TMS320C6474 DSP
Semaphore

User's Guide

I3 TEXAS

INSTRUMENTS

Literature Number: SPRUG14
October 2008

SPRUG14-October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

I3 TEXAS
INSTRUMENTS
Contents
M o 5|
1 MOAUIE OV IV OW ettt it st ee it s et te it seeaeteteseeaesetetesaeaeteteeasaeaeeerecasaeiesescareeiesesacaeeesesecares q
11 glige]e [Vl 1To] o] I q
1.2 Semaphore ArChiteCtUrE e s e eeeereeeraeereeeeeeoeeioneereeeeoseeeaeeieseeeeseeroseeroseeeseeeeoeeroneereseesaneeres q
1.3 ISR WA oo LT & 1
2 SEInETolgle] X0l o=l g 1iTo o | I g
2.1 Semaphore ACCESS MOOES . e eueueereneeraeeteaeeeeoeeieneeeoeeeoseeeeeeieseeeeseesoseeroseieseeeeseeioneereeeeaneeres d
2.2 T CTgqWT ol f o FoTa ol [T Te| IR g
2.3 [l g o] = FoTa o | 1oTe | 9
2.4 StAtUS QUETY ettt et ttttsessseesesesessaeeeeseeseeeeeessiissiesesesssssssseeeeeeeeeeeeeiiiiiiiesesesesssssseeeeeeeeeeeeeeees 9
2.5 Releasing Semaphore RESOUINCES [et teueeieeeereeeteaetiaeeieaeeieseeiaeeiaseeeseeieseeioseeraseeeaseissseseseeranes 9
3 Emulation ConSideratioNS] e e . e ee i st eeee i teeeeaeeeteteraeaeeetesasaeaetetazaraeeerezacaeaeiereseraeeererecaceeeerees 9
4 Semaphore Usage EXamples .. ettt eee ettt sesaeietzetaeaeieresasaeeereraraeaererecesaeeererecacaeeeress 10
4.1 (GRS I e O || 10
4.2 Accessing Semaphore Resource When Free oo eieeeeeeeeieieeianeeieieeiaeieieeieseereseeraseisieeeesseianes 173
4.3 Accessing Semaphore Resource When NOt Free [ouuieeeeeeeeieeeeieneeieieeieeiesseeeeeeieseereseiseseeieseienes 19
4.4 Accessing Semaphore Resource in Combined MOAe[eeieeereeeeeeeeieaeeeeseereseeroeeieseeieseeroseeroeieeess 14
5 Semaphore ReQiSterS . e eeereeereiiiereaeaeaeararererererereaeararareserererereeeaeacaraceeererereeeacacacacess 13
5.1 REI ST o (o VA Te I 13
5.2 Register DeSCriPtiONS et eeeoereeeeeeroeeeeeoereeeeoeeeeeeeroeeeeeeoreeseeeetoeeeeeeortoeeeoeroeeereroeeeeeeoeioeeeees 19
5.2.1 Peripheral ID RegQiSter (PID)|eeeeeeeeeeaeeteaeereeeeeoeeeeaeeeeseeroseeeoseeeeeeeeseeroseerosereeeeeeeeeses 19
5.2.2 End-of-Interrupt Register (EO) o iieee e eireeeeeerseeeeeesreeeeeeessesseeessesseeeeieeseeeisseseeeeseees 17
5.2.3 Direct Register (DIRECTX) [oeriseoreraeeeeaeereoeeeaeeeroeeeeoeereseeeoeeeeeeeeeoeeioseeeoseeeeeeeeeeeees 13
524 Indirect Register (INDIRECTX) [ieteteeeteaeereaeeeaoeeioreeeoeerroeeeeseereseeeoeeroeeeoeereseeeeeeses 19
5.25 Query Register (QUERY X) e iseueeeseeeeeerieaseeesisesseesiseeseeeissesseeesessseeeieesseeeisesseeeees 20
5.2.6 Flag ReQiSter (FLAGX)octoceeeeeorteeeroereeeeoeeeeeeeeroreeeeeorroeeeeeoeieeeoeroeeeoeeeereeroeeeeeens 2]
5.2.7 Flag Set Register (FLAG _SETX)[ietteeetaueeeaeeieoeeiereeroseeroeeieoeereseeroseeroeeeseereseeeaneeres 2]
5.2.8 Error Register (ERR)oeeeesieeeeteeteeeeeeetieeeeeiseeeeeiseesseeessesseeeesesseeeiieeseeeiseeseeesseees 27
5.2.9 Error Clear Register (ERROR _CLR) ioiiioieieeeeraeereereeaeereoeeeoeeeeereeaeeioseeieseeeeeeeeeeeees 23
SPRUG14-0October 2008 Table of Contents 3

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
1 TMS320C6474 Semaphore BIOCK Diagram e e seeeeeeeeeeeeeeeeeereoeeeoeereoeeeeoeeroseeeoeeteseeeeseeroseeroeereneess 1
2 LT T UM DR R e[S T (o [)| 19
3 End-of-Interrupt Register (EOI) e ieeeeeeeeerereeaeereoeeeeeeeoseeroeeeeoeeeeoeeioseeroseeeosteioeeeeseeroseeeeseeres 117
4 Direct Register (DIRECTX)[etzeerereteaeeeeeeereareroeeeoeeeeoeetoseereoeeeoseeroseeeseereseeeeseeroseeeoeereseereeeses 13
5 Indirect Register (INDIRE CTX) i aeeeeeueereeeeeeeeeeseeseeeeeeseeeeiseeseeeieseseeessessseeeeeesseeeiiesseeeeiesseeeess 19
6 Query Register (QUERY X) ioesteoeeeeeeereneeeoeereoeeeeneereneeeoeeeeseeieseeeosteioeeeeseeioseeeoseeioeioseereseeeanees 24
7 Flag Register (FLAGX)ioeeeeneeeaeeteoeeeeeeerenreroeeeoseeeoeeeoseereseeeoseeroseeeseereseeeoseeroseeeoeereseeeeseeses 27|
8 Flag Set Register (FLAG _SETX) e ieeueerereeeeeeereaseeeeteesseeesieeseeesieeeseeeieseseeeieeesseeseeesseeeeieseeeeess 2]
9 Error REQIStEr (ERR) o iicceeeeenereeeeeneeeeeeenmeeeeesomeeeeeesseeeeeesseeeeiossseeeeesssseeeeeesseeeeessseeeeessseeeees 27
10 Error Clear Register (ERROR _CLR) i itieueetaureraeeieaeeeeoeeioseeroeeeoeeereeeieseereseeeoeeroeeeseereseeseseeses 23
List of Tables
1 Register MemMOrY Map oo e eeeeeeeeieoeeeeeeeereroseeeoeeeeoeeeoseereseeeoseeioseeeseetoseeeesteioseeeseeieseeeeneeres 13
2 Peripheral ID Register (PID) Field DeSCriptiONS] e s.eeieeeeteeeeieseerereeeieeeieeeieseereseeeeseeieseieseereseeieeeres 1d
3 End-of-Interrupt Register (EOI) Field DeSCriptioNS] ... ueeeieeeeeeereeaeeeeieeseeesieeeseeeieeeseeeseseseeeeeesseeeeees 17
4 Direct Register (DIRECTX) Field DeSCriptiONS e e ieeeeeeeeereeeieaeereieeraseiieseieseeieseereseeiaseeraeisseeieneeas 13
5 Indirect Register (INDIRECTX) Field DeSCriptioNS]eeeieeeeeeeeereeeereeeeeeeeeeeeeroseereseeeaseeroeereseereseesaeeeres 19
6 Query Register (QUERYX) Field DeSCriptiONSueeeeeeeereeeraeeeeoeeeeseeroseeroeeeeoeeieeeeeoseeroeeeeeereseeeanees 20
7 Flag Register (FLAGX) Field DeSCriptioNS] e seeeeeeeeeeeeeeeeeeooeeroneeeoeeeeeeeieseereseeeoseeioeeeseereseeeeseeres 2]
8 Flag Set Register (FLAG_SETX) Field DeSCriptiONS]useeeeeeeteeeereieeeeeeeieseieseeieieeeeseeieseeieseieseeieseeies 2]
9 Error Register (ERR) Field DeSCriptioNS e seeeeeereeeeesieaeeeeiseeeeeiseeseeesssesseeeseesseeeeiesseeeiieeseeeess 22
10 Error Register (ERROR_CLR) Field DeSCriptioNS] e e ieeeteeeetaeeeraeieseeieeeeiaseereseeeserireeeieseereseesaneeres 23
4 List of Figures SPRUG14-0October 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

I3 TEXAS Preface
INSTRUMENTS SPRUG14—October 2008

Read This First

About This Manual

The TMS320C6474 semaphore module is used to support atomic arbitration among multiple CPUs for
shared resources/peripherals. This document describes the usage of the semaphore and some of the CSL
calls used to configure/use semaphore module.

Notational Conventions

This document uses the following conventions.

* Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

» Registers in this document are shown in figures and described in tables.
— Each register figure shows a rectangle divided into fields that represent the fields of the register.

Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

— Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320C6474 DSP. Copies of these documents are available on
the Internet at fyww.fi.con. Tip: Enter the literature number in the search box provided at www.ti.com.

EPRUI8Y — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors
(DSPs).

— TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for
the TMS320C6000™ DSPs and includes application program examples.

EPRU30] — TMS320C6000 Code Composer Studio Tutorial. Introduces the Code Composer Studio™
integrated development environment and software tools.

EPRU321 — Code Composer Studio Application Programming Interface Reference Guide.
Describes the Code Composer Studio™ application programming interface (API), which allows you
to program custom plug-ins for Code Composer.

EPRUS71 — TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal
processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

Trademarks
TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

SPRUG14-0October 2008 Preface 5
Bubmif Documentation FeedbacK

www.ti.com
http://www-s.ti.com/sc/techlit/spru189
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru301
http://www-s.ti.com/sc/techlit/spru321
http://www-s.ti.com/sc/techlit/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

User's Guide
I —{E)S(’?IIS{UMENTS SPRUG14-0October 2008

TMS320C6474 Semaphore

1 Module Overview

1.1 Introduction

In the TMS320C6474 device, multiple CPUs attempt to access shared resources simultaneously. To avoid
resource conflict, the semaphore module is used to access shared resources in mutual exclusion. Unlike
the software flag checking mechanism, the semaphore module is atomic, to satisfy the read-modify-write
operation successfully.

The semaphore module allows acquisition of a semaphore resource/peripheral through read operations
and also by posting a write request.

The number of resources the semaphore can handle is parameterized and, for the TMS320C6474 device,
the following parameters are pre-programmed:

« NUM_SEM: Number of semaphore resources. In the device, the value is 32.
« QUEUE_DEPTH: Number of entries in each request queue. In the device, the value is 2.

1.2 Semaphore Architecture

The semaphore module has unique interrupts for each of the DSP cores (masters) to identify when that
master has acquired the requested resource. Likewise, there are unique error interrupts to each DSP core
when a particular master attempts to access the semaphore resource that is already locked by the
same/other master. For each semaphore peripheral there are three different registers associated with it to
acquire the resource: direct, indirect, or combined mechanism.

Semaphore resources are not directly connected within the module. Through software programming
hardware resources can be allocated to any of the semaphore resources. shows the basic
building blocks of semaphore module.

In Eigure 7], m is the number of semaphore resources (i.e., 32) and n is the number of the master (i.e., 3).
There are three 32-bits registers associated with each semaphore resource: DIRECT, INDIRECT, and
QUERY registers. For each DSP core there is a FLAG register to notify the status of all 32 semaphore
resources. The ERR register shows the different types of errors and the semaphore peripheral ID and
master ID that caused the specific error. Upon receiving the error or interrupt event, the DSP core clears
the particular bit field of the FLAG register by programming the FLAG register and writing to the
semaphore end-of-interrupt (EOI) register to re-arm or re-enable a particular master's error/interrupt line.

6 TMS320C6474 Semaphore SPRUG14-0October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS

INSTRUMENTS
www.ti.com Module Overview
Figure 1. TMS320C6474 Semaphore Block Diagram
semerr n 8
semerr 1 {
semerr 0 — — -t]
semint n — 5 =R =T
semint 1 — /Nt T
semint 0 — %\Gﬂ—#\\:’cb T
[SEM m -] ——————- [SEM | SEM 0
i i 1
sMrl s1nl s0r
sM 2 s112 s0r2
sMm s1 [n sO [n
CFGBUS L L
,) [
ERR] FLAG 0
FLAG 1
[FLAG 2]

1.3 Terms and Abbreviations
CPU — Central Processing Unit of the C64x+ Core

DSP — Digital Signal Processor
CSL — Chip Support Library

API — Application Programmer Interface

SPRUG14-0October 2008 TMS320C6474 Semaphore 7
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

Semaphore Operation www.ti.com

2

2.1

2.2

Semaphore Operation

Any of the DSP cores can use the shared semaphore resources.

Semaphore Access Modes

Any semaphore resource can be accessed by three different modes:

Direct Mode

In direct access mode, a resource is accessed by reading the DIRECTX (x is the semaphore peripheral
number) register. Since there is no physical connection between the semaphore resources and the
registers, any register can be mapped to any resource by software programming.

If the resource is free, access is immediately granted to the requested core. The FREE bit of the
DIRECTX register is set to 1 signifying that the resource is free and access is granted to the requested
core. The OWNER field of the DIRECTx register is set to the requested core ID.

If the resource is not available, no further action is taken by the semaphore module. The FREE bit of
the DIRECTX register is set to 0 signifying that the resource is in use and the requested master should
start a fresh request. In any case, there is no interrupt issued and there is no specific bit field set in the
FLAGY (y is the granted core ID) register.

Indirect Mode

In indirect access mode, a resource is accessed by writing to the DIRECTx, INDIRECTX, or QUERYX
(x is the semaphore peripheral number) register. Since there is no physical connection between the
semaphore resources and the registers, any register can be mapped to any resource by software
programming.

If the resource is free, access is immediately granted to the requested core. The FREE bit of the
DIRECTX, INDIRECTX, or QUERYX register is set to 1 signifying that the resource is free and acces is
granted to the requested core. The OWNER field of the DIRECTX, INDIRECTx, or QUERYX register is
set to the requested core ID. An interrupt is immediately issued to the requested core.

If the resource is not available, the request is added to the request queue assigned to the semaphore
resource. When the resource becomes free, an interrupt is issued and the FREE bit of the DIRECTX,
INDIRECTX, or QUERYX register is set to 1 signifying that access is now granted to the requested
core. An interrupt is issued in this case. The specific bit field for the semaphore resource of the FLAGy
(y is the granted core ID) register is set.

Combined Mode

In combined access mode, a resource is accessed by reading the INDIRECTXx (x is the semaphore
peripheral number) register. Since there is no physical connection between the semaphore resources
and the registers, any register can be mapped to any resource by software programming.

If the resource is free, access is immediately granted to the requested core. The FREE bit of the
INDIRECTX register is set to 1 signifying that the resource is free and access is granted to the
requested core. The OWNER field of the INDIRECTX register is set to the requested core ID. No grant
interrupt or flag register settings happen in this case.

If the resource is not available, the request is added to the request queue assigned to the semaphore
resource. When the resource becomes free, an interrupt is issued and the FREE bit of the INDIRECTx
register is set to 1 signifying that access is now granted to the requested core. An interrupt is issued in
this case. The specific bit field for the semaphore resource of the FLAGYy (y is the granted core ID)
register is set.

Interrupt Handling

The first interrupt occurs when the pending queued request is serviced. To ensure that a re-arm of the
master's interrupt occurs prior to the next access by the same or other resource, the master should:

read the FLAGX (x is the particular master id) register

clear the flag bit by programming the specific bit field for the semaphore resource of the FLAGx
register

write to the EOI register.

TMS320C6474 Semaphore SPRUG14-0October 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

I} TEXAS
INSTRUMENTS

www.ti.com Emulation Considerations

2.3 Error Handling
The first error interrupt occurs when there is a semaphore access error. To ensure that a re-arm of the
master's error interrupt occurs prior to the next access violation, the master should:
» read the ERR register to determine the error type
» clear the error by programming the ERR_CLEAR register
» write to the EOI register.

2.4 Status Query
Before acquiring any semaphore resource, the requested core checks the availability of the resource by
reading the QUERYX (x is the semaphore peripheral number) register. The FREE bit signifies whether a
particular resource is free or not; when FREE=0 the resource is not free, when FREE=1 the resource is
free. The OWNER field has a master ID that currently holds the resource (when FREE=0) or shows 0x00
(when FREE=1). Before taking any action on a resource, check the resource status.

2.5 Releasing Semaphore Resources
When the master that is granted access is finished with the shared resource, it must free the resource so
that another master can access it. Writing 1 to the FREE bit of the DIRECTX, INDIRECTX, or QUERYX
register releases the specific resource.

3 Emulation Considerations
During debug, when using the emulator, the CPU(s) may be halted. During emulation halt, the debugger
reads to certain semaphore registers is ignored to avoid changing semaphore state. In other words, the
debugger read of semaphore registers (DIRECTX, INDIRECTXx) does not change the state of the
semaphore peripheral. But, during emulation halt, the debugger checks the semaphore peripheral status
via the QUERYX register.

SPRUG14-0October 2008 TMS320C6474 Semaphore 9

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

Semaphore Usage Examples www.ti.com

4 Semaphore Usage Examples
This section provides some of the API call lists and examples to access semaphore resources.

4.1 CSL API Calls

This section provides the basic usage of the semaphore module using different CSL API calls. Three
typical modes of accessing peripherals are illustrated with examples. shows some of the API
call lists.

Example 1. Sample API Call Lists

HUHHHHHHCSL_sem APl #HH#HHEHHHE
#def i ne HW SEM RELEASE 1
#defi ne HW SEM REQUEST 0

IEEEEEAEEE R R ERY

/* ENUVERATI ONS */
/*******************/
typedef enum {
CSL_SEM | DO
CSL_SEM | D1
CSL_SEM | D2
} CSL_SenDaner | d;

0,
1,
2

typedef enum {

PWNPRO

} CSL_SeﬁEr ror;

typedef enum {

CSL_SEM NOTFREE = 0, /* Semaphore is not available */
CSL_SEM FREE =1 /* Semaphore is avail able */
} CSL_Sentl ag;

typedef enum {

CSL_SEM REARM SEM NTO = 0,
CSL_SEM_REARM SEM NT1 = 1,
CSL_SEM REARM SEM NT2 = 2

CSL_SEM REARM SEM NT_ALL = 0x10
} CSL_SenEq Set

typedef enum {
CSL_SEM QUERY_REVI S| ON,
CSL_SEM QUERY_ERROCR,
CSL_SEM QUERY_FLAGS,
CSL_SEM QUERY_STATUS,
CSL_SEM QUERY_DI RECT,
CSL_SEM QUERY_I NDI RECT

} CSL_SenmHwSt at usQuery;

10 TMS320C6474 Semaphore SPRUG14-0October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com

Semaphore Usage Examples

Example 1. Sample API Call Lists (continued)

typedef enum {
CSL_SEM CVMD_EQ _WRI TE,
CSL_SEM CMD_FLAG_SET,
CSL_SEM CVD_FREE_DI RECT,
CSL_SEM CMD_WRI TE_POST_DI RECT,
CSL_SEM CMD_FREE_| NDI RECT,
CSL_SEM CMD_WRI TE_POST_| NDI RECT,
CSL_SEM CVD_FREE_QUERY,
CSL_SEM CMD_WRI TE_PCST_QUERY,
CSL_SEM CMD_CLEAR _ERR,
CSL_SEM CMD_CLEAR _FLAGS

} CSL_SemHwCont r ol Cnd;

/*******************/

/* DATA STRUCTURES */

/*******************/

typedef struct _CSL_Sentl agd ear _Arg{

CSL_Bi t Mask32 mask;
CSL_SenDwner | d masterld;
} CSL_SenFl agSet d ear _Ar g;

typedef struct {
CSL_SenRegsOvl y regs;
} CSL_SenBaseAddr ess;

typedef struct {
CSL_Bi t Mask16 fl ags;
} CSL_SenPar am

typedef struct {
Ui nt16 contextl nfo;
} CSL_SenCont ext ;

typedef struct CSL_SenDbj {

CSL_I nst Num i nst Num
int senmNum
CSL_SenRegsOvl y regs;

} CSL_Senj ;

typedef volatile CSL_Senthj *CSL_SenHandl e;

typedef struct {

int semurm
CSL_SenDwner | d senDaner ;
CSL_Sentl ag senfr ee;
} CSL_SenVval ;
typedef struct CSL_Sentaul t Status {
int semNurm
CSL_SenError error Mask;
Uint 16 faultl D

} CSL_Senfaul t St at us;

SPRUG14-October 2008
Eubmit Documentation Feedbacl

TMS320C6474 Semaphore 11

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

Semaphore Usage Examples www.ti.com

4.2

Accessing Semaphore Resource When Free

A CPU accesses a shared peripheral (semaphore resource) by reading the semaphore direct (DIRECTX)
register when the resource is free to use. Checking the semaphore query (QUERYX) register is the way to
verify whether a particular resource is free or still in use by other CPU. If the FREE bit of QUERYX (where
X is the semaphore peripheral ID) register is 1, the requested CPU directly locks the peripheral by reading
the DIRECTX register and the requested peripheral is immediately granted access. After finishing the
access, the CPU must release the resource by writing 1 to the FREE bit of the DIRECTx register so that
another CPU can access the same resource.

shows a semaphore resource (NUM = 4) acquired using the direct-read mode.

Example 2. Sample Code to Access Semaphore in Direct-Read Mode

CSL_SenVal query;
CSL_SenHandl e nySenHandl e;
CSL_Senthj nmy Senbj ;
CSL_SentCont ext SenCont ext ;
CSL_SenParam nySenPar am

nySenPar am fl ags = 4;
CSL_seml ni t (&SentCont ext) ;

nySenHandl e = CSL_senOpen(&rySentbj, 0, &rySenParam NULL);

i f(nySenHandl e != NULL) {
CSL_sentet HWSt at us(nmySenHandl e, CSL_SEM QUERY_STATUS, &query) ;
}

i f(query.senfree == CSL_SEM FREE) {
CSL_sentet HWSt at us(mySenHandl e, CSL_SEM QUERY_DI RECT, &query) ;

CSL_sentet HWSt at us(nmySenHandl e, CSL_SEM QUERY_STATUS, &query) ;
if (query.senfree != CSL_SEM FREE) {
/1 Do peripheral access
}
el se {
/1 return error.
}

CSL_sentwCont r ol (nySenmHandl e, CSL_SEM CMD_FREE_DI RECT, NULL) ;
/* END OF Main code */

12

TMS320C6474 Semaphore SPRUG14-0October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Usage Examples

4.3 Accessing Semaphore Resource When Not Free

In certain situations when a shared resource is in use by another master, the requesting master/CPU can
still post a request indirectly so that when the resource becomes available the requested master/CPU gets
the access. Writing to the semaphore indirect (INDIRECTX) register when the resource is not free is the
way to post a request in the request queue for the particular semaphore peripheral. Checking the
semaphore query (QUERYX) register is the way to verify whether a particular resource is free or still in use
by other CPU. If the FREE bit of the QUERYXx (where x is the semaphore peripheral ID) register is 0
(indicating resource is in use), then the requested CPU can post a request by writing to the INDIRECTx
register. When the resource becomes free, the master is notified by the interrupt and the requested
peripheral is granted access. After finishing the access the CPU must release the resource by writing 1 to
the FREE bit of the INDIRECTX register so that another CPU can access the same resource.

shows a semaphore resource (NUM = 22) acquired using indirect-write mode.

Example 3. Sample Code to Access Semaphore in Indirect-Write Mode

CSL_SenVal query;
CSL_SentHandl e nySentHandl e;
CSL_Senthj ny Senbj ;

CSL_SentCont ext Sentont ext ;
CSL_SenPar am my SenPar am

nySenParam fl ags = 22;
CSL_semn ni t (&SenCont ext) ;

mySenHandl e = CSL_senpen(&rySenthj, 0, &rySenParam NULL);

i f (nmySenHandl e ! = NULL) {
CSL_sentet HwSt at us(nySenHandl e, CSL_SEM QUERY_STATUS, &query);
}

i f(query.senfree == CSL_SEM FREE) {

/1 Direct access

CSL_sentet HWSt at us(nmySenHandl e, CSL_SEM QUERY_DI RECT, &query);
}

CSL_sentet HwSt at us(nySenHandl e, CSL_SEM QUERY_STATUS, &query);

if (query.senfree != CSL_SEM FREE) {
/1 I'ndirect access
CSL_sentwCont r ol (nySenHandl e, CSL_SEM CMD WRI TE_POST_| NDI RECT, NULL) ;
/! Rel ease the previously | ocked semaphore
CSL_sentHwCont r ol (nySenHandl e, CSL_SEM CVD_FREE DI RECT, NULL) ;

/1 Get the semaphore status.Still lock. This tine for indirect pending access
CSL_sentet HWSt at us(nmySenHandl e, CSL_SEM QUERY_STATUS, &query) ;
if (query.senfree != CSL_SEM FREE) {
/1 do semaphore access

el se {
/! Return error
}

CSL_sentwCont r ol (nySenHandl e, CSL_SEM CMD_FREE_| NDI RECT, NULL) ;
/* END OF Main code */

SPRUG14-0October 2008 TMS320C6474 Semaphore 13
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS

INSTRUMENTS
Semaphore Usage Examples www.ti.com
4.4 Accessing Semaphore Resource in Combined Mode
A semaphore resource can be accessed in combination of direct-read mode and indirect-write mode.
When the resource is free, access is immediately granted and when the resource is not free, it posts a
request in the request queue.
shows a semaphore resource (NUM = 0) acquired using combined-access mode.
Example 4. Sample Code to Access Semaphore in Combined-Access Mode
CSL_SenVal query;
CSL_SenHandl e mySenHandl e;
CSL_Senthj nmy Senbj ;
CSL_SentCont ext SenCont ext ;
CSL_SenParam nySenPar am
mySenParam fl ags = 0;
CSL_sen ni t (&SenCont ext) ;
nmySenHandl e = CSL_senOpen(&rySentbj, 0, &rySenParam NULL);
i f(mySenHandl e !'= NULL) {
CSL_sentet HwSt at us(mySenHandl e, CSL_SEM QUERY_STATUS, &query);
}
i f(query.senfree == CSL_SEM FREE) {
CSL_sentet HWSt at us(mySenHandl e, CSL_SEM QUERY_| NDI RECT, &query) ;
}
CSL_sentet HwSt at us(mySenHandl e, CSL_SEM QUERY_STATUS, &query);
if (query.senfree != CSL_SEM FREE) {
/'l Do peripheral access
el se {
/] return error.
}
CSL_senmHwCont r ol (mySenHandl e, CSL_SEM CMD_FREE_QUERY, NULL) ;
/* END O Main code */
14 TMS320C6474 Semaphore SPRUG14-0October 2008

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com

Semaphore Registers

5 Semaphore Registers

This section provides the semaphore memory map and descriptions of the peripheral registers.

5.1 Register Memory Map
Table 1. Register Memory Map

Offset Acronym Description See
0x000 PID Peripheral Revision ID Register
0x00C EOI EOI Register

0x100 - 0x17C DIRECTO0-31 Direct Registers 0-31

0x200 - 0x27C INDIRECTO-31 Indirect Registers 0-31 bection 5.2.4

0x300 - 0x37C QUERYO0-31 Query Registers 0-31 bection 5.2.9
0x400 FLAGO Flag0 Register (for C64x+ Core0) S 0
0x404 FLAG1 Flagl Register (for C64x+ Corel)
0x408 FLAG2 Flag2 Register (for C64x+ Core2)
0x480 FLAG_SETO Flag Set0 Register (for C64x+ Core0)
0x484 FLAG_SET1 Flag Setl Register (for C64x+ Corel)
0x488 FLAG_SET2 Flag Set2 Register (for C64x+ Core2)
0x500 ERR Error Register S g
0x504 ERROR_CLR Error Clear Register bection ©.2.9

SPRUG14-October 2008
Eubmit Documentation Feedbacl

TMS320C6474 Semaphore

15

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS

INSTRUMENTS
Semaphore Registers www.ti.com
5.2 Register Descriptions
The following are some sample semaphore peripheral registers.
5.2.1 Peripheral ID Register (PID)
The semaphore peripheral ID (PID) register is shown in and described in [Table 2.
Figure 2. Peripheral ID Register (PID)
31 30 29 28 27 16
SCHEME Reserved FUNC
R-0x1 R-0x R-0x802
15 11 10 8 7 6 5 0
RTL MAJOR CUSTOM MINOR
R-0x0 R-Ox1 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2. Peripheral ID Register (PID) Field Descriptions

Bit Field Value Description
31-30 | SCHEME 01b Used to distinguish which ID scheme is used.
29-28 |RSVD 00 Reserved. Read returns 0. Write has no effect.
27-16 |FUNC 0x802 Specifies module family
15-11 |RTL 0000b RTL Version

10-8 | MAJOR 01b Major Revision

7-6 CUSTOM 00b Special/Custom Revision

5-0 MINOR 000000b Minor Revision

16 TMS320C6474 Semaphore

u

SPRUG14-October 2008
mit Documentation Feedbac!

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Registers

5.2.2 End-of-Interrupt Register (EOI)

The semaphore end-of-interrupt (EOI) register is used for re-arming the error/interrupt line after serving
the existing error/interrupt. The EOI register is shown in and described in [Table 3.

Figure 3. End-of-Interrupt Register (EOI)

31 16
Reserved
W

15 8 7 0
Reserved INTERRUPT/ERROR SELECT
w w

LEGEND: W = Write only; -n = value after reset

Table 3. End-of-Interrupt Register (EOI) Field Descriptions®

Bit Field Value | Description

31-8 | Reserved Reserved, Write has no effect

7-0 INTERRUPT/ERROR Selection of particular Error/Interrupt line to re-arm.
SELECT

0x00 | Re-enable semintO (For C64x+ Core0)
0x01 | Re-enable semintl (For C64x+ Corel)
0x02 | Re-enable semint2 (For C64x+ Core2)
0x10 | Re-enable All Error interrupt (For all C64x+ Cores)

(1) Reading of the EOI register will result in a memory-read exception being generated.

SPRUG14-0October 2008 TMS320C6474 Semaphore 17
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

Semaphore Registers

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.3 Direct Register (DIRECTX)

The semaphore direct (DIRECTX) register acquires the semaphore resource in direct-read mode as well
as indirect-write mode. If the resource is free, the FREE field of the DIRECTx (x is the semaphore
peripheral ID being requested) signifies whether the resource is granted or not. The DIRECTX register is
shown in and described in Table 4.

Figure 4. Direct Register (DIRECTXx)

31 16
Reserved
R-0x0000
15 8 7 1 0
OWNER Reserved | FREE |
R-0X00 R-0X00 RIW-
0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. Direct Register (DIRECTX) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0x0000 | Reserved. Read returns 0. Write has no effect.
15-8 | OWNER 0x00 | When FREE = 0: Semaphore resource owner ID
When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 | Reserved. Read returns 0. Write has no effect.

0 FREE

Read Operation:

Semaphore is not granted.

Semaphore is granted to the Master. FREE is cleared by the hardware at the end of the access.
Write Operation:

Request is posted in the queue (indirect mode).

Semaphore is freed.

18 TMS320C6474 Semaphore

SPRUG14-October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Registers

5.24 Indirect Register (INDIRECTXx)

The semaphore indirect (INDIRECTX) register acquires the semaphore resource in indirect-write mode. If
the resource is free, the FREE bit of the INDIRECTXx (x is the semaphore peripheral ID being requested)

signifies whether the resource is granted or not. In addition, an interrupt is sent to the requested master.

The INDIRECT register is shown in and described in [Table 5.

Figure 5. Indirect Register (INDIRECTx)

31 16
Reserved
R-0x0000
15 8 7 1 0
OWNER Reserved | FREE |
R-0X00 R-0X00 RIW-
0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. Indirect Register (INDIRECTX) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0x0000 | Reserved. Read returns 0. Write has no effect.
15-8 | OWNER 0x00 | When FREE = 0: Semaphore resource owner ID
When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 | Reserved. Read returns 0. Write has no effect.
0 FREE Read Operation:

Semaphore is not granted.

Semaphore is granted to the Master. FREE is cleared by the hardware at the end of the access.
Write Operation:

Request is posted in the queue (indirect mode).

Semaphore is freed.

SPRUG14-0October 2008 TMS320C6474 Semaphore 19
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

Semaphore Registers

13 TEXAS
INSTRUMENTS

www.ti.com

5.2.5 Query Register (QUERYX)

Each semaphore query register (QUERYX) checks the current semaphore resource status and also can
be used for indirect-write mode to access the particular resource. Reading the QUERYX (x is the
semaphore peripheral ID being accessed) register does not affect the status of the particular peripheral.
The QUERY register is shown in and described in [Table g.

Figure 6. Query Register (QUERYX)

31 16
Reserved
R-0x0000
15 8 7 1 0
OWNER Reserved | FREE |
R-0X00 R-0X00 RIW-
0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. Query Register (QUERYX) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0x0000 | Reserved. Read returns 0. Write has no effect.
15-8 | OWNER 0x00 | When FREE = 0: Semaphore resource owner ID
When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 | Reserved. Read returns 0. Write has no effect.

0 FREE

Read Operation:

Semaphore is not granted

Semaphore is not granted to the Master

Write Operation:

Request is posted in the queue (indirect mode)
Semaphore is freed

20 TMS320C6474 Semaphore

SPRUG14-October 2008
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Registers
5.2.6 Flag Register (FLAGX)

Each semaphore flag (FLAGx, where x is the Master ID) register checks whether the particular
master/core is currently holding the semaphore resource or not. There is one register for each core and
the particular bit field signifies the holding status of the particular semaphore peripheral by the requested
master. Once access to the particular semaphore resource is complete, the corresponding flag bit is
cleared by writing a 1 to the particular bit of the FLAG register. The FLAGX register is shown in
and described in [Table 7.

Figure 7. Flag Register (FLAGX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| F31 | F30 | P29 | F28 | F27 | F26 | F25 | F24 | F23 | F22 | F21 | F20 | F19 | F18 | F17 | F16 |
R-0X0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F5 | F14a [F3 [F2 | Fin [F0 | ro | F8 [F7 | F6 [5 | F4a | F3 | F2 | 1 | FO |
R-0X0000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. Flag Register (FLAGX) Field Descriptions
Bit Field Value | Description

310 |Fy Semaphore Flag Value
0x0 | Semaphore resource y is not owned by the master x
0x1 | Semaphore resource y is owned by the master x

5.2.7 Flag Set Register (FLAG_SETX)

Each semaphore flag set (FLAG_SETx, where x is the Master ID) register sets the flag bit of the particular
semaphore peripheral. This register is implemented to check, by software programming, whether any
resource can be accessed by the any of the masters. There is one register for each core and writing to the
particular bit field sets the semaphore flag registers (FLAGXx) corresponding bit-field value. The
FLAG_SETx register is shown in and described in [able g.

Figure 8. Flag Set Register (FLAG_SETXx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| F31 | P30 | F20 | P28 | P27 | F26 | F25 | F2a [F23 | P22 [P22 | F20 | F19 | F18 | F17 | F16 |
W-0X0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
' F5 | F14a [F13 [F12 | Fin [F0 | ro | F8 [F7 | 6 | 5 | F4 | F3 | F2 | 2 | FO |
W-0X0000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Flag Set Register (FLAG_SETx) Field Descriptions
Bit Field Value | Description

31-0 |Fy Semaphore Flag Set
0x0 Do nothing
0x1 Semaphore flag y is cleared

SPRUG14-0October 2008 TMS320C6474 Semaphore 21
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

Semaphore Registers www.ti.com

5.2.8 Error Register (ERR)
The semaphore error (ERR) register updates any kind of error that occurs while acquiring a semaphore
resource by any core. By reading the ERR register the particular master/core should clear the particular
error and program the EOI register so that a re-arm occurs for the next semaphore access by the same
master. The ERR register is shown in and described in [[able 9.
Figure 9. Error Register (ERR)
31 16
Reserved
R-0x0000
15 8 7 3 2 0
FAULTID SEM_NUM ERR
R-0x00 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Error Register (ERR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0x0000 | Reserved. Read returns 0. Write has no effect.
15-8 | FAULTID 0x00 | Master ID number that caused the error
7-3 SEM_NUM 0x00 | Semaphore peripheral ID number (0 to 31)
2-0 ERR Semaphore error code.
000 No semaphore access error has occurred.
001 Master ID FAULTID attempted to free semaphore NUM when it was already free.
010 Master ID FAULTID attempted to free semaphore NUM while not currently owned by FAULTID.
011 Master ID FAULTID attempted to acquire semaphore NUM while it was already owned by
FAULTID.
100 Master ID FAULTID attempted to acquire semaphore NUM while FAULTID already had a request
pending.
22 TMS320C6474 Semaphore SPRUG14-0October 2008

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

13 TEXAS
INSTRUMENTS

www.ti.com

Semaphore Registers

5.2.9 Error Clear Register (ERROR_CLR)

The semaphore error clear (ERROR_CLR) register clears the existing error code. The master should
reprogram the EOI register after clearing the error so that a re-arm occurs for the next error event. The
ERROR_CLR register is shown in and described in [Table 10.

Figure 10. Error Clear Register (ERROR_CLR)

31 16
Reserved
R-0x0000
15 8 7 3 2 0
FAULTID SEM_NUM ERR
R-0x00 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Error Register (ERROR_CLR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0x0000 | Reserved. Read returns 0. Write has no effect.
15-8 | FAULTID 0x00 | Master ID number that caused the error
7-3 SEM_NUM 0x00 | Semaphore peripheral ID number (0 to 31)
2-0 ERR Semaphore error code.
000 No semaphore access error has occurred.
001 Master ID FAULTID attempted to free semaphore NUM when it was already free.
010 Master ID FAULTID attempted to free semaphore NUM while not currently owned by FAULTID.
011 Master ID FAULTID attempted to acquire semaphore NUM while it was already owned by
FAULTID.
100 Mas&er ID FAULTID attempted to acquire semaphore NUM while FAULTID already had a request
pending.

SPRUG14-October 2008
Eubmit Documentation Feedbacl

TMS320C6474 Semaphore

23

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers Emplifier-i.com Audio [pww Ti.com/audid

Data Converters Fataconverterir.com Automotive [vww Tr.com/automofiv

DSP Esp-ii.con Broadband [pww i.com/broadband

Clocks and Timers [www i-com/clocky Digital Control [pww ir-com/digitalcontrol

Interface [nierface-fi.com Medical [pww Ti.com/medical

Logic [ogicircon Military [vww i-com/militany

Power Mgmt power-i.com Optical Networking [xww Ti.com/opficalnetwor

Microcontrollers [nicrocontroller-t.com Security [nww r-com/secur

RFID ‘ i .CO Telephony lvww.tr.com/telephony

RF/IF and ZigBee® Solutions [WWw.ir.com/Ipr Video & Imaging vww Tr.com/vided
Wireless [vww T.com/wirelesy

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Module Overview
	1.1 Introduction
	1.2 Semaphore Architecture
	1.3 Terms and Abbreviations

	2 Semaphore Operation
	2.1 Semaphore Access Modes
	2.2 Interrupt Handling
	2.3 Error Handling
	2.4 Status Query
	2.5 Releasing Semaphore Resources

	3 Emulation Considerations
	4 Semaphore Usage Examples
	4.1 CSL API Calls
	4.2 Accessing Semaphore Resource When Free
	4.3 Accessing Semaphore Resource When Not Free
	4.4 Accessing Semaphore Resource in Combined Mode

	5 Semaphore Registers
	5.1 Register Memory Map
	5.2 Register Descriptions
	5.2.1 Peripheral ID Register (PID)
	5.2.2 End-of-Interrupt Register (EOI)
	5.2.3 Direct Register (DIRECTx)
	5.2.4 Indirect Register (INDIRECTx)
	5.2.5 Query Register (QUERYx)
	5.2.6 Flag Register (FLAGx)
	5.2.7 Flag Set Register (FLAG_SETx)
	5.2.8 Error Register (ERR)
	5.2.9 Error Clear Register (ERROR_CLR)

