle.

Typically, less than 1 electrical cycle required to lock on angle.

This can be calculated from Figure 14-38, where a slope of 1 electrical cycle per second is generated, since the
angle increased from 0 to 0.5 in 0.5 seconds.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

521

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Angle

(pu)

Time (s)

Angle

Figure 14-38. Zoom-in on Angle Plot

If other frequencies of forced angle are required, user can change the frequency by modifying the following value
in user.h file:

//! \brief Defines the forced angle frequency, Hz
#define USER_FORCE_ANGLE_FREQ_Hz (1.0)

This frequency might need to be changed due to startup time requirements, by providing a faster forced angle.
However, having a faster forced angle requires a faster speed in open loop, which might not be slow enough to
rotate the load in open loop.

The estimated speed tells a lot in this example (Figure 14-39). First, it can be seen that there was no initial
alignment of the motor compared to the forced angle, that's why the speed goes negative for a period of time.
Also, it can be seen that by the time the motor is aligned, there is more current than needed to speed up the
motor to the commanded speed. That is why the speed overshoots so much. Typically, a maximum of one
electrical cycle is needed for the estimator to catch up with the rotor's flux angle. So a typical maximum of one
electrical cycle would be driven in the reverse direction.

-60

-30

0

30

60

90

120

150

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-39. Speed Plot

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

522 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The estimated torque overshoots due to the transient present in the estimated flux, as shown in Figure 14-40.
Although as soon as the estimated angle aligns with the motor angle, this transient is reduced and the estimated
torque stabilizes and matches what the dynamometer controller displays.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-40. Torque Plot

The last plot we will show in this example is the current in Iq (Figure 14-41). Recall we have a limitation of the Iq
reference of 6 A, which is the maximum safe current for this motor. It can be seen how this maximum is reached
when starting up, then when there is angle alignment the current goes back to the rated current of 4 A.

-1

0

1

2

3

4

5

6

7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-41. Iq Current Plot

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

523

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.4.2.2 From Standstill to 2 Hz with Full Load

Again in Figure 14-42 the current reached the maximum safe current of this motor of 6 A, but this time for a
longer period of time. However, the time in which forced angle is applied is still under one electrical cycle. It can
also be seen that we are approaching the limits of the estimator, as the measured frequency shows 2.38 Hz,
where the commanded speed is 2 Hz, effectively a difference of about 6 RPM.

Figure 14-42. Standstill to 2 Hz with Full Load Plot

The estimated flux shows some error and a transient (Figure 14-43), although is still comparable to what we got
in other tests running at 2 Hz. The difference in flux compared to a rated flux of 0.5 v/Hz is the reason of the
difference of actual electrical frequency compared to estimated electrical frequency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-43. Flux Plot

The angle estimation shows a forced angle of just under one electrical cycle (Figure 14-44).

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

524 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-44. Angle Plot

Zooming in the angle, it can be seen how the first cycle is less than one second before it changes frequency
(Figure 14-45). Once the motor angle and estimated angle are aligned, the torque production is much higher,
causing a motor acceleration beyond the target speed of 30 RPM. This is why the cycle right after the forced
angle cycle has a much higher frequency than the following cycle.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Angle

(pu)

Time (s)

Angle

Figure 14-45. Zoom-in on Angle Plot

The speed overshoot can be seen in Figure 14-46. It can also be seen that the motor spins backwards for a
small period of time before accelerating to the commanded direction.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

525

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-30

0

30

60

90

120

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-46. Speed Plot

The estimated torque in Figure 14-47 shows the same behavior as the previous example: a transient at the
beginning due to the error in the estimated flux, and a steady state error possibly due to measurements
inaccuracies and motor heating up.

0

0.5

1

1.5

2

2.5

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-47. Torque Plot

The last plot in this example (Figure 14-48) shows the current Iq, which actually shows a torque production of
over 4 A, generating a higher torque than the previous example.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

526 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

1

2

3

4

5

6

7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-48. Iq Current Plot

14.5 Rapid Acceleration from Standstill With Full Load
In this section we will discuss a set of considerations to allow a full-load startup with the FAST algorithm
achieving the quickest ramp from standstill to commanded speed. Reduced start-up time is also discussed in
Figure 14-4. The challenges of a full-load fast-ramp at start-up are discussed in this section.

Regardless of the speed controller used, and speed controller gains, there are a few considerations, or
configurations, that need to be taken into account in order to get the motor in closed loop as fast as possible
from the moment the user enables the system. After looking at the considerations we will look at a few practical
examples.

14.5.1 Fastest Motor Startup with Full Load without Motor Alignment Considerations

The considerations discussed in the previous sections also apply to this mode of operation:

• Load valid offsets and disable offset recalibration; described in Section 14.5.1.1.
• Load valid Rs and disable Rs recalibration; described in Section 14.5.1.2
• Enable forced angle; Section 14.4.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

14.5.1.1 Load Valid Offsets and Disable Offset Recalibration

This configuration allows the system to avoid time spent doing the offsets recalibration after the user has
commanded a motor startup. However, since low speed and motor startup requires the offsets to be correct, the
user must load these pre-calibrated offsets prior to the CTRL_setFlag_enableCtrl(ctrlHandle, TRUE) function.
The following code example loads known pre-calculated offsets into the HAL object.

// disable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle,FALSE);
// set the current bias
HAL_setBias(halHandle,HAL_SensorType_Current,0,_IQ(I_A_offset));
HAL_setBias(halHandle,HAL_SensorType_Current,1,_IQ(I_B_offset));
HAL_setBias(halHandle,HAL_SensorType_Current,2,_IQ(I_C_offset));
// set the voltage bias
HAL_setBias(halHandle,HAL_SensorType_Voltage,0,_IQ(V_A_offset));
HAL_setBias(halHandle,HAL_SensorType_Voltage,1,_IQ(V_B_offset));
HAL_setBias(halHandle,HAL_SensorType_Voltage,2,_IQ(V_C_offset));

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

527

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Notice that I_A_offset, I_B_offset, I_C_offset, V_A_offset, V_B_offset and V_C_offset are the pre-calculated
offsets on previous runs of the system. The following example can be used to get these offsets from the HAL
object when they are updated after offsets recalibrations are enabled.

// enable automatic calculation of bias values
CTRL_setFlag_enableOffset(ctrlHandle,TRUE);
// Return the bias value for currents
I_A_offset = HAL_getBias(halHandle,HAL_SensorType_Current,0);
I_B_offset = HAL_getBias(halHandle,HAL_SensorType_Current,1);
I_C_offset = HAL_getBias(halHandle,HAL_SensorType_Current,2);
// Return the bias value for voltages
V_A_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,0);
V_B_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,1);
V_C_offset = HAL_getBias(halHandle,HAL_SensorType_Voltage,2);

14.5.1.2 Load Valid Rs and Disable Rs Recalibration

In order to avoid spending time recalibrating the resistance, it is also important to make sure that the resistance
value provided in user.h is accurate, and that the resistance recalibration feature is disabled. The resistance
provided in user.h is shown here:

#define USER_MOTOR_Rs (2.6)

And the following code example disables Rs recalibration:

EST_setFlag_enableRsRecalc(obj->estHandle,FALSE);

14.5.1.3 Fastest Motor Startup with Full Load without Motor Alignment Example

Figure 14-49 represents one of the phase currents when doing a fast acceleration with no alignment. As can be
seen, the current goes up to the maximum limit for less than one cycle, then it speeds up to the commanded
speed reference of 200 RPM.

Figure 14-49. Fast Acceleration Without Alignment Plot

The flux also has a transient which happens while the estimated angle is not aligned with the actual motor angle
(Figure 14-50), and then after the transient, it stabilizes to a fairly constant value.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

528 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-50. Flux Plot

The angle can be seen to be forced for the first cycle (Figure 14-51), and then the frequency is rapidly changed
since it is already in closed loop using the estimated angle instead of the forced angle.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-51. Angle Plot

Zooming in to the angle (Figure 14-52) it can be seen that the forced angle lasts less than once electrical cycle
to ramp up to the commanded speed of 200 RPM.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

529

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5

Angle

(pu)

Time (s)

Angle

Figure 14-52. Zoom-in on Angle Plot

Due to the initial misalignment, it can be seen that the speed goes negative for a short period of time (Figure
14-53), and once the estimated angle is aligned with the motor angle, the speed accelerates very rapidly up to
the commanded speed of 200 RPM. In fact, there is an overshoot due to the excess of current accumulated on
the integral portion of the speed controller while the angle was forced.

-80

-40

0

40

80

120

160

200

240

280

320

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-53. Speed Plot

We can see the effect of the flux angle error in the torque signal (Figure 14-54), as well as the excess in current
due to the forced angle. After this transient in the flux, the torque signal is accurate and can be seen constant
once the speed has stabilized.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

530 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-54. Torque Plot

The current Iq has an overshoot of about 0.5 A due to the step command on the speed, as shown in Figure
14-55. That overshoot can be seen as a small impulse at the beginning, and then it goes down to the limit of 6
A that we configured in user.h as the motor maximum current. The current goes down to the rated current value
of 4 A to produced full torque after the motor has sped up to the commanded speed and the estimated flux has
stabilized.

-1

0

1

2

3

4

5

6

7

8

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-55. Iq Current Plot

As a conclusion of this example we can say that the fastest acceleration we can achieve will depend on the initial
difference between the initial estimated angle and the real value of the motor. This is because the forced angle
feature will be enabled while those angles are aligned, taking a maximum of one electrical cycle. The electrical
cycle of the forced angle provided in user.h has a default frequency of 1 Hz, so worst case it takes 1 second to
speed up from standstill. However, depending on the type of load present in the motor shaft, this frequency of
the forced angle can be changed to a higher frequency, providing a fastest acceleration from standstill.

14.5.2 Fastest Motor Startup with Full Load with Motor Alignment Considerations

To overcome the initial motor misalignment problem, we will talk about using the Rs recalibration as a tool to
allow a motor alignment prior to running the motor in closed loop. In this example, the Rs recalibration current
is used to rotate the motor shaft to an initial alignment position. The considerations discussed in the following
sections also apply to this mode of operation:

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

531

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

• Load valid offsets and disable offset recalibration; described in Section 14.5.1.1.
• Enable Rs stator recalibration; described in Section 14.2.1.2.
• Maximize current slope; described in Section 14.5.2.1.
• Enable forced angle; Section 14.4.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

14.5.2.1 Maximize Current Slope

This consideration is required in this mode of operation since a negative DC current is applied to the motor in
order to recalibrate Rs. This DC current must be removed as fast as possible before running the motor in closed
loop. In order to do this, the following code example should be used to change the maximum current slope value
to a maximum.

// set max current slope value to a maximum
EST_setMaxCurrentSlope_pu(obj->estHandle,_IQ(127.99));

The input parameter of the maximum slope function expects a value in IQ24, which has a maximum value
of 127.99. This would cause a step increase in the current when it starts injecting current to recalibrate the
resistance, as well as a step to remove such current, which is what we want to accomplish.

14.5.2.2 Fastest Motor Startup with Full Load with Motor Alignment Example

In this example the application must allow an initial alignment time before running in closed loop. That alignment
time is configured in user.c as the Rs recalibration time, loaded in the following two array members:

pUserParams->RsWaitTime[EST_Rs_State_RampUp] = (uint_least32_t)(1.0*USER_EST_FREQ_Hz);
pUserParams->RsWaitTime[EST_Rs_State_Fine] = (uint_least32_t)(5.0*USER_EST_FREQ_Hz);

In this example, a total of 6 seconds will be used to align the motor. Alignment in this example should be done
with enough time and enough current to allow a visual motor reposition and alignment before running in closed
loop. In future revisions of InstaSPIN, initial position detection (IPD) will be added to avoid motor alignment
altogether. Keep in mind that the internal resistance Rs is only updated during the EST_Rs_State_Fine state.
Figure 14-56 shows one of the current waveforms when this is run in. It can be seen how clean the current
accelerates in a step from a DC value of -1 A to 0 A (which is the removal of the current used for the motor
alignment) and then from 0 A to 4 A sinusoidal (8 A peak to peak). This is because the motor was initially
aligned, and no reverse operation was caused by any misalignment. Again, the alignment should be verified
visually by the user.

Figure 14-56. Fastest Motor Startup with Full Load with Motor Alignment Plot

If we zoom-in the first portion of the current (Figure 14-57), we can see how the -1 A of current is removed
instantaneously with a step, due to our very high current slope configuration, and then it is followed by the

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

532 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

speed response. At this point, the speed controller can be tuned as aggressive as desired to achieve the desired
acceleration response.

Figure 14-57. Zoom-in on the Current Plot

We can see how the flux instead of a transient like it had before, now it only stabilizes to a constant value when
it's running in closed loop (Figure 14-58).

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

533

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-58. Flux Plot

The angle waveform goes from zero to a high frequency (Figure 14-59), suggesting that the forced angle was
not even active during ramp up due to the initial alignment.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-59. Angle Plot

Zooming in to the angle (Figure 14-60), again it can be seen that it ramped up with no interaction of the forced
angle feature, taking the motor into a closed loop right from standstill.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

534 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Angle

(pu)

Time (s)

Angle

Figure 14-60. Zoom-in on Angle Plot

Looking at the estimated speed (Figure 14-61), it can be seen that there is no negative rotation. Instead, the
speed response is the speed controller speed response, with no forced angle initial misalignments.

0

40

80

120

160

200

240

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-61. Speed Plot

The estimated torque also grows from zero to a target of almost 2 Nm (Figure 14-62), stabilizing at around 1.9
which is the target we set it to in the dynamometer.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

535

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

-0.5

0

0.5

1

1.5

2

2.5

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-62. Torque Plot

We can see how the current overshoots at the very beginning due to the high acceleration command provided by
the speed controller (Figure 14-63), and right after the overshoot we can see it stable at around 4 A producing
full torque.

-1

0

1

2

3

4

5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-63. Iq Current Plot

14.6 Overloading and Motor Overheating
In this section we will discuss a set of considerations to have in order to allow an overloading condition, and still
be able to run for long periods of time. In order to achieve this, we will make use of the Rs Online feature of
InstaSPIN which allows us to identify and recalibrate the stator resistance (Rs) while the motor is running.

14.6.1 Overloading and Motor Overheating Considerations

The considerations discussed in the following sections also apply to this mode of operation:

• Enable offsets recalibration; described in Section 14.2.1.1.
• Enable stator Rs recalibration; described in Section 14.2.1.2.
• Enable Rs online feature; described in Chapter 15.
• Enable forced angle; Section 14.4.1.1.
• Tune speed controller to avoid motor stall; described in Section 14.2.1.4.
• Tune voltage feedback circuit; described in Section 14.2.1.5.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

536 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

14.6.2 Overloading and Motor Overheating Example

In this example the load is increased 30% above the rated torque of the motor (Figure 14-64). The dynamometer
is set to a torque command of 2.5 N·m. Keep in mind that the rated torque capability of this motor is about 1.9
N·m, so in fact we are putting about 130% load to the motor shaft. This will cause the motor to overheat, hence
the need for the Rs Online feature to keep an accurate resistance while the motor is running.

In Figure 14-64, where a slow rotating angle, which is due to the Rs Online feature can be seen superimposed
on the 5 A amplitude current. To learn more about the Rs Online feature, see Chapter 15.

Figure 14-64. Overloading and Motor Overheating Plot

Zooming into the current (Figure 14-65), we can clearly see the frequency to be 13.33 Hz, which is exactly what
we command for the speed reference, which in this case is 200 RPM. The conversion is well known, which
depends on the number of pole pairs. Speed (RPM) = Speed (Hz) * 60 / Pole Pairs = 13.33 Hz * 60 / 4 = 200
RPM.

Figure 14-65. Zoom-in on Overloading and Motor Overheating Plot

The stator resistance is captured for a period of 5 minutes (300 seconds) and it is shown in Figure 14-66. It can
be seen that the value we start with is 2.8 Ohms, and during a period of about 200 seconds it reaches about
3.45 Ohms, stabilizing at this value.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

537

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

0
.0

3
0

.0

6
0

.0

9
0

.0

1
2

0
.0

1
5

.0

1
8

0
.0

2
1

0
.0

2
4

0
.0

2
7

0
.0

Rs

(Ohm)

Time (s)

Rs

Figure 14-66. Stator Resistance Plot

With this increase, we have a difference in resistance of (3.45-2.8)/2.8 * 100% = 23% increase. Applying the
equations we use in Chapter 15, this difference in resistance represents a motor temperature of:

0
0

1

R
1

R
T T

3.45
1

2.8
T 30 C

0.00393 C

T 89 C

-

-

= +
a

W
-

W
= ° +

°

= °

The following estimated values were taken after 10 minutes of working, where the resistance measures about
3.5 Ohms. The estimated flux (Figure 14-67) measures a value very close to the rated flux of 0.5 V/Hz.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Flux

(V/Hz)

Time (s)

Flux

Figure 14-67. Flux Plot

We plot the angle (Figure 14-68) when the motor is 30% overloaded.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

538 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Angle

(pu)

Time (s)

Angle

Figure 14-68. Angle Plot

Zooming into the angle (Figure 14-69), expanding one second of information, we see a clean and continuous
ramp. Keep in mind that the data here was taken every 200 samples, so there is a discontinuity at the end of
every cycle.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Angle

(pu)

Time (s)

Angle

Figure 14-69. Zoom-in on Angle Plot

The estimated speed is around 200 RPM, as shown in Figure 14-70.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

539

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

40

80

120

160

200

240

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Speed

(RPM)

Time (s)

Speed

Figure 14-70. Speed Plot

The estimated torque is around 2.5 Nm. Estimated torque, when overloading the motor, is also accurate and
fairly constant as can be seen in Figure 14-71.

0

0.5

1

1.5

2

2.5

3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Torque

(N.m)

Time (s)

Torque

Figure 14-71. Torque Plot

The current in this example is about 5.2 A or so (Figure 14-72), due to the 30% of overloading for a long period
of time, the current must be higher for higher stator resistance value in order to produce the commanded torque.

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

540 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

0

1

2

3

4

5

6

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Iq Current

(A)

Time (s)

Iq Current

Figure 14-72. Iq Current Plot

14.7 InstaSPIN-MOTION™ and Low-Speed Considerations
One of the considerations when operating at low speeds is that the speed controller must be tuned to avoid the
motor stalling. The SpinTAC speed controller provided in InstaSPIN-MOTION is an advanced speed controller
that provides a single parameter tuner and a wide operating range. These combine to make it easy to tune the
SpinTAC speed controller to avoid motor stall when operating at low speed. The one important note when tuning
the SpinTAC speed controller for low speed operations is that the Bandwidth might need to be set higher than for
rated speed operations. This needs to be done so that the SpinTAC speed controller will act more aggressivly to
cancel disturbances and regulate low speeds. More information about the SpinTAC speed controller provided in
InstaSPIN-MOTION can be found in Chapter 12.

www.ti.com
Managing Full Load at Startup, Low-Speed,

and Speed Reversal

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

541

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Managing Full Load at Startup, Low-Speed,
and Speed Reversal www.ti.com

542 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.1 Overview..544
15.2 Resistance vs. Temperature.. 545
15.3 Accurate Rs Knowledge Needed at Low Speeds Including Startup..545
15.4 Introduction to Rs Online Recalibration...545
15.5 Rs Online vs. Rs Offline...548
15.6 Enabling Rs Online Recalibration...550
15.7 Disabling Rs Online Recalibration..552
15.8 Modifying Rs Online Parameters.. 552
15.9 Monitoring Rs Online Resistance Value...560
15.10 Using the Rs Online Feature as a Temperature Sensor..561
15.11 Rs Online Related State Diagrams (CTRL and EST)... 561

Chapter 15
Rs Online Recalibration

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

543

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.1 Overview
The stator resistance of the motor’s coils, also noted as Rs, can vary drastically depending on the operating
temperature of the coils (also known as motor windings). This temperature might increase due to several factors.
The following examples list a few of those conditions where the stator coils temperature might be affected:
• Excessive currents through the coils.
• Motor's enclosure does not allow self cooling.
• Harsh operation environment leading to temperature increase
• Other heating elements in motor's proximity.

As a result of the temperature increase, there is a resistance increase on the motor's windings. This resistance
to temperature relationship is well defined depending on the materials used for the windings themselves.

Rs online recalibration is a feature of InstaSPIN-FOC that is used to recalibrate the stator resistance, Rs, while
the motor is running in closed loop. The term online in this case is used to describe a system that is running
a motor in closed-loop field-oriented control (FOC). This feature is implemented internally within the FAST
estimator, and source code is not available, however, all the parameters within this feature can be modified
according to applications requirements, as it will be explained in this chapter. Figure 15-1 shows the FAST
estimator, highlighting the interface areas related to Rs Online.

Figure 15-1. FAST™ Estimator - Rs Online Highlighted

Rs Online Recalibration www.ti.com

544 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.2 Resistance vs. Temperature
A common material for the windings is copper. The following equation represents a linear approximation of the
resistance and temperature relationship:

R = R0[1 + α(T − T0)] (80)

Where:

• R: Resistance in Ohms at temperature T, in Ohms (Ω)
• R0: Resistance in Ohms at temperature T0, in Ohms (Ω)
• α: Temperature coefficient of the material, in inverse Celsius (°C-1)
• T: Final temperature of the material, in Celsius (°C)
• T0: Reference temperature of the material, in Celsius (°C)

For example, consider a stator resistance, Rs, to be 10 Ω at 20°C, and the windings are made out of copper,
with temperature coefficient of 0.00393°C-1. If the motor heats up to 150°C, the new stator resistance will be:

R = R0[1 + α(T − T0)] (81)

R = 10 Ω[1 + 0.00393°C−1(150°C − 20°C)] (82)

R = 15.109 Ω (83)

As can be seen, there is a significant resistance change depending on the temperature, in the example, almost
52% percent increase.

15.3 Accurate Rs Knowledge Needed at Low Speeds Including Startup
The motor model used for FAST is affected by this resistance change, especially at low speeds. This is because
at low speeds the majority of the voltage drop inside of the motor model is governed by the stator resistance and
the DC component of the current:

Rsis (84)

On the other hand, stator resistance changes outside of the low speed range do not affect the performance of
the motor model significantly since at medium to high speeds the internal voltage drop of the model is governed
by the back EMF and the inductance times the derivative of the current, or:

s
s s

di
L e

dt
+

(85)

It is then required for low speed performance to have an accurate knowledge of the stator resistance, especially
when operating at full loads, including starting up the motor from stand still at full load. The following section will
introduce the use of Rs Online recalibration in the context of InstaSPIN-FOC.

15.4 Introduction to Rs Online Recalibration
Rs Online recalibration is added to InstaSPIN-FOC to provide an accurate stator resistance while the motor is
operating in closed loop. The updates of the resistance are done in real time, and the motor's model is updated
according to the new resistance, providing the best performance results when the motor is running in the entire
operating range, from no load, up to full load capability of the motor.

Taking a closer look to the InstaSPIN-FOC block diagram, Rs Online is enabled by setting a flag. Stator
resistance is measured while the motor is running through a current injection on the direct component of the
current, also known as D-axis current. Figure 15-2 highlights the areas used for Rs Online recalibration.

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

545

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable Rs Online Recalibration

Rs

a

Rr

a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

Enable PowerWarp¡

Motor Type

Figure 15-2. Rs Online Recalibration

As can be seen from the block diagram, the online resistance recalibration is done by adding an additional
component to Irated. This addition is performed within the FAST estimator, and Irated that comes out of FAST
already contains the current needed for Rs Online recalibration. This Irated can be zero for permanent magnet
motors, or the magnetizing current for induction motors. In the case of field weakening or field boosting, another
current can be added as User_IdRef and this additional current does not interfere with Rs Online recalibration.

An important point to notice is that the Rs Online recalibration is calculated from the alternating value of the
additional Id injected by the FAST module. These currents are alternating between positive and negative to allow
the internal algorithm to function. In addition to that, the user can still command a user's Id reference on top of
the value coming from FAST. A typical scenario would be for example to have a negative Id reference to operate
in field weakening, and at the same time, have FAST provide a new Irated to compute the online resistance
recalibration. This is expected to be a typical use case and it would work giving expected results from both field
weakening and online resistance recalibration.

Due to the current injection done, the phase current waveform going to the motor loses it sinusoidal shape
depending on the ratio between the injected current and the mechanical load present on the shaft. For light
loads, the sinusoidal shape is greatly affected, and for partial to full load the current shape change is barely
perceivable. A few plots are shown below, with a motor running at 500 RPM and Rs Online enabled and disabled
at various mechanical loads. It can be seen that in some cases the shape of the phase currents lose their
sinusoidal shape.

Figure 15-3 shows that currents are sinusoidal at light loads when Rs Online is disabled.

Rs Online Recalibration www.ti.com

546 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

25x Zoom

Figure 15-3. Phase Currents at Light Loads - Rs Online Disabled

Under the same mechanical loading conditions, when Rs Online is enabled it can be seen in Figure 15-4 how
the currents shape is a distorted sinusoidal waveform.

25x Zoom

Figure 15-4. Phase Currents at Light Loads - Rs Online Enabled

On the other hand, a motor mechanically loaded, with and without Rs Online, the shape change is difficult to
perceive. Figure 15-5 shows when Rs Online is disabled and there is a mechanical load present.

25x Zoom

Figure 15-5. Phase Currents with Mechanical Load - Rs Online Disabled

And these are the currents under mechanical load and Rs Online enabled, as shown in Figure 15-6.

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

547

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

25x Zoom

Figure 15-6. Phase Currents with Mechanical Load - Rs Online Enabled

As can be seen on the last plot, even though Rs Online is enabled, at medium to high loads the distortion is
much less, and as the load increases, the distortion is no longer perceivable. In the following sections of this
document, it will be shown how low the additional current is to allow Rs Online recalibration.

15.5 Rs Online vs. Rs Offline
InstaSPIN-FOC includes another resistance recalibration, which is done before the motor is spun, known as Rs
Offline. Rs Offline requires the motor to be at standstill, injecting a DC current into Id. On the other hand, Rs
Online requires the motor to be spinning in order to recalibrate the resistance, injecting an AC current into Id.

Both Rs Offline and Rs Online are critical portions of InstaSPIN-FOC to provide the best low speed performance.
In a typical application, Figure 15-7 shows the use of both Rs offline and Rs online.

Rs Online Recalibration www.ti.com

548 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 15-7. Rs Online and Rs Offline Flowchart

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

549

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.6 Enabling Rs Online Recalibration
In order to enable Rs Online, a couple of parameters need to be setup. One of the most important parameters is
how much current will be injected into the D-axis current (Id) in order to perform Rs Online recalibration. Usually,
what is recommended is to have a minimum of 5% of the rated current in order to have measurable current to
get a good recalibration of the resistance while the motor is running.

_iq RsOnLineCurrent_A = _IQ(USER_MOTOR_MAX_CURRENT * 0.05);

Note that the multiplication is done by the pre-compiler, using a floating point for the
USER_MOTOR_MAX_CURRENT define, times 0.05, representing the 5%, and then converting the floating point
results into a global IQ value. For more information about the IQmath library, see the C28x IQMath Library – A
Virtual Floating Point Engine – Module User's Guide.

Also, before enabling Rs Online, user must set:
• Initial Q format value of the resistance representation. This is done by using the function:

EST_setRsOnLine_qFmt (). The initial value must be taken from the value measured by the Rs Offline,
while the motor is at stand still. This value can be read by calling the following function: EST_getRs_qFmt ().

• Id magnitude used for Rs Online set to zero. Done by using function: EST_setRsOnLineId_mag_pu ()
• Id in per-units value set to zero. Done by using function: EST_setRsOnLineId_pu ()
• Both enable Flag and update flag to FALSE, done by calling these two functions:

EST_setFlag_enableRsOnLine () and EST_setFlag_updateRs ().

Both Id_mag_pu and Id_pu values need to be set to zero in order to prevent the estimator to keep any residual
current references when it is disabled. In future releases of InstaSPIN, this will not be needed, and only the
Id_mag_pu will be required to be reset to zero, but for the 2806xF devices, both require a value of zero to be
written before Rs Online is enabled, or right before Rs Online is disabled.

The two flags perform different tasks inside the estimator. The enableRsOnLine flag allows the entire Rs Online
feature to run, updating an internal variable holding the most recent resistance value, and injecting current into
Id. The second flag, updateRs, allows the resistance value to be used by the motor model. If the updateRs flag
is never set, but the enableRsOnLine flag is set, the resistance can still be used to monitor how the resistance
changes, but the internal motor model will not use this varying resistance. If the motor temperature increases
drastically, and the resistance is not updated in the motor model (by setting the updateRs flag to TRUE), the
performance of InstaSPIN will be affected, and the low speed performance will not be as desired. Also, the motor
might not startup under full load.

The following code example shows how to set the initial values as well as how to check the condition to make
sure the initial values are set when the state machine is in the proper state. This is done prior to enabling Rs
Online recalibration:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// get the controller state
gMotorVars.CtrlState = CTRL_getState(ctrlHandle);
// get the estimator state
gMotorVars.EstState = EST_getState(obj->estHandle);
if((gMotorVars.CtrlState <= CTRL_State_OffLine) ||
 ((gMotorVars.CtrlState == CTRL_State_OnLine)&&
 (gMotorVars.EstState == EST_State_Rs)))
 {
 EST_setRsOnLine_qFmt(obj->estHandle,EST_getRs_qFmt(obj->estHandle));
 EST_setRsOnLineId_mag_pu(obj->estHandle,_IQ(0.0));
 EST_setRsOnLineId_pu(obj->estHandle,_IQ(0.0));
 EST_setFlag_enableRsOnLine(obj->estHandle,FALSE);
 EST_setFlag_updateRs(obj->estHandle,FALSE);
 }

This code example can be executed outside of the interrupt, in the main forever loop, since it only involves global
variables and no time critical code execution. Keep in mind that the code inside the "if" condition is executed
before the Rs Online is enabled.

Rs Online Recalibration www.ti.com

550 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRC990
https://www.ti.com/lit/pdf/SPRC990
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

One of the conditions to reset all the parameters of Rs Online as shown in the previous code example is
when CtrlState is less than or equal to CTRL_State_OffLine. This condition means that the Rs Online should
be disable and reset when the state machine is either Idle (motor not being energized), or when doing the
offsets recalibration. The other state where these initial values have to be done is when the control state is
Online (CTRL_State_OnLine), and the estimator state is EST_State_Rs, in other words, when the Rs Offline
recalibration is being done. All these conditions represent a motor at stand still. In order to relate these states to
the entire state machine within InstaSPIN, see Chapter 6. The CTRL_State_OffLine state is shown as Offline in
the CTRL state machine diagram, the CTRL_State_OnLine state is shown as Online in the CTRL state machine
diagram and the EST_State_Rs state is shown as Rs in the EST state machine diagram

When the motor is running, we need to make sure that the resistance given by the Rs Online recalibration
feature is close enough to the initial resistance, given by the Rs Offline feature. This is done to ensure a smooth
transition between both resistance values causing no disturbances to the closed loop system. This can be done
with the following code example, which includes the "else" condition from the previous code example. The
following condition will be executed whenever the motor is not at standstill, in other words, when the motor is
spinning. This condition will be used to enable Rs Online as shown.

else
 {
 // Scale factor to convert Amps to per units.
 // USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
 _iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);
 Rs_pu = EST_getRs_pu(obj->estHandle);
 RsOnLine_pu = EST_getRsOnLine_pu(obj->estHandle);
 Rs_error_pu = RsOnLine_pu -Rs_pu;
 EST_setFlag_enableRsOnLine(obj->estHandle,TRUE);
 EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));
 // Enable updates when Rs Online is only 5% different fromRs Offline
 if(_IQabs(Rs_error_pu) <_IQmpy(Rs_pu,_IQ(0.05)))
 {
 EST_setFlag_updateRs(obj->estHandle,TRUE);
 }
 }

Notice that in this example we are enabling the Rs Online recalibration by calling:

EST_setFlag_enableRsOnLine(obj->estHandle,TRUE)

However, the Rs Online value will not be updated until the update flag is set to TRUE. The update flag is set to
TRUE when the Rs Online value is within a desired proximity to the initial value provided by Rs Offline, in this
case 5% of that value. For applications that require full torque at start up, it is recommended to have a smaller
percentage of difference between Rs Online and Rs Offline, that is, 3% or so instead of 5%. As soon as the Rs
Online value and Rs Offline value are within 5% difference, the Rs Online update flag is set by calling:

EST_setFlag_updateRs(obj->estHandle,TRUE)

Once both flags are enabled, Rs Online recalculates the resistance in real time, and the estimator will update its
internal motor model according to that new resistance.

Also, as noted in the code example, the magnitude of the current to be injected in order to estimate the
resistance Online is set by calling the following function:

EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

551

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.7 Disabling Rs Online Recalibration
In order to disable Rs Online recalibration the user can refer to the first code example, listed here also, where
the initial values are written and flags are disabled. This code example, as discussed previously, also checks for
the right state of the state machine in order to disable Rs Online appropriately:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// get the controller state
gMotorVars.CtrlState = CTRL_getState(ctrlHandle);
// get the estimator state
gMotorVars.EstState = EST_getState(obj->estHandle);
if((gMotorVars.CtrlState <= CTRL_State_OffLine) ||
 ((gMotorVars.CtrlState == CTRL_State_OnLine)&&
 (gMotorVars.EstState == EST_State_Rs)))
 {
 EST_setRsOnLine_qFmt(obj->estHandle,EST_getRs_qFmt(obj->estHandle));
 EST_setRsOnLineId_mag_pu(obj->estHandle,_IQ(0.0));
 EST_setRsOnLineId_pu(obj->estHandle,_IQ(0.0));
 EST_setFlag_enableRsOnLine(obj->estHandle,FALSE);
 EST_setFlag_updateRs(obj->estHandle,FALSE);
 }

15.8 Modifying Rs Online Parameters
Several parameters can be tuned and modified within the Rs Online feature of InstaSPIN-FOC. The following list
of parameters will be discussed in further detail in this section:

• Injected Current Magnitude
• Slow Rotating Angle
• Delta Increments and Decrements of the Rs Online Value
• Filter Parameters

15.8.1 Adjusting Injected Current Magnitude

The first parameter described in this section is the current injected in the D-axis (Id) to allow an Rs Online
recalibration. This current is generated by the estimator module itself when the Rs Online is enabled, and its
magnitude is user configurable. As discussed earlier, the recommended value for the injected current is around
5% of the motor's rated current to allow a measurable current back from the motor and hence allow an accurate
Rs Online recalibration. For example, consider a motor with a rated current of 5 A. The injected current in this
scenario is 0.25 A. The following code example sets the injected current for Rs Online to be 0.25 A:

// Scale factor to convert Amps to per units.
// USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
_iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);
// Value corresponding to 0.25 Amps
_iq RsOnLineCurrent_A = _IQ(0.25);
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// Scale value from Amps to per units and set through the use of an API
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

When Rs Online is running, Figure 15-8 shows how the amplitude in the current waveform can be seen, and
measured to be approximately 0.25 A when no mechanical load is applied to the motor. As can be seen,
the no load current in this case is 0.1 A, and when adding a 0.25 A for Rs Online, the peak current is

2 2 2 2
s q dI I I 0.1 0.25 0.27 A= + = + =

Rs Online Recalibration www.ti.com

552 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Rs Online

Disabled

Rs Online

Enabled

0.1

A
0.27

A

Peak to peak Current =

0.54 A

Figure 15-8. Result of Adding 0.25 A for Rs Online

As the load of the motor increases, the additional current required for Rs Online becomes proportionally smaller
as can be seen in Figure 15-9. In this case we have a load current of 0.35 A, and we are keeping an Rs
Online injection current of 0.25 A. Using the same equation as in previous example, the maximum current is:

2 2 2 2
s q dI I 0.35 0.2 I 5 0.43A= + = + =

Rs Online

Enabled

0.35

A

0.43

A

Rs Online

Disabled

Peak to peak current =

0.86 A

Figure 15-9. Result of Increasing Load for Rs Online

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

553

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Another example is if a motor is 10 A, and the injected current for Rs Online is 0.5 A. The same code example
with a different current value is used:

// Scale factor to convert Amps to per units.
// USER_IQ_FULL_SCALE_CURRENT_A is defined in user.h
_iq sf = _IQ(1.0/USER_IQ_FULL_SCALE_CURRENT_A);
// Value corresponding to 0.5 Amps
_iq RsOnLineCurrent_A = _IQ(0.5);
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// Scale value from Amps to per units and set through the use of an API
EST_setRsOnLineId_mag_pu(obj->estHandle,_IQmpy(RsOnLineCurrent_A,sf));

Similar to the previous examples, the maximum current can be calculated by using the same equation:

2 2 2 2
s q dI I 0.6 0. AI 5 0.78= + = + = (86)

And the corresponding oscilloscope plot in this example is shown in Figure 15-10.

Rs Online

Enabled

0.6 A 0.78

A

Rs Online

Disabled

Figure 15-10. Maximum Current With Rs Online Enabled

In general, if we consider a case where the motor is fully loaded, in the case of a 10 A motor, and adding 5% of
that current for Rs Online recalibration, the total maximum current will be:

2 2 2 2
s q dI I 10.0 0.5 10.0I 125 A= + = + = (87)

In other words, the additional current supplied to the motor will only be 0.0125 A, representing only 0.125 % of
the rated current. This current is usually not even perceived by the motor in terms of additional heating.

For example, the following scenario is for a 2.2 A motor, with an Rs Online current of 5% of the rated current,
equal to 2.2*0.05 = 0.11 A. The additional current is only 0.125% compared to the rated current, which equals
to 2.2*0.00125 = 0.0028 A. When we plot before and after Rs Online has been enabled, the additional current
is not even noticeable on the oscilloscope (Figure 15-11). It is also important for the reader to notice that the
vertical zoom of the oscilloscope changed from 500mA/ to 2.00A/ since now the amplitudes of the current are
much higher than before due to the mechanical loading of the motor.

Rs Online Recalibration www.ti.com

554 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Rs Online

Disabled

Rs Online

Enabled

2.2

A 2.2 A P��µ���v��= 0.0028 A

Not noticeable

Figure 15-11. 2.2-A Motor With an Rs Online Current of 5%

15.8.2 Adjusting Slow Rotating Angle

The implementation of the Rs Online feature requires a certain internal vector to be rotated slowly as the motor
spins. This slowly rotating vector is set by default to a value of 0.00001, in per unit value, so it will generate a
vector at a frequency of 0.00001 * Estimator Frequency in Hz. So if the estimator frequency is 10 kHz, then the
rotating vector will be at a frequency of 0.1 Hz, or with a period of 10 seconds. This rotating vector is needed so
that the Rs Online converges to an average resistance measured at different points of that vector.

Although the details are not disclosed on how Rs Online estimates a varying resistance, it is important to
know that this rotating angle is used to estimate a resistance at various current vectors. Over time, the online
resistance is the average resistance produced by the measurements at all the vectors as they are rotated slowly.
In order for the user to know what the rotating vector is set to, besides looking at the currents in the oscilloscope,
users can use the following code example.

// These defines are in user.h
#define USER_NUM_ISR_TICKS_PER_CTRL_TICK (1)
#define USER_NUM_CTRL_TICKS_PER_EST_TICK (1)
#define USER_PWM_FREQ_kHz (10.0)
#define USER_ISR_FREQ_Hz (USER_PWM_FREQ_kHz * 1000.0)
#define USER_CTRL_FREQ_Hz (uint_least32_t)(USER_ISR_FREQ_Hz \
 /USER_NUM_ISR_TICKS_PER_CTRL_TICK)
#define USER_EST_FREQ_Hz (uint_least32_t)(USER_CTRL_FREQ_Hz \
 /USER_NUM_CTRL_TICKS_PER_EST_TICK)
// Initialize obj to the controller handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
_iq delta_pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);
_iq RsOnLine_Angle_Delta_pu = EST_getRsOnLineAngleDelta_pu(obj->estHandle);
// By default, the returned value in the following line will be close to:
// _IQ(0.00001), representing 0.0001 kHz, or 0.1 Hz
_iq RsOnLine_Angle_Freq_kHz = _IQmpy(RsOnLine_Angle_Delta_pu, \
 delta_pu_to_kHz_sf);

For more information about the software execution clock trees used in InstaSPIN, as well as the decimation
factors, also known as tick rates, see Chapter 9.

If the angle delta is never changed, a default value of 0.00001, in per unit value, is set by the library, which
results in a slow rotating angle frequency of 0.00001 times the estimation frequency. If the estimation frequency
is the same as the PWM frequency, and it is set to 10 kHz, then the slow rotating angle will have a frequency
of 0.00001 * 10000 = 0.1 Hz (period of 10 seconds). The slow rotating angle can be seen from the current
waveform, as the angle changes how the current is injected into Id. Figure 15-12 shows how the current changes
its shape at a frequency equal to the slow rotating angle frequency.

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

555

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

10 s

Figure 15-12. Current Shape Changes When Frequency Equals Slow Rotating Angle Frequency

An example of an application that might need a change in this rotating angle is when the motor's temperature
increases at a much higher rate, so this rotating angle needs to be faster. The rotating vector does not need to
be changed as the temperature increases. It only needs to be set once depending on the expected worst case
temperature dynamics of the system, and there is no need to fine tune this value as temperature varies. For
example, if the temperature dynamics of a system requires a rotating angle to be changed to 0.2 Hz (period of 5
seconds), the following code example is used to change the slowly rotating angle to the new value of 0.2 Hz:

// This new define represents the desired RsOnLine rotating angle frequency
#define RSONLINE_ANGLE_FREQ_Hz (0.2)
// Initialize obj to the controller handle
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
// The scale factor (sf) calculation is done by the pre-compiler
_iq delta_hz_to_pu_sf = _IQ(1.0/(float_t)USER_EST_FREQ_Hz);
_iq RsOnLine_Angle_Freq_Hz = _IQ(RSONLINE_ANGLE_FREQ_Hz);
_iq RsOnLine_Angle_Delta_pu = _IQmpy(RsOnLine_Angle_Freq_Hz, \
 delta_hz_to_pu_sf);
EST_setRsOnLineAngleDelta_pu(obj->estHandle,
 RsOnLine_Angle_Delta_pu);

As can be noticed in this code example, the function now sets a value for angle delta, so it expects a parameter
to be written, which in this case is variable RsOnLine_Angle_Delta_pu.

The resulting oscilloscope plot related to the configuration done in the previous code example is shown in Figure
15-13.

Rs Online Recalibration www.ti.com

556 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

 5 s

Figure 15-13. Result of RsOnLine_Angle_Delta_pu

15.8.3 Adjusting Delta Increments and Decrements of the Rs Online Value

Inside of the estimator, and in particular, the part of the estimator that runs the Rs Online feature, the actual
value of the resistance is updated by adding and/or subtracting fixed delta values, depending on the direction
where the resistance is going. In general this parameter does not need to be changed, unless the change in
resistance is too fast, for example, due to rapid motor heating. By default both the delta increment and delta
decrement are set to a value of 0.00001, represented in IQ30 format, which can be verified with the following
code example:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
_iq30 delta_dec = EST_getRsOnLine_delta_dec_pu(obj->estHandle);
_iq30 delta_inc = EST_getRsOnLine_delta_inc_pu(obj->estHandle);

In order to change those deltas, use the following code example, to for example, twice the default value, or
0.00002, in IQ30:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
EST_setRsOnLine_delta_dec_pu(obj->estHandle, _IQ30(0.00002));
EST_setRsOnLine_delta_inc_pu (obj->estHandle, _IQ30(0.00002));

Notice that these two functions set the deltas, as opposed to get the deltas, so they expect a parameter besides
the handle.

Figure 15-14 shows how the resistance will respond to an initial value difference according to the delta values.
For example, right at the beginning when Rs Online is first enabled, there is an initial resistance value which is
different than the steady state value. Having a value of 0.00001 will lead to the following plot, which shows a
slope = (0.77-0.4)/3.1 = 0.12 Ω/s.

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

557

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

3.1 s

Rs Online = 0.4 Q

Starting

Rs Online = 0.77 Q

Figure 15-14. Resistance Response to Initial Value Difference

When the delta values are changed to double the default value, a much faster settling time is shown in Figure
15-15, with twice the slope = (0.71 - 0.4) / 1.3 = 0.24 Ω/s.

Starting

Rs Online = 0.71 Q

Rs Online = 0.4 Q

1.3 s

Figure 15-15. Delta Values Changed to Double Default Value

It is recommended that the rate of change selected for this delta is slow enough to provide smooth variations
of the resistance, and fast enough to track the temperature changes of the system. Generally the initial value of
0.00001 will work, but keep the deltas in mind when fine tuning a particular application, especially when drastic
temperature changes are expected.

15.8.4 Adjusting Filter Parameters

There are two first order cascaded filters inside of the Rs Online estimator which are run in order to get an
accurate and steady value of the stator resistance. A total of four filters are run, one set of two cascaded ones
for the currents, and one set of two for the voltages. Each set of two filters use the same coefficients by default.
However, depending on the response required by the application, the coefficients of both filters can be read and
written individually. The default cutoff frequency of these filters is set to 0.2 Hz. This cutoff frequency can be
verified by the user with the following code example:

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,
 &pfilter_i0->b0, &pfilter_i0->a1, &pfilter_i0->y1,
 &pfilter_i1->b0, &pfilter_i1->a1, &pfilter_i1->y1);
EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
 &pfilter_v0->b0, &pfilter_v0->a1, &pfilter_v0->y1,
 &pfilter_v1->b0, &pfilter_v1->a1, &pfilter_v1->y1);
_iq pu_to_kHz_sf = _IQ((float_t)USER_EST_FREQ_Hz/1000.0);
cutoff_freq_kHz_i0 = _IQmpy(pfilter_i0->b0, pu_to_kHz_sf);
cutoff_freq_kHz_i1 = _IQmpy(pfilter_i1->b0, pu_to_kHz_sf);
cutoff_freq_kHz_v0 = _IQmpy(pfilter_v0->b0, pu_to_kHz_sf);
cutoff_freq_kHz_v1 = _IQmpy(pfilter_v1->b0, pu_to_kHz_sf);

By default, the cutoff frequency variables will return a value of 0.0002, representing 0.0002 kHz, or 0.2 Hz.
Generally, this cutoff frequency should be tuned so that the resistance value can grow depending on the
expected temperature dynamics of the application. Figure 15-16 is an example of how the Rs Online varies
depending on this cut-off frequency. We plot 0.1 Hz, 0.2 Hz and 0.5 Hz. Using a slow rotating angle of 0.1 Hz,
if the cutoff frequency of the filters is faster than the rotating angle, the resistance will tend to follow the rotating

Rs Online Recalibration www.ti.com

558 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

angle, so it is recommended to have this filter setting to at least the same frequency of the slow rotating angle to
get a better filtered resistance.

10 s. Slow Rotating Angle

Rs Online

=

Rs Offline

+/- 0.74 %

Rs Online

=

Rs Offline

+/- 4.34 %

Rs Online

=

Rs Offline

+/- 20.9 %

Figure 15-16. Rs Online Varies Depending on Cut-Off Frequency

As can be seen, having a lower cutoff frequency leads to a less varying resistance. However, if the temperature
dynamics of the system allow the temperature to rise too rapid, having a low cutoff frequency might be a
problem.

There can be a scenario where the temperature increases very rapidly, requiring a change in the cutoff
frequency to a higher value. If the application requires a change in the cutoff frequency, the following code
example shows how to do this. In the example we are changing the cutoff frequency on the fly, so we have to
read it first, then modify the coefficients, and then write back with the same output, so we avoid affecting the
filters' outputs.

EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,
 &pfilter_i0->b0, &pfilter_i0->a1, &pfilter_i0->y1,
 &pfilter_i1->b0, &pfilter_i1->a1, &pfilter_i1->y1);
EST_getRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
 &pfilter_v0->b0, &pfilter_v0->a1, &pfilter_v0->y1,
 &pfilter_v1->b0, &pfilter_v1->a1, &pfilter_v1->y1);
// Use global variable desired_frequency_kHz to set the desired cutoff
// frequency of the filters. Use the same cutoff frequency for all filters
cutoff_freq_kHz_i0 = desired_frequency_kHz;
cutoff_freq_kHz_i1 = cutoff_freq_kHz_i0;
cutoff_freq_kHz_v0 = cutoff_freq_kHz_i0;
cutoff_freq_kHz_v1 = cutoff_freq_kHz_i0;
// Use the following scale factor to convert kHz to per unit value
_iq kHz_to_pu_sf = _IQ(1000.0/(float_t)USER_EST_FREQ_Hz);
// Calculate the per unit value for all filters
cutoff_freq_pu_i0 = _IQmpy(cutoff_freq_kHz_i0, kHz_to_pu_sf);
cutoff_freq_pu_i1 = _IQmpy(cutoff_freq_kHz_i1, kHz_to_pu_sf);
cutoff_freq_pu_v0 = _IQmpy(cutoff_freq_kHz_v0, kHz_to_pu_sf);
cutoff_freq_pu_v1 = _IQmpy(cutoff_freq_kHz_v1, kHz_to_pu_sf);
// Calculate coefficients for all filters
pfilter_i0->b0 = cutoff_freq_pu_i0;
pfilter_i0->a1 = cutoff_freq_pu_i0 - _IQ(1.0);
pfilter_i1->b0 = cutoff_freq_pu_i1;
pfilter_i1->a1 = cutoff_freq_pu_i1 - _IQ(1.0);
pfilter_v0->b0 = cutoff_freq_pu_v0;
pfilter_v0->a1 = cutoff_freq_pu_v0 - _IQ(1.0);
pfilter_v1->b0 = cutoff_freq_pu_v1;
pfilter_v1->a1 = cutoff_freq_pu_v1 - _IQ(1.0);
// Configure Rs Online to use the new filter coefficients
EST_setRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Current,

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

559

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

 pfilter_i0->b0, pfilter_i0->a1, pfilter_i0->y1,
 pfilter_i1->b0, pfilter_i1->a1, pfilter_i1->y1);
EST_setRsOnLineFilterParams(obj->estHandle, EST_RsOnLineFilterType_Voltage,
 pfilter_v0->b0, pfilter_v0->a1, pfilter_v0->y1,
 pfilter_v1->b0, pfilter_v1->a1, pfilter_v1->y1);

15.9 Monitoring Rs Online Resistance Value
There are two ways of checking the Rs Online resistance in a watch window or in a global variable. This might
be done as per user's requirements, so set thresholds on temperature, or simply to make sure there is a correct
connection of the motor to the system.

15.9.1 Rs Online Floating Point Value

The first method is to simply call a function that returns a value in floating point. This would represent the
resistance value in ohms (Ω), and this is a use example:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
float_t RsOnLine_Ohm = EST_getRsOnLine_Ohm(obj->estHandle);

This method is convenient for general monitoring. However it performs a few floating point instructions which
won't be the most efficient way to do it in terms of execution time.

15.9.2 Rs Online Fixed Point Value

The second method to monitor Rs Online value is using a more detailed approach, but only using fixed point
math, and bit shifting. The following code example shows how an Rs Online value in Ohms but in fixed point can
be calculated from the functions available in InstaSPIN-FOC. This can be calculated even inside an interrupt,
since execution time is optimized by avoiding floating point math.

#define VarShift(var,nshift) (((nshift) < 0) ? ((var)>>(-(nshift))) \
 : ((var)<<(nshift)))
#define USER_IQ_FULL_SCALE_VOLTAGE_V (48.0)
#define USER_IQ_FULL_SCALE_CURRENT_A (40.0)
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
uint_least8_t RsOnLine_qFmt = EST_getRsOnLine_qFmt(obj->estHandle);
_iq fullScaleResistance = _IQ(USER_IQ_FULL_SCALE_VOLTAGE_V \
 /USER_IQ_FULL_SCALE_CURRENT_A);
_iq RsOnLine_pu = _IQ30toIQ(EST_getRsOnLine_pu(obj->estHandle));
_iq pu_to_ohms_sf = VarShift(fullScaleResistance, 30 - RsOnLine_qFmt);
_iq RsOnLine_Ohms = _IQmpy(RsOnLine_pu, pu_to_ohms_sf);

Rs Online Recalibration www.ti.com

560 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

15.10 Using the Rs Online Feature as a Temperature Sensor
This unique feature to monitor the resistance of the motor while spinning, allows the user to monitor the
temperature of the coils based on the resistance increment. To show an example of a temperature sensor
implementation, consider the values from Table 15-1.

Table 15-1. Temperature Sensor Implementation Values
Parameter Value Description

R 12.0 Ω Resistance at temperature T. Value found with Rs Online.

R0 10.0 Ω Resistance at temperature T0. Value found with Rs Offline.

α 0.00393°C-1 Temperature coefficient of the material, in this case copper.

T0 20°C Reference temperature of the material.

T ? Final temperature of the material. To be calculated based on Rs Online.

Once the Rs Online feature is enabled, consider a resistance increase from 10.0 Ω to 12.0 Ω. The temperature
of the motor windings can be calculated based on the following equation, derived from the equation listed in the
previous section:

0
0

1

R
1

R
T T

12.0
1

10.0
T 20 C

0.00393 C

T 70.89 C

-

-

= +
a

W
-

W
= ° +

°

= ° (88)

The following code example shows how to implement the temperature monitor:

#define COPPER_TEMP_COEF_INV_C (0.00393)
#define RS_AT_ROOM_TEMP_OHMS (10.0)
#define ROOM_TEMP_C (20.0)
// Derived defines, pre-calculated by the compiler, not the CPU
#define INV_COPPER_TEMP_COEF_C (1.0/COPPER_TEMP_COEF_INV_C)
#define INV_RS_AT_ROOM_TEMP_INV_OHMS(1.0/RS_AT_ROOM_TEMP_OHMS)
CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
float_t RsOnLine_Ohm = EST_getRsOnLine_Ohm(obj->estHandle);
float_t Temperature_C = \
 (ROOM_TEMP_C) + \
 (RsOnLine_Ohm * (INV_RS_AT_ROOM_TEMP_INV_OHMS) - 1.0) * \
 (INV_COPPER_TEMP_COEF_C);

This code example can be executed in the background outside of the interrupts. The execution time is not critical
at all, since temperature changes are much slower compared to the CPU timing.

So by using Rs Online, users can set a same temperature limit to their motor to avoid damage and malfunction
of the system. For easier computation of the temperature, a look up table is recommended, to avoid the
execution penalty of this equation in real time.

15.11 Rs Online Related State Diagrams (CTRL and EST)
There are several references to the controller (CTRL) and estimator (EST) state diagrams throughout the
document. In this section, both state machines are shown for reference. For more details about the motor
identification process, see Chapter 6.

www.ti.com Rs Online Recalibration

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

561

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Rs Online Recalibration www.ti.com

562 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

The PowerWarp™ software algorithm of FAST adaptively reduces current consumption in order to minimize the
combined (rotor and stator) copper losses to the lowest, without compromising the output power level of the AC
Induction Motor.

16.1 Overview..564
16.2 Enabling PowerWarp™ Software.. 565
16.3 PowerWarp™ Current Slopes..566
16.4 Practical Example...567
16.5 Case Study.. 569

Chapter 16
PowerWarp™

www.ti.com PowerWarp™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

563

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

16.1 Overview
For applications that require minimum power consumption using AC Induction Motors (ACIM) PowerWarp
presents a solution. By simply setting an enable flag in InstaSPIN-FOC, the FAST estimator will recalculate
the magnetizing current, so that the minimum current is used to produce the torque needed for a given load and
speed.
• PowerWarp software algorithm is a capability of InstaSPIN-FOC designed to improve induction motor

efficiency under partially loaded conditions
• Note that output power is maintained with PowerWarp algorithm enabled

The PowerWarp software has the greatest effect on motor efficiency at partial loads. However, as a result of
de-fluxing the motor, the ability of the control system to respond to sudden transient conditions is diminished.
However, flux angle tracking is not affected by this phenomenon

As shown in Figure 16-1, PowerWarp software when enabled, acts on the magnetizing current provided by the
FAST estimator as highlighted. This magnetizing current is referred as Irated in the diagram.

SVM

Iq

PI

Speed

PI

INV

PARK

CLARKE

CLARKE

PARK

Id

PI

Traj

Ramp

&�^d¡����]u��}�

Flux, Angle, Speed, Torque

Motor Parameters ID

PWM

Driver

ADC

Driver

+
+

User_SpdRef

User_IqRef

User_IdRef

Vq

Vd

Vr_out

Vt_out

Ta

Tb

Tc

Ia

Ib

Ic

Va

Vb

Vc

Vbus

Vr_in

Vt_in

Iq_ref

Iq

Id_ref

Id

Zref

Id

Iq

Ir_in

It_in

Angle

Speed

Flux

Torque

Enable Motor Identification

Enable Rs Online Recalibration

Rs

a

Rr

a

Irated

a
\rated
a

Lsd

a

Lsq

a

T
a

Z
a

Wa

\
a

Wa

Z
a

\
a

Irated

a

T
a T

a

T
a

Z
a

Spdout

Enable Force Angle Startup

Torque

Mode

Enable PowerWARP¡

Motor Type

Figure 16-1. FAST™ Estimator with PowerWarp™ Software

PowerWarp™ www.ti.com

564 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

16.2 Enabling PowerWarp™ Software
In the code, all the functions related to PowerWarp software are referred as POWERWARP. The following code
example shows how this flag is enabled. As can be seen, POWERWARP is mentioned in the name of the
function, which relates to the PowerWarp software.

CTRL_setFlag_enablePOWERWARP(ctrlHandle,TRUE);

The use of this flag does not take any effect unless the controller and estimator are running OnLine, in other
words, not identifying the motor but running it in closed loop. Another condition is that the motor type has to
be an AC Induction Motor. Nothing happens if the motor is a PM Motor. So, to summarize the conditions under
PowerWarp enable will have an effect, these conditions must be met:
• The controller is running and motor is in closed loop.
• The estimator is running, and motor has been identified.
• Motor type must be induction motor.

In Figure 16-2, the highlighted state of the InstaSPIN controller is where the motor is running in closed loop. This
state is also known as the Online State, and it is the state where PowerWarp algorithm can be executed (for
complete details on the CTRL and EST states, see Chapter 6).

N

Start Idle
Is Controller

Enabled?

User Motor

Parameters from

user.h?

�}v(]Pµ���D}�}�[��

Parameters
Set Motor Identified

Is Estimator Idle?
Perform Locked

Rotor Test?

Is Controller

Enabled?

Online

Locked Rotor or

Estimator Idle?

Is Motor

Identified?

Estimate

Offsets?
Offline

Is Controller

Enabled?

Offsets

Estimation

Complete?

Y

N

Y

Y

N

N

Y N

N

Y

Y

Y N N

Y

Y

Y

N

N

Motor Running in Closed Loop

CTRL_getState(ctrlHandle) ==
CTRL_State_OnLine

Figure 16-2. InstaSPIN™ Controller Flowchart - PowerWarp™ Software Executed in Closed Loop

Similarly, the estimator's state machine where PowerWarp algorithm can be executed is highlighted from the
following state machine. The state machine shown in Figure 16-3 represents the state where the motor is
running in closed loop, from the estimator's perspective.

www.ti.com PowerWarp™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

565

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

N

Start Idle
Is Motor

Identified?

Y

Rest of Motor

Identification Process

Rs Recalibration

Enabled?

Is Controller

Enabled?

Rs

Online
Is Motor

Identified?

RoverL

Motor

Identified

Y

Y

Y

N

N

N

Motor Running in Closed Loop

EST_getState(obj->estHandle) ==
EST_State_OnLine

EST_getState(obj->estHandle) ==
EST_State_OnLine

Figure 16-3. FAST™ Estimator State Machine Flowchart - PowerWarp™ Software Executed in Closed
Loop

This code example shows how to check the state of state machines: Controller (CTRL) and Estimator (EST)
estate machines, as well as the motor type:

CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;
ctrlState = CTRL_getState(ctrlHandle);
estState = EST_getState(obj->estHandle);
motorType = CTRL_getMotorType(ctrlHandle);
if((ctrlState == CTRL_State_OnLine) &&
 (estState == EST_State_OnLine) &&
 (motorType == MOTOR_Type_Induction))
 {
 CTRL_setFlag_enablePOWERWARP(ctrlHandle,TRUE);
 }

16.3 PowerWarp™ Current Slopes
In order to keep a smooth transition between rated magnetizing current and a reduced current provided by
the PowerWarp algorithm, a linear transition is generated when this mode is enabled and disabled. When
PowerWarp is enabled, the rate at which the current is changed is set by the following defined in user.h:

#define USER_MAX_CURRENT_SLOPE_POWERWARP
(0.3 * USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

The rate of change for the current after PowerWarp is enabled is equal to the current used for resistance
estimation times 0.3 Hz. For example, if 1 Ampere is used for resistance estimation, the rate at which
PowerWarp will change the rated current of the ACIM motor would be: 0.3 Amperes per second. So if
PowerWarp reduced the rated current from 3 A to 1.5 A, it would take (3-1.5)/0.3 = 5 seconds to reach the
new rated current.

A second current slope is also defined, which is used whenever the Irated is changed in the software, or when
PowerWarp is disabled.

#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

By default, this current slope is set to the current used for resistance measurement, per second. For example, if
1 A is used for resistance measurement, PowerWarp current is 1 A, and Irated current is 3 A, then it will take (3 –
1)/1 = 2 seconds for the current to grow back to Irated.

PowerWarp™ www.ti.com

566 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

16.4 Practical Example
The following plot shows a practical example of PowerWarp, and the power savings related to this mode. The
motor under test has the following parameters:

AC Induction Asynchronous Machine (GE 5K33GN2A)

• Rated power: ¼ Hp
• Rated torque: 9.22 Lb.in
• Rated voltage: 208~230 (v)
• Rated full load current: 1.3~1.4 (A)
• Rated full load speed: 1725 rpm
• Pole Pairs: 2
• Frequency: 60 Hz

Notice that the motor efficiency with PowerWarp is dramatically improved from 27% to 68% at 1 lb.in of load.
Since PowerWarp reduces the ability of the ACIM motor to produce torque, at higher torque demands, energy
savings with PowerWarp are also reduced. For the same reason, at rated torque, efficiency curves are identical
when PowerWarp is enabled or disabled.

Even though PowerWarp reduces the ability to produce torque, the mechanical power delivered to the shaft
is maintained with PowerWarp algorithm enabled, not affecting the mechanical system performance. In other
words, from a purely mechanical standpoint, the output mechanical torque and speed are not changed when
PowerWarp is enabled. What changes is the electrical power delivered to the motor to produce a certain
mechanical output.

As shown in Figure 16-4, motor efficiency is boosted dramatically at lower loads, with a trade-off in dynamic
torque and speed response, though the control system remains stable.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0
5

10
15
20
25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (s)

E
ff

ic
ie

n
cy

 (
%

)

T
o

rq
u

e
 (

lb
.i

n
)

Figure 16-4. PowerWarp™ Software Improves Motor Efficiency

The default current slopes are used for this practical example.

#define USER_MAX_CURRENT_SLOPE_POWERWARP (0.3 * USER_MOTOR_RES_EST_CURRENT \
 / USER_IQ_FULL_SCALE_CURRENT_A \
 / USER_TRAJ_FREQ_Hz)

www.ti.com PowerWarp™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

567

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 16-5 shows the time it takes for the FAST estimator to reduce the rated current when PowerWarp is
enabled.

PowerWarp¡ Enabled
3.18 s

0.95 A

Figure 16-5. Current Reduced When PowerWarp™ Software Enabled

It can be seen than the time it takes to reach the lowest current is:

(Irated – IPowerWarp)/0.3 = (1.3125 – 0.3625)/0.3 = 3.167 seconds (89)

Also, the default has been used for current slopes when PowerWarp is disabled

#define USER_MAX_CURRENT_SLOPE
(USER_MOTOR_RES_EST_CURRENT
/USER_IQ_FULL_SCALE_CURRENT_A
/USER_TRAJ_FREQ_Hz)

Figure 16-6 shows this slope. The time it takes is: (1.3125 – 0.3625)/1 = 1.0 seconds.

1.0 s

0.95 A

PowerWarp¡ Disabled

Figure 16-6. Current Slopes When PowerWarp™ Software Disabled

PowerWarp™ www.ti.com

568 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

16.5 Case Study
Two pairs of motors were placed running the same load, which in this case were fans. One pair ran for 15
months side to side comparing energy consumption performance between InstaSPIN-FOC with PowerWarp
algorithm enabled versus a TRIAC control of an Induction Motor. The energy savings over time are significant,
average savings of about 81% of the energy when using InstaSPIN with PowerWarp enabled. In other words,
with PowerWarp algorithm enabled, each motor only consumes about 19% of the power compared to a TRIAC
controller. This percentage is calculated as follows:

Total Energy consumed by the TRIAC controller = 2096.6 kWh (90)

Figure 16-7 shows the energy consumption per month and an accumulative energy savings in kWh.

Figure 16-7. PowerWarp™ Algorithm Enabled vs. TRIAC Control of Induction Motor

The second pair of system was running InstaSPIN with PowerWarp enabled, but now versus a Volts-per-Hertz
Control, also known as Frequency Control. The energy savings are also significant in this scenario, since
PowerWarp optimizes the current consumption to minimize copper losses of the motor. In this case, the average
energy savings were 48%, and it was calculated as follows:

Total Energy consumed by the Frequency controller = 916.5 kWh

Total Energy consumed by InstaSPIN with PowerWarp = 478.9 kWh

Average Energy Savings = 100% * (1 – 478.9/916.5) = 47.75%

Figure 16-8 shows these results.

www.ti.com PowerWarp™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

569

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Figure 16-8. InstaSPIN-FOC™ with PowerWarp™ Software Enabled vs. InstaSPIN-FOC™ with
PowerWarp™ Software Disabled

PowerWarp™ www.ti.com

570 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

One-, two-, and three-shunt current measurement techniques are studied. We will show why the three shunt
technique does not add significantly more cost to the current measurement circuit. And why it is much better to
use the three shunt technique for motor control applications.

17.1 Introduction...572
17.2 Signals...572
17.3 1-Shunt.. 573
17.4 2-Shunt.. 576
17.5 3-Shunt.. 578
17.6 Development Kits... 579
17.7 Conclusion.. 579

Chapter 17
Shunt Current Measurements

www.ti.com Shunt Current Measurements

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

571

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

17.1 Introduction
InstaSPIN can be used with many different types of current measurement techniques. The techniques include
3-shunt and 2-shunt resistor and LEM sensor measurements. For lower power drives, shunt resistors are
the most widely used approach to measuring phase currents in a motor controller. Currently the InstaSPIN
software suite does not provide a single shunt resistor solution. The reason for not providing single shunt current
measurements and why a 3-shunt measurement is the ideal method for measuring currents will be provided
below.

17.2 Signals
Before talking about the different types of resistor shunt current measurements, we will study the switching
signals involved and where the measurement has to be taken to measure current. Most field oriented control
(FOC) drives use the space vector modulation (SVM) technique to send the duty cycle commands to the inverter
switches to power the motor. A typical SVM voltage waveform looks like the blue signal as shown in Figure 17-1.
The SVM waveform is next sampled by a triangular waveform which is the red signal in Figure 17-1. Whenever
the triangle is greater than the SVM, the lower switch of an h-bridge phase is turned on. The resulting PWM
waveform that is used to control an h-bridge phase is also shown below.

Figure 17-1. Typical SVM Waveform Sampled by Counter

To measure current that is flowing through a phase, the normal approach is to have a resistor located at the base
of the phase. So no matter what resistor configuration there is, 1-shunt, 2-shunt or 3-shunt, current can only be
measured when a lower switch is on. In the PWM waveform the lower switch is on when the square wave signal
is low. To sample the current, it has to be clean. A clean current signal or representation of the current signal
must have no ringing or noise. With that being said, let us start looking at the different resistor shunt current
measurement techniques that are used in the field.

Shunt Current Measurements www.ti.com

572 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

17.3 1-Shunt
The single shunt current measurement technique measures the power supply current and with knowledge of the
switching states recreates each of the three phase currents of the motor. Figure 17-2 illustrates where the single
shunt is located in the inverter circuit.

Figure 17-2. Single-Shunt Current Measurement Circuit With Inverter

There are eight different switch options in SVM. Table 17-1 explains each one and shows the direction of the
voltage space vector and what current can be measured in that state. With the switches in states 0 and 7 only
circulating current is present and there is no possibility to measure current with the single shunt technique. To
properly measure current with the single shunt technique, the current measurement and switching state have to
both be considered.

Table 17-1. The Eight SVM Switching States
Switch State AH BH CH Vector Measure

0 0 0 0 ● offsets

1 1 0 0 → Ia

2 1 1 0 ↗ -lc

3 0 1 0 ↖ Ib

4 0 1 1 ← -la

5 0 0 1 ↙ Ic

6 1 0 1 ↘ -lb

7 1 1 1 ● offsets

Figure 17-3 shows a SVMPWM waveform and the current measurement signal that result. In this case the
current conduction times for IC and IA are on long enough so that the slew rate of the op-amp and settling time of
the whole measurement system have enough time to go to steady state so that the ADC can have enough time
to sample the current. As we will see shortly, when using the single shunt technique, it is mandatory to be able to
measure current in the smallest time possible.

www.ti.com Shunt Current Measurements

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

573

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1 1 0 1 1

1 1 0 1 1

1 0 0 0 1

1

0

0

1

0

0

-IC

AH

BH

CH

-IC0 00 IA IA

TSR - Time delay due to op-amp slew rate

TSET - Measurement settling time

TSMP - Sampling time window

TSR

TSET
TSMP

Figure 17-3. Single-Shunt Current Measurement When Sampling Times are Long Enough

In Figure 17-4, imagine the voltage space vector traversing counter clockwise around the circle. As the space
vector points toward the corners of the hexagon, the time window for sampling current completely disappears.
There are zones located at 0, 60, 120, 180, 240, and 300 degrees where only one current can be measured and
the other two currents must be found in another fashion.

WMIN

α

0

π/32 /3π

π

4 /3π 5 /3π

α – Angle of the voltage space vector

WMIN – Region where sample window become
too small

Figure 17-4. SVM and Regions Where Current Measurement is Not Allowed

In Figure 17-5, the space vector is pointing too close to π/3 and is causing the current measurement window
to shrink for IA. Because of slew rate of the op-amp and a long settling time, IA will be missed and will cause
an error in the FOC controller. One way of fixing this problem is to force a measurement window opening that
lasts long enough to accommodate slew rate and settling time. An illustration of this technique is shown in
Figure 17-6. The maximum duty cycle waveform is shifted to the right and the minimum duty cycle waveform is
shifted to the left. The advantage of phase shifting the PWMs like this is that there is no distortion in the voltage
waveform result per phase. Software still has to be written to compensate for the resulting current waveform and
even though a current measurement window can be made as large as needed, it is best to keep the window as
small as possible. As the space vector reaches the voltage limit set by the DC bus, there will be less room to
shift the signals. So to get the best utilization of the DC bus and still have the ability to measure current requires
that the chosen op-amp have very high slew rate and low settling time.

Shunt Current Measurements www.ti.com

574 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

1 1 0 1 1

1 1 0 1 1

1 0 0 0 1

1

0

0

1

0

0

-IC

AH

BH

CH

-IC0 00 IA IA

TA

TA - The time for measuring current IA is too
small.

The space vector is pointing into the banned

region.

0

π/32 /3π

π

4 /3π 5 /3π

Figure 17-5. Example of When Current Sampling Window Disappears

1 1 0 1 1

1 1 0 1 1

1 0 0 0 1

1

0

0

AH

BH

CH

-IC0 00 IA

AH

BH

CH

Ignore Measure

Smallest Duty Cycle moved left

Largest Duty Cycle moved right

Figure 17-6. Phase Shifting the PWMs to Allow for a Large Enough Current Measurement Window

Current ripple is another problem that arises when using the single shunt technique. The motor is an inductive
and resistive circuit element and therefore has an R/L time constant. On the current waveform that is shown
in Figure 17-3, the motor's electrical time constant is large thus causing the current to be very level and the
measured currents IC and IA can be considered the average current going to the motor. If the motor's R/L time
constant is smaller, then the current will look more like a saw tooth wave. Now the current has to be sampled as
close to the center of the total conduction time as possible to obtain the average motor current. This will cause
an even stricter performance requirement for the chosen op-amp.

www.ti.com Shunt Current Measurements

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

575

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Let's run through a quick calculation to see what types of op-amp parameters are needed. First, a normal
PWM frequency is around 20 kHz which is a period of 50 µs. At 20 kHz when causing a deadtime or any
non-symmetric adjustment of the PWM that is 0.5 µs or greater, current distortion will occur. The C2000 F2805xF
and F2806xF family of processors has the capability of 90 MHz clock speeds which translates to a 45 MHz
ADC clock. The minimum sampling window is 7 ADC clock cycles or 156 ηs. The worst case time delay when
considering slew rate delay is during the maximum voltage transition in this case 3.3 V. Ignoring settling time, the
slew rate that will keep the signal measurement below 0.5 µs is 3.3/344 ηs or 9.6 V/µs. Settling time will take up
about half of the time, so to be safe the op-amp slew rate should be chosen at 20 V/µs.

17.4 2-Shunt
The two shunt current measurement technique uses the principle of Kirchhoff's Current Law (KCL) that the sum
of the currents into a single node equals zero. By measuring only two phase currents, the third is calculated with
KCL. A circuit for the two shunt current measurement technique is shown in Figure 17-7.

A

H

A

L

B

L

C

L

B

H

C

HVDC

R2shuntR1shunt

A B C

Figure 17-7. Two-Shunt Measurement Circuit With Inverter

The two shunt measurement circuit has an advantage over the single shunt circuit in that it can see circulating
currents. Now all currents are measured only during switching state zero. Figure 17-8 shows an example of a
switching waveform and where the ADC samples the current. The PWM for IA is almost 100% duty cycle and
in this example causes the IA current to rise. The PWM for IB is about 50% duty cycle and its current stays
at about zero amps for this period. Phase current can only be measured when that phase's lower switch is
conducting. In the example, IA is measureable for a very short time while IB has a long time to view. When
the measured phase is operating at PWMs near 100%, this is the inherent problem when using the two shunt
technique. For the example when IA is sampled, the measured current signal has not yet stabilized giving an
incorrect representation of the current signal. Another pointer to note about using the two shunt technique during
motoring is that the current being measured is now bipolar. So zero amps is now represented as half of the ADC
full scale.

As the duty cycle increases the time to measure voltage across the shunt resistor for the phase needs to be
quicker. For example if a duty cycle of 95% were commanded with a 20 kHz PWM waveform there will be 2.5
µs of on-time for the measured phase. Ideally the slew rate of the op-amp should be 1/10 of the on-time or 0.25
µs. A full scale output voltage transition of the op-amp is 1.65 V. The minimum slew rate is calculated to be 6.6
V/µs. As the duty cycle increases even more, the slew rate must be increased to capture the signal properly.
Although the two shunt current measurement technique lessens the op-amp's speed requirement as compared
to the single shunt measurement, there is a duty cycle where the slew rate has to be very large. For the single
and two shunt measurement techniques there is no way of getting around the need for a fast and expensive
op-amp.

Shunt Current Measurements www.ti.com

576 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

AH

AL BL CL

BH CH

VDC

R2shuntR1shunt

A B C

+- +-

AH

BH

CH

IA_Phase

IA_ADC

IB_ADC

IB_Phase

Sample

IB

Sample

IA

Figure 17-8. Sampling Current When Using Two-Shunt Measurement Technique

www.ti.com Shunt Current Measurements

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

577

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

17.5 3-Shunt
An example of the three shunt current measurement circuit is shown in Figure 17-9. The three shunt current
measurement technique is very robust and surprisingly can be cost effective even when compared to using
a single or two shunt measurement technique. First, with the single and two shunt circuits over-modulation is
difficult to achieve. Second, higher priced fast slew rate op-amps must be selected for the one and two shunt
techniques. The three shunt technique can bounce sampling between current signals, selecting two out of three
phases each period, which allows for long times for the current signals to settle. If large current measurement
windows are possible, then much slower and cheaper op-amps can be used. For example, Figure 17-10 shows
three PWM switching signals and what shunt resistor will be sampled. As can be seen, there is plenty of time for
the current signal to stabilize.

With three shunts the op-amp slew rate can be well under 1 V/µs. There are many advantages to having
slower amplifier circuits for current measurement. First cost will be less. Second a slower amplifier will have a
lower bandwidth to pick up noise. Third in many of the current amplifier circuits there is crosstalk between the
phase measurements. What will happen is a spike from the C phase switching will show up in the A phase
measurement. A slow amplifier circuit will attenuate the crosstalk signal.

A

H

A

L

B

L

C

L

B

H

C

HVDC

R2shuntR1shunt

A B C

R3shunt

Figure 17-9. Three-Shunt Measurement Circuit With Inverter

AH

BH

CH

AH

BH

CH

AH

BH

CH

C phase current window is too small.

Sample phases A and B.

B phase current window is too small.

Sample phases A and C.

A phase current window is too small.

Sample phases B and C.

Sample

Here

Sample

Here

Sample

Here

Figure 17-10. Using Three-Shunt Current Sampling Technique

Shunt Current Measurements www.ti.com

578 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

17.6 Development Kits
TI provides the hardware in three kits that allow for single, two and three shunt current measurement. Table 17-2
lists the current and voltage rating for each kit.

Table 17-2. Current and Voltage Ratings for TI
Development Kits

Kit Current Rating (A) Voltage Rating (V)
DRV8312 6.5 50

DRV8301 82.5 50

HVKIT 10 350

Following are schematics for the kits and how they can be used for the three different current measurement
techniques.

17.6.1 DRV8312 Kit

The DRV8312-69M-KIT is the lowest-power kit of all TI kits. It uses a TI DRV8312 power module that contains
six power MOSFETs and their corresponding gate drivers. The kit accepts any C2000, 100-pin DIMM cards
(Control Cards). A unique feature of the DRV8312 is that it can sustain switching frequencies up to 500 kHz with
very-high efficiency.

For the following discussion, refer to the schematic in the DK-LM3S-DRV8312 Baseboard Hardware Reference
Guide. OA3, OA4, and OA2 are op-amps that make up the Kelvin current connections for phases A, B,
and C, respectively. The differential gain of this circuit is 19.08 V/V. R52, R53, and R50 are shunt resistors
for each phase and are 10 mΩ each. The amount of current that causes a 3.3 V output to the ADC
is 3.3/.010/19.08 = 17.30 A/V. This current gain is used in the user.h file of InstaSPIN for the parameter
USER_ADC_FULL_SCALE_CURRENT_A.

To select between the 2 current shunt method or the 3 current shunt method, set the user.h parameter
USER_NUM_CURRENT_SENSORS to either 2 or 3 depending on the number of current shunts that are used.

17.6.2 DRV8301 Kit

The DRV8301-69M-KIT is a low-voltage high-current kit. It uses discrete MOSFETs that are switched by the
DRV8301 gate driver.

17.7 Conclusion
Resistor shunt current measurement is a very reasonable technique for measuring current in a motor control
inverter. There are three widely used examples, the 1-Shunt, 2-Shunt, and 3-Shunt resistor measurements.
While at first the 1-Shunt and 2-Shunt techniques seem to be saving money, they require much faster and more
expensive amplifier circuits (see Table 17-3). 1 and 2 Shunt current measurements also limit the capability of the
current feedback which will limit the ability of the drive to use the full voltage that is provided to the inverter. The
3-Shunt technique is superior and not much different in cost due to the advantage of using cheap, slow, current
amplifier circuits.

Table 17-3. Recommended Op-Amp Slew Rates for
Corresponding Number of Sense Resistors

Shunts Op-Amp Slew Rate
1 >20 V/µs

2 >6 V/µs

3 >1 V/µs

www.ti.com Shunt Current Measurements

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

579

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/tool/DRV8312-69M-KIT
https://www.ti.com/lit/pdf/spmu276
https://www.ti.com/lit/pdf/spmu276
http://www.ti.com/tool/DRV8301-69M-KIT
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Shunt Current Measurements www.ti.com

580 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Sensored systems can also benefit from InstaSPIN-MOTION. Position control solutions rely upon an accurate
electrical angle in order to control the angle of the motor. While sensorless estimators work well for velocity
control applications, sensorless estimators do not provide an accurate enough motor angle for position control.
Examples are provided to demonstrate how to use a quadrature encoder to provide an electrical angle feedback
to InstaSPIN-MOTION for position control.

The FAST Software Encoder can still be used in position control applications to provide a backup encoder to
detect that the primary electrical angle source is having a failure.

18.1 Hardware Configuration for Quadrature Encoder... 582
18.2 Software Configuration for Quadrature Encoder.. 582
18.3 InstaSPIN-MOTION™ Position Convert..584

Chapter 18
Sensored Systems

www.ti.com Sensored Systems

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

581

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

18.1 Hardware Configuration for Quadrature Encoder
Quadrature encoders need to use the enhanced quadrature encoder pulse (eQEP) peripheral found on the
F2806xM and F2805xM devices. Your board design needs to apply the quadrature encoder pulse (QEP) signals
to the microcontroller. If you are using a TI evaluation kit, the boards are setup to work correctly with a
quadrature encoder. To attach the quadrature encoder, see the hardware manual for your specific evaluation kit.

18.1.1 Pin Usage

The QEP peripheral accepts A, B, and I inputs from the quadrature encoder. Table 18-1 lists the required pins for
1 QEP peripheral. These should be wired to the appropriate pins on your encoder.

Table 18-1. Pins Required to Connect Quadrature
Encoder to eQEP Module

Pin Type Pin Name Pin Usage Per Motor
Digital EQEPxA 3

EQEPxB

EQEPxI

18.2 Software Configuration for Quadrature Encoder
This software configuration will focus on using the MotorWare infrastructure to get your quadrature encoder
working correctly. These steps need to be done for projects that use a quadrature encoder. Lab 12b — Using
InstaSPIN-MOTION with Sensored Systems — is an example project that implements the steps required to use
a quadrature encoder for feedback.

18.2.1 Configure Motor for EQEP Operation

An additional parameter needs to be defined in the user.h file. This parameter is
USER_MOTOR_ENCODER_LINES. This value should be set to the number of lines (or pulses) that are on
the motor's encoder. In the Lab 12b example project, this macro definition is included in user.h.

#elif (USER_MOTOR == Teknic_M2310PLN04K)
#define USER_MOTOR_TYPE MOTOR_Type_Pm
#define USER_MOTOR_NUM_POLE_PAIRS (4)
#define USER_MOTOR_Rr (NULL)
#define USER_MOTOR_Rs (0.4076258)
#define USER_MOTOR_Ls_d (0.0001972132)
#define USER_MOTOR_Ls_q (0.0001972132)
#define USER_MOTOR_RATED_FLUX (0.03975862)
#define USER_MOTOR_MAGNETIZING_CURRENT (NULL)
#define USER_MOTOR_RES_EST_CURRENT (1.0)
#define USER_MOTOR_IND_EST_CURRENT (-0.5)
#define USER_MOTOR_MAX_CURRENT (7.0)
#define USER_MOTOR_FLUX_EST_FREQ_Hz (20.0)
// Number of lines on the motor's quadrature encoder
#define USER_MOTOR_ENCODER_LINES (1000.0)

18.2.2 Initialize EQEP Handle

The HAL_init function, located in hal.c, initializes the handle for the QEP driver. This will provide the QEP handle
with the location of the registers that it will modify. In the Lab 12b example project, this step is accomplished in
the hal.c file.

// initialize EQEP handle
obj->qepHandle[0] = QEP_init((void*)QEP1_BASE_ADDR,sizeof(QEP_Obj));

Sensored Systems www.ti.com

582 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

18.2.3 Set Digital IO to Connect to QEP Peripheral

By default, the pins used by QEP driver are set to be general purpose digital IO. These need to be set in the
HAL_setupGpios function, located in hal.c, to connect to the QEP driver. In the Lab 12b example project, this
step is accomplished in the hal.c file.

// EQEPA
GPIO_setMode(obj->gpioHandle,GPIO_Number_20,GPIO_20_Mode_EQEP1A);
// EQEPB
GPIO_setMode(obj->gpioHandle,GPIO_Number_21,GPIO_21_Mode_EQEP1B);
//EQEP1I
GPIO_setMode(obj->gpioHandle,GPIO_Number_23,GPIO_23_Mode_EQEP1I);

18.2.4 Enable Clock to eQEP

In the function HAL_setupPeripheralClks, located in hal.c, the clock needs to be enabled for the QEP driver
you will be using. This will allow the QEP driver to work correctly. In the Lab 12b example project, this step is
accomplished in the hal.c file.

CLK_enableEqep1Clock(obj->clkHandle);// Enable clock to eQEP Module

18.2.5 Initialize ENC Module

The ENC module is used to convert the raw counts produced by the QEP driver into electrical angle that will be
used by the FOC system. An ENC module object and handle need to be declared in the main source file of the
project. In the Lab 12b example this is done in proj_lab12b.c.

ENC_Handle encHandle;
ENC_Obj enc;

Once the ENC module object and handle have been declared they need to be initialized. This will assign the
handle to point to the specific memory used by the ENC module. This should be done prior to the main loop in
the main source file.

// initialize the ENC module
encHandle = ENC_init(&enc, sizeof(enc));

18.2.6 Set Up ENC Module

Prior to the main loop in the main source file the ENC module needs to be setup. This will pass important values
to the ENC module to allow it to interpret the raw quadrature counts from the QEP driver into electrical angle
useable by the FOC.

// setup the ENC module
ENC_setup(encHandle, hal_obj->qepHandle[0], 1, USER_MOTOR_NUM_POLE_PAIRS,
USER_MOTOR_ENCODER_LINES, 0, USER_IQ_FULL_SCALE_FREQ_Hz, USER_ISR_FREQ_Hz, 8000.0);

18.2.7 Call eQEP Function

In the main ISR we need to call the function to calculate the rotor angle from the EQEP driver. This function is
called ENC_calcElecAngle. This needs to happen during every instance of the ISR.

// compute the electrical angle
ENC_calcElecAngle(encHandle);

www.ti.com Sensored Systems

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

583

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

18.2.8 Provide eQEP Angle to FOC

In the ctrl.h file the function CTRL_runOnline_User, we need to modify the source for the angle provided to
FOC. As a default, FOC is set up to get the angle from the FAST estimator, but for sensored control, the FOC
will receive the angle from the ENC module. In the Lab 12b example project, this step is accomplished in the
ctrlQEP.h file.

// generate the motor electrical angle
angle_pu = EST_getAngle_pu(obj->estHandle);
// Update electrical angle from ENC module
angle_pu = ENC_getElecAngle(encHandle);

18.3 InstaSPIN-MOTION™ Position Convert
SpinTAC™ Position Convert is used to convert the electrical angle output from the ENC module into mechanical
angle and speed feedback that is used in the rest of the system. The ENC module produces the rotor electrical
angle used in the FOC. SpinTAC Position Convert will also estimate the slip velocity in AC induction motors. This
is required to use AC induction motors with a physical sensor.

18.3.1 Software Configuration for SpinTAC™ Position Convert

Configuring SpinTAC Position Convert requires four steps. Lab 12b — Using InstaSPIN-MOTION with Sensored
Systems — is an example project that implements the steps required to use the SpinTAC Position Convert. The
header file spintac_velocity.h, included in MotorWare, allows you to quickly include the SpinTAC components in
your project.

18.3.1.1 Include the Header File

This should be done with the rest of the module header file includes. In the Lab 12b example project, this
file is included in the spintac_velocity.h header file. For your project, this step can be completed by including
spintac_velocity.h.

#include "sw/modules/spintac/src/32b/spintac_pos_conv.h"

18.3.1.2 Declare the Global Structure

This should be done with the global variable declarations in the main source file. In the Lab 12b project, this
structure is included in the ST_Obj structure that is declared as part of the spintac_velocity.h header file.

ST_Obj st_obj; // The SpinTAC Object
ST_HandlestHandle; // The SpinTAC Handle

This example is if you do not wish to use the ST_Obj structure that is declared in the spintac_velocity.h header
file.

ST_PosConv_t stPosConv; // The SpinTAC Position Converter Object
ST_POSCONV_Handle stPosConvHandle; // The SpinTAC Position Converter Handle

18.3.1.3 Initialize the Configuration Variables

This should be done in the main function of the project ahead of the forever loop. This will load all of the
default values into SpinTAC Position Convert. This step can be completed by running the functions ST_init and
ST_setupPosConv that are declared in the spintac_velocity.h header file. If you do not wish to use these two
functions, the code example below can be used to configure the SpinTAC Position Converter. This configuration
of SpinTAC Position Converter represents the typical configuration that should work for most motors.

Sensored Systems www.ti.com

584 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

// init the ST PosConv object
stPosConvHandle = STPOSCONV_init(&stPosConv, sizeof(stPosConv));
// Setup the SpinTAC Position Converter
// Sample time [s], (0, 1]
STPOSCONV_setSampleTime_sec(stPosConvHandle, _IQ(ST_SPEED_SAMPLE_TIME));
// The upper [0, 16] and lower [-16, 0] bounds of the input position signal [ERev]
STPOSCONV_setERevMaximums_erev(stPosConvHandle, _IQ(1.0), 0);
// Sets the unit conversions used in the SpinTAC Position Converter
STPOSCONV_setUnitConversion(stPosConvHandle, USER_IQ_FULL_SCALE_FREQ_Hz,
 ST_SAMPLE_TIME, USER_MOTOR_NUM_POLE_PAIRS);
// The Rollover bound of the output position signal [MRev]
STPOSCONV_setMRevMaximum_mrev(stPosConvHandle, _IQ(10.0));
// Low-pass time constant [tick]
STPOSCONV_setLowPassFilterTime_tick(stPosConvHandle, 3);
// ST_PosConv should start enabled
STPOSCONV_setEnable(stPosConvHandle, true);
// ST_PosConv should not be in reset
STPOSCONV_setReset(stPosConvHandle, false);

18.3.1.4 Call SpinTAC™ Position Convert

This should be done in the main ISR. This function needs to be called at the proper decimation rate for
this component. The decimation rate is established by ST_ISR_TICKS_PER_SPINTAC_TICK declared in the
spintac_velocity.h header file; for more information, see Section 4.7.1.4. Before calling SpinTAC Position
Converter function the electrical angle computed by the ENC module needs to be passed into the SpinTAC
Position Converter.

// update the electrical angle
STPOSCONV_setElecAngle_erev(stPosConvHandle, ENC_getElecAngle(encHandle));
// run the SpinTAC Position Converter
STPOSCONV_run(stPosConvHandle);

18.3.2 Troubleshooting SpinTAC™ Position Convert
18.3.2.1 ERR_ID

ERR_ID provides an error code for users. A list of errors defined in SpinTAC Position Convert and the solutions
for these errors are shown in Table 18-2.

Table 18-2. SpinTAC™ Position Convert ERR_ID Code
ERR_ID Problem Solution

1 Invalid sample time value Set cfg.T_sec within (0, 0.01]

13 Invalid position rollover bound value Set cfg.ROMax_mrev within [2, 100]

21 Invalid value for the scaling factor from [MRev] to
[ERev]

Set cfg.PolePairs within [1, 32]

25 Invalid value for the scaling factor from position in
[MRev] to velocity in [pu/s]

Set cfg.erev_TO_pu_ps as a positive IQ24 value

26 Invalid input sawtooth position upper bound value Set cfg.ROMax_erev within [0, 16]

27 Invalid input sawtooth position lower bound value Set cfg.ROMin_erev within [-16, 0]

37 Invalid input cfg.OneOverFreqTimeConst Set cfg.OneOverFreqTimeConst to a positive value

38 Invalid input cfg.SampleTimeOverTimeConst Set cfg.SampleTimeOverTimeConst to a positive value

1010 Invalid velocity feedback low pass filter time constant Set cfg.LpfTime_tick within [1, 100]

4003 Invalid ROM Version Use a chip with a valid ROM version or use the SpinTAC
library that is compatible with the current ROM version.

www.ti.com Sensored Systems

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

585

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Sensored Systems www.ti.com

586 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

ACIM Alternating current induction motor.

ADC Analog-to-Digital Converter

ADRC Active Disturbance Rejection Control. Estimates and compensates for system
disturbance, in real-time.

CCStudio Code Composer Studio™ IDE.

FAST™ Unified observer structure which exploits the similarities between all motors that
use magnetic flux for energy transduction, automatically identifying required motor
parameters and providing the following motor feedback signals:
• High-quality Flux signal for stable flux monitoring and field weakening.
• Superior rotor flux Angle estimation accuracy over wider speed range compared to

traditional observer techniques independent of all rotor parameters for ACIM.
• Real-time low-noise motor shaft Speed signal.
• Accurate high bandwidth Torque signal for load monitoring and imbalance detection.

FOC Field-oriented control.

Forced-Angle Used for 100% torque at start-up until the FAST rotor flux angle tracker converges within
first electrical cycle.

InstaSPIN-FOC™ Complete sensorless FOC solution provided by TI on-chip in ROM on select devices
(FAST observer, FOC, speed and current loops), efficiently controlling your motor without
the use of any mechanical rotor sensors.

InstaSPIN-
MOTION™

A comprehensive motor-, motion- and speed-control software solution that delivers
robust system performance at the highest efficiency for motor applications that operate in
various motion state transitions. InstaSPIN-MOTION builds on and includes InstaSPIN-
FOC, combined with SpinTAC™ Motion Control Suite from LineStream Technologies.

IPM Interior permanent magnet motor.

LineStream
Technologies

Pioneers in the world of embedded controls software. Boasting a team of motor
control experts from six different countries cumulatively speaking fifteen languages and
possessing over eighty years of industry experience, LineStream is fast becoming the
world's preeminent stronghold of embedded motor control knowledge.

Motor Parameters
ID or Motor
Identification

A feature added to InstaSPIN-FOC, providing a tool to the user so that there is no barrier
between running a motor to its highest performance even though the motor parameters
are unknown.

Appendix A
Definition of Terms and Acronyms

www.ti.com Definition of Terms and Acronyms

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

587

Copyright © 2021 Texas Instruments Incorporated

http://www.linestream.com/ti.aspx
http://www.linestream.com/ti.aspx
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

PI Proportional-integral regulator.

PMSM Permanent magnet synchronous motor.

PowerWarp™ A mode of operation for AC induction motors (ACIM) that minimizes motor losses under
lightly loaded conditions.

Rs-Offline
Recalibration

InstaSPIN-FOC feature that is used to recalibrate the stator resistance, Rs, when the
motor is not running.

Rs-Online
Recalibration

InstaSPIN-FOC feature that is used to recalibrate the stator resistance, Rs, while the
motor is running in closed loop.

SpinTAC™ Motion
Control Suite

Includes and advanced speed controller, a motion engine, and a motion sequence
planner. The SpinTAC disturbance-rejecting speed controller proactively estimates
and compensates for system disturbances in real-time, improving overall product
performance. The SpinTAC motion engine calculates the ideal reference signal (with feed
forward) based on user-defined parameters. SpinTAC supports standard industry curves,
and LineStream’s proprietary "smooth trajectory" curve. The SpinTAC motion sequence
planner operates user-defined state transition maps, making it easy to design complex
motion sequences.

SVM Space-vector modulation.

Definition of Terms and Acronyms www.ti.com

588 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision H (June 2019) to Revision I (October 2021) Page
• Added Chapter Read This First ... 0
• Changed Section 1.2 ... 29

www.ti.com Revision History

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

InstaSPIN-FOC™ and
InstaSPIN-MOTION™

589

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

Revision History www.ti.com

590 InstaSPIN-FOC™ and
InstaSPIN-MOTION™

SPRUHJ1I – JANUARY 2013 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUHJ1
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUHJ1I&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Read This First
	Glossary
	Support Resources
	Trademarks

	1 Introduction
	1.1 An Overview of InstaSPIN-FOC™ and FAST™
	1.1.1 FAST™ Estimator Features
	1.1.2 InstaSPIN-FOC™ Solution Features
	1.1.3 InstaSPIN-FOC™ Block Diagrams
	1.1.4 Comparing FAST™ Estimator to Typical Solutions
	1.1.5 FAST™ Provides Sensorless FOC Performance
	1.1.5.1 FAST Estimator Replaces Mechanical Sensor
	1.1.5.2 Rotor Angle Accuracy Critical for Performance

	1.2 An Overview of InstaSPIN-MOTION™ and SpinTAC™
	1.2.1 InstaSPIN-MOTION™ Key Capabilities and Benefits
	1.2.1.1 The FAST Unified Software Observer
	1.2.1.2 The SpinTAC Motion Control Suite
	1.2.1.2.1 IDENTIFY
	1.2.1.2.2 CONTROL
	1.2.1.2.3 MOVE
	1.2.1.2.4 PLAN

	1.2.1.3 Additional InstaSPIN-MOTION Features

	1.2.2 InstaSPIN-MOTION™ Block Diagrams
	1.2.3 Application Examples
	1.2.3.1 Treadmill Conveyor: Smooth Motion Across Varying Speeds and Loads
	1.2.3.2 Video Camera: Smooth Motion and Position Accuracy at Low Speeds
	1.2.3.3 Washing Machine: Smooth Motion and Position Accuracy at Low Speeds
	1.2.3.3.1 Agitation Cycle
	1.2.3.3.2 Spin Cycles
	1.2.3.3.3 InstaSPIN-MOTION Works Over the Entire Operating Range

	2 Quick Start Kits - TI Provided Software and Hardware
	2.1 Overview
	2.2 Evaluating InstaSPIN-FOC™ and InstaSPIN-MOTION™

	3 InstaSPIN™ and MotorWare™
	3.1 Overview
	3.2 MotorWare™ Directory Structure
	3.2.1 MotorWare™ – drivers
	3.2.2 MotorWare™ – ide
	3.2.3 MotorWare™ – modules
	3.2.4 MotorWare™ – solutions

	3.3 MotorWare™ Object-Oriented Design
	3.3.1 Objects
	3.3.2 Methods
	3.3.2.1 Init Method
	3.3.2.2 Set Method
	3.3.2.3 Get Method
	3.3.2.4 Run Method

	3.4 InstaSPIN-FOC™ API
	3.4.1 Controller API Functions – ctrl.c, ctrl.h, CTRL_obj.h
	3.4.1.1 CTRL Enumerations and Structures
	3.4.1.2 CTRL State Control and Error Handling
	3.4.1.3 CTRL Get Functions
	3.4.1.4 CTRL Counter Functions
	3.4.1.5 CTRL Set Functions
	3.4.1.6 CTRL Run and Compute Functions

	3.4.2 Estimator API Functions – FAST™ Library – est.h, est_states.h
	3.4.2.1 EST Enumerations and Structures
	3.4.2.2 EST Set Functions
	3.4.2.3 EST Get Functions
	3.4.2.4 EST Run and Compute Functions
	3.4.2.5 EST Counter Functions
	3.4.2.6 EST State Control and Error Handling Functions

	3.4.3 Hardware Abstraction Layer (HAL) API Functions – hal.c, hal.h, hal_obj.h
	3.4.3.1 HAL Enumerations and Structures
	3.4.3.2 HAL – ADC and AFE
	3.4.3.3 HAL – PWM and PWM-DAC
	3.4.3.4 HAL – CPU Timers
	3.4.3.5 HAL – GPIO and LED
	3.4.3.6 HAL – Miscellaneous

	3.4.4 User Settings – user.c, user.h, userParams.h
	3.4.4.1 USER Enumerations and Structures
	3.4.4.2 USER Set and Compute Functions
	3.4.4.3 USER Error Handling Functions

	3.4.5 Miscellaneous Functions

	3.5 InstaSPIN-MOTION™ and the SpinTAC™ API
	3.5.1 Header Files, Public Library, and ROM Library
	3.5.2 Version Information
	3.5.2.1 Code Example for Returning SpinTAC™ Version Information
	3.5.2.1.1 Include the Header File
	3.5.2.1.2 Declare the Global Structure
	3.5.2.1.3 Initialize the Configuration Variables
	3.5.2.1.4 Return the Version Information

	3.5.3 SpinTAC™ Structure Names
	3.5.4 SpinTAC™ Variables

	3.6 SpinTAC™ API
	3.6.1 SpinTAC™ Velocity Control
	3.6.1.1 SpinTAC™ Velocity Control Interface
	3.6.1.2 SpinTAC™ Velocity Control Run Function

	3.6.2 SpinTAC™ Velocity Move
	3.6.2.1 SpinTAC™ Velocity Move Interface
	3.6.2.2 SpinTAC™ Velocity Move Run Function

	3.6.3 SpinTAC™ Velocity Plan
	3.6.3.1 SpinTAC™ Velocity Plan Interface
	3.6.3.2 SpinTAC™ Velocity Plan Primary Functions

	3.6.4 SpinTAC™ Velocity Identify
	3.6.4.1 SpinTAC™ Velocity Identify Interface
	3.6.4.2 SpinTAC™ Velocity Identify Run Function

	3.6.5 SpinTAC™ Position Convert
	3.6.5.1 SpinTAC™ Position Convert Interfaces
	3.6.5.2 SpinTAC™ Position Convert Run Function

	3.6.6 SpinTAC™ Position Control
	3.6.6.1 SpinTAC™ Position Control Interface
	3.6.6.2 SpinTAC™ Position Control Run Function

	3.6.7 SpinTAC™ Position Move
	3.6.7.1 SpinTAC™ Position Move Interface
	3.6.7.2 SpinTAC™ Position Move Run Function

	3.6.8 SpinTAC™ Position Plan
	3.6.8.1 SpinTAC™ Position Plan Interface
	3.6.8.2 SpinTAC™ Position Plan Primary Functions

	3.6.9 SpinTAC™ Functions

	4 User Parameters (user.h)
	4.1 Currents and Voltages
	4.1.1 USER_IQ_FULL_SCALE_FREQ_Hz
	4.1.2 USER_IQ_FULL_SCALE_VOLTAGE_V
	4.1.3 USER_ADC_FULL_SCALE_VOLTAGE_V
	4.1.4 USER_VOLTAGE_SF
	4.1.5 USER_IQ_FULL_SCALE_CURRENT_A
	4.1.6 USER_ADC_FULL_SCALE_CURRENT_A
	4.1.7 USER_CURRENT_SF
	4.1.8 USER_NUM_CURRENT_SENSORS
	4.1.9 USER_NUM_VOLTAGE_SENSORS
	4.1.10 I_A_offset , I_B_offset , I_C_offset
	4.1.11 V_A_offset , V_B_offset , V_C_offset

	4.2 Clocks and Timers
	4.2.1 USER_SYSTEM_FREQ_MHz
	4.2.2 USER_PWM_FREQ_kHz
	4.2.3 USER_MAX_VS_MAG_PU
	4.2.4 USER_PWM_PERIOD_usec
	4.2.5 USER_ISR_FREQ_Hz
	4.2.6 USER_ISR_PERIOD_usec

	4.3 Decimation
	4.3.1 USER_NUM_PWM_TICKS_PER_ISR_TICK
	4.3.2 USER_NUM_ISR_TICKS_PER_CTRL_TICK
	4.3.3 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK
	4.3.4 USER_NUM_CTRL_TICKS_PER_EST_TICK
	4.3.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK
	4.3.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK
	4.3.7 USER_CTRL_FREQ_Hz
	4.3.8 USER_EST_FREQ_Hz
	4.3.9 USER_TRAJ_FREQ_Hz
	4.3.10 USER_CTRL_PERIOD_usec
	4.3.11 USER_CTRL_PERIOD_sec

	4.4 Limits
	4.4.1 USER_MAX_NEGATIVE_ID_REF_CURRENT_A
	4.4.2 USER_ZEROSPEEDLIMIT
	4.4.3 USER_FORCE_ANGLE_FREQ_Hz
	4.4.4 USER_MAX_CURRENT_SLOPE_POWERWARP
	4.4.5 USER_MAX_ACCEL_Hzps
	4.4.6 USER_MAX_ACCEL_EST_Hzps
	4.4.7 USER_MAX_CURRENT_SLOPE
	4.4.8 USER_IDRATED_FRACTION_FOR_RATED_FLUX
	4.4.9 USER_IDRATED_FRACTION_FOR_L_IDENT
	4.4.10 USER_IDRATED_DELTA
	4.4.11 USER_SPEEDMAX_FRACTION_FOR_L_IDENT
	4.4.12 USER_FLUX_FRACTION
	4.4.13 USER_POWERWARP_GAIN
	4.4.14 USER_R_OVER_L_EST_FREQ_Hz

	4.5 Poles
	4.5.1 USER_VOLTAGE_FILTER_POLE_Hz
	4.5.2 USER_VOLTAGE_FILTER_POLE_rps
	4.5.3 USER_OFFSET_POLE_rps
	4.5.4 USER_FLUX_POLE_rps
	4.5.5 USER_DIRECTION_POLE_rps
	4.5.6 USER_SPEED_POLE_rps
	4.5.7 USER_DCBUS_POLE_rps
	4.5.8 USER_EST_KAPPAQ

	4.6 User Motor and ID Settings
	4.6.1 USER_MOTOR_TYPE
	4.6.2 USER_MOTOR_NUM_POLE_PAIRS
	4.6.3 USER_MOTOR_Rr
	4.6.4 USER_MOTOR_Rs
	4.6.5 USER_MOTOR_Ls_d
	4.6.6 USER_MOTOR_Ls_q
	4.6.7 USER_MOTOR_RATED_FLUX
	4.6.8 USER_MOTOR_MAGNETIZING_CURRENT
	4.6.9 USER_MOTOR_RES_EST_CURRENT
	4.6.10 USER_MOTOR_IND_EST_CURRENT
	4.6.11 USER_MOTOR_MAX_CURRENT
	4.6.12 USER_MOTOR_FLUX_EST_FREQ_Hz
	4.6.13 USER_MOTOR_ENCODER_LINES (InstaSPIN-MOTION™ Only)
	4.6.14 USER_MOTOR_MAX_SPEED_KRPM (InstaSPIN-MOTION™ Only)
	4.6.15 USER_SYSTEM_INERTIA (InstaSPIN-MOTION™ Only)
	4.6.16 USER_SYSTEM_FRICTION (InstaSPIN-MOTION™ Only)
	4.6.17 USER_SYSTEM_BANDWIDTH_SCALE (InstaSPIN-MOTION™ Only)

	4.7 SpinTAC™ Parameters (spintac_velocity.h and spintac_position.h)
	4.7.1 Macro Definitions
	4.7.1.1 ST_MREV_ROLLOVER (spintac_position.h only)
	4.7.1.2 ST_EREV_MAXIMUM (spintac_position.h only)
	4.7.1.3 ST_POS_ERROR_MAXIMUM_MREV (spintac_position.h only)
	4.7.1.4 ST_ISR_TICKS_PER_SPINTAC_TICK
	4.7.1.5 ST_SPEED_SAMPLE_TIME
	4.7.1.6 ST_SPEED_PU_PER_KRPM
	4.7.1.7 ST_SPEED_KRPM_PER_PU
	4.7.1.8 ST_MOTOR_INERTIA_PU
	4.7.1.9 ST_MOTOR_FRICTION_PU
	4.7.1.10 ST_MIN_ID_SPEED_RPM
	4.7.1.11 ST_MIN_ID_SPEED_PU
	4.7.1.12 ST_ID_INCOMPLETE_ERROR
	4.7.1.13 ST_VARS_DEFAULTS

	4.7.2 Type Definitions
	4.7.2.1 VEL_Params_t / POS_Params_t
	4.7.2.2 ST_Obj
	4.7.2.3 ST_Handle
	4.7.2.4 ST_PlanButton_e
	4.7.2.5 ST_Vars_t

	4.7.3 Functions
	4.7.3.1 ST_init
	4.7.3.2 ST_setupPosConv
	4.7.3.3 ST_setupVelCtl (Velocity Control Only)
	4.7.3.4 ST_setupPosCtl (Position Control Only)
	4.7.3.5 ST_setupVelMove (Velocity Control Only)
	4.7.3.6 ST_setupPosMove (Position Control Only)
	4.7.3.7 ST_setupVelPlan (Velocity Control Only)
	4.7.3.8 ST_setupPosPlan (Position Control Only)
	4.7.3.9 ST_setupVelId (Velocity Control Only)
	4.7.3.10 ST_runPosConv
	4.7.3.11 ST_runVelCtl (Velocity Control Only)
	4.7.3.12 ST_runPosCtl (Position Control Only)
	4.7.3.13 ST_runVelMove (Velocity Control Only)
	4.7.3.14 ST_runPosMove (Position Control Only)
	4.7.3.15 ST_runVelPlan (Velocity Control Only)
	4.7.3.16 ST_runVelPlanTick (Velocity Control Only)
	4.7.3.17 ST_runPosPlan (Position Control Only)
	4.7.3.18 ST_runPosPlanTick (Position Control Only)
	4.7.3.19 ST_runVelId (Velocity Control Only)

	4.8 Setting ACIM Motor Parameters in user.h
	4.8.1 Getting Parameters From an ACIM Datasheet
	4.8.1.1 Number of Pole Pairs
	4.8.1.2 Entering ACIM Motor Parameters from a Data Sheet to user.h
	4.8.1.3 Getting the Rated Magnetizing Current of an ACIM
	4.8.1.4 Getting the Rated Flux of an ACIM

	5 Managing Motor Signals
	5.1 Software Prerequisites
	5.1.1 IQ Full-Scale Frequency
	5.1.2 IQ Full-Scale Voltage
	5.1.3 IQ Full-Scale Current
	5.1.4 Max Current
	5.1.5 Decimation Rates
	5.1.6 System Frequency
	5.1.7 PWM Frequency
	5.1.8 Max Voltage Vector

	5.2 Hardware Prerequisites
	5.2.1 Current Feedback Gain
	5.2.2 Current Feedback Polarity
	5.2.2.1 Positive Feedback
	5.2.2.2 Negative Feedback

	5.2.3 Voltage Feedback
	5.2.4 Voltage Filter Pole
	5.2.5 Number of Shunt Resistors
	5.2.6 Dead-Time Configuration
	5.2.7 Analog Inputs Configuration
	5.2.8 PWM Outputs Configuration

	6 Motor Identification and State Diagrams
	6.1 Overview
	6.2 InstaSPIN™ Motor Identification
	6.3 Motor Identification Process Overview
	6.3.1 Controller (CTRL) State Machine
	6.3.2 Estimator (EST) State Machine
	6.3.3 Controller (CTRL) and Estimator (EST) State Machine Dependencies

	6.4 Differences between PMSM and ACIM Identification Process
	6.5 Prerequisites
	6.5.1 Mechanical Prerequisites
	6.5.1.1 Motor Connection
	6.5.1.2 Order of the Phases
	6.5.1.3 Minimum Mechanical Load

	6.5.2 Hardware Prerequisites
	6.5.3 Software Prerequisites
	6.5.4 Software Configuration for PMSM Motor Identification
	6.5.4.1 Motor Type
	6.5.4.2 Number of Pole Pairs
	6.5.4.3 Frequency for Rhf and Lhf
	6.5.4.4 Current for Rs
	6.5.4.5 Current for Ls
	6.5.4.6 Frequency for Ls and Flux

	6.5.5 Software Configuration for ACIM Motor Identification
	6.5.5.1 Motor Type
	6.5.5.2 Number of Pole Pairs
	6.5.5.3 Frequency for Rhf and Lhf
	6.5.5.4 Rated Flux
	6.5.5.5 Current for Rs
	6.5.5.6 Frequency for IdRated, Ls and Rr

	6.6 Full Identification of PMSM Motors
	6.6.1 CTRL_State_Idle and EST_State_Idle
	6.6.2 CTRL_State_OffLine and EST_State_Idle (Hardware Offsets Calibrated)
	6.6.3 CTRL_State_OnLine and EST_State_RoverL
	6.6.3.1 Amplitude of Injected Current for RoverL
	6.6.3.2 Frequency of Injected Current for RoverL
	6.6.3.3 Measurement Time for RoverL
	6.6.3.4 Troubleshooting Current Controller Stability During RoverL Identification
	6.6.3.5 Adjusting Resulting Current Controller Gains for High-Speeds

	6.6.4 CTRL_State_OnLine and EST_State_Rs
	6.6.4.1 Troubleshooting Current Controller Stability During Rs Identification

	6.6.5 CTRL_State_OnLine and EST_State_RampUp
	6.6.5.1 Ramp-Up Current Amplitude
	6.6.5.1.1 Troubleshooting Motor Shaft Stopping During Ramp-Up

	6.6.5.2 Ramp-Up Time and Acceleration
	6.6.5.2.1 Troubleshooting Motor Shaft for Smoother Ramp

	6.6.5.3 Ramp-Up Final Speed for PMSM

	6.6.6 CTRL_State_OnLine and EST_State_RatedFlux
	6.6.6.1 Current Ramp-Down
	6.6.6.2 Total Measurement Time
	6.6.6.3 Troubleshooting Flux Measurement

	6.6.7 CTRL_State_OnLine and EST_State_Ls
	6.6.7.1 Ramp-Up Current
	6.6.7.2 Troubleshooting Ls Identification
	6.6.7.3 Ls_d and Ls_q, Direct and Quadrature Stator Inductance

	6.6.8 CTRL_State_OnLine and EST_State_RampDown
	6.6.9 CTRL_State_OnLine and EST_State_MotorIdentified
	6.6.10 CTRL_State_Idle and EST_State_Idle

	6.7 Full Identification of ACIM Motors
	6.7.1 CTRL_State_Idle and EST_State_Idle
	6.7.2 CTRL_State_OffLine and EST_State_Idle
	6.7.3 CTRL_State_OnLine and EST_State_RoverL
	6.7.4 CTRL_State_OnLine and EST_State_Rs
	6.7.5 CTRL_State_OnLine and EST_State_RampUp
	6.7.5.1 Ramp-Up Final Speed for ACIM

	6.7.6 CTRL_State_OnLine and EST_State_IdRated
	6.7.6.1 Reducing Oscillation to Improve Id Rated Measurement
	6.7.6.2 Reading Id Rated Final Value

	6.7.7 CTRL_State_OnLine and EST_State_RatedFlux
	6.7.7.1 Troubleshooting Flux Measurement

	6.7.8 CTRL_State_OnLine and EST_State_RampDown
	6.7.9 CTRL_State_Idle and EST_State_LockRotor
	6.7.9.1 Troubleshooting Locked Rotor Test

	6.7.10 CTRL_State_OnLine and EST_State_Ls
	6.7.11 CTRL_State_OnLine and EST_State_Rr
	6.7.12 CTRL_State_OnLine and EST_State_RampDown
	6.7.13 CTRL_State_OnLine and EST_State_MotorIdentified
	6.7.14 CTRL_State_Idle and EST_State_Idle

	6.8 Recalibration of PMSM and ACIM Motor Identification
	6.8.1 Recalibration of PMSM and ACIM Motors After Full Identification
	6.8.1.1 Start-Up Time Consideration
	6.8.1.2 CTRL_State_Idle and EST_State_Idle
	6.8.1.3 CTRL_State_OffLine and EST_State_Idle
	6.8.1.4 CTRL_State_OnLine and EST_State_Rs
	6.8.1.4.1 Managing Time Required for Rs Recalibration
	6.8.1.4.2 Software configuration for Rs recalibration

	6.8.1.5 CTRL_State_OnLine and EST_State_OnLine
	6.8.1.5.1 Transitioning to Online State from CTRL Online and EST Rs
	6.8.1.5.2 Transitioning to Online state from (CTRL Idle or CTRL Offline) and EST Idle

	6.8.1.6 CTRL_State_Idle and EST_State_Idle

	6.8.2 Recalibration of PMSM and ACIM Motors after Using Parameters from user.h

	6.9 Setting PMSM Motor Parameters in user.h
	6.9.1 Getting Parameters from a PMSM Datasheet
	6.9.1.1 Number of Pole Pairs
	6.9.1.2 Stator Resistance (Rs)
	6.9.1.3 Stator Inductance (Ls_d and Ls_q)
	6.9.1.4 Rated Flux (ψ)

	6.10 Troubleshooting Motor Identification
	6.10.1 Troubleshooting PMSM Motor Identification
	6.10.1.1 Identifying PMSM Motors When Load Cannot be Detached
	6.10.1.2 Can Motor Rotate with the Attached Load?
	6.10.1.3 Run First Three Steps of Identification
	6.10.1.4 Run Using Motor Parameters from user.h
	6.10.1.5 Troubleshooting Motor Shaft Stopping During Ramp-Up
	6.10.1.6 Troubleshooting Motor Shaft for Smoother Ramp
	6.10.1.7 Troubleshooting Flux Measurement
	6.10.1.8 Troubleshooting Ls Identification
	6.10.1.8.1 Identifying Low Inductance PMSM Motors
	6.10.1.8.1.1 Hardware Considerations
	6.10.1.8.1.2 Software Considerations

	6.10.1.8.2 Identifying Inductance of Salient PMSM Motors
	6.10.1.8.2.1 Hardware Considerations
	6.10.1.8.2.2 Software Considerations

	6.10.1.9 Identifying High-Cogging Torque PMSM Motors

	6.10.2 Troubleshooting ACIM Motor Identification
	6.10.2.1 Troubleshooting Flux Measurement
	6.10.2.2 Troubleshooting Locked Rotor Test

	7 Inertia Identification
	7.1 Overview
	7.2 InstaSPIN-MOTION™ Inertia Identification
	7.3 Inertia Identification Process Overview
	7.4 Software Configuration for SpinTAC™ Velocity Identify
	7.4.1 Include the Header File
	7.4.2 Declare the Global Variables
	7.4.3 Initialize the Configuration Variables
	7.4.4 Call SpinTAC™ Velocity Identify

	7.5 Troubleshooting Inertia Identification
	7.5.1 ERR_ID
	7.5.2 2003 Error
	7.5.3 2004 Error
	7.5.3.1 Motor Spins Continuously
	7.5.3.2 Motor Does Not Spin Initially

	7.5.4 2006 Error

	7.6 Difficult Applications for Inertia Identification
	7.6.1 Automotive Pumps (Large-Cogging Force / Large Friction)
	7.6.2 Direct Drive Washing Machines (Low-Rated Speed and Large Back EMF)
	7.6.3 Compressors (Large Start-Up Current)

	8 MCU Considerations
	8.1 Overview
	8.2 InstaSPIN-Enabled Devices
	8.2.1 softwareUpdate1p6() - Function is Required in User Code

	8.3 ROM and User Memory Overview
	8.3.1 InstaSPIN-FOC™ Full Implementation in ROM
	8.3.1.1 Executing from ROM and RAM
	8.3.1.2 Executing from ROM and FLASH

	8.3.2 InstaSPIN-FOC™ Minimum Implementation in ROM
	8.3.2.1 Executing from ROM and RAM
	8.3.2.2 Executing from ROM and FLASH

	8.3.3 InstaSPIN-MOTION™ in ROM
	8.3.3.1 Executing InstaSPIN™-MOTION in the Main Interrupt
	8.3.3.2 Executing Library from RAM
	8.3.3.3 Executing Library from Flash

	8.4 Details on CPU Load and Memory Footprint Measurements
	8.4.1 CPU Utilization Measurement Details
	8.4.2 Memory Allocation Measurement Details
	8.4.3 IQ Math Built in ROM
	8.4.4 Stack Utilization Measurement Details
	8.4.5 InstaSPIN™ Main Interrupt
	8.4.6 Clock Rate

	8.5 Memory Footprint
	8.5.1 Device Memory Map
	8.5.1.1 F2806xF and F2806xM Devices
	8.5.1.2 F2805xF and F2805xM Devices
	8.5.1.3 F2802xF Devices

	8.5.2 InstaSPIN™ Memory Footprint
	8.5.2.1 F2806xF and F2805xF Devices
	8.5.2.2 F2802xF Devices
	8.5.2.3 F2806xM and F2805xM Devices

	8.5.3 Memory Wait-States
	8.5.3.1 F2806xF/M Devices
	8.5.3.2 F2805xF/M Devices
	8.5.3.3 F2802xF Devices

	8.5.4 Flash Configuration Required Even for RAM-Only Execution
	8.5.5 Debug (IDE) of EXE-Only Memory

	8.6 CPU Load
	8.6.1 F2806xF Devices
	8.6.1.1 CPU Cycles
	8.6.1.1.1 User Code in RAM
	8.6.1.1.1.1 Full Implementation
	8.6.1.1.1.2 Minimum Implementation

	8.6.1.1.2 User Code in FLASH
	8.6.1.1.2.1 Full Implementation
	8.6.1.1.2.2 Minimum Implementation

	8.6.1.2 CPU Load with PWM = 10 kHz
	8.6.1.3 CPU Load with PWM = 20 kHz
	8.6.1.4 CPU Load Examples
	Example 8-1. F2806xF Devices Example 1
	Example 8-2. F2806xF Devices Example 2

	8.6.2 F2806xM Devices
	8.6.2.1 CPU Cycles
	8.6.2.1.1 RAM Execution - SpinTAC™ Library and User Code
	8.6.2.1.2 FLASH Execution - SpinTAC™ Library and User Code

	8.6.2.2 CPU Load Examples
	Example 8-3. F2806xM Devices Example 1
	Example 8-4. F2806xM Devices Example 2
	Example 8-5. F2806xM Devices Example 3
	Example 8-6. F2806xM Devices Example 4 (SpinTAC™ Position)

	8.6.3 F805xF Devices
	8.6.3.1 CPU Cycles
	8.6.3.2 CPU Load with PWM = 10 kHz
	8.6.3.3 CPU Load with PWM = 20 kHz

	8.6.4 F2805xM Devices
	8.6.4.1 CPU Cycles
	8.6.4.1.1 FLASH Execution - SpinTAC™ Library and User Code

	8.6.5 F2802xF Devices
	8.6.5.1 CPU Cycles
	8.6.5.2 CPU Load with PWM = 10 kHz
	8.6.5.3 CPU Load with PWM = 20 kHz

	8.7 Digital and Analog Pins
	8.7.1 Pin Utilization
	8.7.2 F2805x Analog Front-End (AFE)
	8.7.2.1 Consideration of AFE Module
	8.7.2.2 Routing Current Signals
	8.7.2.3 Voltage Reference Connection
	8.7.2.4 Routing Voltage Signals

	9 Real-Time Structure
	9.1 InstaSPIN™ Software Execution Clock Tree
	9.2 Decimating in Software for Real-Time Scheduling
	9.2.1 USER_NUM_ISR_TICKS_PER_CTRL_TICK
	9.2.2 USER_NUM_CTRL_TICKS_PER_CURRENT_TICK
	9.2.3 USER_NUM_CTRL_TICKS_PER_EST_TICK
	9.2.4 Practical Example
	9.2.5 USER_NUM_CTRL_TICKS_PER_SPEED_TICK
	9.2.6 USER_NUM_CTRL_TICKS_PER_TRAJ_TICK

	9.3 Decimating in Hardware

	10 Managing Startup Time
	10.1 Startup with Offsets and Rs Recalibration
	10.2 Startup with Only Offsets Recalibration
	10.3 Startup with Rs Recalibration
	10.4 Startup with No Recalibration
	10.5 Bypassing Inertia Estimation

	11 Tuning Regulators
	11.1 PI Controllers Introduction
	11.2 PI Design for Current Controllers
	11.3 PI Design for Speed Controllers
	11.4 Calculating PI Gains Based On Stability and Bandwidth
	11.5 Calculating Speed and Current PI Gains Based on Damping Factor
	11.6 Considerations When Adding Poles to the Speed Loop
	11.7 Speed PI Controller Considerations: Current Limits, Clamping and Inertia
	11.8 Considerations When Designing PI Controllers for FOC Systems
	11.8.1 FOC Differences Between Motor Types
	11.8.2 Coupling Between Q-Axis and D-Axis

	11.9 Sampling and Digital Systems Considerations
	11.9.1 Sampling Period Considerations in the Integral Gain
	11.9.2 Number Format Considerations
	11.9.3 PI Coefficients Scaling Considerations

	12 InstaSPIN-MOTION™ Controllers
	12.1 Overview
	12.2 Stability
	12.2.1 Quantifying Stability
	12.2.1.1 SpinTAC™ Velocity Control Stability
	12.2.1.2 SpinTAC™ Position Control Stability

	12.2.2 Performance
	12.2.2.1 Frequency Domain Analysis
	12.2.2.2 Time Domain Analysis

	12.2.3 Trade-Off Between Stability and Performance
	12.2.4 Tuning the SpinTAC™ Controller
	12.2.4.1 Considerations
	12.2.4.2 Tuning the InstaSPIN™-MOTION Controller

	12.3 Software Configuration for the SpinTAC™ Velocity Control
	12.3.1 Include the Header File
	12.3.2 Declare the Global Structure
	12.3.3 Initialize the Configuration Variables
	12.3.4 Call SpinTAC™ Velocity Control
	12.3.5 Troubleshooting SpinTAC™ Velocity Control
	12.3.5.1 ERR_ID

	12.4 Optimal Performance in Speed Control
	12.4.1 Introduction
	12.4.2 Comparing Speed Controllers
	12.4.3 Disturbance Rejection
	12.4.4 Profile Tracking
	12.4.5 InstaSPIN-MOTION™ Velocity Control Advantage
	12.4.5.1 Single Parameter Tuning
	12.4.5.2 Disturbance Rejection Test
	12.4.5.3 Feedforward
	12.4.5.4 No Integrator Windup
	12.4.5.5 Minimum Startup Overshoot
	12.4.5.6 Conclusions

	12.5 Software Configuration for SpinTAC™ Position Control
	12.5.1 Include the Header File
	12.5.2 Declare the Global Structure
	12.5.3 Initialize the Configuration Variables
	12.5.4 Call SpinTAC™ Position Control
	12.5.5 Troubleshooting SpinTAC™ Position Control
	12.5.5.1 ERR_ID

	12.6 Optimal Performance in Position Control
	12.6.1 Introduction
	12.6.2 Comparing Position Controllers
	12.6.3 Disturbance Rejection
	12.6.4 Profile Tracking
	12.6.5 InstaSPIN-MOTION™ Position Control Advantage
	12.6.5.1 Single Parameter Tuning
	12.6.5.2 Disturbance Rejection
	12.6.5.3 Feedforward
	12.6.5.4 Low-Speed Operation and Smooth Startup
	12.6.5.5 Minimum Step Response Settling Time
	12.6.5.6 Conclusions

	13 Trajectory Planning
	13.1 InstaSPIN-MOTION™ Profile Generation
	13.1.1 Jerk Impact on System Performance

	13.2 Software Configuration for SpinTAC™ Velocity Move
	13.2.1 Include the Header File
	13.2.2 Declare the Global Structure
	13.2.3 Initialize the Configuration Variables
	13.2.4 Call SpinTAC™ Velocity Move
	13.2.5 Troubleshooting SpinTAC™ Velocity Move
	13.2.5.1 ERR_ID

	13.3 Software Configuration for SpinTAC™ Position Move
	13.3.1 Include the Header File
	13.3.2 Declare the Global Structure
	13.3.3 Initialize the Configuration Variables
	13.3.4 Call SpinTAC™ Position Move
	13.3.5 Troubleshooting SpinTAC™ Position Move
	13.3.5.1 Position Profile Limits
	13.3.5.2 ERR_ID

	13.4 InstaSPIN-MOTION™ Sequence Planning
	13.4.1 SpinTAC™ Velocity Plan Elements
	13.4.1.1 States
	13.4.1.2 Transitions
	13.4.1.3 Conditions
	13.4.1.4 Variables
	13.4.1.5 Actions

	13.4.2 SpinTAC™ Velocity Plan Element Limits
	13.4.2.1 Example of Sizing SpinTAC™ Velocity Plan Configuration Array

	13.4.3 SpinTAC™ Velocity Plan Example: Washing Machine Agitation
	13.4.4 SpinTAC™ Velocity Plan Example: Garage Door
	13.4.5 SpinTAC™ Velocity Plan Example: Washing Machine
	13.4.6 SpinTAC™ Position Plan Example: Vending Machine

	13.5 Software Configuration for SpinTAC™ Velocity Plan
	13.5.1 Include the Header File
	13.5.2 Define the Size of the Configuration Array
	13.5.3 Declare the Global Structure
	13.5.4 Initialize the Configuration Variables
	13.5.5 Call SpinTAC™ Velocity Plan
	13.5.6 Call SpinTAC™ Velocity Plan Tick
	13.5.7 Update SpinTAC™ Velocity Plan with SpinTAC™ Velocity Move Status

	13.6 Troubleshooting SpinTAC™ Velocity Plan
	13.6.1 ERR_ID
	13.6.2 Configuration Errors

	13.7 Software Configuration for SpinTAC™ Position Plan
	13.7.1 Include the Header File
	13.7.2 Define the Size of the Configuration Array
	13.7.3 Declare the Global Structure
	13.7.4 Initialize the Configuration Variables
	13.7.5 Call SpinTAC™ Position Plan
	13.7.6 Call SpinTAC™ Position Plan Tick
	13.7.7 Update SpinTAC™ Position Plan with SpinTAC™ Position Move Status

	13.8 Troubleshooting SpinTAC™ Position Plan
	13.8.1 ERR_ID
	13.8.2 Configuration Errors

	13.9 Conclusion

	14 Managing Full Load at Startup, Low-Speed, and Speed Reversal
	14.1 Overview
	14.2 Low-Speed Operation with Full Load
	14.2.1 Low Speed with Full Load Considerations
	14.2.1.1 Enable Offsets Recalibration
	14.2.1.2 Enable Stator Rs Recalibration
	14.2.1.3 Disable Forced Angle
	14.2.1.4 Tune Speed Controller to Avoid Motor Stall
	14.2.1.5 Tune Voltage Feedback Circuit

	14.2.2 Low Speed With Full Load Transient Examples
	14.2.2.1 4-Hz, No-Load to Full-Load Transient
	14.2.2.2 2-Hz, No-Load to Full-Load Transient

	14.3 Speed Reversal with Full Load
	14.3.1 Low Speed with Full Load Speed Reversal Considerations
	14.3.2 Low Speed with Full Load Speed Reversal Examples
	14.3.2.1 From -4 to +4 Hz with Full Load
	14.3.2.2 From -2 to +2 Hz with Full Load

	14.4 Motor Startup with Full Load
	14.4.1 Motor Startup with Full Load Considerations
	14.4.1.1 Enable Forced Angle

	14.4.2 Motor Startup with Full Load Examples
	14.4.2.1 From Standstill to 4 Hz with Full Load
	14.4.2.2 From Standstill to 2 Hz with Full Load

	14.5 Rapid Acceleration from Standstill With Full Load
	14.5.1 Fastest Motor Startup with Full Load without Motor Alignment Considerations
	14.5.1.1 Load Valid Offsets and Disable Offset Recalibration
	14.5.1.2 Load Valid Rs and Disable Rs Recalibration
	14.5.1.3 Fastest Motor Startup with Full Load without Motor Alignment Example

	14.5.2 Fastest Motor Startup with Full Load with Motor Alignment Considerations
	14.5.2.1 Maximize Current Slope
	14.5.2.2 Fastest Motor Startup with Full Load with Motor Alignment Example

	14.6 Overloading and Motor Overheating
	14.6.1 Overloading and Motor Overheating Considerations
	14.6.2 Overloading and Motor Overheating Example

	14.7 InstaSPIN-MOTION™ and Low-Speed Considerations

	15 Rs Online Recalibration
	15.1 Overview
	15.2 Resistance vs. Temperature
	15.3 Accurate Rs Knowledge Needed at Low Speeds Including Startup
	15.4 Introduction to Rs Online Recalibration
	15.5 Rs Online vs. Rs Offline
	15.6 Enabling Rs Online Recalibration
	15.7 Disabling Rs Online Recalibration
	15.8 Modifying Rs Online Parameters
	15.8.1 Adjusting Injected Current Magnitude
	15.8.2 Adjusting Slow Rotating Angle
	15.8.3 Adjusting Delta Increments and Decrements of the Rs Online Value
	15.8.4 Adjusting Filter Parameters

	15.9 Monitoring Rs Online Resistance Value
	15.9.1 Rs Online Floating Point Value
	15.9.2 Rs Online Fixed Point Value

	15.10 Using the Rs Online Feature as a Temperature Sensor
	15.11 Rs Online Related State Diagrams (CTRL and EST)

	16 PowerWarp™
	16.1 Overview
	16.2 Enabling PowerWarp™ Software
	16.3 PowerWarp™ Current Slopes
	16.4 Practical Example
	16.5 Case Study

	17 Shunt Current Measurements
	17.1 Introduction
	17.2 Signals
	17.3 1-Shunt
	17.4 2-Shunt
	17.5 3-Shunt
	17.6 Development Kits
	17.6.1 DRV8312 Kit
	17.6.2 DRV8301 Kit

	17.7 Conclusion

	18 Sensored Systems
	18.1 Hardware Configuration for Quadrature Encoder
	18.1.1 Pin Usage

	18.2 Software Configuration for Quadrature Encoder
	18.2.1 Configure Motor for EQEP Operation
	18.2.2 Initialize EQEP Handle
	18.2.3 Set Digital IO to Connect to QEP Peripheral
	18.2.4 Enable Clock to eQEP
	18.2.5 Initialize ENC Module
	18.2.6 Set Up ENC Module
	18.2.7 Call eQEP Function
	18.2.8 Provide eQEP Angle to FOC

	18.3 InstaSPIN-MOTION™ Position Convert
	18.3.1 Software Configuration for SpinTAC™ Position Convert
	18.3.1.1 Include the Header File
	18.3.1.2 Declare the Global Structure
	18.3.1.3 Initialize the Configuration Variables
	18.3.1.4 Call SpinTAC™ Position Convert

	18.3.2 Troubleshooting SpinTAC™ Position Convert
	18.3.2.1 ERR_ID

	A Definition of Terms and Acronyms
	Revision History

