Application Note
EEPROM Emulation Type B Design

i3 TEXAS INSTRUMENTS

Zhao Yuhao
ABSTRACT

This application note introduces the library of type B EEPROM emulation. The document describes the structure
and behavior of the type B EEPROM emulation. Then the document introduces the use of the associated APlIs.
In addition, the relevant code is provided to the users. Users can call functions in applications to write, read, and
modify data.

Table of Contents

I T2 e Yo [T T £ o o TSP PR 2
1.1 Difference Between EEPROM and ON-Chip FIASh............cocuiiiiiiiiiec ettt ettt e e erae e e e e 2
28 114 o] 1= 0 4 L= 1 -1 o o TS 3
D22 4 1 o o = PSP ERUR R 3
B == T LY P SPP 5
3 S 0ftWAre DESCIIPHION.ot e e e ettt e e e e et e e e e e e e eabeeeeeeeeba—eeaeeaabbaeaaeeaaatareaeeaataaeaaeeaanrrees 6
3.1 Software FUNCHONaAlity @Nd FIOW.............eoiiiiieee ettt e e sttt e e sttt e e e et e e e sneeeeanteeesseeeesnseeeanseeeeanneeennnes 6
3.2 EEPROM FUNCHONS. ... ettt ettt s et e et e e e et e e st e e e ssteeeameeeeemneee e s teeeamseeesmseeaeanseeeemsaeeannseeeanseeeanneeeaanseneansenenns 7
ORI Y o] o] [To== i {oT TN L] (=Te | = 11 (o] o PRSP RRR 13
3.4 EEPROM Emulation MemOry FOOLPIINT..........eiiiiieeiiie ettt e e et e e e nnte e e smnee e e sneeeeeneeeeenneeeeanneeen 14
3.5 EEPROM EMUIAtION TiMIING. . .eeieiiiieeiiieeiieeeieeesee e s te ettt e e st e e st e e assteeeamseeesmneeeaasaeeeanseeesnseeeanseeeanseeeennseeeanseeesanseeennnes 14
N o o] [o= oY o N o = e OO 15
4.1 Selection of Configurable Parameters............c.uii ittt e e e e nte e e st e e et e e s anee e e snneeeatteeennneeeennes 15
4.2 RECOVETY iN CaSE Of POWET LOSS. .. ceeiiiiiiiiieeitiie et e etie e st e e sttt e e sseeeesteeeeanteeeeseeeeasseeeanseeesanaeeeanseeeanseeeennseeesnneeeanseeenanee 16
LI =Y = =T 4 T PP 17

Figure 2-1. The Structure of EEPROM EMUIGHON.oiiiiiii ettt et e e s e e e et e e e e e e snneeeenneeeens 4
Figure 2-2. The Basic Behaviors of EEPROM EMUIGLON..........cooiiiiiiii et s e e e e e e e e e e sneeeas 4
Figure 2-3. HOW RECOId Status CRaNQE.c.c.uiiiiiiie ettt ettt ettt e st e e ettt e e et e e esee e e smee e e snteeeeneeeeanneeeeneeesnneas 5
Figure 3-1. The High-Level SOfIWAIre FIOW............coo ittt e ettt e e st e e sne e e e sneeeeenteeeeneeeeanneean 6
Figure 3-2. The Software Flow of EEPROM_TypeB_readDataltem............cooiiiiiiiiiiiie e 8
Figure 3-3. The Different Cases of EEPROM_TypeB_readDataltem.............ccooiiiiiiiiiriiiie e 8
Figure 3-4. The Software Flow of EEPROM_TypeB_findDataltem..........c.c.cooiiiiiiiie e 9
Figure 3-5. The Software Flow of EEPROM_TYPEB_WHItE......c.cueiiiiiieiiee e e e 10
Figure 3-6. The Software Flow of EEPROM_TypeB_transferDataltem.............ccooiiiiiiiiiiie e 11
Figure 3-7. The Software Flow of EEPROM_TYPEB _iNit.......cooiiiiiiiieiiee et e e 12
Figure 3-8. EEPROM_TypeB_init for Three Cases When Active Group EXIStS.........ccoiiiiiiiiiiiieie e 13
Figure 3-9. EEPROM_TypeB_init for Two Cases When Active Group Does NOt EXist..........cccceviiiriiiiriniiieiiee e 13
Figure 3-10. Files Required by the SOIWAIE.........ccoiiii et e et e e et e e smeee e e nneeeeeneeeeennee 14
Figure 4-1. Change of Structure When Only the Number of Groups is Configured.............ccoooiieiiieiiie e 15
Figure 4-2. Change of Structure When Only the Sectors in One Group is Configured............cocceeeiiiiiiieinee e 15
List of Tables
Table 2-1. Relationship Between Flags and RECOI StatUs..........c..uviiiiiiiiiiie et a e e eanrae e e e e e e 5
Table 3-1. The Structure of EEPROM EMUIGLIONeiiiiiiiiiii ettt e e e et e e e et e e sneeeennbeeeanee 14
Table 3-2. Timings of EEPROM Emulation OPErationsS.cccuviiiiiiiiiiiiiee ettt e e et e e e e e e e e e s e sanaeeae e s enraeeas 14
Trademarks

All trademarks are the property of their respective owners.

SLAAEB4 — APRIL 2023 EEPROM Emulation Type B Design 1
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1 Introduction

Many applications require store data in non-volatile memory, so that the application can be reused or modified
even after the system is powered up again. EEPROM is design for such applications. Although the MSPMO
MCUs does not have an internal EEPROM, the MSPMO internal Flash supports EEPROM emulation. Compared
to using an external serial EEPROM, EEPROM emulation using the internal Flash saves pin usage and cost.

Different applications require different storage structures. The type B design described in this article is designed
for storing small variable data. If the application needs to store large block of data, the type A design can be
referenced.

1.1 Difference Between EEPROM and On-Chip Flash

The EEPROM can erase and write to a single byte of memory multiple times, allowing programmed locations to
retain data for long periods of time even if the system is powered off.

Flash memory has a higher density than EEPROM, allowing larger memory arrays (sectors) to be implemented
on chip. The flash erase and write cycle is performed by applying a time-controlled voltage to each unit. Each
cell (bit) reads the logical value 1 under erase conditions. Therefore, each Flash location reads OxFFFF After
erase. By programming, the cell can be changed to a logic 0. Any word can be overwritten to change a bit from
logical 1 to 0; however, the reverse is not possible. In addition, Flash memory has the restriction that the memory
is erased by a region. For MSPMO MCUs, the erase resolution is sector with the size of 1k bytes.

One major difference between EEPROM and Flash is cycling capability. Flash endurance is typically 10
thousand cycles, far less than real EEPROM. EEPROM emulation is a software based on Flash to provide
the equivalent endurance that can be satisfied for the application. Flash also simulates the behavior of the
EEPROM, simplifying the operation of reading and writing data.

A typical emulation scheme involves using a portion of the Flash memory and dividing it into multiple areas.
These areas are used alternately to store data. Due to the block erase requirement of Flash, entire Flash sector
has to be reserved for the EEPROM emulation. To achieve wear-leveling, at least two sectors are used.

2 EEPROM Emulation Type B Design SLAAEB4 — APRIL 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Implementation

2 Implementation

2.1 Principle

In the solution of this article, Flash are divided into areas which called data item. Each data item is 8 bytes,
containing data, end-of-write flag and identifier. Identifier is used to identify and distinguish data, similar to
variable name or virtual address. Two data items in flash can have the same identifier, but only the most recent
data item is valid. Since data items are written sequentially, old and new data items can be distinguished based
on position.

When a read operation is performed, the corresponding data item is found based on the identifier. If there

are multiple data items with the same identifier, only the latest data item is valid. When a write operation is
performed, data and identifiers are input, and assembled as new data item. Therefore, when the user wants to
update the data item corresponding to an identifier, the write operation does not modify the previous data item,
but continues to create new data item in the unused area. Typically, if the sector is full, the most recent data item
corresponding to each identifier is transferred to the next sector, and the sector is then erased. As an extreme
example, when the user only updates the data corresponding to a certain identifier, after the sector is full, the
identifiers of all data items are the same, and the transfer operation will only transfer the last data item.

It should be noted that since the sector size is fixed, the number of data items that a single sector can hold is
limited and fixed. To store more data items, sectors are grouped into group. Sectors in the same group will be
erased together. When a group is full, the latest data items will be transferred to next group, and this group will
be erased then. Figure 2-1 shows the structure of EEPROM emulation.

To mark the status of the group, the first 8 bytes of the group are used as the header. The remainder of the
group (total group size minus the 8-byte size of the header) is used for storing data items. The number of data
items in one sector is (SectorSize x Number of Sectors in One Group / DataltemSize - 1). For example, if one
group has 1 sector, it can store 127 data items. If one group has 2 sectors, it can store 255 data items. If one
group has 3 sectors, it can store 383 data items.

It should be emphasized that although users can use as many different identifiers as possible (at most equal to
the number of data items), this might lead to frequent transfer operations and erase operations, which might lead
to increased system overhead. The recommended number of identifiers is one-half to one-third of the maximum
number of data items.

There are three user-configurable parameters, which can be configured in eeprom_emulation_type b.h due to
the application requirements. These parameters affect maximum number of data items and cycling capability,
which will be analyzed later.

* Number of groups: at least 2
* Number of sectors in one group: at least 1
+ Sector address

Additionally, in the structure of data item, end-of-write flag is used to ensure the write integrity of data items. The
flag is set to 0x0000 after the data and identifier are written.

SLAAEB4 - APRIL 2023 EEPROM Emulation Type B Design 3
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

Implementation

13 TEXAS
INSTRUMENTS

www.ti.com

Group header(8 bytes)

Data item 127

Data item 255

Figure 2-1. The Structure of EEPROM Emulation

' Group 1 Sector 1 ___Sector2 ——— . 2 byt
i Group header | | Data item 128 | End P;ctlve.ﬂ?g f 9 byt:z
: Dataitem 1_| [Dataitem 129 n é’ r‘?"e";l'”g a9) byt

: : ! rasing fla es
! Data item 2 Data item~430 ! g 'ag y
' i Reserved 2 bytes
! 1
' Data item 127 | | Data item 255 | !
R e 1

1

! Group 2 Sector 3 Se.ctor 4 ! Data item (8 bytes)
! Group header [|Dataitem 128 | ! — -
| . _ | End of write flag | 2 bytes
! Data item 1 Dataitem 129 | ! Data identifior 2 bytes
! Data item 2 Data item 30 |\!
I Data 4 bytes
1
1
1

The basic behaviors of EEPROM emulation can be seen in Figure 2-2. In A, although there are two Var3,
meaning they have the same identifier, only the latter one is valid because it is newer. If var3 is read, x6 rather
than x3 will be read. From A to B, write operation is performed and the group 1 is full, so the transfer operation
will be performed. In C, Group 2 is marked as Receiving, and the latest data items are transferred to group 2.
In D, after transfer group 2 is updated to Active. Group 1 is marked as ‘Erasing’ and waiting to be erased. The
erase operation is performed only when the users call the function.

Users can choose the right time to erase according to the needs. It should be noted that not erasing in time will
result in trying to write data into sectors with residual data. This may result in data corruption.

=== mmmmm————a
1

: Group 1 ! :-Gr_(')LTp_:I T Group 1 : Group 1 ! Group 1 !
1Sector 1| Active i 1Sector 1| Active | 1Sector 1] Active ! 1Sector 1| Erasing | 1 Sector 1| Erased |
\ Var1 = x1 i ' Var1 = x1 i \ Var1 =x1 || : Var1 = x1 i ' Erased i
i Var2 =x2 || E Var2=x2 || i Var2 = x2 i i Var2 =x2 | i Erased |
! Var3=x3 || ! Var3 = x3 i ! Var3 = x3 ! ! Var3 = x3 i ! Erased i
iSector 2| Var2 = x4 E iSector 2| Var2=x4 |, iSector 2| var2=x4 || iSector 2| var2=x4 | ESector 2| Erased ||
: Var2 = x5 : : Var2 = x5 : : Var2 = x5 i : Var2 = x5 : : Erased :
| Var3 = x6 |i ' Var3 = x6 | | Var3 =6 |! : Var3 =6 |1 ' Erased |i
: Erased i | Vard = x7 E : Vard =x7 || : Var4 = x7 i : Erased i
oy (e e) b ! Dl D b }
'Sector 3| Erased |; 'Sector 3| Erased ' ISector 3 | Receiving i 'Sector 3| Active || ' Sector 3| Active ||
: Erased | ' Erased | : Vard = x7 i | Vard = x7 |, : Vard = x7 |,
: Erased | ' Erased i | Var3 = x6 [! : Var3 = x6 i : Var3 = x6 i
i Erased | E Erased || i Var2 =5 | | vaz=x5 Var2 = x5 |
iSector 4| Erased | \Sector 4 | Erased ! iSector 4| Vart=x1 | iSector 4| Var1 = x1 i i Sector 4| Var1 = x1 |
! Erased | i Erased || ! Erased | ! Erased || ! Erased |!
! Erased |\ ! Erased |: ! Erased i ! Erased || ! Erased ||
: Erased : ' Erased : i_ Erased [i Erased i i Erased :
e e " S S g s
A Write I B When group1 C Whentransferis D Userscancall E
Var4 = x7 is full, transfer done, group function to erase
is performed headers are the ‘erasing’ group

Only the latest updated

data item will

be transferred

Figure 2-2. The Basic Behaviors of EEPROM Emulation
4 EEPROM Emulation Type B Design SLAAEB4 — APRIL 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Implementation

2.2 Header

Header is designed to manage the group. By checking the header of a single group, the status of the group can
be determined. By checking the headers of all groups, the active group can be found and the format of EEPROM

emulation can be checked.

Each group has a header to show its status. Header is set to 8 bytes with 3 flags. Depending on the flags, there

are four record status in total. The relationship between flags and record status is showed in Table 2-1.

Table 2-1. Relationship Between Flags and Record Status

Group Description Active flag End of Receiving |Erasing Flag
Status Flag
Erased Default state after erase OxFFFF OxFFFF OxFFFF
Receiving When transferring data items, Receiving group receives latest |0x0000 OxFFFF OxFFFF
items from the full group
Active Active group is the group not full of items, and it is waiting for | 0x0000 0x0000 OxFFFF
new items to be written
Erasing Erasing group is the group waiting to be erased - - 0x0000

Figure 2-3 shows how states translate to each other. All flags are erased at first. If erased group is written data

item to, it will be changed to Active and waiting to be written.

If the group is full, next group will be changed to Receiving, and the latest data items are transferred to the
Receiving group. After transfer, the old full group will be changed to Erasing and waiting to be erased. The

Receiving group will be Active then.

Transfer to the

group begins

Erased I

User calls Write item

EEPROM_erase
to erase group

Transfer from the
group completed

e |

| Receiving

[h

Erasing

ctive

Figure 2-3. How Record Status Change

Transfer to the
group completed

SLAAEB4 — APRIL 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

EEPROM Emulation Type B Design

5

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I3 TEXAS
INSTRUMENTS
Software Description www.ti.com

3 Software Description

This software provides basic EEPROM functionality. At least two sectors are used to emulate the EEPROM.
These sectors are organized into groups, and used to store data items. Four global variables are used to trace
the EEPROM emulation.

3.1 Software Functionality and Flow

In total, there are six functions. The first four functions are called directly by the user. The last two functions are
called by these functions.

+ EEPROM_TypeB init

+ EEPROM_TypeB_write

« EEPROM_TypeB_readDataltem

« EEPROM_TypeB_eraseGroup

+ EEPROM TypeB findDataltem

» EEPROM_TypeB _transferDataltem

The high-level software flow is shown in Figure 3-1. The device should first go through the initialization code. By
calling EEPROM_TypeB_init, it will search active group and check the format of Flash. If active group exists, the
global variables are updated to trace the active group and latest data item. If active group does not exist, flash
will be initialized.

In the application, user can use EEPROM_TypeB_readDataltem to read the data according to the input identifier.
And user can use EEPROM_TypeB_write to write data and identifier. If the group is full, the latest data items are
transferred to next group. After transfer, the full group will be marked as Erasing with setting the erase flag. In
the flow chart below, EEPROM_TypeB_eraseGroup is called immediately when the erase flag is set. Users can
select the appropriate point in time to erase based on the requirement of application.

EEPROM_init

format check
format init if necessary

—

fail operation

I
I [. . .
| EEPRON readDataliom According to the data |dept|ﬁer,
| user’s (| read the data from latest item
I PR, I
| application fail operation read |
: P ok? |
I
I I
| EEPROM_write Write datg with data identifier to a
| || new data item
I |
|
| fail operation $:
I |
l |
: EEPROM _eraseGroup neec If group is full, it need to be erased
l |
e = ‘I'_ ______________]
Figure 3-1. The High-Level Software Flow
6 EEPROM Emulation Type B Design SLAAEB4 - APRIL 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com Software Description

3.2 EEPROM Functions

To implement this functionality, six functions are required. Four global variables are used to record the status of
the EEPROM emulation.

3.2.1 Global Variables
Two global variables are used to trace the active group.

* uint16_t gActiveDataltemNum;
* uint16_t gActiveGroupNum;

gActiveDataltemNum is used to record the number of data items.
gActiveGroupNum is used to record the active group.
Two global variables are used for flags.

* bool gEEPROMTypeBSearchFlag;
* bool gEEPROMTypeBEraseFlag;

gEEPROMTypeBSearchFlag is set when EEPROM_TypeB_readDataltem finds the data item based on input
identifier.

gEEPROMTypeBEraseFlag is set when the group is full and needs to be erased.
All global variables are defined in eeprom_emulation_type b.c
3.2.2 EEPROM_TypeB_readDataltem

EEPROM_TypeB_readDataltem is used to read the data item that matches the input identifier. The software flow
is shown in Figure 3-2. It calls EEPROM_TypeB_findDataltem to find the data item.

The input of the function is the identifier. The output of the function is the data. Besides,
gEEPROMTypeBSearchFlag is used to show whether the data item is found.

* Input: uint16_t data identifier
* Output:uint32_t data

Figure 3-3 shows the different cases of EEPROM_TypeB_readDataltem. If data item is found, the function
will return the data, and gEEPROMTypeBSearchFlag is set. If not, the function will return 0, and
gEEPROMTypeBSearchFlag is clear. By checking the flag, users can judge whether the data is found and
read successfully.

SLAAEB4 — APRIL 2023 EEPROM Emulation Type B Design 7
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS

INSTRUMENTS
Software Description www.ti.com
(Start
Y
Find latest item by
data identifier
NO
! ‘
Clear SearchFlag SR?aEf?hiilZ?e?
Y X
(Return 0) (Return data)
Figure 3-2. The Software Flow of EEPROM_TypeB_readDataltem
I
Case1: itemis found | Case2: item is not found
e ——— 1 I e ——— b
1 Group 1 1 | 1 Group 1 - 1
ISector 1| _Active |} | ISector 1| _Active ||
: Var1 = x1 : l : Var1 = x1 :
1 Var2 = x2 : | : Var2 = x2 :
1
1 Var3 =x3 |1 | | Var3 = x3 :
1 I 1
ISector 2| Var2 = x4 || | ISector 2| Var2 = x4 |,
: Var2 = x5 : EEPROM_read Set SearchF|ag I : Var2 = x5 : EEPR\;)I\i_read
! Erased |! Varz Return x5 | : Erased || o Clear SearchFlag
! Erased |r l ! Erased |! |:> Return 0
| Group 2 1 | | Group 2 !
! Sector 3| Erased ! | :Sector 3| Erased !
1 Erased : 1 Erased :
: Erased |i l : Erased :
: Erased : : : Erased |i
1 1 1 |
:Sector 4| Erased |' | :Sector 4| Erased ||
! Erased | | ! Erased |
1 Erased | | 1 Erased :
] 1

: Erased |1 1 Erased |
L= I I e — = !

Figure 3-3. The Different Cases of EEPROM_TypeB_readDataltem

8

EEPROM Emulation Type B Design

Copyright © 2023 Texas Instruments Incorporated

SLAAEB4 — APRIL 2023
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Software Description

3.2.3 EEPROM_TypeB_findDataltem

EEPROM_TypeB_findDataltem is used to search for data items within the specified group. The software flow is
shown in Figure 3-4. The search traverses the data items in the group from back to front, so the first data item
found that matches the identifier must be the latest data item.

The input of the function is the identifier, GroupNum and DataltemNum. GroupNum specifies the group in which
to search. DataltemNum specifies the maximum number of data items to be searched. The output of the function
is the address. If data item is found, the function returns the address of the data item. If not, the function returns
EEPROM_EMULATION_FINDITEM_NOT_FOUND (value is 0).

* Input: uint16_t data identifier
uint16_t GroupNum
uint16_t DataltemNum

* Output:uint32_t address

=)

y

point to the last item,

read the identifier and
end of write flag

{5 end of write flag sefZ=

YES

the identifier righ 1
YES

NO
NO
Point to the previous item,
read the identifier NO @
YES
Y

v
(Retur'n NOT_FOUND) (Return address)

Figure 3-4. The Software Flow of EEPROM_TypeB_findDataltem

SLAAEB4 - APRIL 2023 EEPROM Emulation Type B Design 9
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I3 TEXAS
INSTRUMENTS
Software Description www.ti.com

3.2.4 EEPROM_TypeB_write

EEPROM_TypeB_write is used to write provided data and identifier to the Flash. Through the function, a new
data item is added to the Flash. If group is full, EEPROM_TypeB_transferDataltem is called and transfer is
performed. The software flow is shown in Figure 3-5.

First, the function checks whether next data item is erased. Then it brings together the data and the identifier into
a new data item, and set the end of write flag to ensure the data integrity. If the end of write flag is not set, the
data item is invalid and all functions will skip this item.

Finally, the function checks whether the group is full. If so, transfer is performed. Refer to
EEPROM_TypeB_transferDataltem to see more details.

This scheme allows users to choose which identifiers to use, but also requires users to pay attention to the
number of identifiers used. The recommended number of identifiers is one-half to one-third of the maximum
number of data items. If the number of identifiers is close to the maximum number of data items, frequent
transfers and erasures will occur, increasing system overhead. An error is caused if the number of identifiers
exceeds the maximum number of data items.

The input of the function is data and data identifier. The output of the function is the operation states. Besides,
gActiveGroupNum and gActiveDataltemNum are updated to trace the active group.

e Input: uint32_t data
uint16_t data identifier

* Output:uint32_t operation state

find the address for
next item Write data and data identifier
+ Set end of write flag to ensure write is over

!

Set end of write flag

|
[I
| I
[write data and data I
| identifier |
[I
[I
I

update global
variables

— 4
w If group is full, call
EEPROM_transfer

Transfer latest data NO
items to next group

Return write state

Figure 3-5. The Software Flow of EEPROM_TypeB_write

10 EEPROM Emulation Type B Design SLAAEB4 - APRIL 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com Software Description

3.2.5 EEPROM_TypeB_transferDataltem

EEPROM_TypeB_transferDataltem is used to transfer the latest data items from one group to next group. Not all
items will be transfer. Only the latest data item corresponding to each identifier is transferred.

The software flow is shown in Figure 3-6. First, it updates next group to be Receiving. Then it traverses the
current group from back to front, checking if the data item already exists in the Receiving group. If not, the
data item will be transferred. If it already exists, skip the data item. After transfer, the latest data item has been
transferred to the Receiving group. Finally, Receiving group is updated to Active group. The group which is
transferred is marked as Erasing, and gEEPROMTypeBEraseFlag is set. The process of transfer is shown in
Figure 2-2.

By checking gEEPROMTypeBEraseFlag, users can call EEPROM_TypeB_eraseGroup to erase all Erasing
group. Users can arrange erasure time points according to application needs.

The input of the function is GroupNum to choose which group to be transferred. The output of the function is the
operation states. Besides, gEEPROMTypeBEraseFlag is updated to show if erasing is required.

* Input: uint16_t GroupNum
* Output:uint32_t operation state

R CrD

| Update the header update next group's
L with ‘Receiving’ header to 'Receiving I
— i — — — — — — — — — — !
r————-—"-—"=-—"=—"=—"=—-—""—""—-"=- e T~ B L
point to the last item, .
Traverses the read the identifier and ” Transfer the item to next group
current group end of write flag I Update the header

I
I
I
I YES I
I BoE IIK) Copy the data item to next
I e LT 1) group
I NO ”
I YES ”
Point to the previous item, - ot -
I read the identifier IQ—NG s this the first item > ii
- _ IL

Y- — — —

_,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
o
I
I

-
update next group’s I

I header to "Active’ I
I

|

I

| v

| update current group's
I header to 'Erasing’

Figure 3-6. The Software Flow of EEPROM_TypeB_transferDataltem

3.2.6 EEPROM_TypeB_eraseGroup

EEPROM_TypeB_eraseGroup is used to erase the Erasing groups. After calling
EEPROM_TypeB_transferDataltem, gEEPROMTypeBEraseFlag is set. It prompts the user that there

is an Erasing group. It is recommended to call the EEPROM_TypeB_eraseGroup immediately when
gEEPROMTypeBEraseFlag is set, as in Figure 3-1. However, users can change the timepoint to erase by
modifying the high-level software flow.

The output of the function is the operation states.

* Input: void
* Output:uint32_t operation state

SLAAEB4 — APRIL 2023 EEPROM Emulation Type B Design 1"
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I3 TEXAS
INSTRUMENTS
Software Description www.ti.com

3.2.7 EEPROM_TypeB_init

The function is used to initialize the EEPROM emulation. It should be done once before using EEPROM
emulation, for example after the device is powered up. This ensures that the relevant Flash area is properly
formatted and global variables are correctly assigned.

The software flow is shown in Figure 3-7. Firstly, it searches the active group and checks the format by iterating
over all group headers. If active group exists, it will erase other groups and transfer the active group. If active
group does not exist, all groups are erased.

Figure 3-8 and Figure 3-9 shows different cases for EEPROM_TypeB_init. A is a normal case. B is the
initialization after power down during transfer. C is a case where Erasing groups is not erased. D is case where
all groups are empty. E is the case with invalid data.

The output of the function is the operation states. Besides, gActiveGroupNum and gActiveDataltemNum are
updated to trace the active group.

e Input: void
* Output:uint32_t operation state

Format check

Reserve the group
Erase other groups [*—YES '@'

NO
 J
Transfer latest data items to Erace all Grouns
next group grour
y
Erase the last group updata global variable

A
Return init state)

Figure 3-7. The Software Flow of EEPROM_TypeB_init

12 EEPROM Emulation Type B Design SLAAEB4 — APRIL 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com Software Description
iGowpt — ! loowpt A : T Group — erowpt — ! P Gowp 1 — !
1 Sector 1 Active | I Sector 1 Erased 1 ! Sector 1 Active 1 1Sector 1 Erased | 1 Sector 1 Erasing | 1 Sector 1 Active 1
: Var1 = x1 : : Erased : : Var1 = x1 : : Erased : : Var1 = x1 : : Var1 = x1 :
: Var2=x2 |y : Erased |1 : Var2 =x2 | : Erased |} : Var2 =x2 |, : Var2=x5 |,
1 Var3 = x3 : 1 Erased : 1 Var3 = x3 : 1 Erased : 1 Var3 = x3 : 1 Var3 = x6 :
:Sector 2 | Var2=x4 : : Sector 2 Erased : : Sector 2 | Var2 = x4 : :Sector 2 Erased : :Sector 2 | vVar2=x4 : :Sector 2 Erased :
: Var2 = x5 : : Erased : : Var2 = x5 : : Erased : : Var2 = x5 : : Erased :
1 Var3 = x5 | 1 Erased || | Var3 =x5 |, 1 Erased ! Var3 = x5 | 1 Erased I
: Var3=x6 [l : Erased : : Var3 = x6 : : Erased |! : Var3=x6 |[! : Erased |!
Foon? Feeprom it com s Tl 1 o 2. | ceprom it 1 Gom 2, [1 G2, | EEPROM It o !
1 Sector 3 Erased |/ 1 Sector 3 Active | 1Sector 3 Receiving |/ 1 Sector 3 Active | | Sector 3 Active | 1 Sector 3 Erased |/
: Erased |l : Var3=x6 |1 : Var3=x6 |1 : Var3=x6 |1 : Var3=x6 [l : Erased |1
1 Erased : 1 Var2 = x5 : 1 Var2 = x5 : 1 Var2 = x5 : 1 Var2 = x5 : 1 Erased :
: Erased ! : Var1 = x1 ! : Erased ! : Var1 = x1 ! : Var1 = x1 ! : Erased !
: Sector 4 Erased ! : Sector 4 Erased I : Sector 4 Erased |! : Sector 4 Erased |! : Sector 4 Erased l : Sector 4 Erased !
: Erased ; : Erased || : Erased ; : Erased ; : Erased |1 : Erased ;
1 Erased : 1 Erased : 1 Erased : 1 Erased : 1 Erased : 1 Erased :
: Erased : : Erased | : Erased : : Erased : : Erased : : Erased :
__________ A TTTTTTTTTT TTITTETTES BT TTTTTTTTTTL ¢ TTTTTTTTTT

r
Group 1

Sector 1 Erased

Erased

Erased

Erased

Sector 2 Erased

Erased

Erased

Erased

Group 2
Sector 3 Erased

Erased

Erased

Erased

Sector 4 Erased

Erased

Erased

Erased

P =

eePROM_init! Group 2

r==-======-= | I e 1
| Group 1 11 Group 1 1
1 Sector 1 Active || |Sector 1 invalid |,
! Erased |' ! invalid !
1 11 1
1 Erased 11 invalid 1
1 1 . N 1
1 Erased |, : invalid |
:Sector 2 Erased : :Sector 2 invalid :
! Erased |l 1! invalid |1
1 11 — 1
1 Erased |1 | invalid 1
1 11 ; ; 1
| Erased 11 invalid .
1T]
| 1 Group2 — | EEPROM_init
\ Sector 3 Erased | | Sector 3 invalid |,
1 Erased |1 ! invalid !
1 [— 1
1 Erased |; 1 invalid 1
! Erased |[' ! invalid !
1 11 1
I Sector 4 Erased : : Sector 4 invalid :
1
1 Erased |1 | invalid |1
1 — I
: Erased : 1 invalid |,
! Erased |l : invalid !
e 1 e e e 1
E

r
1 Group 1
1 Sector 1

Active

Erased

Erased

Erased

1
1
1
1
:Sector 2

Erased

Erased

Erased

Erased

I
I
I
I
1
-

Group 2
Sector 3

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Erased

Figure 3-9. EEPROM_TypeB_init for Two Cases When Active Group Does Not Exist

3.3 Application Integration

Applications requiring this functionality need to include the eeprom_emulation_type_b.c and
eeprom_emulation_type_b.h files provided for MSPMO MCUs. The Flash API also needs to be included for
the specific device. For example, for the MSPM0G3507/MSPMOL 1306 the following files are needed:

* eeprom_emulation_type b.c
* eeprom_emulation_type b.h
» ti_msp_dl_config.c
» ti_msp_dl_config.h
EEPROM emulation library has been included in the SDK supporting MSPMO products.

All Flash API files are also included in the SDK.

SLAAEB4 — APRIL 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

EEPROM Emulation Type B Design

13

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

Software Description

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 3-10. Files Required by the Software

3.4 EEPROM Emulation Memory Footprint

Table 3-1 details the footprint of the EEPROM emulation driver in terms of Flash size and RAM size. Table 3-1
have been determined using the Code Composer Studio (Version: 11.2.0.00007) with optimization level 2.

Table 3-1. The Structure of EEPROM Emulation

Mechanism

Minimum Required Code Size (bytes)

Flash

SRAM

EEPROM emulation type B

2816

3.5 EEPROM Emulation Timing

This section describes the timing parameters associated with the EEPROM emulation driver based on four
1-Kbyte Flash sectors. All timing measurements are performed:

+ MSPM0G3507

» System clock at 32 MHz

* With execution from Flash
* At room temperature

The functions are test at the parameters:

* Number of groups: 2
* Number of sectors in one group: 2
» Sector address: 0x00001000

Table 3-2. Timings of EEPROM Emulation Operations.

Operation Minimum Typical Maximum
EEPROM_TypeB_readDataltem 2.2us 89.4 us
EEPROM_TypeB_init with active group 4.65ms 61.38 ms
EEPROM_TypeB_init without active group 4.26 ms

EEPROM_TypeB_write without transfer 109.5 us

EEPROM_TypeB_write with transfer 630.8 us 39.09ms
EEPROM_TypeB_eraseGroup 12.2ms

14 EEPROM Emulation Type B Design

Copyright © 2023 Texas Instruments Incorporated

SLAAEB4 — APRIL 2023
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com Application Aspects

4 Application Aspects

This section describes the application-level features of EEPROM emulation solution and how to configure it to
meet the application needs.

4.1 Selection of Configurable Parameters

There are three user-configurable parameters in eeprom_emulation_type_b.h. These parameters can be
configured accordingly, depending on the requirements of the application.

* Number of groups: at least 2
* Number of sectors in one group: at least 1
+ Sector address

When only the number of groups is configured, the change can be seen in Figure 4-1. When only the sectors
in one group is configured, the change can be seen in Figure 4-2. Both configuration methods will increase
the Flash area used, thereby increasing the cycling capability. But when configuring the number of groups, the
maximum number of data items does not change. When configuring the number of sectors in one group, the
maximum number of data items will change accordingly.

CGroup 1 Sedor 11| iGroup T Sedtort | - oo Soo ooy
! Group header | | Group header | | | 1 Group 1 ector ! 1 Group 2
- 1 - \ _, Group header 1 Group header
Data item 1 | | : Data item 1 . |I Data item 1 1 Data itom 1

1 : \ 1 1

b Datafemz | | o Datatem2 | ! Data item 2

! : 1 1

-t | 1 1

! \ 1]

1
1
: Data item 2
1
1
1
1

Data item 127 Data item 127

| | Data item 127 Data item 127
—————————————— -- \ I

_______________ =2 T [
: Group 2 Sector 2 : | : Group 2 Sector 2 i: Group 3 Sector 3 .E | : E‘:‘:oap_:%_ == _S_ec_tc:r-s- -- -: : _GFo;p_cl- -= _S_ec:tc;r_zt_ —ZZ
' Group header | |- ' Group header " Group header ! | ' Group header | ! ' Group header

! Dataitem 1 | ! | ! Data item 1 :: Data item 1 ! Dataitem 1 | ' Data item 1

! Data item 2 ! | ! Data item 2 I Data item 2 vl ! Data item 2 ! ! Data item 2

| Data item 127 : 1 Data item 127 :, Data item 127 : o Data item 127 1 Data item 127

Group 1 1
e T A e Sector 1 Sector 2 Sector 3 '
| Group 1 Sector 1 ! | | Group 1 Sector 1 Se-ctor 2 \ | I|_Group header Data item 128 Data item 256 | |
: Group header : . : Group header Data !tem 128 : . : Data item 1 Data item 129 Data item 257 :
! Data item 1 ! | ! Data item 1 Data !tem 129 ! [/[Data item 2 Data item 130 Data item 258 |1
1 Data item 2 N : Data item 2 Data item 130 : | : :
i : i | : : ' : ' : Data item 127 Data item 255 Data item 383 :
. Data item 127 | | | | Data item 127 Data item 255 | | iiaiinieiainieinioieieioinioiaioiaieioiutoiniiaieioinioiuind !
lninininieieteleietaluieioby el [l T tetlolod plluiplplluiplolie ~' | 1 Group 2 :
| Group 2 Sector 2 | © | Group 2 Sector 3 Sector 4 | ! Sector 4 Sector 5 Sector 6 !
! Group header | 1 l ! Group header Data item 128 || | ! |_Group header Data item 128 Data item 256 |!
! Dataitem 1 | || ! Data item 1 Data item 129 || 1| Data item 1 Data item 129 Data item 257 |1
i Data item 2 1 Data item 2 Dataitem 130 |! - 1| Data item 2 Data item 130 Data item 258 |1
i B B ’
: Data item 127 ! | :_ Data item 127 Data item 255 ! I :_ Data item 127 Data item 255 Data item 383 E

Figure 4-2. Change of Structure When Only the Sectors in One Group is Configured

SLAAEB4 - APRIL 2023 EEPROM Emulation Type B Design 15
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

I3 TEXAS
INSTRUMENTS
Application Aspects www.ti.com

4.1.1 Number of Data Items

The number of data items is directly related to the number of sectors in the group.

Sector size

Number of data items = Dataitem size

X Number of sectors in one group — 1

Choosing the correct number of data items is critical. The point is to choose based on how many variables your
application needs to store. If the number of variables is close to the number of data items, the transfer will occur
frequently when updating the values of those variables. If the number of variables is much less than the number
of data items, it means that the size of the group is relatively large, and additional time will be spent in operations
such as transfer, erasure, and search.

The recommended number of identifiers is one-half to one-third of the maximum number of data items.
4.1.2 Cycling Capability

Flash endurance is typically 10 thousand cycles, far less than real EEPROM. One feature of EEPROM emulation
is that its endurance is extended compared to Flash.By dividing the Flash sector into multiple data items and
writing data one by one, the Flash sector does not need to erase each time it writes, but only after it is full. And
the equivalent endurance is further enhanced by the use of multiple Flash sectors.

Both the number of sectors in one group and the number of groups affect the equivalent erase/write capability.
Since the number of sectors in one group has been determined above, the appropriate equivalent erase/write
capability is now obtained by adjusting the number of groups.

Number of data items
user’s data items

Effective endurance = X Number of groups X flash endurance

It is recommended that the user evaluate the cycling capability required by the application before selecting the
appropriate number of groups.

For three user-configurable parameters, a recommended design process is as follows:

1. Evaluate the number of data items required by application and select the appropriate number of sectors in
one group.

2. Evaluate the cycling capability required by application, and select the appropriate the number of groups.

3. Select the appropriate Flash address

For example, if there is an application which needs to update data in EEPROM every 10 minutes. There are
totally 20 variables, and 10 years of continuous service is guaranteed. Firstly, each group just need 1 sector (127
data items). Secondly, cycling capability required by application is 525600 cycles (10 years x 365 days x 24
hours x 6 cycles per hour). Nine groups are needed and the equivalent endurance is 571500 cycles.

4.2 Recovery in Case of Power Loss

Data corruption is possible in case of a power loss during EEPROM_TypeB_write or
EEPROM_TypeB_eraseGroup.

To detect the corruption and recover from it, EEPROM_TypeB_init is implemented. It should be called
immediately after power-up. EEPROM_TypeB_init checks all groups’ header to confirm whether data storage
of EEPROM emulation is correct.

In the structure of EEPROM emulation, headers show the status of corresponding groups. There are four states
in total. The changes between the four states are described in detail in the previous section.

16 EEPROM Emulation Type B Design SLAAEB4 - APRIL 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com References

5 References
1. Texas Instruments, EEPROM Emulation Using Low-Memory MSP430™ FRAM MCUs application note.

SLAAEB4 — APRIL 2023 EEPROM Emulation Type B Design 17
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEB4
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEB4&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Difference Between EEPROM and On-Chip Flash

	2 Implementation
	2.1 Principle
	2.2 Header

	3 Software Description
	3.1 Software Functionality and Flow
	3.2 EEPROM Functions
	3.2.1 Global Variables
	3.2.2 EEPROM_TypeB_readDataItem
	3.2.3 EEPROM_TypeB_findDataItem
	3.2.4 EEPROM_TypeB_write
	3.2.5 EEPROM_TypeB_transferDataItem
	3.2.6 EEPROM_TypeB_eraseGroup
	3.2.7 EEPROM_TypeB_init

	3.3 Application Integration
	3.4 EEPROM Emulation Memory Footprint
	3.5 EEPROM Emulation Timing

	4 Application Aspects
	4.1 Selection of Configurable Parameters
	4.1.1 Number of Data Items
	4.1.2 Cycling Capability

	4.2 Recovery in Case of Power Loss

	5 References

