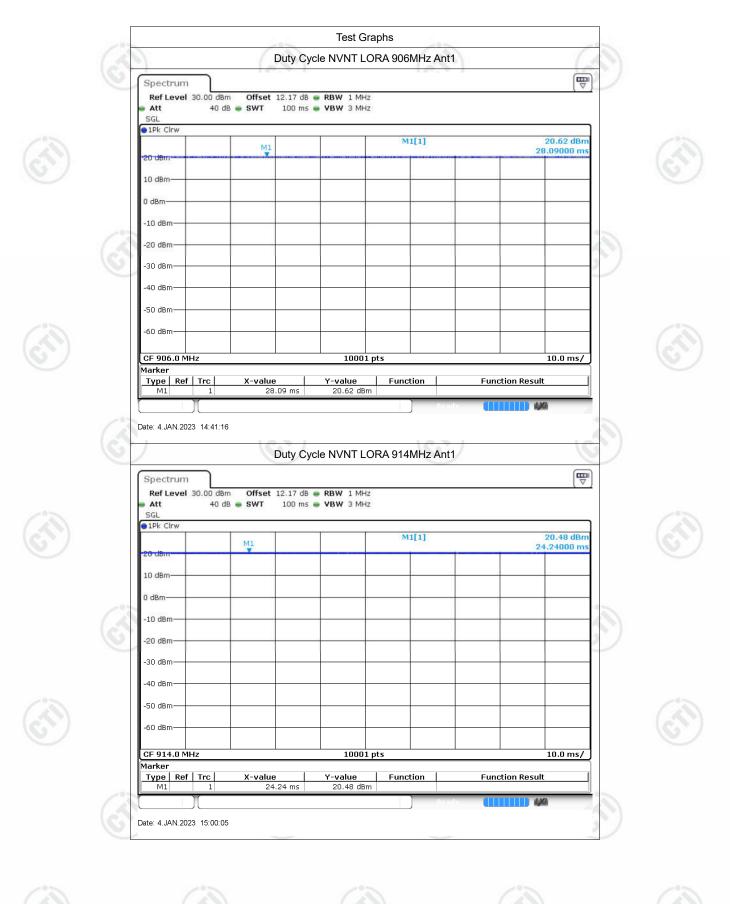


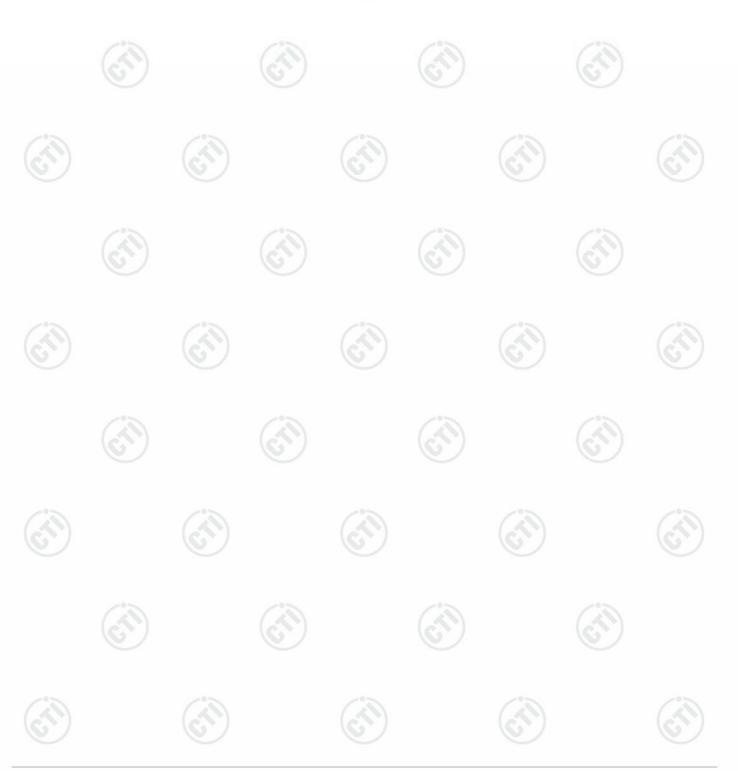
Contents	2
Duty Cycle	3
Maximum Average Conducted Output Power	6
Maximum Peak Conducted Output Power	9
-6dB Bandwidth	
Occupied Channel Bandwidth	
Maximum Power Spectral Density Level	
Band Edge	21
Conducted RF Spurious Emission	

Duty Cycle


	- OJ OIO		(A)			
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	LORA	906	Ant1	100	0	0
NVNT	LORA	914	Ant1	100	0	0
NVNT	LORA	924	Ant1	100	0	0

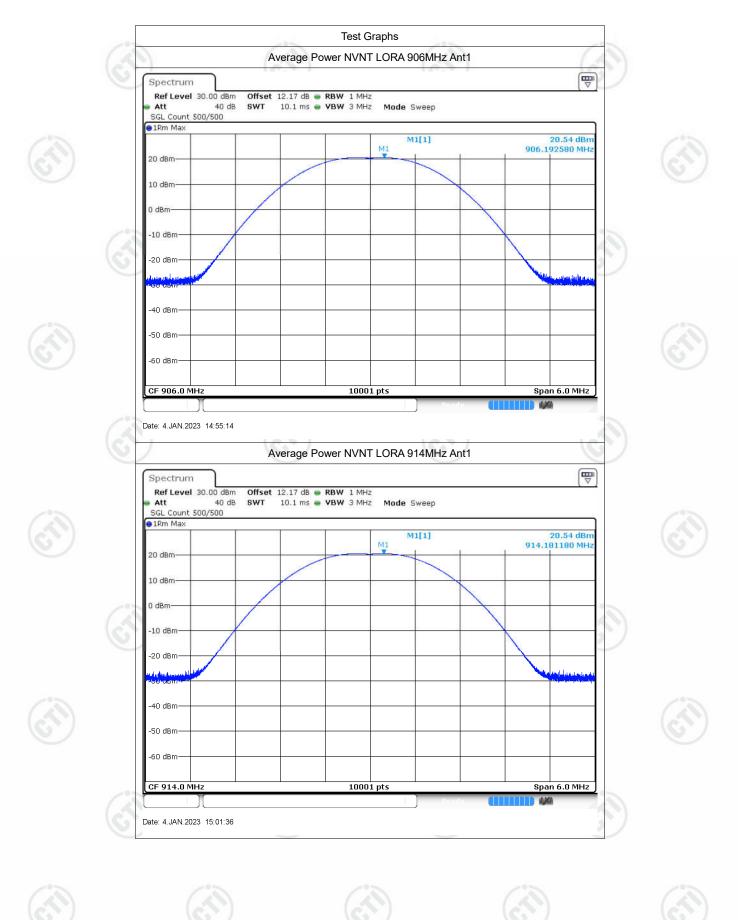
Page 4 of 27

Page 5 of 27



Maximum Average Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdic
		(MHz)		(dBm)	(dBm)	
NVNT	LORA	906	Ant1	20.54	30	Pass
NVNT	LORA	914	Ant1	20.54	30	Pass
NVNT	LORA	924	Ant1	20.51	30	Pass



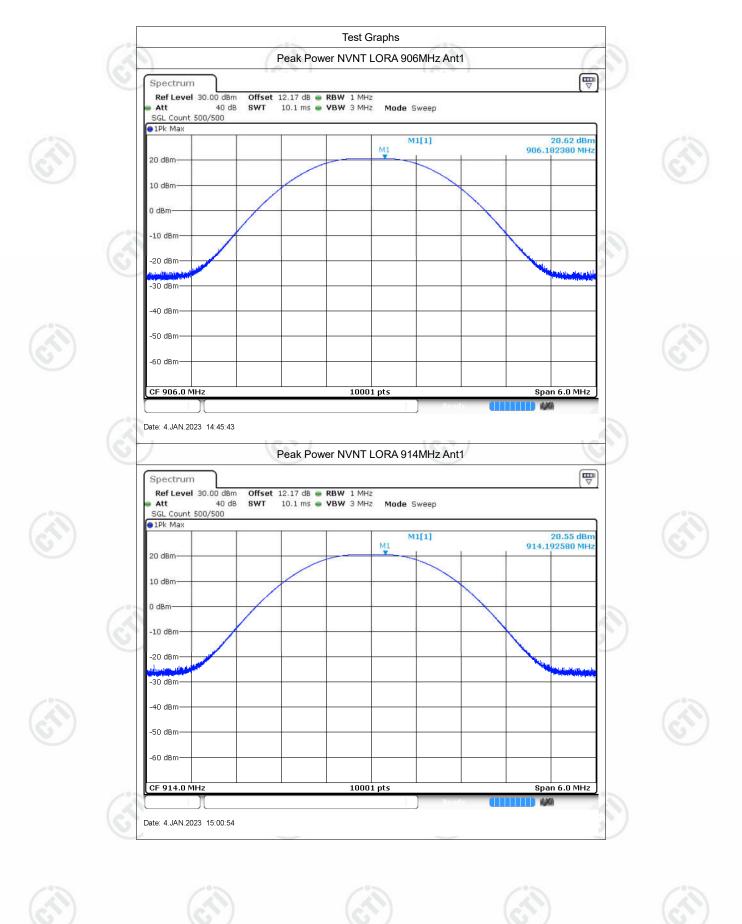
Page 7 of 27

Page 8 of 27

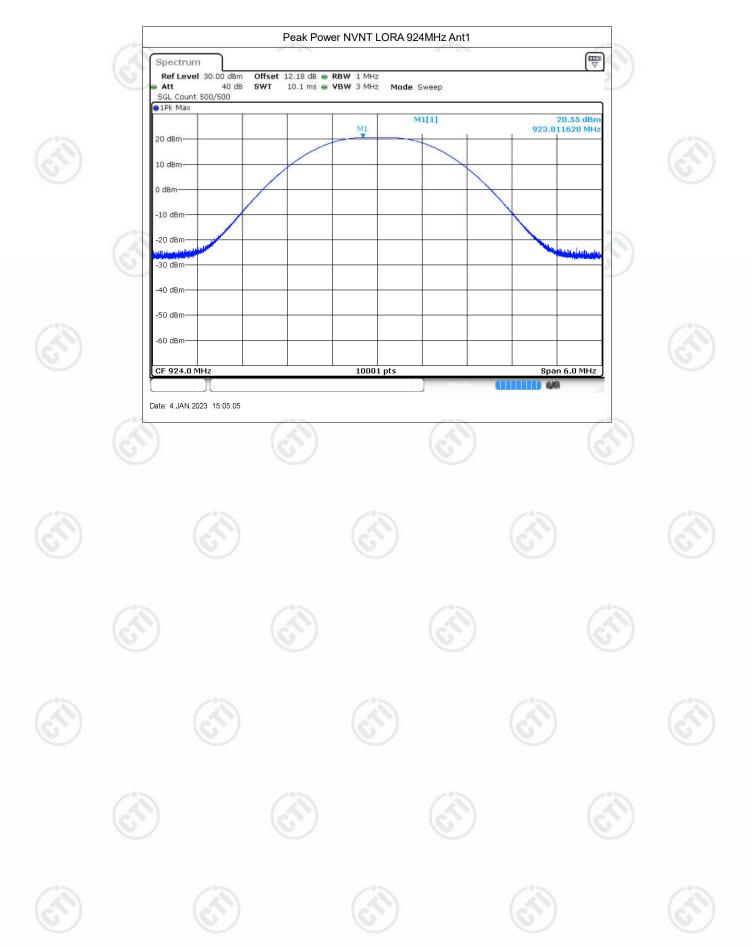
Page 9 of 27

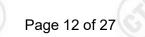
Maximum Peak Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	LORA	906	Ant1	20.62	30	Pass
NVNT	LORA	914	Ant1	20.55	30	Pass
NVNT	LORA	924	Ant1	20.55	30	Pass



Page 10 of 27

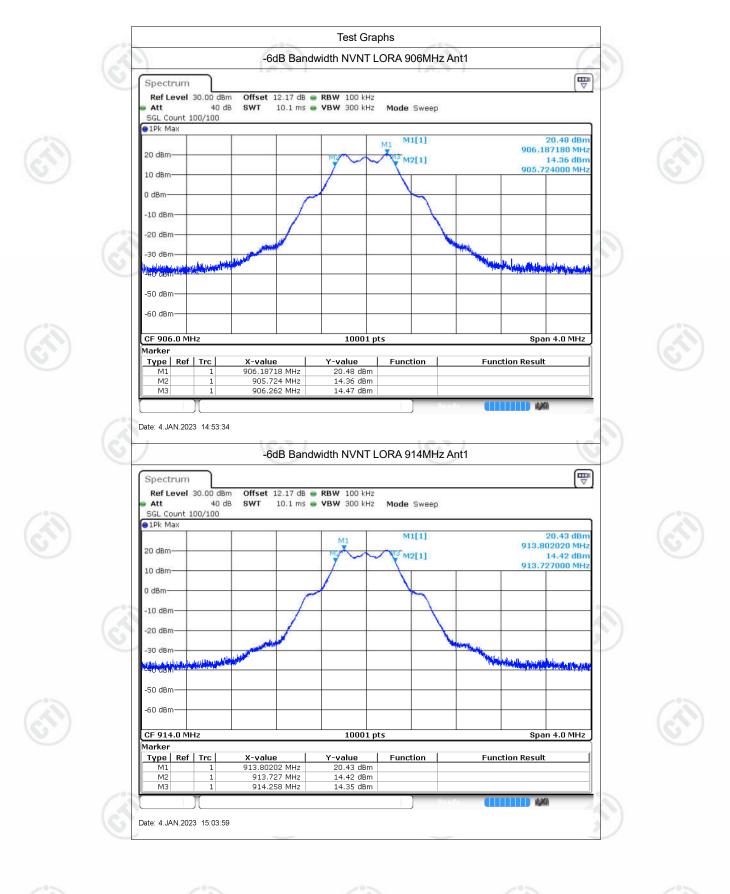




Page 11 of 27


-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	LORA	906	Ant1	0.537	0.5	Pass
NVNT	LORA	914	Ant1	0.53	0.5	Pass
NVNT	LORA	924	Ant1	0.533	0.5	Pass



Page 13 of 27



Page 14 of 27

Occupied Channel Bandwidth

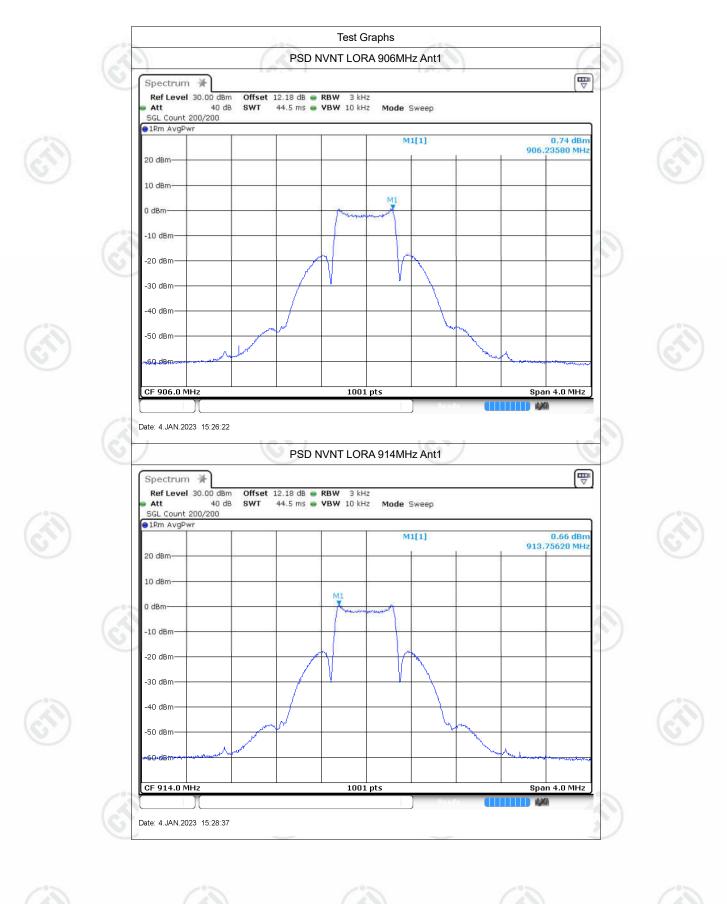
		Bunawiath		(3)
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	LORA	906	Ant1	0.737
NVNT	LORA	914	Ant1	0.765
NVNT	LORA	924	Ant1	0.732

Page 16 of 27

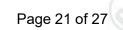
Page 17 of 27

Maximum Power Spectral Density Level

Condition	Mode	Frequency	Antenna	Conducted PSD	Duty Factor	Total PSD	Limit	Verdict
		(MHz)		(dBm/3kHz)	(dB)	(dBm/3kHz)	(dBm/3kHz)	
NVNT	LORA	906	Ant1	0.74	0	0.74	8	Pass
NVNT	LORA	914	Ant1	0.66	0	0.66	8	Pass
NVNT	LORA	924	Ant1	0.60	0	0.60	8	Pass

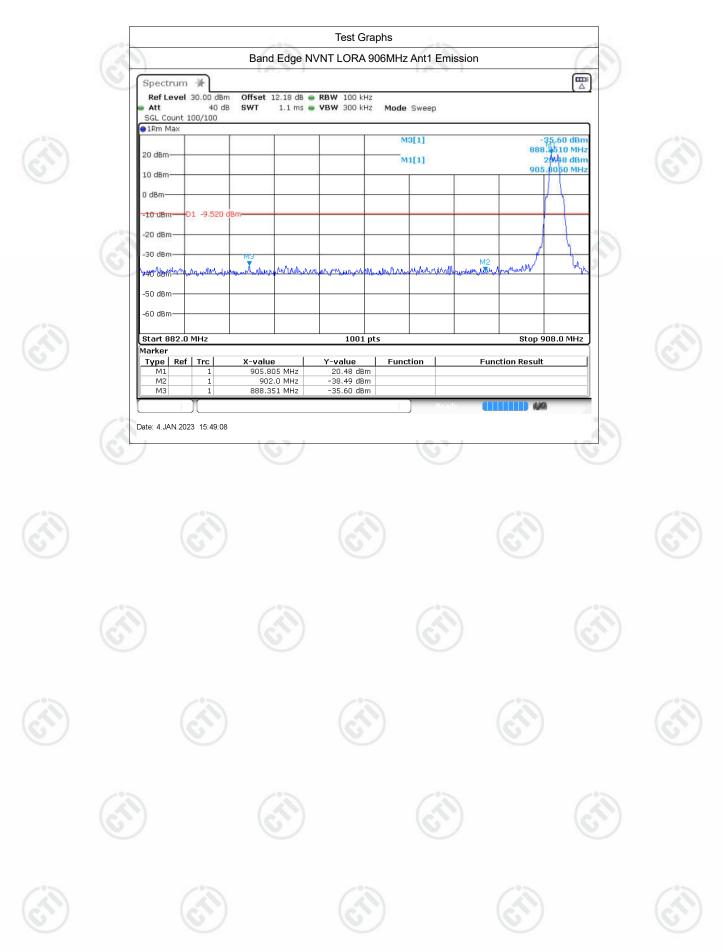


Page 19 of 27

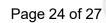


Page 20 of 27

Band Edge


Dan	u Luge					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBm)	Limit (dBm)	Verdict
NVNT	LORA	906	Ant1	-38.49	-9.52	Pass
NVNT	LORA	924	Ant1	-38.15	-9.57	Pass


Page 22 of 27

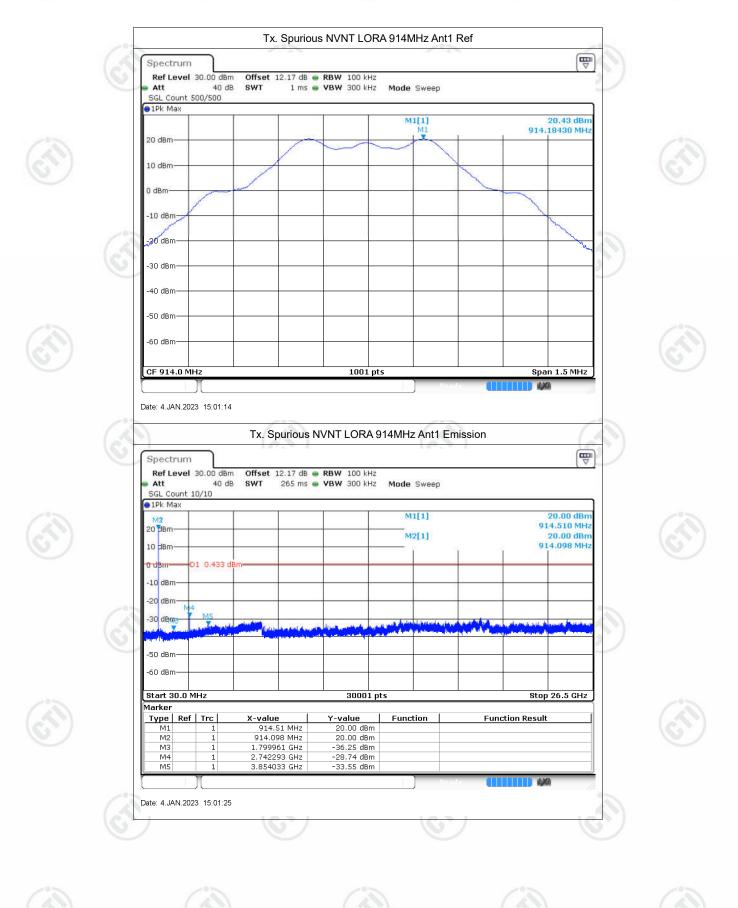


Conducted RF Spurious Emission

NVNT	LORA	906	Ant1	0.476	Pass
NVNT	LORA	914	Ant1	0.433	Pass
NVNT	LORA	924	Ant1	0.432	Pass



Page 25 of 27





TEST REPORT

Product Trade mark Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

BeaglePlay

Beagleboard.org

BeaglePlay :

5 N/A

2

EED32P80002502

Z4T-BBP23010V1

: Feb. 21, 2023

47 CFR Part 15 Subpart C

PASS •

Prepared for:

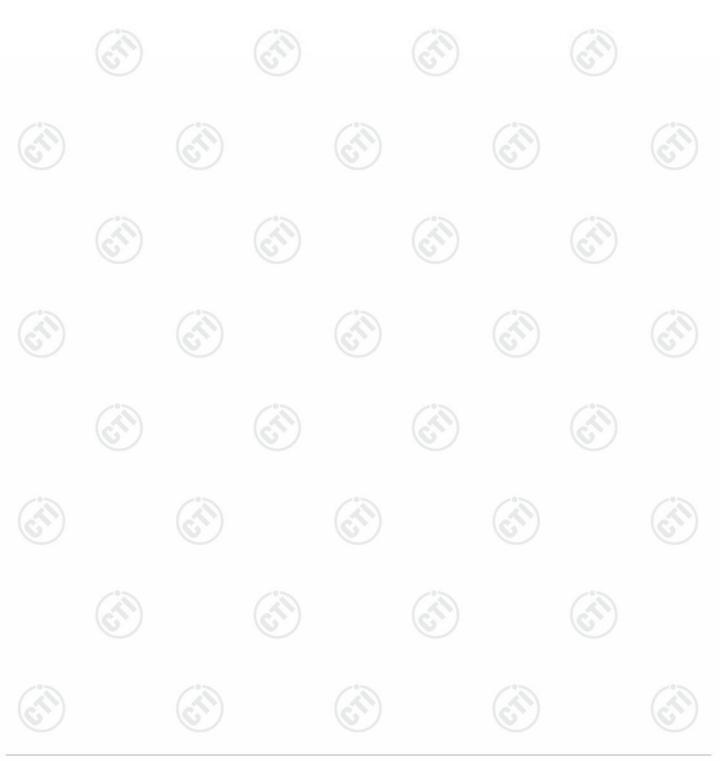
Seeed Technology Co., Ltd 9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tom mark Compiled by: Reviewed by: Tom Chen Mark Chen RNAT Date: Feb. 21, 2023 NON Aaron Ma Check No.: 5404030123 Report Sea

Repor


Page 2 of 37

1 COVER PA	GE	••••••	• • • • • • • • • • • • • • • • • • • •				•••••
4 TEST SUN	MARY			•••••		••••••	
5 GENERAL	INFORMATION			••••••	••••••	••••••	•••••
5.2 GENEF 5.3 TEST (5.4 TEST E 5.5 DESCF 5.6 TEST L	INFORMATION AL DESCRIPTION C ONFIGURATION INVIRONMENT IPTION OF SUPPOF OCATION REMENT UNCERTA	OF EUT		٨		٢	
5.7 IVIEASU		,		. ,			
6 EQUIPME 7 TEST RES 7.1 ANTEN 7.2 CONDU 7.3 MAXIM 7.4 DTS E	IT LIST ULTS AND MEA NA REQUIREMENT ICTED EMISSIONS . JM CONDUCTED C ANDWIDTH JM POWER SPECT	SUREMENT D	DATA				<u> </u>
6 EQUIPMEI 7 TEST RES 7.1 ANTEN 7.2 CONDU 7.3 MAXIM 7.4 DTS E 7.5 MAXIM 7.6 BAND 7.7 RADIA 8 APPENDIX	IT LIST ULTS AND MEA NA REQUIREMENT ICTED EMISSIONS. JM CONDUCTED C ANDWIDTH JM POWER SPECT EDGE MEASUREME ED SPURIOUS EM	SUREMENT D DUTPUT POWER RAL DENSITY NTS AND COND ISSION & RESTR	UCTED SPURIO	US EMISSION	<u></u>		
6 EQUIPMEN 7 TEST RES 7.1 ANTEN 7.2 CONDU 7.3 MAXIM 7.4 DTS E 7.5 MAXIM 7.6 BAND 7.7 RADIA 8 APPENDI 9 PHOTOGR	IT LIST ULTS AND MEA NA REQUIREMENT ICTED EMISSIONS JM CONDUCTED C ANDWIDTH JM POWER SPECT EDGE MEASUREME FED SPURIOUS EM	SUREMENT D DUTPUT POWER TRAL DENSITY NTS AND COND ISSION & RESTF	DATA	US EMISSION			
6 EQUIPMEN 7 TEST RES 7.1 ANTEN 7.2 CONDU 7.3 MAXIM 7.4 DTS E 7.5 MAXIM 7.6 BAND 7.7 RADIA 8 APPENDI 9 PHOTOGR	NT LIST	SUREMENT D DUTPUT POWER TRAL DENSITY NTS AND COND ISSION & RESTF	DATA	US EMISSION			

Vorsion

	Version No.	Date	(e)	Description	/
	00	Feb. 21, 2023		Original	
5	1	5		(°)	100
	(6	S) (a		(25)	6

ost Summary

Page 4 of 37

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
Restricted bands	15.205/15.209	

Remark: Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Factory:	Shenzhen Xinxian Technology Co., Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

5.2 General Description of EUT

-				
Product Name:	BeaglePlay			
Model No.:	BeaglePlay			
Trade mark:	Beagleboard.org			
Product Type:	Portable	0		6
Operation Frequency:	902MHz~928MHz			
Modulation Type:	LORA Chirp Spread Spectrum			
Transfer Bandwidth:	⊠ 750kHz			
Number of Channel:	10		6)	
Antenna Type:	PCB Antenna			
Antenna Gain:	1.81dBi			
Power Supply:	DC 5V			1
Test Voltage:	DC 5V	(S)		6
Sample Received Date:	Jan. 03, 2023	U		U.S.
Sample tested Date:	Jan. 03, 2023 to Feb. 16, 2023			
	•			

Page 5 of 37

3	Channel		Frequency)
	1		906MHz	/
	2		908MHz	
	3	(3)	910MHz	
	4	(\mathcal{O})	912MHz	
	5		914MHz	
	6		916MHz	
20	7		918MHz	0
<u>()</u>	8		920MHz	9
	9		922MHz	
	10		924MHz	

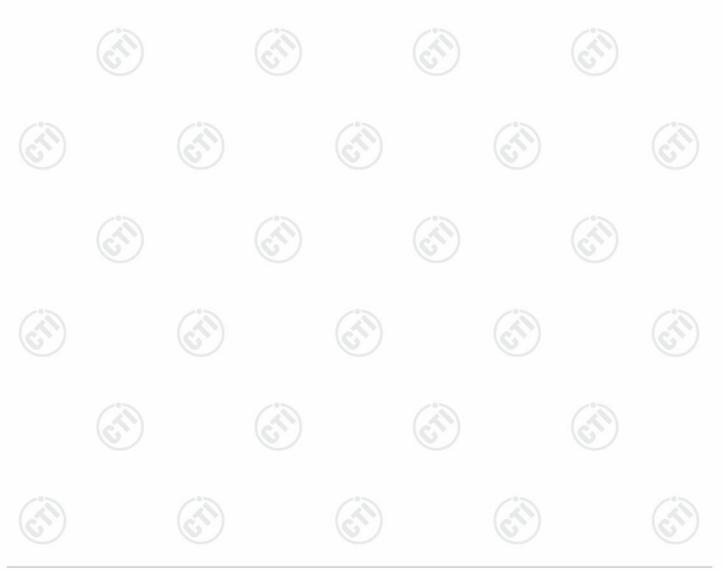
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Frequency
906MHz
914MHz
924MHz

5.3 Test Configuration

EUT Test Softwar	e Settings:						
Software:	re: Setup_SmartRF_Studio_7						
EUT Power Grade:	Power lev	Power level is built-in set parameters and cannot be changed and selected					
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.							
Test Mode	Modulation	Bandwidth	Channel	Frequency(MHz)			
Mode a	LORA	750kHz	CH1	906			
Mode b	LORA	750kHz	CH5	914			
Mode c	LORA	750kHz	CH10	924			



Page 7 of 37

5.4 Test Environment

	Operating Environment	::				
200	Radiated Spurious Emi	ssions:				
20	Temperature:	22~25.0 °C		(2)		(2)
27	Humidity:	50~55 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	67)		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C	/	(3)		13
	Humidity:	50~55 % RH		(c^{γ})		(c^{γ})
State of the second sec	Atmospheric Pressure:	1010mbar		S		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
5 ²	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Sourieus omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

	RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(A)	- 3	

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	/				
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188				

Page 9 of 37

Page 10 of 37

	3M Semi-and	echoic Chamber (2)	- Radiated dist	urbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date 05/21/2025 09/27/2023 05/21/2023	
3M Chamber & Accessory Equipment	трк	SAC-3		05/22/2022		
Receiver	R&S	ESCI7	100938-003	09/28/2022		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022		
Multi device Controller	maturo	NCD/070/10711112		- 7		
Horn Antenna			9120D-1869	04/15/2021	04/14/2024	
Loop Antenna			1519B-076	04/17/2021	04/16/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023	
	ST/	(GT)		(GT)		

Page 11 of 37

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	~~~		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-01-2022	02-28-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024 04-19-2023 04-12-2023 07-28-2023 12-22-2023 02-20-2023	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022		
Preamplifier	EMCI	EMC001330	980563	04-13-2022		
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022		
Communication test set	R&S	CMW500	102898	12-23-2022		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	02-21-2022		
Fully Anechoic Chamber	TDK	FAC-3	<u> </u>	01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		(2	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	(<u>)</u>	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		(6	
Cable line	Times	HF160-KMKM-3.00M	393493-0001		0	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

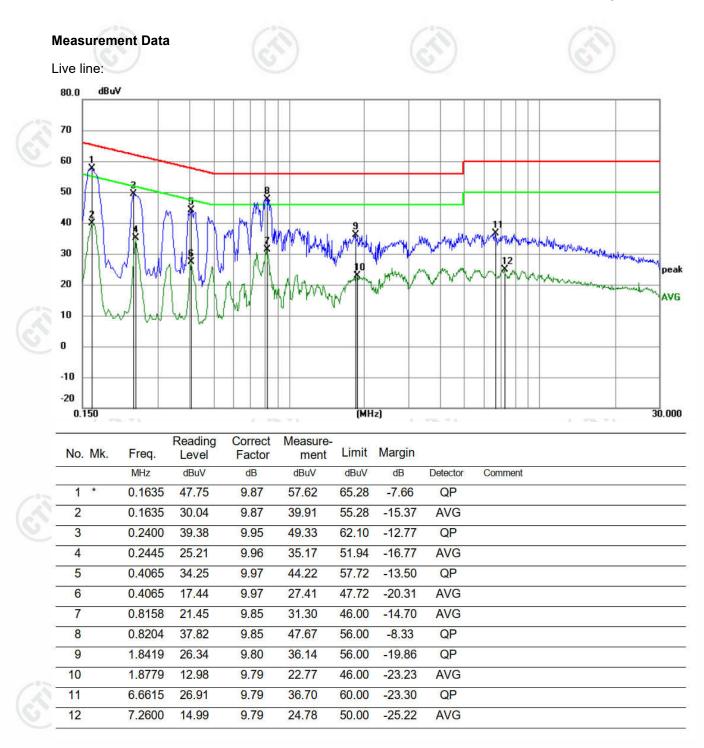
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

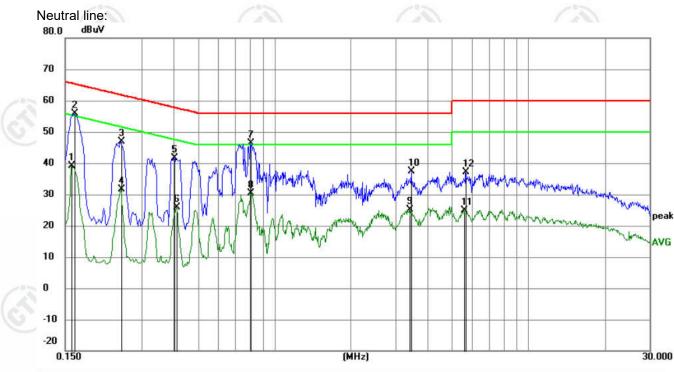
EUT Antenna:	Please see Internal photos

The antenna is PCB Antenna. The best case gain of the antenna is 1.81dBi.


Page 13 of 37

	Test Requirement:	47 CFR Part 15C Section 15	.207							
	Test Method:	ANSI C63.10: 2013								
2	Test Frequency Range:	150kHz to 30MHz								
3	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	0						
	Limit:	Limit (dBuV)								
		Frequency range (MHz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
		0.5-5	56	46						
		5-30	60	50						
		* Decreases with the logarith	m of the frequency.							
		AC Maine	LISN2 + AC Yaima							
	Test Procedure:	 The mains terminal disturnoom. The EUT was connected Impedance Stabilization Nimpedance. The power connected to a second LI plane in the same way multiple socket outlet stripsingle LISN provided the 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal geometrical ground reference with the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bor mounted on top of the grout the closest points of the and associated equipments In order to find the maximand all of the interface care ANSI C63.10: 2013 on compared to the closest points on the construction of the social care care and social care care and associated equipments 	d to AC power source Network) which provides cables of all other SN 2, which was bonde as the LISN 1 for the o was used to connect r rating of the LISN was r aced upon a non-meta And for floor-standing an ground reference plane. with a vertical ground ref from the vertical ground ref from the vertical ground the plane was bonded to N 1 was placed 0.8 m nded to a ground ref pund reference plane. The LISN 1 and the EUT. A at was at least 0.8 m from hum emission, the relativa	through a LISN 1 (Lir s a $50\Omega/50\mu$ H + 5Ω line units of the EUT we d to the ground reference unit being measured. nultiple power cables to not exceeded. Ilic table 0.8m above the trangement, the EUT was erence plane. The rear and reference plane. The to the horizontal ground from the boundary of the erence plane for LISN his distance was betwee All other units of the EU m the LISN 2.						
	Test Mode:	All modes were tested, only t		vas recorded in the						
		, J								

Page 14 of 37



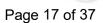
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. M	k. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.159	29.32	9.87	39.19	55.52	-16.33	AVG	
2 *	0.163	35 45.91	9.87	55.78	65.28	-9.50	QP	
3	0.249	36.96	9.97	46.93	61.79	-14.86	QP	
4	0.249	21.65	9.97	31.62	51.79	-20.17	AVG	
5	0.402	20 31.70	9.97	41.67	57.81	-16.14	QP	
6	0.41	10 16.03	9.97	26.00	47.63	-21.63	AVG	
7	0.806	36.59	9.85	46.44	56.00	-9.56	QP	
8	0.806	69 20.54	9.85	30.39	46.00	-15.61	AVG	
9	3.403	35 15.38	9.79	25.17	46.00	-20.83	AVG	
10	3.466	65 27.49	9.78	37.27	56.00	-18.73	QP	
11	5.586	60 15.16	9.78	24.94	50.00	-25.06	AVG	
12	5.676	60 27.36	9.78	37.14	60.00	-22.86	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

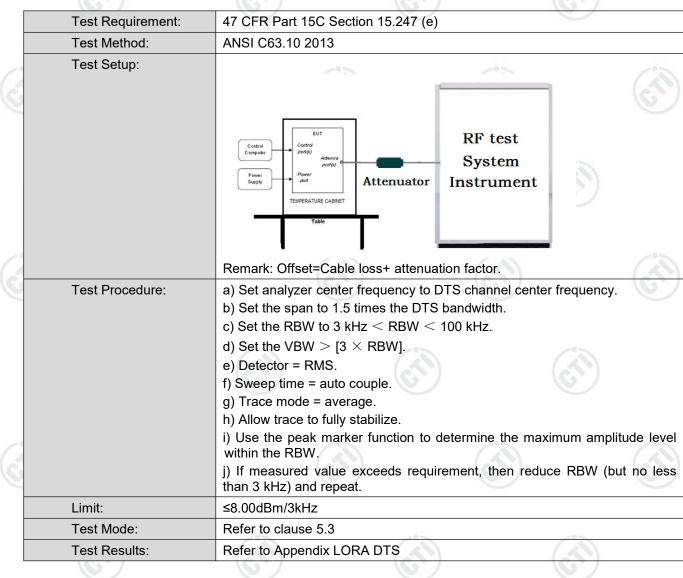

Page 16 of 37

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Control Computer Power Suppy TelMPERATURE CABINET Table	
	Remark: Offset=Cable loss+ attenuation factor.	~
Test Procedure:	 1. a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 × RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 2. 	
	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = RMS. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	13
Test Mode:	Refer to clause 5.3	6
Test Results:	Refer to Appendix LORA DTS	C

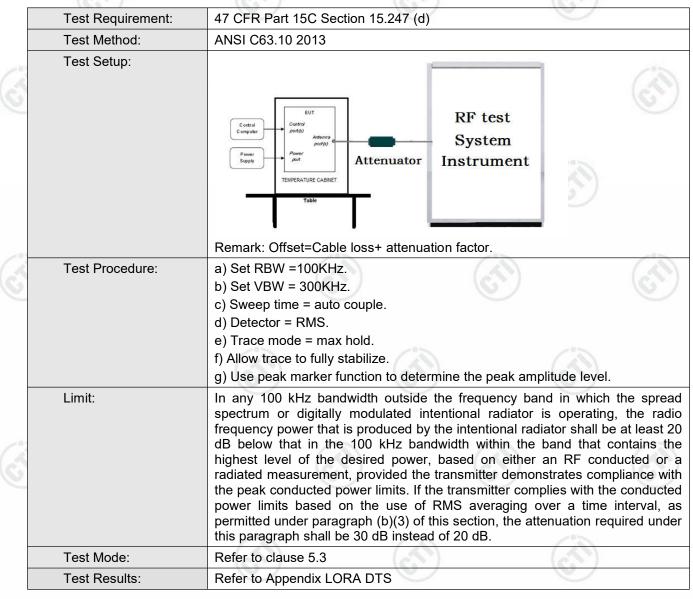
7.4 DTS Bandwidth

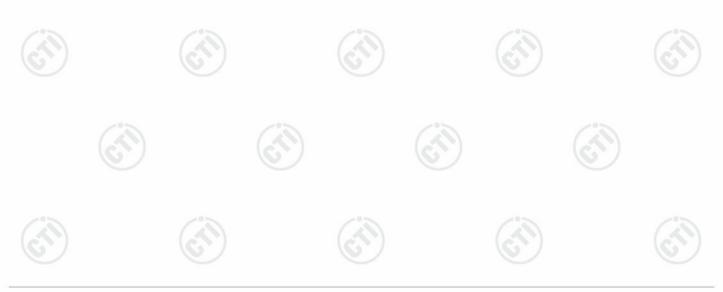
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Congoder Power Supple Temperature CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix LORA DTS



Page 18 of 37

7.5 Maximum Power Spectral Density

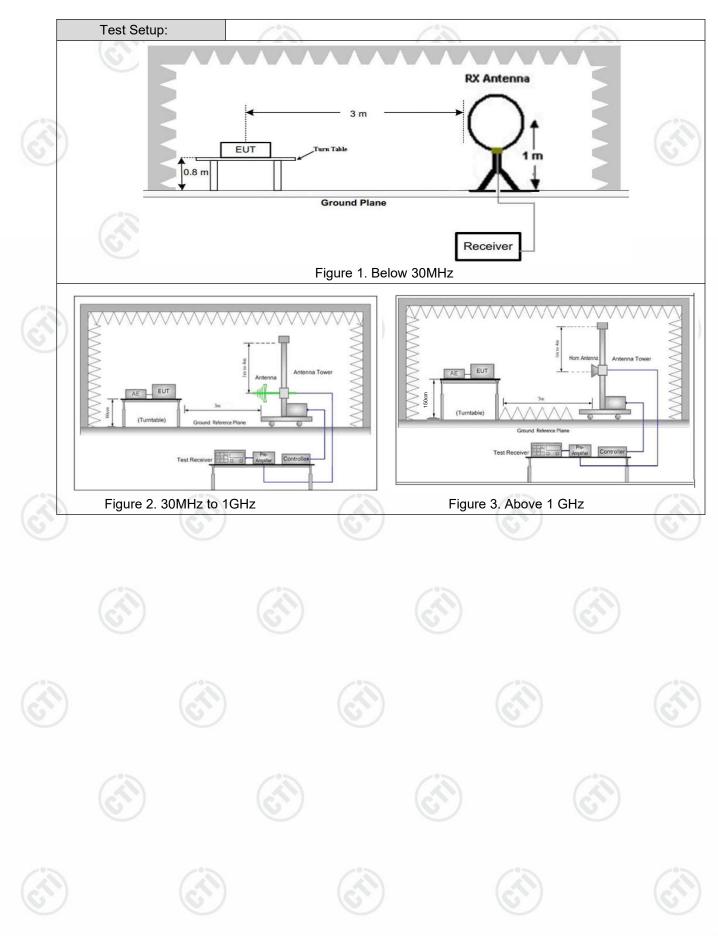




Page 19 of 37

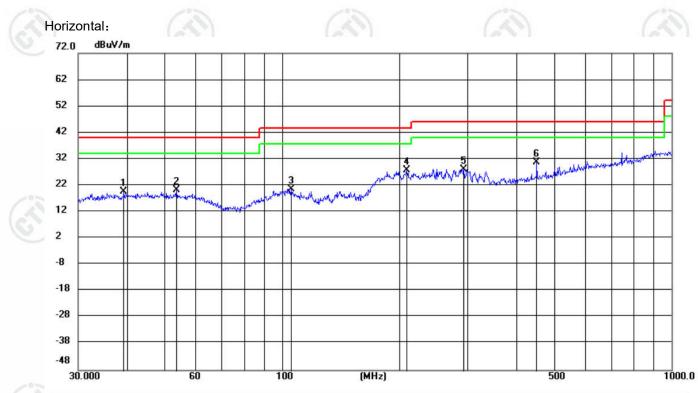
7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 37


7.7 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 1	5,209 and 15	.205		C	/			
	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	0	RBW	-	VBW	Remark				
S		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	łz	300kHz	Quasi-peak			
23			2	Peak	1MHz	-	3MHz	Peak			
de la companya de la comp		Above 1GHz	P)	Peak	1MHz	2)	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measureme distance (m			
		0.009MHz-0.490MHz	24	400/F(kHz)	-		- / >>	300			
		0.490MHz-1.705MHz	24	000/F(kHz)	-		- 68	30			
		1.705MHz-30MHz		30	-		<u>e</u>	30			
		30MHz-88MHz		100	40.0	Q	uasi-peak	3			
-0-		88MHz-216MHz		150	43.5	Q	uasi-peak	3			
		216MHz-960MHz	9	200	46.0	Q	uasi-peak	3			
U)		960MHz-1GHz)	500	54.0	Q	uasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	IB above the oment under t	maximum est. This p	ре	rmitted ave	erage emission			

Page 22 of 37

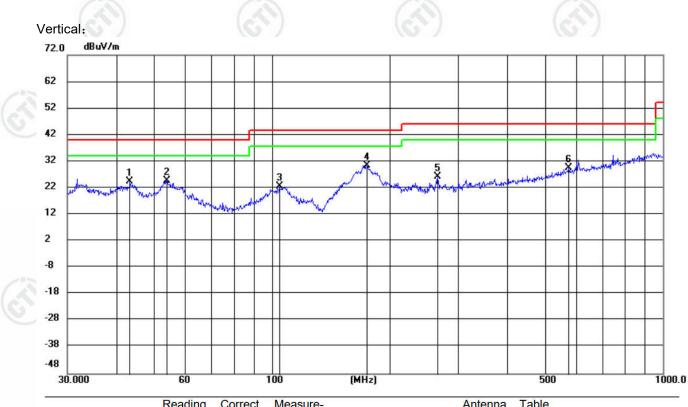

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
<u>\$</u>	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass

Radiated Spurious Emission below 1GHz:

For Lora Single transmission:

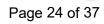
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel was recorded in the report.

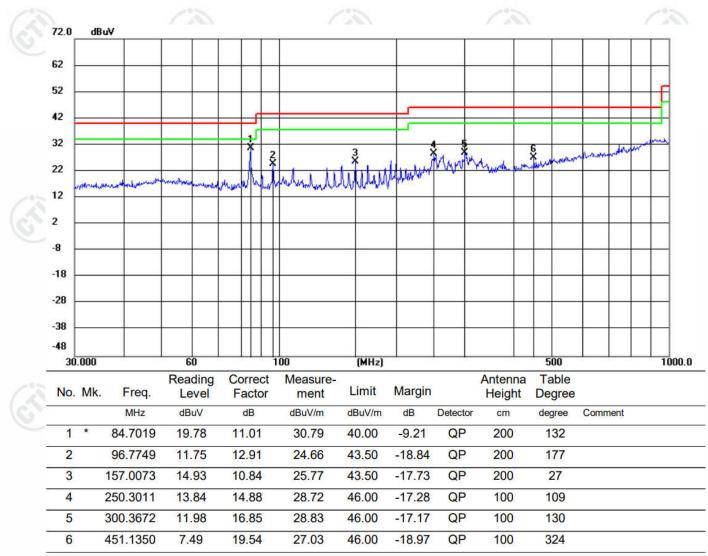
No. I	۷k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		39.2991	5.34	14.41	19.75	40.00	-20.25	QP	200	4	
2		53.6931	6.23	14.01	20.24	40.00	-19.76	QP	200	4	
3	13	105.6415	7.37	13.24	20.61	43.50	-22.89	QP	200	166	
4		209.3129	13.58	14.10	27.68	43.50	-15.82	QP	100	356	
5		293.0842	11.12	17.01	28.13	46.00	-17.87	QP	100	142	
6	* •	451.1350	10.30	20.49	30.79	46.00	-15.21	QP	100	356	



Page 23 of 37

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		43.3534	9.94	14.45	24.39	40.00	-15.61	QP	100	175	
	2		53.6932	10.65	14.01	24.66	40.00	-15.34	QP	100	277	
	3		104.5361	9.20	13.40	22.60	43.50	-20.90	QP	100	4	
	4	*	174.4241	19.24	11.28	30.52	43.50	-12.98	QP	100	319	
1	5		265.6757	10.17	16.06	26.23	46.00	-19.77	QP	200	278	
	6		574.6258	6.14	23.40	29.54	46.00	-16.46	QP	200	308	

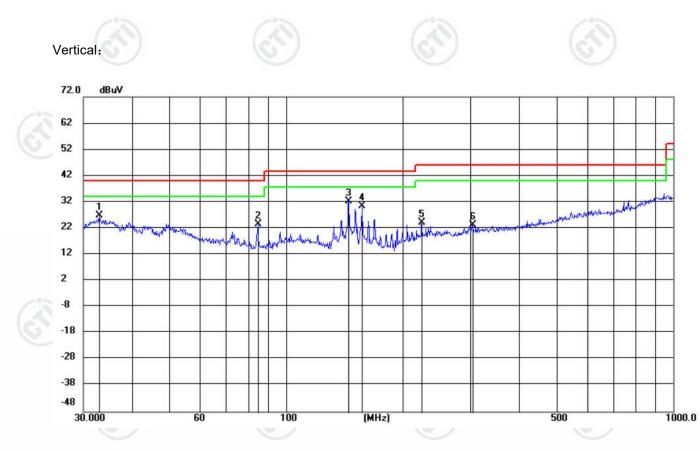


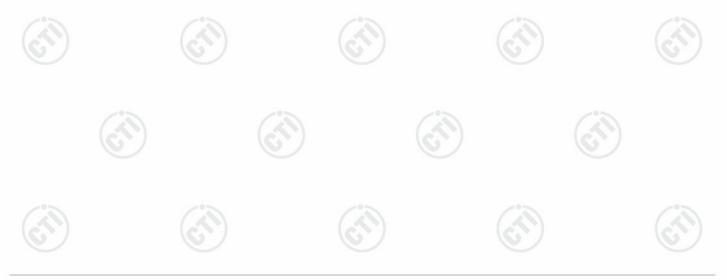


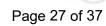
For Lora + Wi-Fi simultaneous transmission:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of LoRa and lowest channel of 2.4GHz 802.11n MIMO simultaneous transmission was recorded in the report.

Horizontal:






Page 26 of 37

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
3			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
2	1		32.9791	13.97	12.83	26.80	40.00	-13.20	QP	100	198	
-	2		84.7019	12.46	11.01	23.47	40.00	-16.53	QP	200	215	
5	3	*	144.8418	21.12	11.10	32.22	43.50	-11.28	QP	100	134	
	4		157.0074	19.68	10.84	30.52	43.50	-12.98	QP	100	187	
	5		223.7334	10.31	13.82	24.13	46.00	-21.87	QP	200	139	
0	6		302.4812	6.26	16.89	23.15	46.00	-22.85	QP	100	48	

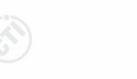
Radiated Spurious Emission above 1GHz:

For Lora Single transmission:

	Mode	:	LORA Tran	smitting			Test_Frequence	cy:	906 MHz	
CN'S	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1812.4542	-24.63	77.46	52.83	74.00	21.17	Pass	Н	PK
	2	2718.5146	-22.19	74.17	51.98	74.00	22.02	Pass	Н	PK
	3	3624.575	-20.49	73.78	53.29	74.00	20.71	Pass	Н	PK
	4	5769.718	-13.45	55.60	42.15	74.00	31.85	Pass	Н	PK
	5	6340.356	-13.03	57.81	44.78	74.00	29.22	Pass	Н	PK
	6	9158.7439	-8.06	53.28	45.22	74.00	28.78	Pass	Н	PK
	7	1811.8541	-24.63	77.31	52.68	74.00	21.32	Pass	V	PK
12	8	2718.5146	-22.19	76.78	54.59	74.00	19.41	Pass	V	PK
2	9	3623.3749	-20.50	72.82	52.32	74.00	21.68	Pass	V	PK
	10	6340.9561	-13.02	62.15	49.13	74.00	24.87	Pass	V	PK
	11	7249.4166	-11.84	57.98	46.14	74.00	27.86	Pass	V	PK
	12	9057.9372	-8.48	56.51	48.03	74.00	25.97	Pass	V	PK
	13	2719.1146	-22.19	72.44	50.25	54.00	3.75	Pass	V	AV
		(6.)	•	6.		6.	1	C.	S. 1	

Hz	914 MHz		Test_Frequence			smitting	LORA Tran	:	Mode
ity Remark	Polarity	Result	Margin [dB]	Limit [dBµV/m]	Level [dBµV/m]	Reading [dBµV]	Factor [dB]	Freq. [MHz]	NO
PK	Н	Pass	20.59	74.00	53.41	77.96	-24.55	1828.6552	1
PK	Н	Pass	22.12	74.00	51.88	73.97	-22.09	2742.5162	2
PK	Н	Pass	20.29	74.00	53.71	74.05	-20.34	3656.9771	3
PK	Н	Pass	35.12	74.00	38.88	55.12	-16.24	4908.0605	4
PK	Н	Pass	30.18	74.00	43.82	56.71	-12.89	6399.76	5
PK	Н	Pass	31.34	74.00	42.66	54.01	-11.35	7769.0513	6
PK	V	Pass	32.96	74.00	41.04	66.42	-25.38	1010.2007	7
PK	V	Pass	20.98	74.00	53.02	77.57	-24.55	1827.4552	8
PK	V	Pass	17.98	74.00	56.02	78.12	-22.10	2741.3161	9
PK	V	Pass	21.57	74.00	52.43	72.79	-20.36	3655.177	10
PK	V	Pass	23.60	74.00	50.40	63.29	-12.89	6399.1599	11
PK	V	Pass	25.26	74.00	48.74	56.97	-8.23	9141.9428	12
AV	V	Pass	3.64	54.00	50.36	72.45	-22.09	2743.1162	13
· · · · ·	H V V V V V V	Pass Pass Pass Pass Pass Pass Pass	31.34 32.96 20.98 17.98 21.57 23.60 25.26	74.00 74.00 74.00 74.00 74.00 74.00 74.00	42.66 41.04 53.02 56.02 52.43 50.40 48.74	54.01 66.42 77.57 78.12 72.79 63.29 56.97	-11.35 -25.38 -24.55 -22.10 -20.36 -12.89 -8.23	7769.0513 1010.2007 1827.4552 2741.3161 3655.177 6399.1599 9141.9428	6 7 8 9 10 11 12

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 28 of 37

		200		1000		1000	200				
	Mode	:	LORA Tran	smitting			Test_Frequence	cy:	924 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
100	1	1396.0264	-26.80	59.45	32.65	74.00	41.35	Pass	Н	PK	
Å	2	1848.4566	-24.45	77.23	52.78	74.00	21.22	Pass	Н	PK	
6	3	2772.5182	-21.97	76.58	54.61	74.00	19.39	Pass	Н	PK	
	4	3695.3797	-20.18	71.31	51.13	74.00	22.87	Pass	Н	PK	
	5	6469.3646	-12.86	57.29	44.43	74.00	29.57	Pass	Н	PK	
	6	7689.246	-10.96	54.17	43.21	74.00	30.79	Pass	Н	PK	
	7	2773.1182	-21.97	71.17	49.20	54.00	4.80	Pass	Н	AV	
	8	1848.4566	-24.45	78.08	53.63	74.00	20.37	Pass	V	PK	
	9	2772.5182	-21.97	79.91	57.94	74.00	16.06	Pass	V	PK	
	10	3696.5798	-20.17	70.90	50.73	74.00	23.27	Pass	V	PK	
1	11	4621.2414	-16.75	58.80	42.05	74.00	31.95	Pass	V	PK	
	12	6466.3644	-12.86	63.64	50.78	74.00	23.22	Pass	V	PK	
~	13	7755.2504	-11.26	54.73	43.47	74.00	30.53	Pass	V	PK	
	14	2771.9181	-21.97	72.18	50.21	54.00	3.79	Pass	V	AV	

Page 29 of 37

Report No. : EED32P80002502

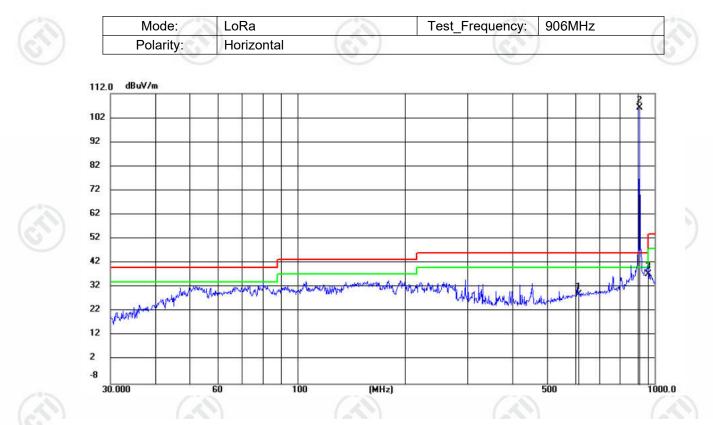
For Lora + Wi-Fi simultaneous transmission:

During the test, the Radiates Emission from above 1GHz was performed in all modes, only the worst case lowest channel of LoRa and lowest channel of 2.4GHz 802.11n MiMO simultaneous transmission was recorded in the report.

100	Mode	:	LORA + 80	2.11n mimo			Test_Frequence	sy:	906 MHz+2412 MHz	
5	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1811.6812	3.37	63.59	66.96	74.00	7.04	Pass	Н	PK
	2	2718.5719	5.46	52.53	57.99	74.00	16.01	Pass	Н	PK
	3	3625.0417	-20.26	66.87	46.61	74.00	27.39	Pass	Н	PK
	4	4824.1216	-16.22	71.65	55.43	74.00	18.57	Pass	Н	PK
	5	7440.296	-11.34	50.86	39.52	74.00	34.48	Pass	Н	PK
	6	11148.5432	-6.31	49.33	43.02	74.00	30.98	Pass	Н	PK
107	7	1812.2812	3.37	44.78	48.15	54.00	5.85	Pass	Н	AV
~	8	2717.7718	5.46	43.23	48.69	54.00	5.31	Pass	Н	AV
2	9	4825.1217	-16.22	64.33	48.11	54.00	5.89	Pass	Н	AV
	10	1811.6812	3.37	58.22	61.59	74.00	12.41	Pass	V	PK
	11	3625.0417	-20.26	63.08	42.82	74.00	31.18	Pass	V	PK
	12	4824.1216	-16.22	69.32	53.10	74.00	20.90	Pass	V	PK
	13	7406.2938	-11.48	50.45	38.97	74.00	35.03	Pass	V	PK
	14	11444.563	-6.17	49.84	43.67	74.00	30.33	Pass	V	PK
	15	13752.7168	-1.70	47.71	46.01	74.00	27.99	Pass	V	PK
	16	1812.2812	3.37	45.89	49.26	54.00	4.74	Pass	V	AV

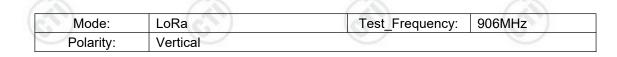
Remark:

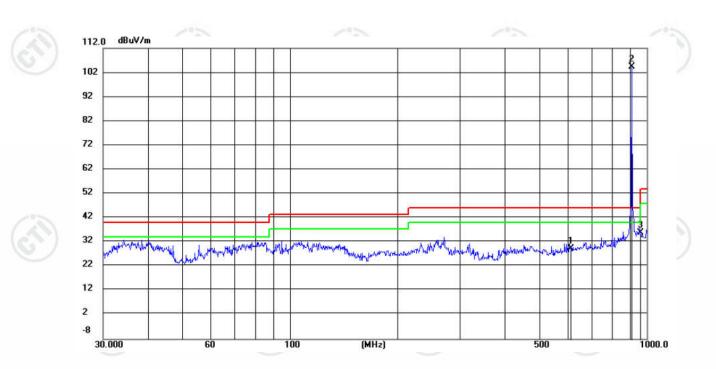
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Page 30 of 37

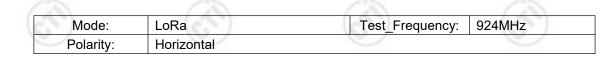
Restricted bands:

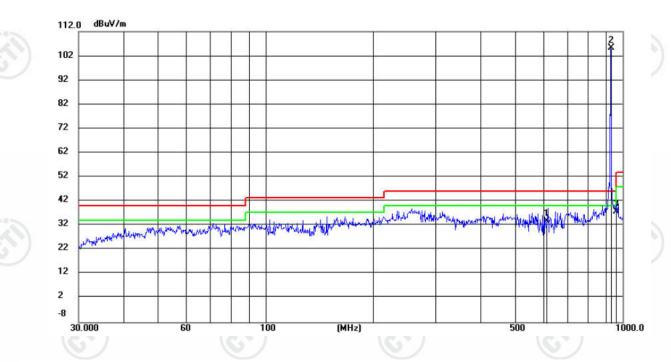
Test plot as follows:




No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	4.92	24.13	29.05	46.00	-16.95	peak	100	330	
2	*	906.4824	77.82	28.46	106.28	46.00	60.28	peak	200	356	
3		960.0000	8.67	28.71	37.38	46.00	-8.62	peak	100	40	

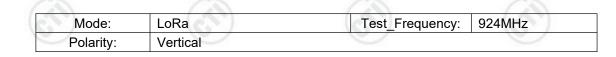
Page 31 of 37

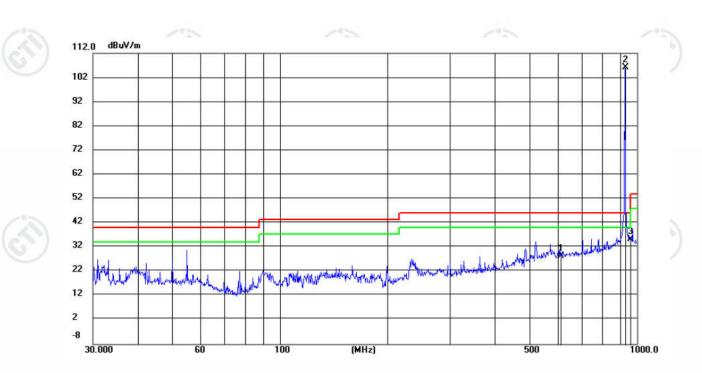




No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	5.16	24.13	29.29	46.00	-16.71	peak	100	356	
2	*	906.4824	76.04	28.46	104.50	46.00	58.50	peak	200	10	
3		960.0000	7.31	28.71	36.02	46.00	-9.98	peak	100	4	

Page 32 of 37

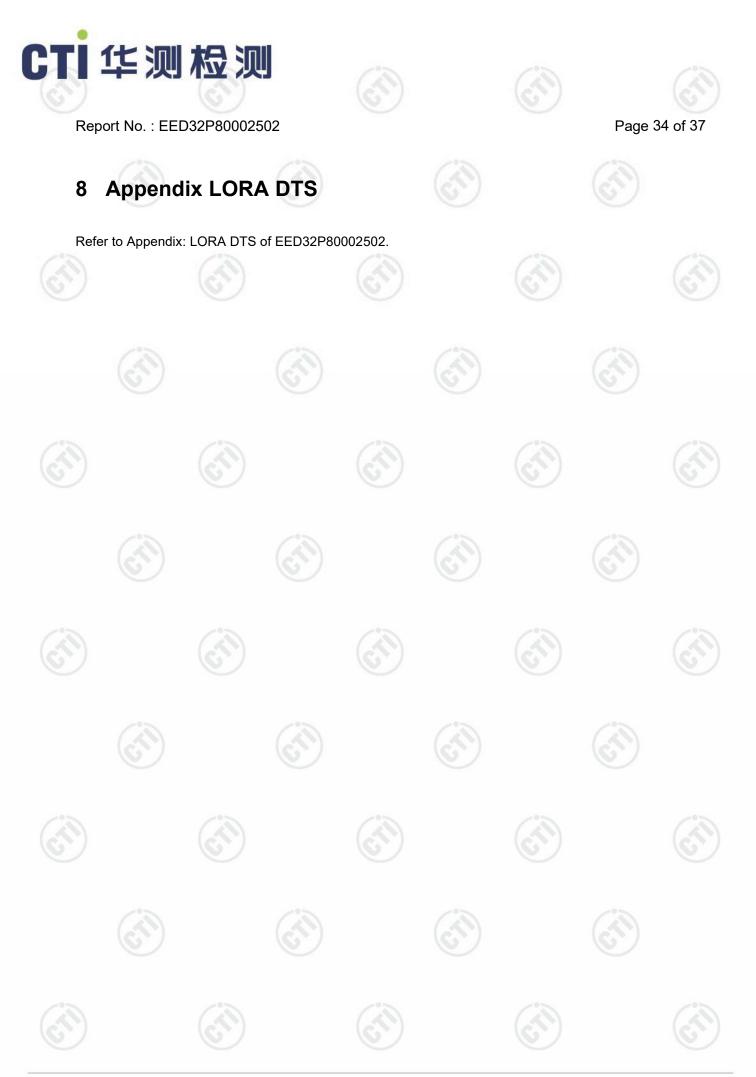



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	9.68	24.13	33.81	46.00	-12.19	peak	100	4	
2	*	925.7563	76.68	28.54	105.22	46.00	59.22	peak	200	356	
3		960.0000	8.95	28.71	37.66	46.00	-8.34	peak	100	354	

Page 33 of 37

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	4.25	24.13	28.38	46.00	-17.62	peak	100	340	
2	*	925.7563	77.63	28.54	106.17	46.00	60.17	peak	200	319	
3		960.0000	6.69	28.71	35.40	46.00	-10.60	peak	100	268	

Note:

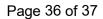

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

9 PHOTOGRAPHS OF TEST SETUP

Test model No.: BeaglePlay


Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup

10 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32P80002501 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Repor

RF Exposure Evaluation Report

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue

Test Standards

Test result

BeaglePlay
Beagleboard.org
BeaglePlay
N/A
EED32P80002503
Z4T-BBP23010V1
Feb. 21, 2023
47 CFR Part 1.1307
47 CFR Part 2.1091
KDB447498D01 General

RF Exposure Guidance v06 PASS

Prepared for: Seeed Technology Co., Ltd

9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

nark Compiled by: Reviewed by: Mark Chen Tom Chen won N Feb. 21, 2023 Date Aaron Ma Check No.: 5404030123 Report Seal

R

Page 2 of 9

2 Version

Ver	sion No.		Date			Descriptio	า	
Ð	00	Feb.	. 21, 2023	Ì		Original		S
	(A)		(A)		(A)		(A)	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

3 Contents

				Faye
1 COVER PAGE				1
2 VERSION				2
3 CONTENTS			<u>N</u>	3
4 GENERAL INFORMAT	ION		<u>/</u>	4
4.1 CLIENT INFORMATION	1			4
4.2 GENERAL DESCRIPTION	ON OF EUT			4
4.3 PRODUCT SPECIFICAT	ION SUBJECTIVE TO THIS STANDARD			
4.4 TEST LOCATION				5
4.5 DEVIATION FROM STA	ANDARDS	<u> </u>		
4.6 ABNORMALITIES FROM	M STANDARD CONDITIONS			5
4.7 OTHER INFORMATION	REQUESTED BY THE CUSTOMER			5
5 RF EXPOSURE EVALU	JATION			6
5.1 RF Exposure Compi	LIANCE REQUIREMENT		<u> </u>	6
	LE EXPOSURE			

Page 3 of 9

Se

4 General Information

4.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Factory:	Shenzhen Xinxian Technology Co., Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

4.2 General Description of EUT

Product Name:	BeaglePlay	C°2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Model No.:	BeaglePlay		
Trade mark:	Beagleboard.org))

4.3 Product Specification subjective to this standard

-12-5	Bluetooth: 2402MHz to 2480MHz
Frequency Range:	LoRa DTS: 902MHz~928MHz
Frequency Range.	
	WLAN: 11a/b/g/n HT20/HT40
	Bluetooth: GFSK
	LoRa DTS: Chirp Spread Spectrum
Modulation Type:	IEEE for 802.11b:DSSS(CCK,DQPSK,DBPSK)
	IEEE for 802.11g:OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM,QPSK,BPSK)
	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Test Power Grade:	Default
Antenna Type	PCB Antenna
	Bluetooth: 1.54dBi
	LoRa DTS: 1.81dBi
Antenna Gain	WIFI 1:
Antenna Gain	2.4GWIFI:1.54 dBi 5GWIFI:3.40 dBi
	WIFI 2:
	2.4GWIFI:1.54 dBi 5GWIFI:3.40 dBi
Power Supply:	DC 5V
Mary Oan durate d Da als Outrout	BLE: 2.97dBm, LoRa: 20.62dBm
Max Conducted Peak Output Power:	The Max Conducted Peak Output Power data refer to the report EED32P80002501, EED32P80002502.
Sample Received Date:	Jan. 03, 2023
Sample tested Date:	Jan. 03, 2023 to Feb. 16, 2023
Company Name and Address	shown on Report, the sample(s) and sample Information was/ were provided
	e responsible for the authenticity which CTI hasn't verified.

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

C

Page 4 of 9

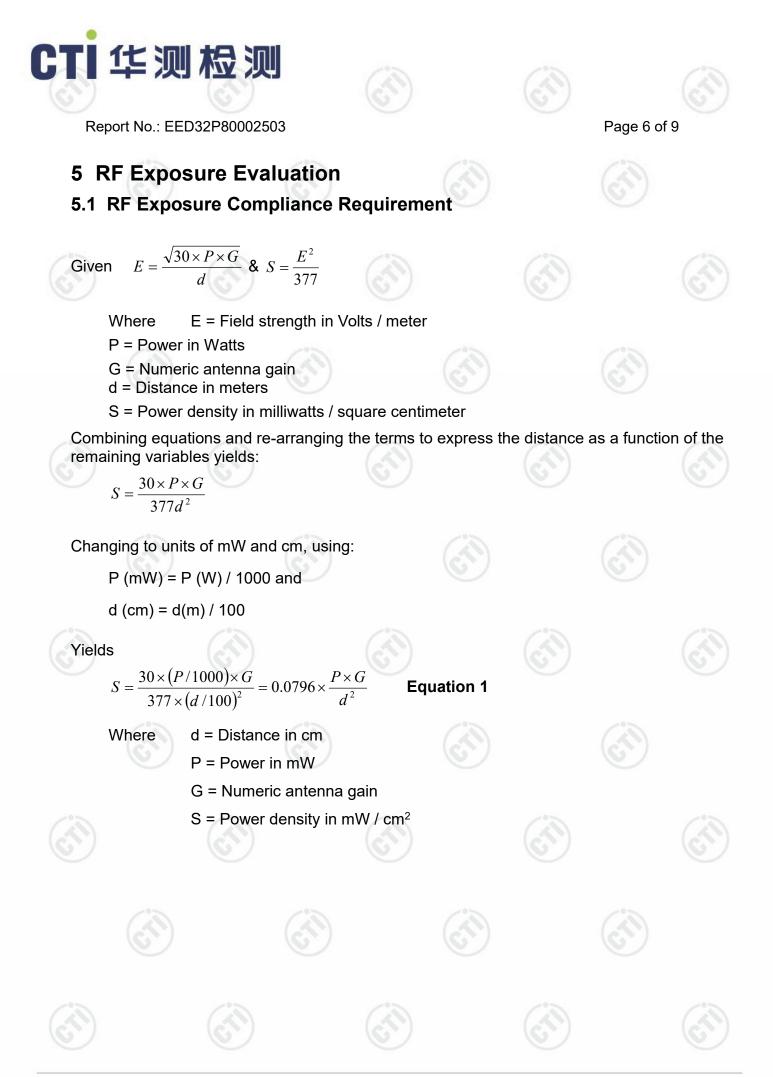
4.4 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.5 Deviation from Standards

None.

4.6 Abnormalities from Standard Conditions


None.

None.

4.7 Other Information Requested by the Customer

5.2 Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm^2

TABLE 1 TO §1.1310(E)(1)-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(i) Limits for O	ccupational/Controlled Exp	osure	
0.3-3.0	614	1.63	*(100)	≤6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6
	(ii) Limits for Gener	al Population/Uncontrolled	Exposure	•
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500			f/1500	<30
1,500-100,000			1.0	<30

Measurement Data:

BLE 1M:

GFSK mode(Worst)						
Test channel	Peak Output Power	Tune up tolerance	Maximum tu	ne-up Power		
	(dBm)	(dBm)	(dBm)	(mW)		
Lowest(2402MHz)	2.97	2±1	3	1.995		
Middle(2440MHz)	2.87	2±1	3	1.995		
Highest(2480MHz)	2.91	2±1	3	1.995		

2) For LoRa

LoRa:

		LoRa mode	(Worst)		
a	Test channel	Average Output Power	Tune up tolerance	Maximum tu	ne-up Power
S)	G	(dBm)	(dBm)	(dBm)	(mW)
	Lowest(906MHz)	20.54	20±1	21	125.893
	Middle(914MHz)	20.54	20±1	21	125.893
ŀ	Highest(924MHz)	20.51	20±1	21	125.893

BLE:			9	6		
Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
0	2402	1.995	1.426	20	0.00057	1

Note: 1.Refer to report No. EED32P80002501.

LoRa DTS:

Ch. Frq.(MHz) P (mW) Gain (num.) D (cm) Power density in mW / cm ² Limit (mW/cm ²) 1 906 125.893 1.517 20 0.0380 0.6							
1 906 125.893 1.517 20 0.0380 0.6	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
	1	906	125.893	1.517	20	0.0380	0.6

Note: 2.Refer to report No. EED32P80002502.

2.4GHz WLAN:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
1	2412	56.234	1.426	20	0.0160	1

Note: 3.Refer to report No. FA741330,FCC ID:Z64-WL18DBMOD.

the module(FCC ID:Z64-WL18DBMOD) antenna gain changed from 3.2dBi to 1.54dBi and does not support bluetooth function.

5GHz WLAN:

VUIL				1.		
Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm ²)
36	5180	89.125	2.188	20	0.039	1

Note: 4.Refer to report No. FA741330,FCC ID:Z64-WL18DBMOD.

the module(FCC ID:Z64-WL18DBMOD) antenna gain changed from 4.5dBi to 3.40dBi and does not support bluetooth function.

5.2.1 EUT RF Exposure Evaluation simultaneous transmission operations

The sum of the ratios of the spatially averaged results to the applicable frequency dependent MPE limits :

Simultaneous trar	nsmission mode	The sum of the ratios	Result
BLE + 2.4G Wi-Fi	Support	0.00057/1 + 0.0160/1	=0.01657 < 1
BLE + 5G Wi-Fi	Support	0.00057/1 + 0.039/1	=0.03957 < 1
LoRa + 2.4G Wi-Fi	Support	0.038/0.6 + 0.0160/1	=0.0793 < 1
LoRa + 5G Wi-Fi	Support	0.038/0.6 + 0.039/1	=0.1023 < 1
2.4G Wi-Fi + 5G Wi-Fi	Not support	/	١
BLE + LoRa	Not support		1
			1

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

Hotline:400-6788-333

TCB

GRANT OF EQUIPMENT AUTHORIZATION

Certification Issued Under the Authority of the Federal Communications Commission By:

> Timco Engineering, Inc. 849 NW State Road 45 Newberry, FL 32669

Date of Grant: 03/15/2023

TCB

Application Dated: 03/15/2023

Seeed Technology Co., Ltd. 9F, G3 Building, TCL International E City, Zhongshanyuan Road,Nanshan District Shenzhen, 518055 China

Attention: Albert Miao , R&D Director

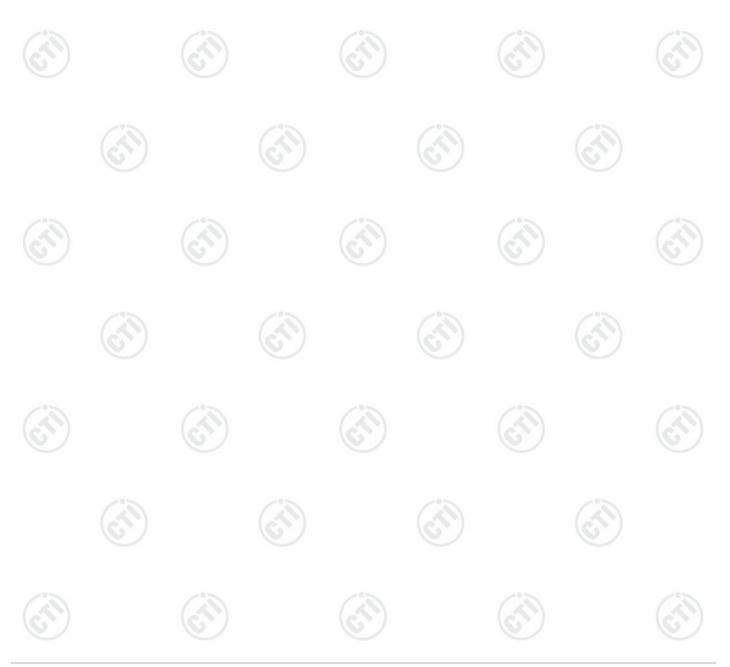
NOT TRANSFERABLE

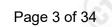
EQUIPMENT AUTHORIZATION is hereby issued to the named GRANTEE, and is VALID ONLY for the equipment identified hereon for use under the Commission's Rules and Regulations listed below.

	FCC IDENTIFIER:	Z4T-BBP23010V1		
	Name of Grantee:	Seeed Technology Co., Ltd.		
	Equipment Class:	Digital Transmission System	1	
	Notes:	BeaglePlay	mille	
Grant Notes	FCC Rule Parts	Frequency <u>Range (MHZ</u>)	Output Frequency <u>Watts</u> <u>Tolerance</u>	Emission <u>Designator</u>
	15C	2402.0 - 2480.0	0.002	
	15C	906.0 - 924.0	0.1153	
provide a separation simultaneously with	n distance of at least 20cm fror any other antenna or transmitt	tput power. Device must be operation n all persons and must not transm ter, except in accordance with FCC	H/L & TO 1/2	

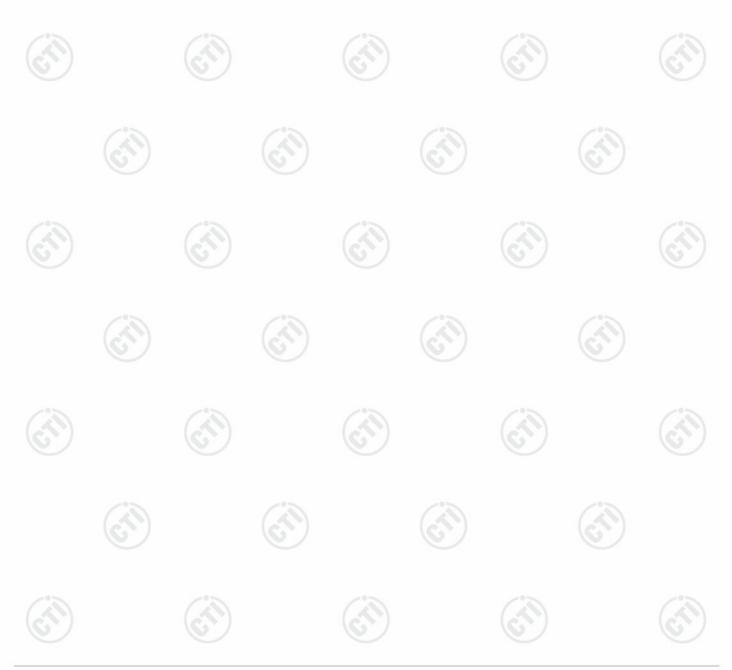
KS A

transmitter product procedures. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.





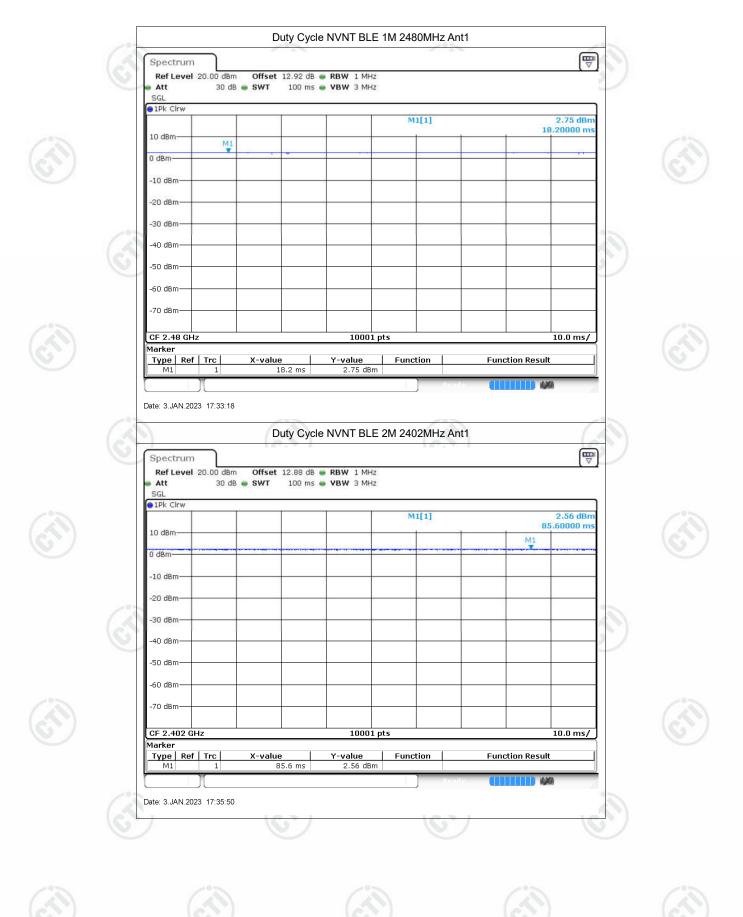
Contents	2
Duty Cycle	3
Maximum Peak Conducted Output Power	
-6dB Bandwidth	
Occupied Channel Bandwidth	
Maximum Power Spectral Density Level	
Band Edge	
Conducted RF Spurious Emission	

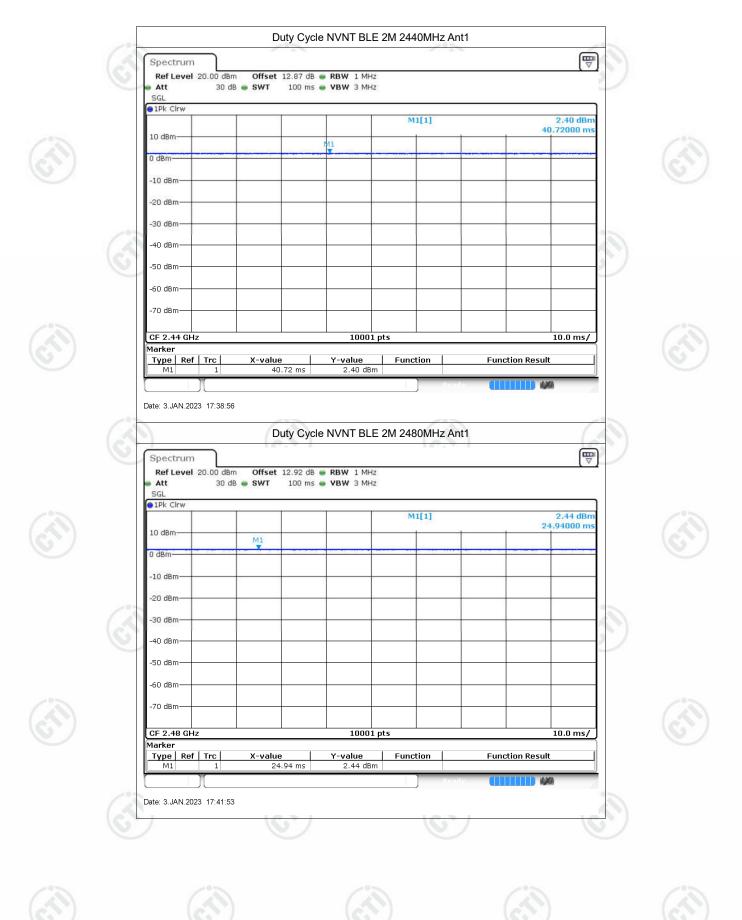


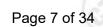
Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	100	0	0
NVNT	BLE 1M	2440	Ant1	100	0	0
NVNT	BLE 1M	2480	Ant1	100	0	0
NVNT	BLE 2M	2402	Ant1	100	0	0
NVNT	BLE 2M	2440	Ant1	100	0	0
NVNT	BLE 2M	2480	Ant1	100	0	0
		()	10		(2)	

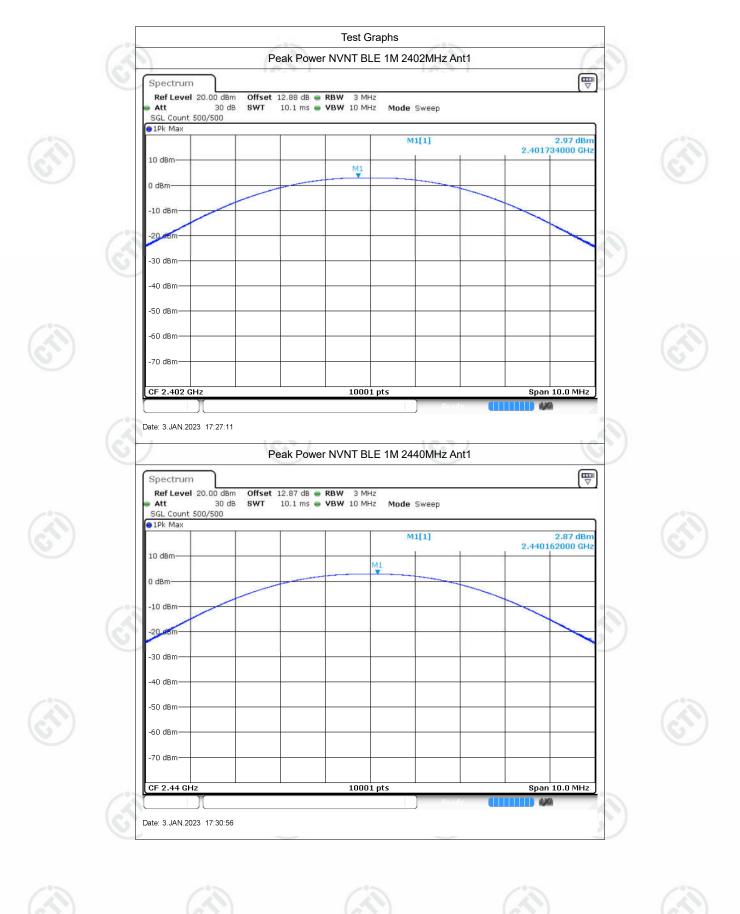
(1)	Duty	Test Graph			1	1	
Spectrum		ycle NVNT BLE 1N			(III)		
Ref Level 20.0		dB 🖷 RBW 1 MHz ms 🖷 VBW 3 MHz			(* ,		
SGL IPk Cirw							
			M1[1]		2.79 dBm 62.74000 ms		
10 dBm			M1				
0 dBm-							
-10 dBm							
-20 dBm							
-30 dBm						1	
-40 dBm						1	
						~	
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GHz		10001 pts			10.0 ms/		
Marker				Function R			
Date: 3.JAN.2023 17	10.7	vcle NVNT BI F 1M	1 2440MHz Ant1		10		
Date: 3.JAN.2023 17	10.7	ycle NVNT BLE 1M	1 2440MHz Ant1				
	Duty C	ycle NVNT BLE 1M dB ● RBW 1 MHz ms ● VBW 3 MHz	1 2440MHz Ant1		(Ţ		
Spectrum Ref Level 20.0	Duty C	dB 🖷 RBW 1 MHz	1 2440MHz Ant1		(
Spectrum Ref Level 20.0 Att SGL	Duty C	dB 🖷 RBW 1 MHz	M1[1]		2.74 dBm		
Spectrum Ref Level 20.0 Att SGL	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz					
Spectrum Ref Level 20.0 • Att SGL • 1Pk Cirw	Duty C	dB 🖷 RBW 1 MHz			2.74 dBm		
Spectrum Ref Level 20.0 • Att SGL • 1Pk Cirw 10 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 • Att SGL • 1Pk Cirw 10 dBm 0 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 • Att SGL • 1Pk Clrw 10 dBm -10 dBm -10 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 • Att SGL • 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 Att SGL IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 • Att SGL • 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 Att SGL • IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 Att SGL 1Pk Cirw 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Duty C	dB 👄 RBW 1 MHz ms 🖷 VBW 3 MHz			2.74 dBm		
Spectrum Ref Level 20.0 Att SGL IPk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Duty C	dB • RBW 1 MHz ms • VBW 3 MHz M1 M1			2.74 dBm 51.42000 ms		
Spectrum Ref Level 20.0 Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.44 GHz Marker	Duty C	dB • RBW 1 MHz ms • VBW 3 MHz	M1[1]		2.74 dBm 51.42000 ms		
Spectrum Ref Level 20.0 Att SGL 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.44 GHz Marker Type Type	Duty C	dB • RBW 1 MHz ms • VBW 3 MHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1		Function Re	2.74 dBm 51.42000 ms		
Spectrum Ref Level 20.0 Att SGL 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.44 GHz Marker Type Type	Duty C	dB • RBW 1 MHz ms • VBW 3 MHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	M1[1]	Function Re	2.74 dBm 51.42000 ms		
Spectrum Ref Level 20.0 Att SGL 1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm CF 2.44 GHz Marker Type Type	Duty C	dB • RBW 1 MHz ms • VBW 3 MHz M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	M1[1]	Function Re	2.74 dBm 51.42000 ms		





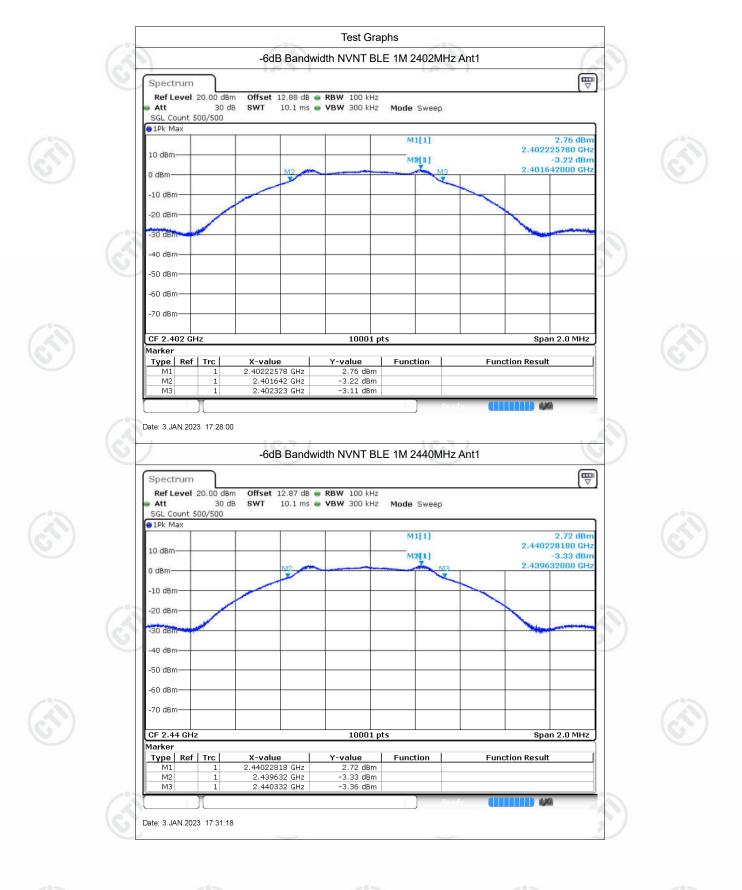


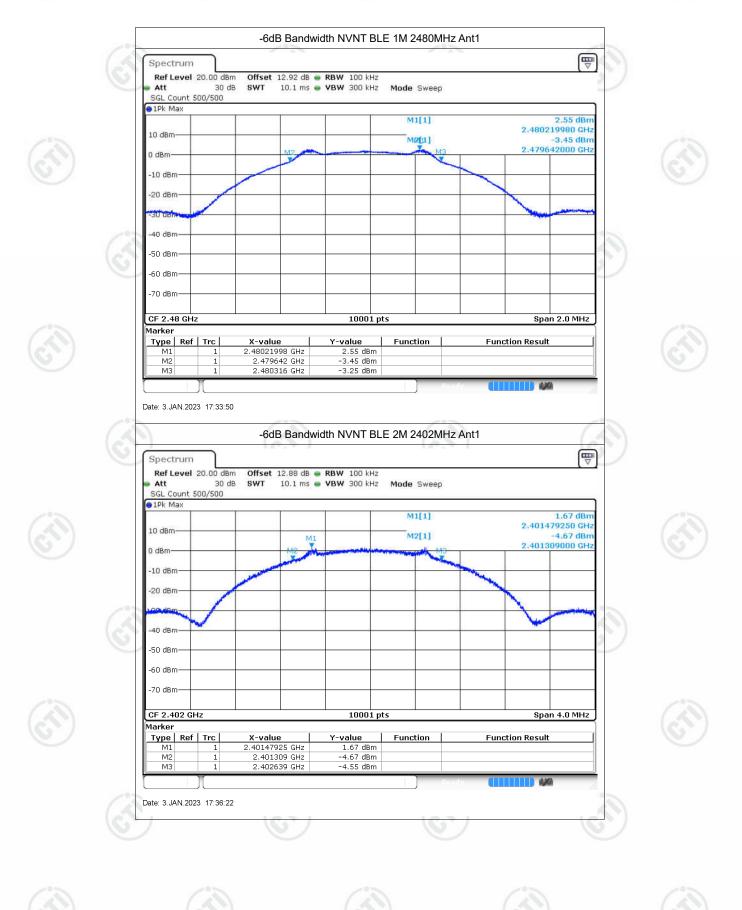
Maximum Peak Conducted Output Power

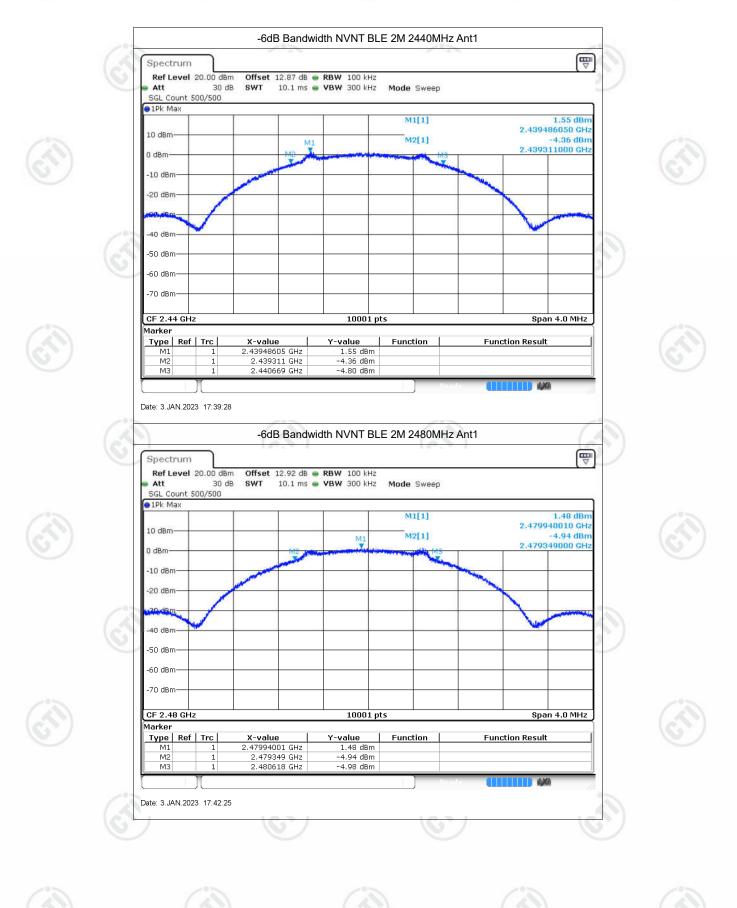

1.00		12023				
Condition	Mode	Mode Frequency		Antenna Conducted Power		Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	2.97	30	Pass
NVNT	BLE 1M	2440	Ant1	2.87	30	Pass
NVNT	BLE 1M	2480	Ant1	2.91	30	Pass
NVNT	BLE 2M	2402	Ant1	2.96	30	Pass
NVNT	BLE 2M	2440	Ant1	2.82	30	Pass
NVNT	BLE 2M	2480	Ant1	2.81	30	Pass



-6dB Bandwidth

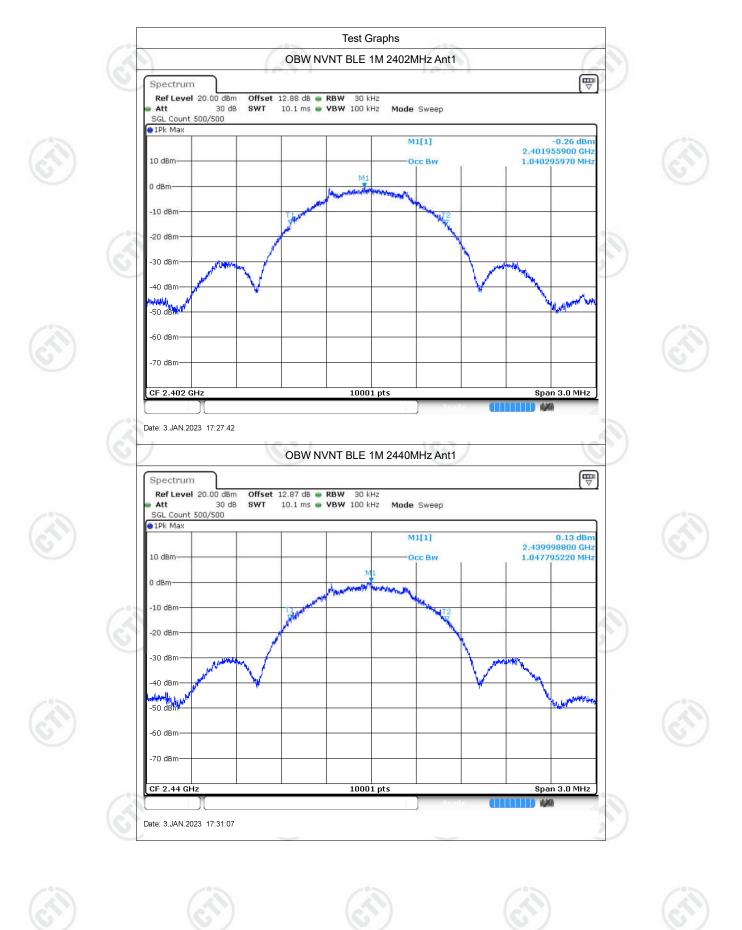

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict	
NVNT	BLE 1M	2402	Ant1	0.681	0.5	Pass	
NVNT	BLE 1M	2440	Ant1	0.7	0.5	Pass	
NVNT	BLE 1M	2480	Ant1	0.674	0.5	Pass	
NVNT	BLE 2M	2402	Ant1	1.33	0.5	Pass	
NVNT	BLE 2M	2440	Ant1	1.358	0.5	Pass	
NVNT	BLE 2M	2480	Ant1	1.268	0.5	Pass	

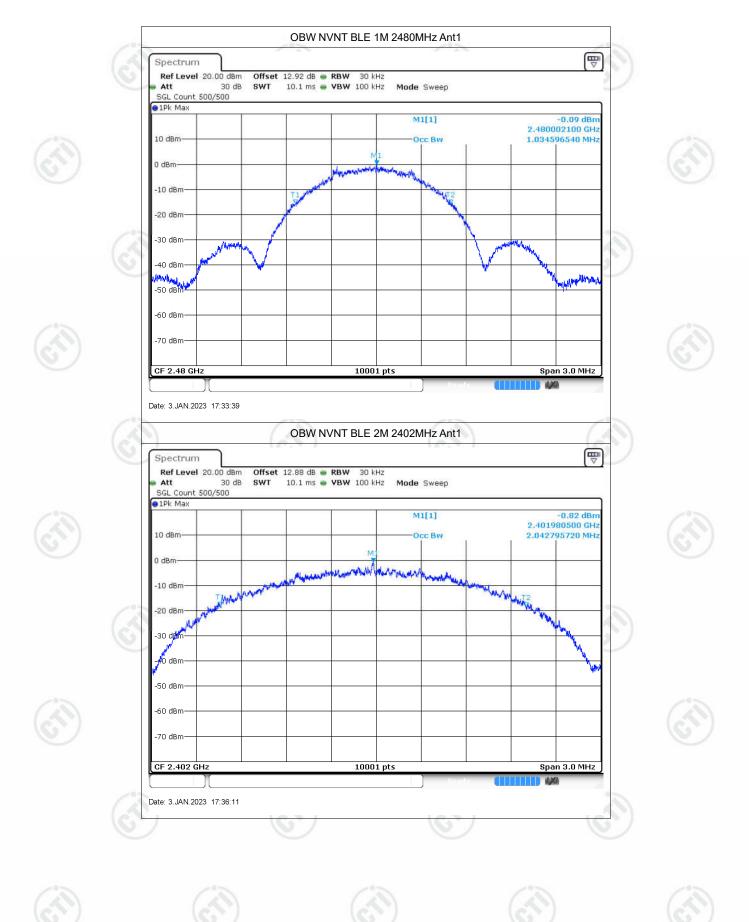


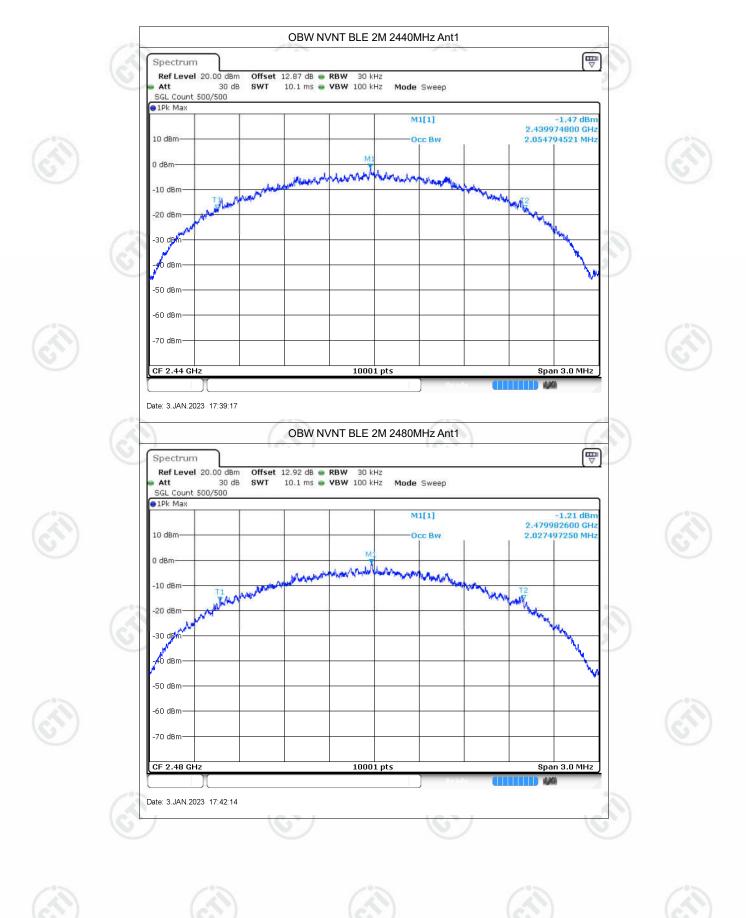


Page 14 of 34

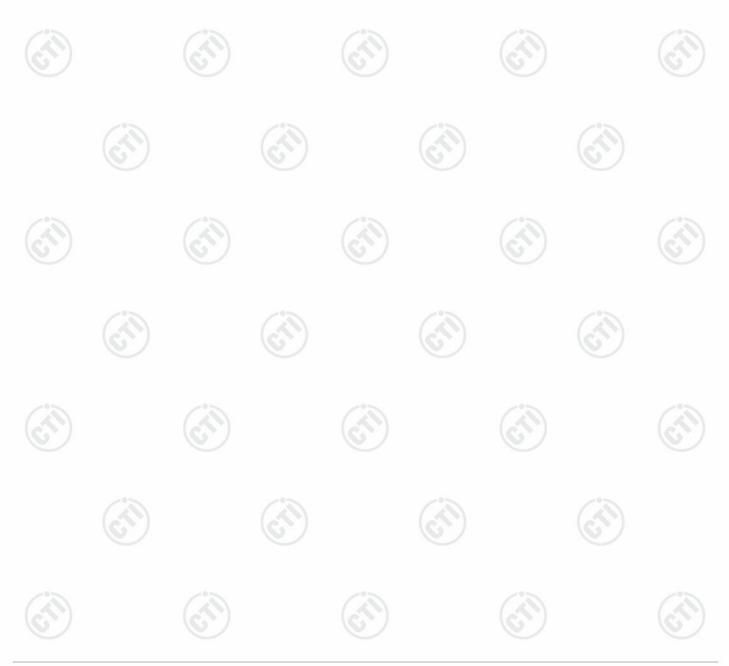
Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.04
NVNT	BLE 1M	2440	Ant1	1.048
NVNT	BLE 1M	2480	Ant1	1.035
NVNT	BLE 2M	2402	Ant1	2.043
NVNT	BLE 2M	2440	Ant1	2.055
NVNT	BLE 2M	2480	Ant1	2.027

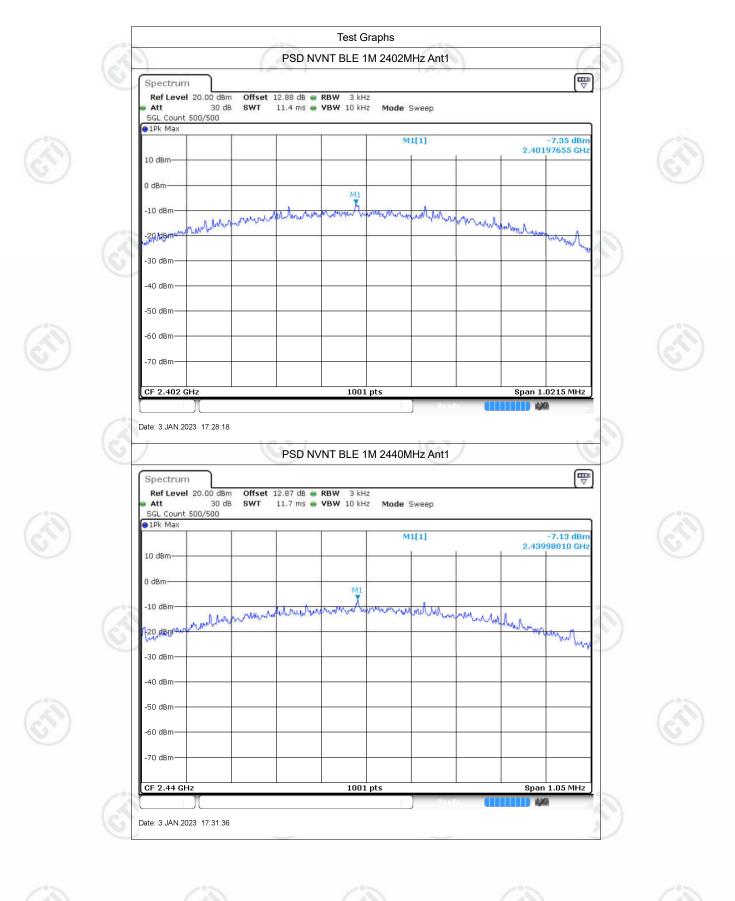


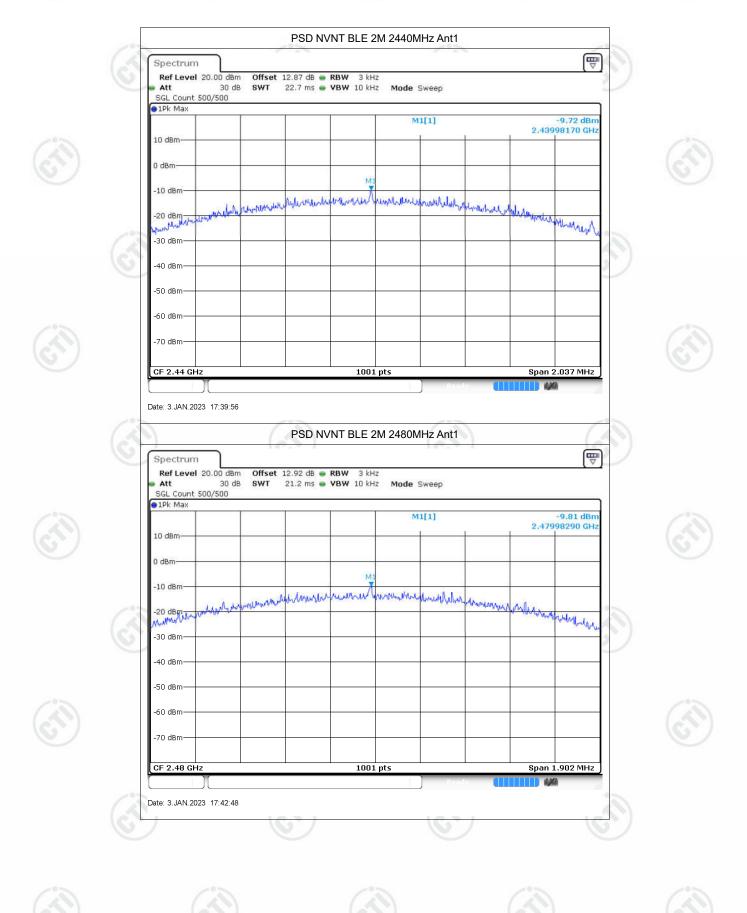


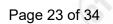
Page 18 of 34

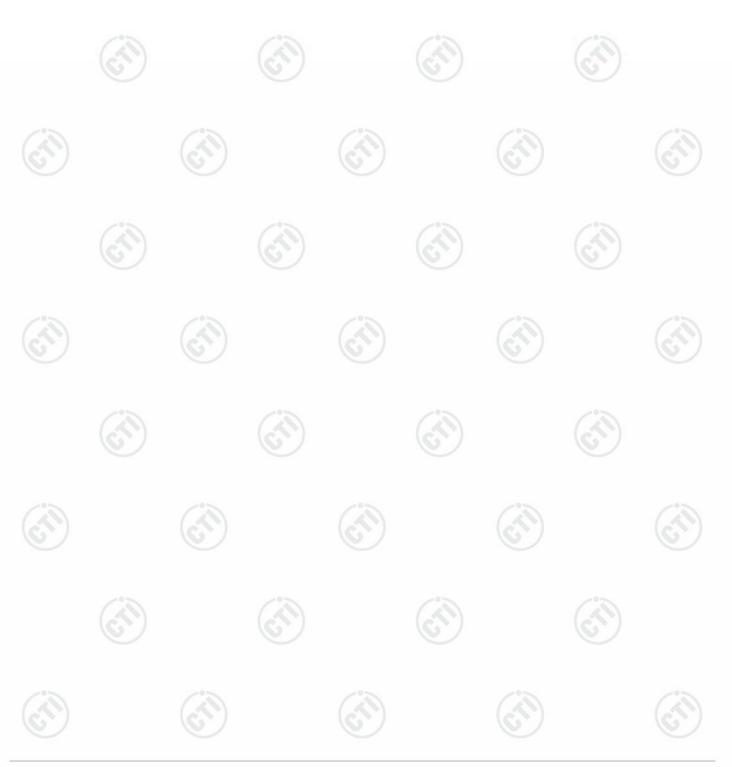


Maximum Power Spectral Density Level

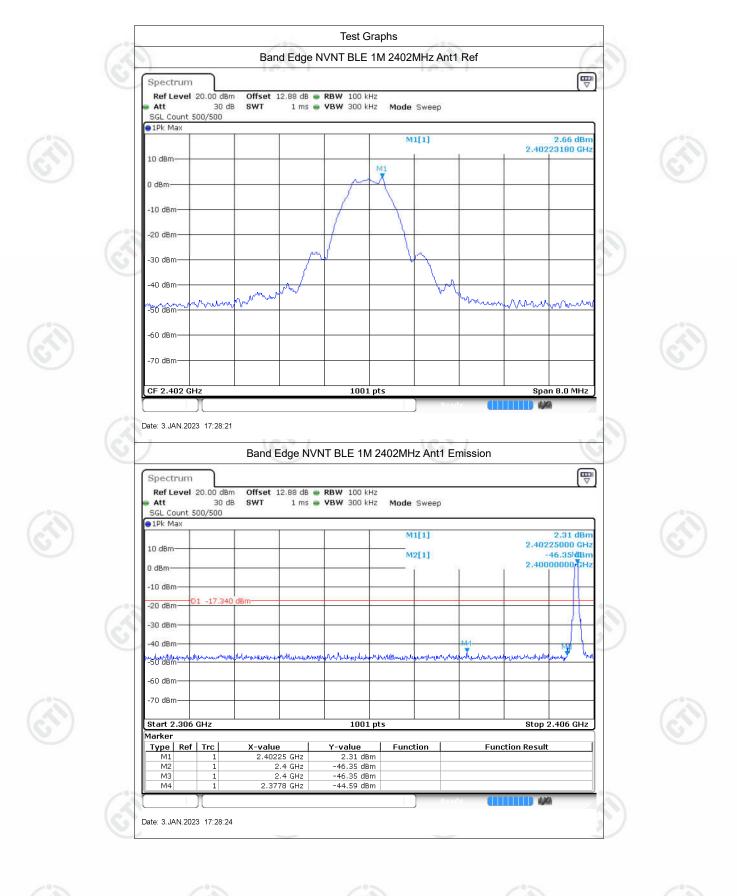

	condition Mode Frequency Antenna								
Mode	Frequency	Antenna	Conducted PSD	Duty Factor	Total PSD	Limit	Verdict		
	(MHz)		(dBm/3kHz)	(dB)	(dBm/3kHz)	(dBm/3kHz)			
BLE 1M	2402	Ant1	-7.35	0	-7.35	8	Pass		
BLE 1M	2440	Ant1	-7.13	0	-7.13	8	Pass		
BLE 1M	2480	Ant1	-6.07	0	-6.07	8	Pass		
BLE 2M	2402	Ant1	-9.64	0	-9.64	8	Pass		
BLE 2M	2440	Ant1	-9.72	0	-9.72	8	Pass		
BLE 2M	2480	Ant1	-9.81	0	-9.81	8	Pass		
	BLE 1M BLE 1M BLE 2M BLE 2M	BLE 1M 2402 BLE 1M 2440 BLE 1M 2480 BLE 2M 2402 BLE 2M 2440	BLE 1M 2402 Ant1 BLE 1M 2440 Ant1 BLE 1M 2480 Ant1 BLE 2M 2402 Ant1 BLE 2M 2402 Ant1 BLE 2M 2440 Ant1 BLE 2M 2440 Ant1	BLE 1M 2402 Ant1 -7.35 BLE 1M 2440 Ant1 -7.13 BLE 1M 2480 Ant1 -6.07 BLE 2M 2402 Ant1 -9.64 BLE 2M 2440 Ant1 -9.72	BLE 1M 2402 Ant1 -7.35 0 BLE 1M 2440 Ant1 -7.13 0 BLE 1M 2480 Ant1 -6.07 0 BLE 2M 2402 Ant1 -9.64 0 BLE 2M 2440 Ant1 -9.72 0 BLE 2M 2480 Ant1 -9.81 0	BLE 1M 2402 Ant1 -7.35 0 -7.35 BLE 1M 2440 Ant1 -7.13 0 -7.13 BLE 1M 2480 Ant1 -6.07 0 -6.07 BLE 2M 2402 Ant1 -9.64 0 -9.64 BLE 2M 2440 Ant1 -9.72 0 -9.72 BLE 2M 2480 Ant1 -9.81 0 -9.81	BLE 1M 2402 Ant1 -7.35 0 -7.35 8 BLE 1M 2440 Ant1 -7.13 0 -7.13 8 BLE 1M 2480 Ant1 -7.13 0 -7.13 8 BLE 1M 2480 Ant1 -6.07 0 -6.07 8 BLE 2M 2402 Ant1 -9.64 0 -9.64 8 BLE 2M 2440 Ant1 -9.72 0 -9.72 8 BLE 2M 2480 Ant1 -9.81 0 -9.81 8		

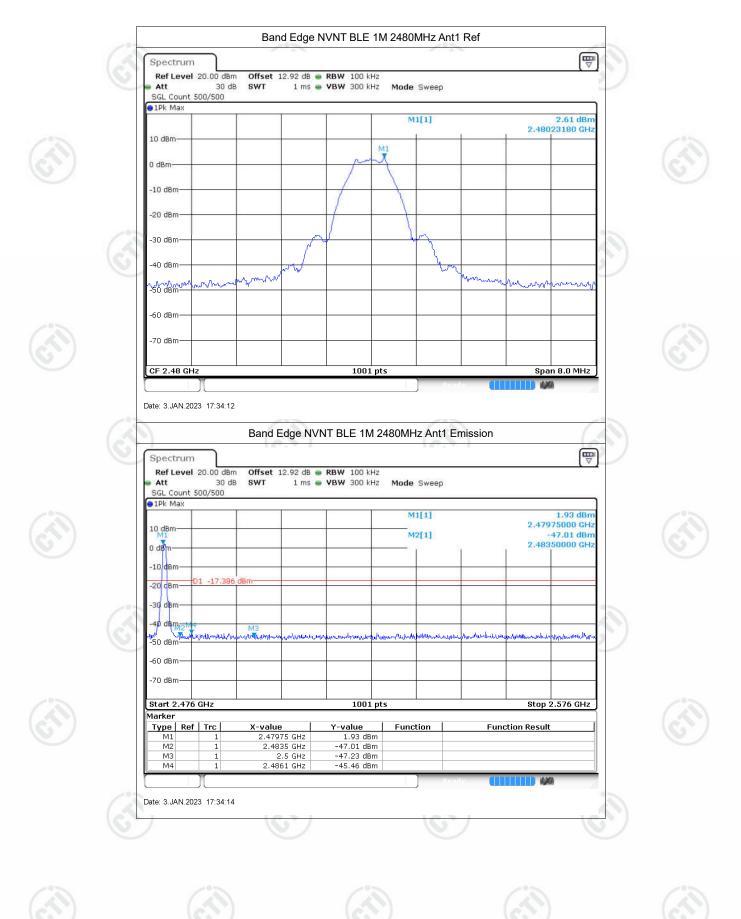


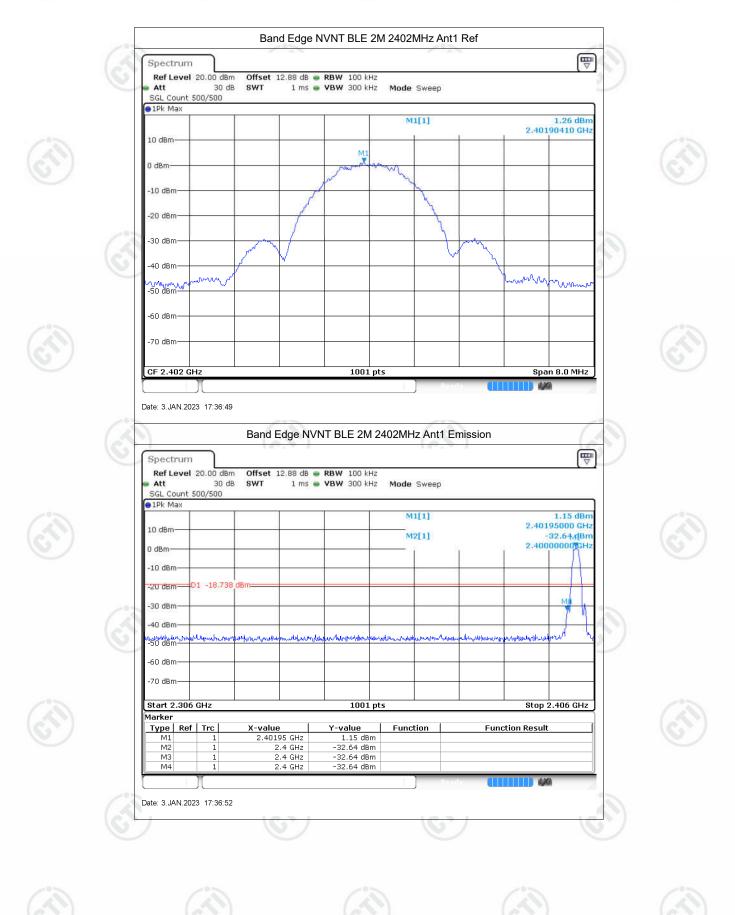


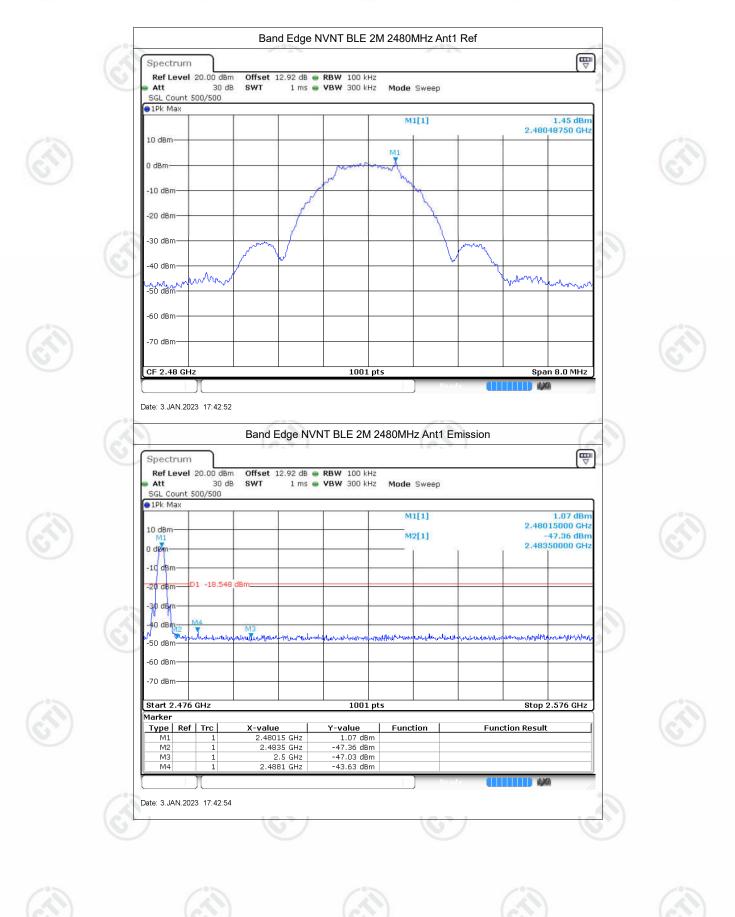


Band Edge

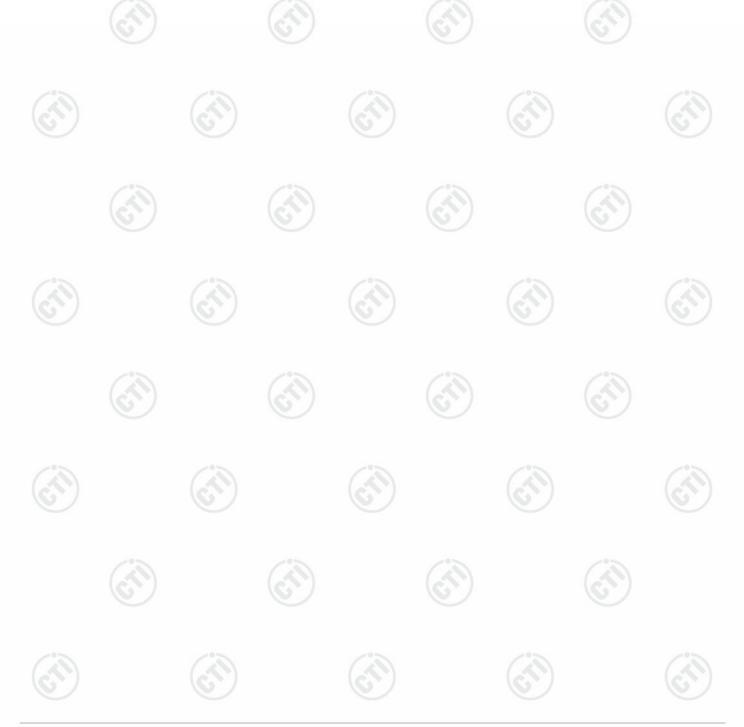

Mode BLE 1M	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	2402	Ant1	-47.25	-20	Pass
BLE 1M	2480	Ant1	-48.07	-20	Pass
BLE 2M	2402	Ant1	-33.89	-20	Pass
BLE 2M	2480	Ant1	-45.08	-20	Pass
3	LE 2M	LE 2M 2402	LE 2M 2402 Ant1	LE 2M 2402 Ant1 -33.89	LE 2M 2402 Ant1 -33.89 -20





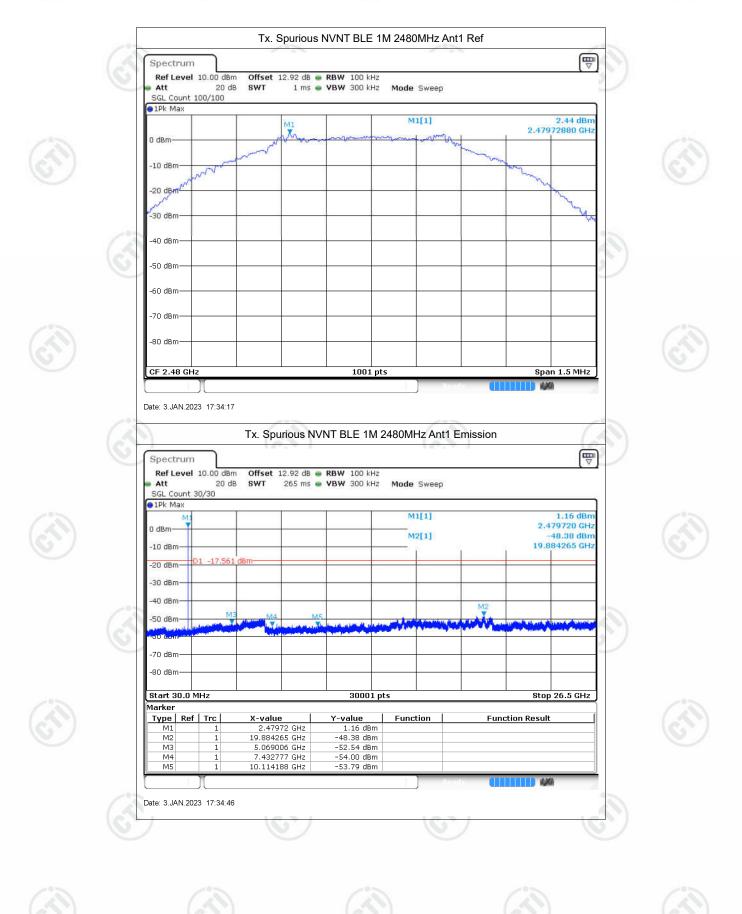


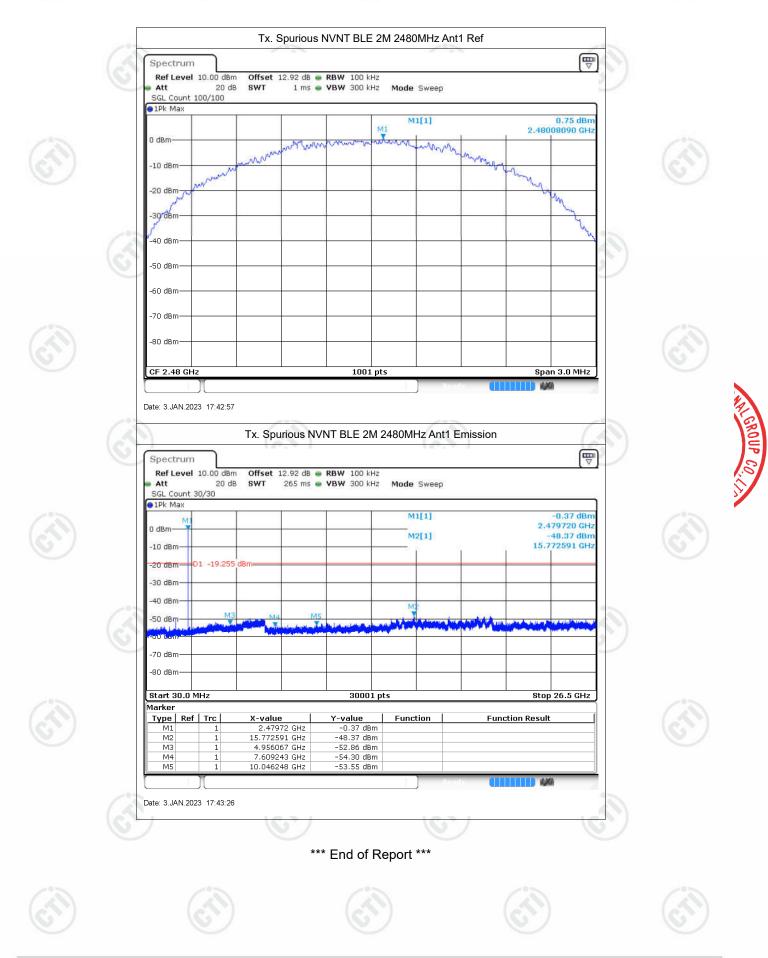
Page 27 of 34

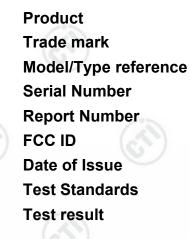


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.04	-20	Pass
NVNT	BLE 1M	2440	Ant1	-50.49	-20	Pass
NVNT	BLE 1M	2480	Ant1	-50.81	-20	Pass
NVNT	BLE 2M	2402	Ant1	-49.81	-20	Pass
NVNT	BLE 2M	2440	Ant1	-47.84	-20	Pass
NVNT	BLE 2M	2480	Ant1	-49.12	-20	Pass







Repor

TEST REPORT

BeaglePlay

: Beagleboard.org

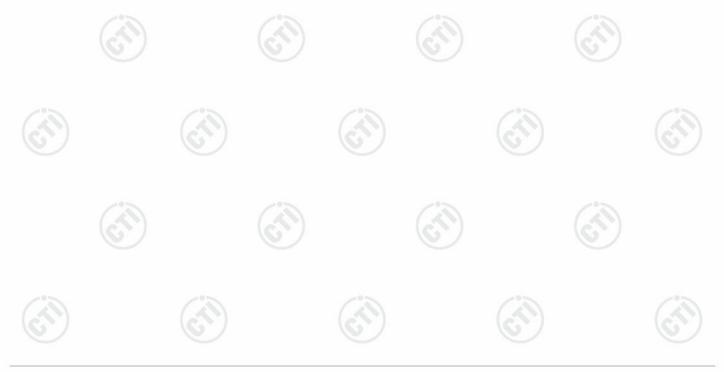
- : BeaglePlay
- : N/A
- : EED32P80002501
- : Z4T-BBP23010V1
- : Feb. 21, 2023
- : 47 CFR Part 15 Subpart C
- Prepared for:

: PASS

Seeed Technology Co., Ltd 9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


mark. cher Compiled by: Reviewed by: Tom Chen Mark Chen RNA7 avon Ma Date: Feb. 21, 2023 proved Aaron Ma Check No.: 5404030123 Report Seal

Page 2 of 48


1 COVER PAGE			
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION			
 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS . 5.6 TEST LOCATION			<u></u>
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREME	ENT DATA	<u> </u>	<u> </u>
 7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT PC 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENS 7.6 BAND EDGE MEASUREMENTS AND C 7.7 RADIATED SPURIOUS EMISSION & F 	OWER SITY CONDUCTED SPURIOUS EN	AISSION	<u>)</u>
8 APPENDIX BLUETOOTH LE			
9 PHOTOGRAPHS OF TEST SETUP			

3 Version

Version No.	Date	Desc	cription	
00	Feb. 21, 2023	0	riginal	
	1		-	12
(a	S) (1	(S) (S)	60)	6

Tost Summary

Page 4 of 48

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions			
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
(2) (2)			

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, Building G3, TCL International E city, Zhongshanyuan Road, Nanshan, Shenzhen, China.
Factory:	Shenzhen Xinxian Technology Co., Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

5.2 General Description of EUT

-		
Product Name:	BeaglePlay	
Model No.:	BeaglePlay	
Trade mark:	Beagleboard.org	
Product Type:	☐ Mobile ☐ Portable ⊠ Fix Location	6
Operation Frequency:	2402MHz~2480MHz	
Modulation Type:	GFSK	
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps	
Number of Channel:	40	
Antenna Type:	PCB Antenna	
Antenna Gain:	1.54dBi	
Power Supply:	DC 5V	(3)
Test Voltage:	DC 5V	6
Sample Received Date:	Jan. 03, 2023	
Sample tested Date:	Jan. 03, 2023 to Feb. 16, 2023	

Page 5 of 48

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	e Settings:			
Software:	Setu	p_SmartRF_Studio_7	5)	(25)
EUT Power Grade:	Defa selec	ult(Power level is built-in s sted)	et parameters and c	annot be changed and
Use test software to transmitting of the I		quency, the middle freque	ncy and the highest f	requency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	СН39	2480
Mode d	GFSK	2Mbps	СНО	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

Page 7 of 48

5.4 Test Environment

	Operating Environment	t:						
260	Radiated Spurious Emissions:							
102	Temperature:	22~25.0 °C		(A)		(2)		
2	Humidity:	50~55 % RH		C		C		
	Atmospheric Pressure:	1010mbar						
	Conducted Emissions:							
	Temperature:	22~25.0 °C						
	Humidity:	50~55 % RH	(\mathcal{O})		6			
	Atmospheric Pressure:	1010mbar						
	RF Conducted:	·						
	Temperature:	22~25.0 °C		1		13		
	Humidity:	50~55 % RH		(c^{γ})		$(c^{(n)})$		
~	Atmospheric Pressure:	1010mbar		J		U		

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

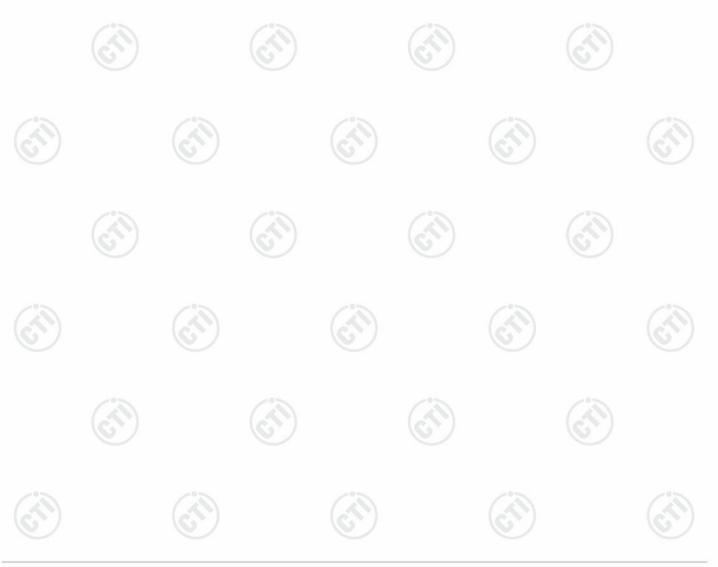
1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



Page 8 of 48

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Cruzieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
D		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

6 Equipment List

Dere	0	~ f	10
Page	9	ΟI	40

	1	RF te	st system		1	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication tset set	R&S	CMW500	107929	07-06-2022	07-05-2023	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	08-01-2022	07-31-2023	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	07-06-2022	07-05-2023	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(A)	- 6	

	Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	/				
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188		- 0		

Page 10 of 48

	3M Semi-and	echoic Chamber (2)	- Radiated distu	urbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date 05/21/2025	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022		
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023	
Multi device Controller	maturo	NCD/070/10711112		/	-	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023	
	G	(67)		G		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 48

		60	(A)	1	a
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-01-2022	02-28-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	02-21-2022	02-20-2023
Fully Anechoic Chamber	TDK	FAC-3	<u> </u>	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		(2
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(<u>)</u>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		(6
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

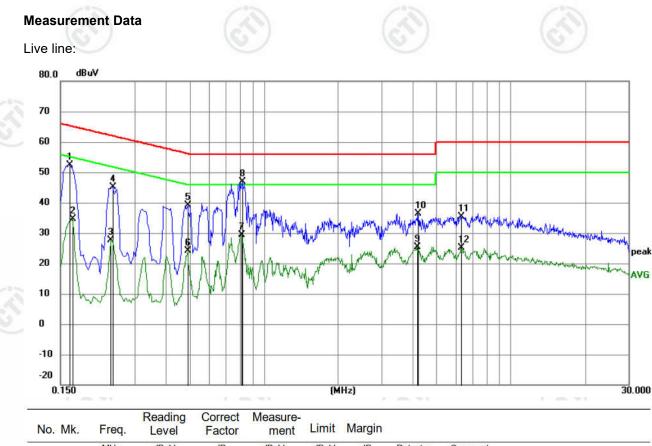
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

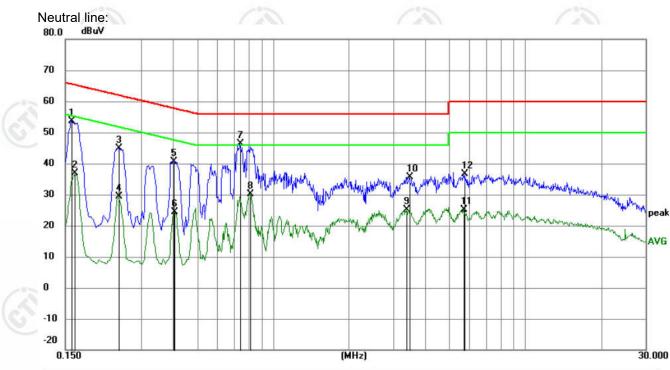
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	\bigcirc
The antenna is PCB antenn	a. The best case gain of the antenna is 1.5/dBi	



Test Requirement:	47 CFR Part 15C Section 15.	.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	
Limit:	(67)	Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith		
Test Setup:		in of the nequency.	
	AC Mains	LISN2 + AC Mains	
Test Procedure:	 The mains terminal distur room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the of 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal g The test was performed w the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bot mounted on top of the gro the closest points of the and associated equipment In order to find the maxim and all of the interface car ANSI C63.10: 2013 on co 	d to AC power source Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-meta And for floor-standing a ground reference plane from the vertical ground re- from the vertical ground re- from the vertical ground re- from the vertical ground re- plane was bonded N 1 was placed 0.8 m nded to a ground re- pound reference plane. LISN 1 and the EUT. at was at least 0.8 m fro- num emission, the relat ables must be changed	e through a LISN 1 (Lin es a $50\Omega/50\mu$ H + 5Ω linea units of the EUT wer ed to the ground reference e unit being measured. A multiple power cables to not exceeded. allic table 0.8m above th arrangement, the EUT wa difference plane. The rear of und reference plane. The rear of und reference plane. The rear of und reference plane for LISN form the boundary of th ference plane for LISN This distance was betwee All other units of the EU om the LISN 2. ive positions of equipmer according to
Test Mode:	All modes were tested, only t report.	- 0 -	- 0 -
	100010		

Page 14 of 48


NO. MK.	Freq.	Level	Factor	ment	Limit	Wargin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1635	42.50	9.87	52.37	65.28	-12.91	QP	
2	0.1680	24.88	9.87	34.75	55.06	-20.31	AVG	
3	0.2400	17.71	9.95	27.66	52.10	-24.44	AVG	
4	0.2445	35.29	9.96	45.25	61.94	-16.69	QP	
5	0.4920	29.07	9.95	39.02	56.13	-17.11	QP	
6	0.4920	14.21	9.95	24.16	46.13	-21.97	AVG	
7	0.8115	19.58	9.85	29.43	46.00	-16.57	AVG	
8 *	0.8205	37.02	9.85	46.87	56.00	-9.13	QP	
9	4.1685	15.67	9.78	25.45	46.00	-20.55	AVG	
10	4.2135	26.65	9.78	36.43	56.00	-19.57	QP	
11	6.2970	25.68	9.79	35.47	60.00	-24.53	QP	
12	6.2970	15.22	9.79	25.01	50.00	-24.99	AVG	

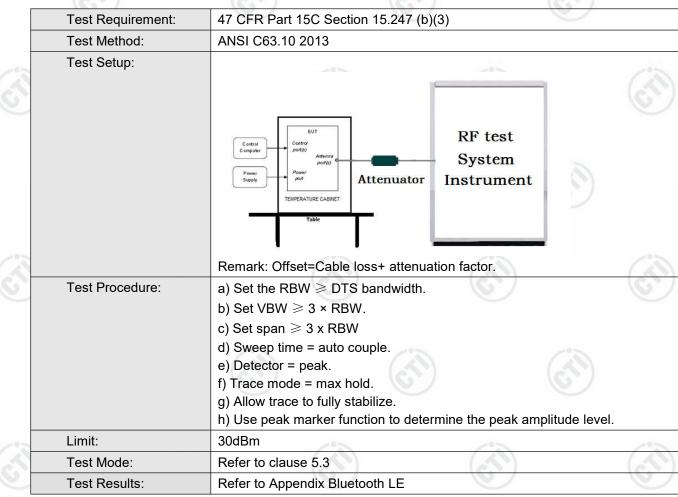
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 48

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	43.83	9.87	53.70	65.52	-11.82	QP	
2	0.1635	26.94	9.87	36.81	55.28	-18.47	AVG	
3	0.2445	35.00	9.96	44.96	61.94	-16.98	QP	
4	0.2445	19.30	9.96	29.26	51.94	-22.68	AVG	
5	0.4020	30.70	9.97	40.67	57.81	-17.14	QP	
6	0.4065	14.46	9.97	24.43	47.72	-23.29	AVG	
7 *	0.7394	36.44	9.87	46.31	56.00	-9.69	QP	
8	0.8114	20.40	9.85	30.25	46.00	-15.75	AVG	
9	3.3945	15.46	9.79	25.25	46.00	-20.75	AVG	
10	3.4755	25.82	9.78	35.60	56.00	-20.40	QP	
11	5.6850	15.38	9.78	25.16	50.00	-24.84	AVG	
12	5.7614	26.96	9.78	36.74	60.00	-23.26	QP	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 48

7.3 Maximum Conducted Output Power

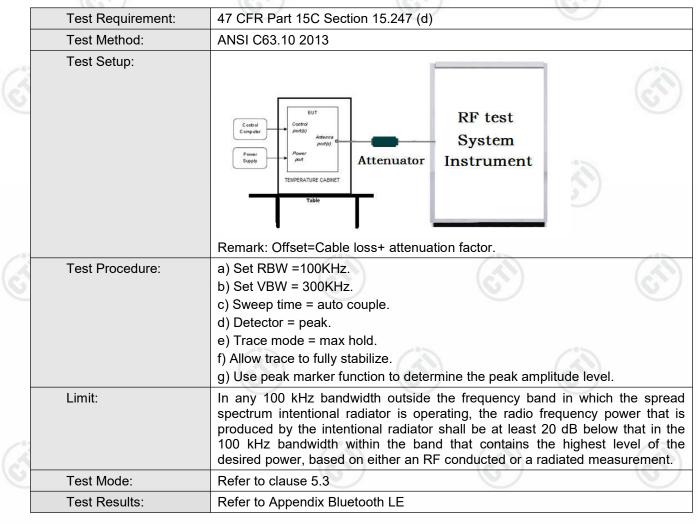
7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Double Supply Fourt Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 48

7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
E	Test Setup:	
		Control Computer Control Computer Power Supply TemPERATURE CABNET Table
\mathcal{O}		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize.
E		i) Use the peak marker function to determine the maximum amplitude level within the RBW.j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix Bluetooth LE
	6	

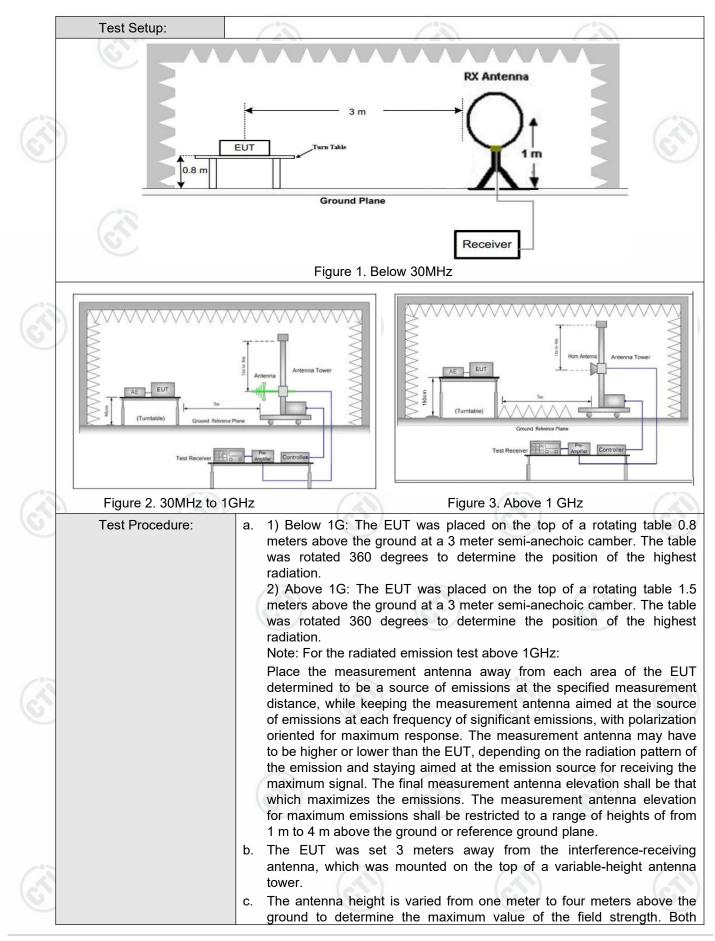


Page 19 of 48

7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 48

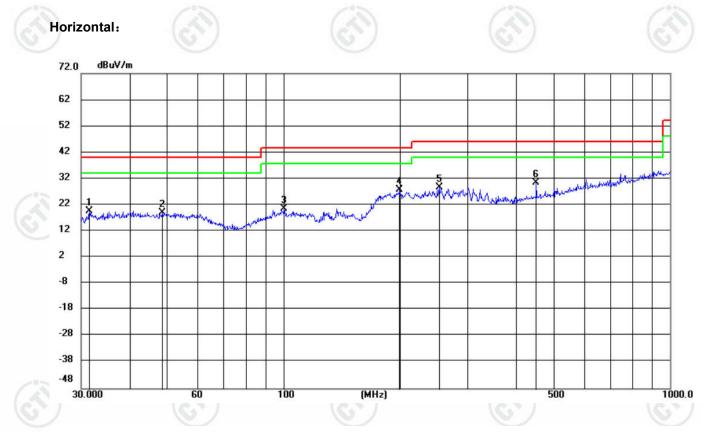
7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	ion 15	209 and 15	205	(V)		
	Test Method:	ANSI C63.10 2013		.200 and 10	.200			
	Test Site:		Measurement Distance: 3m (Semi-Anechoic Chamber)					
	Receiver Setup:	Frequency		Detector	RBW	,	Remark	
9		0.009MHz-0.090MH	łz	Peak	10kHz	30kHz	Peak	
		0.009MHz-0.090MH	łz	Average	10kHz	z 30kHz	Average	
		0.090MHz-0.110MH	łz	Quasi-peak	10kHz	2 30kHz	Quasi-peak	
		0.110MHz-0.490MH	łz	Peak	10kHz	z 30kHz	Peak	
		0.110MHz-0.490MH	łz	Average	10kHz	z 30kHz	Average	
		0.490MHz -30MHz	2	Quasi-peak	10kHz	z 30kHz	Quasi-peak	
		30MHz-1GHz		Quasi-peak 100		z 300kHz	Quasi-peak	
13				Peak 1MH		3MHz	Peak	
6		Above 1GHz	S) [Peak	1MHz	10kHz	Average	
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m	
		0.009MHz-0.490MHz	240	00/F(kHz)	-	- /	300	
		0.490MHz-1.705MHz	240	00/F(kHz)	-	- (8)	30	
		1.705MHz-30MHz		30	-	<u>e</u>	30	
		30MHz-88MHz		100	40.0	Quasi-peak	3	
- 10-		88MHz-216MHz		150	43.5	Quasi-peak	3	
		216MHz-960MHz	6	200	46.0	Quasi-peak	3	
U		960MHz-1GHz		500	54.0	Quasi-peak	3	
		Above 1GHz		500	54.0	Average	3	
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	s 20dB equipm	above the nent under t	maximum est. This p	permitted ave	erage emission	

CTI华测检测

Report No. : EED32P80002501

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete
	h. The radiation measurements are performed in X, Y, Z axis positionin for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle chann (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10c margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode.
	 d. For each suspected emission, the EUT was arranged to its worst ca and then the antenna was tuned to heights from 1 meter to 4 meters (the the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make th measurement.

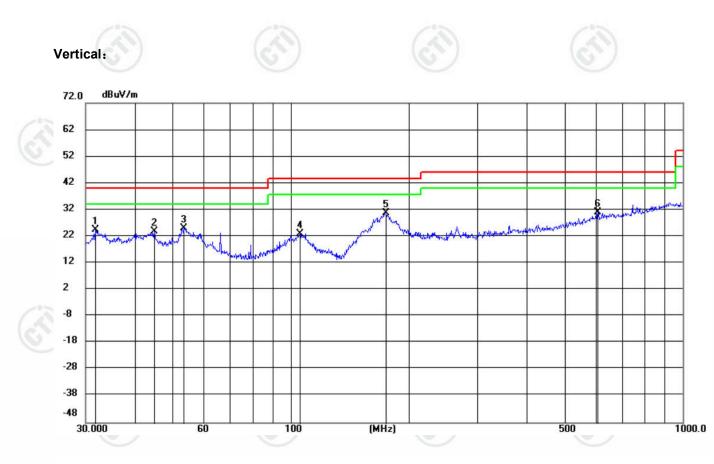


Radiated Spurious Emission below 1GHz:

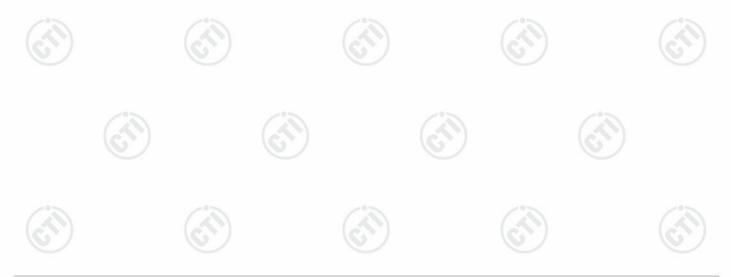
For BLE Single transmission:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	31.5095	6.71	13.03	19.74	40.00	-20.26	QP	200	183	
2	48.6719	4.81	14.30	19.11	40.00	-20.89	QP	200	4	
3	100.5806	6.44	13.97	20.41	43.50	-23.09	QP	200	353	
4	199.9855	14.10	13.78	27.88	43.50	-15.62	QP	200	4	
5	252.9481	12.90	15.61	28.51	46.00	-17.49	QP	100	131	
6 *	451.1350	9.93	20.49	30.42	46.00	-15.58	QP	200	4	

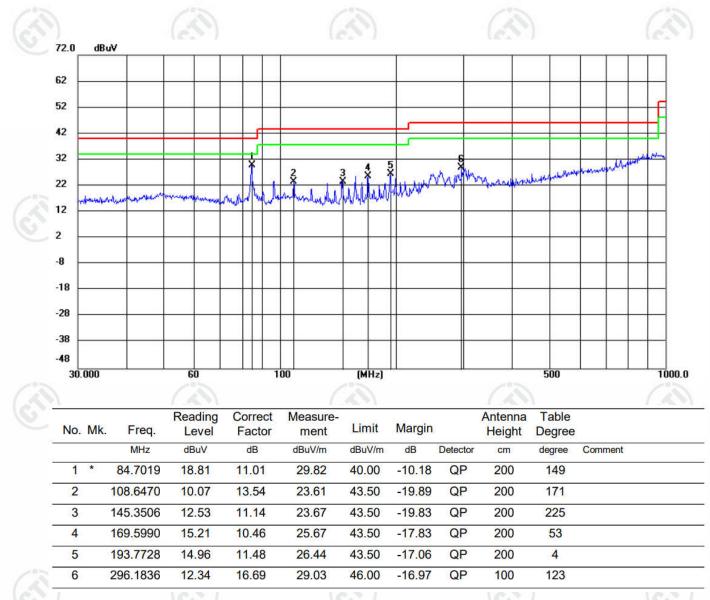


Page 23 of 48



Page 24 of 48

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.7313	11.24	13.07	24.31	40.00	-15.69	QP	100	11	
2		44.9006	9.58	14.40	23.98	40.00	-16.02	QP	100	348	
3		53.5052	10.99	14.02	25.01	40.00	-14.99	QP	100	214	
4		105.6415	9.81	13.24	23.05	43.50	-20.45	QP	100	82	
5	*	174.4241	19.35	11.28	30.63	43.50	-12.87	QP	100	318	
6		607.7867	7.04	24.08	31.12	46.00	-14.88	QP	100	4	

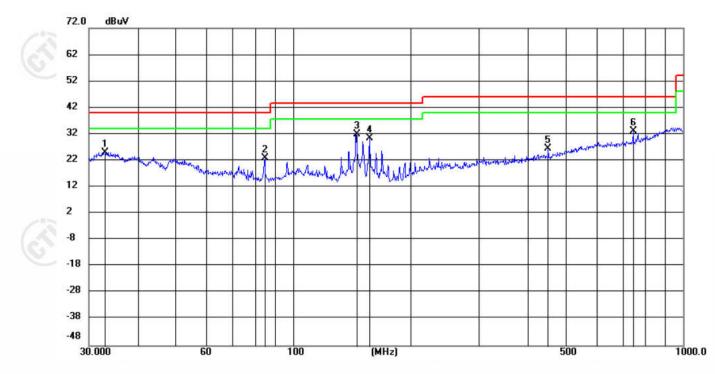

Page 25 of 48

Report No. : EED32P80002501

For BLE + Wi-Fi simultaneous transmission:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of GFSK 1M and lowest channel of 2.4GHz 802.11n MIMO simultaneous transmission was recorded in the report.

Horizontal:



Page 26 of 48

I	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1		32.8637	12.26	12.82	25.08	40.00	-14.92	QP	100	198	
	2		84.7019	11.84	11.01	22.85	40.00	-17.15	QP	200	215	
	3	*	145.3506	20.86	11.14	32.00	43.50	-11.50	QP	100	144	
	4	ļ	157.0074	19.59	10.84	30.43	43.50	-13.07	QP	100	198	
	5	1	451.1350	6.97	19.54	26.51	46.00	-19.49	QP	100	102	
	6		744.8661	8.94	24.10	33.04	46.00	-12.96	QP	100	356	

Radiated Spurious Emission above 1GHz:

For BLE Single transmission:

During the test, the Radiates Emission from above 1GHz was performed in all modes, only the worst case of GFSK 1M was recorded in the report.

-	Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1280.228	1.01	40.23	41.24	74.00	32.76	Pass	н	PK
	2	2062.9063	4.76	38.84	43.60	74.00	30.40	Pass	Н	PK
	3	4803.1202	-16.23	62.33	46.10	74.00	27.90	Pass	Н	PK
	4	7207.2805	-11.83	54.21	42.38	74.00	31.62	Pass	Н	PK
3	5	11254.5503	-6.54	52.13	45.59	74.00	28.41	Pass	Н	PK
	6	16302.8869	1.66	50.21	51.87	74.00	22.13	Pass	Н	PK
-	7	1293.8294	1.04	39.69	40.73	74.00	33.27	Pass	V	PK
	8	1884.2884	3.92	38.59	42.51	74.00	31.49	Pass	V	PK
	9	4803.1202	-16.23	61.85	45.62	74.00	28.38	Pass	V	PK
	10	5760.184	-13.71	56.69	42.98	74.00	31.02	Pass	V	PK
	11	7205.2804	-11.83	55.74	43.91	74.00	30.09	Pass	V	PK
	12	11799.5866	-6.11	51.69	45.58	74.00	28.42	Pass	V	PK

	Mode	:		BL	E GFSK Trar	nsmitting		Channel:		2440 MHz	<u>.</u>
3	NO	Freq. [MHz]	Factor [dB]	r	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1362.6363	1.26		40.09	41.35	74.00	32.65	Pass	Н	PK
Ī	2	1998.8999	4.54		39.81	44.35	74.00	29.65	Pass	Н	PK
Ī	3	4880.1253	-16.21		57.72	41.51	74.00	32.49	Pass	Н	PK
Ī	4	7319.288	-11.65	5	55.75	44.10	74.00	29.90	Pass	Н	PK
Ī	5	11239.5493	-6.51		52.52	46.01	74.00	27.99	Pass	Н	PK
	6	15358.8239	0.05		48.58	48.63	74.00	25.37	Pass	Н	PK
0.5	7	1397.0397	1.38		39.53	40.91	74.00	33.09	Pass	V	PK
	8	1794.6795	3.26		40.97	44.23	74.00	29.77	Pass	V	PK
2	9	3396.0264	-20.18	3	59.62	39.44	74.00	34.56	Pass	V	PK
	10	5760.184	-13.71		56.74	43.03	74.00	30.97	Pass	V	PK
Ī	11	9211.4141	-7.89		51.77	43.88	74.00	30.12	Pass	V	PK
Ī	12	13714.7143	-1.75		51.94	50.19	74.00	23.81	Pass	V	PK
					12	-	1.4	1	1		

Page 28 of 48

_		200		1000		10%			0	
I	Mode	:	1	BLE GFSK Tra	nsmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1330.6331	1.16	39.95	41.11	74.00	32.89	Pass	Н	PK
	2	1777.0777	3.20	38.85	42.05	74.00	31.95	Pass	Н	PK
	3	3780.052	-19.38	55.84	36.46	74.00	37.54	Pass	Н	PK
	4	6193.2129	-13.20	52.85	39.65	74.00	34.35	Pass	Н	PK
	5	10191.4794	-7.12	49.68	42.56	74.00	31.44	Pass	Н	PK
	6	14400.7601	1.21	48.30	49.51	74.00	24.49	Pass	Н	PK
	7	1257.6258	0.95	39.98	40.93	74.00	33.07	Pass	V	PK
	8	1934.2934	4.21	38.47	42.68	74.00	31.32	Pass	V	PK
	9	3839.0559	-19.19	54.65	35.46	74.00	38.54	Pass	V	PK
	10	5760.184	-13.71	57.34	43.63	74.00	30.37	Pass	V	PK
1	11	8277.3518	-10.97	51.65	40.68	74.00	33.32	Pass	V	PK
6	12	11849.59	-5.97	52.01	46.04	74.00	27.96	Pass	V	PK
1								(





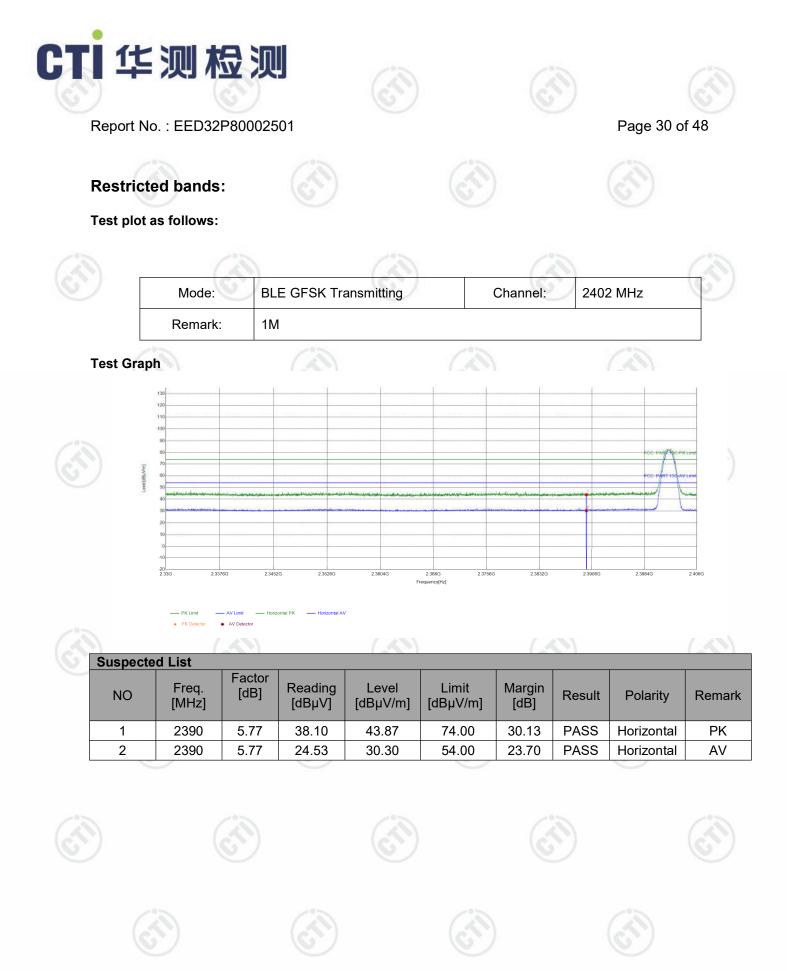
Page 29 of 48

Report No. : EED32P80002501

For BLE + Wi-Fi simultaneous transmission:

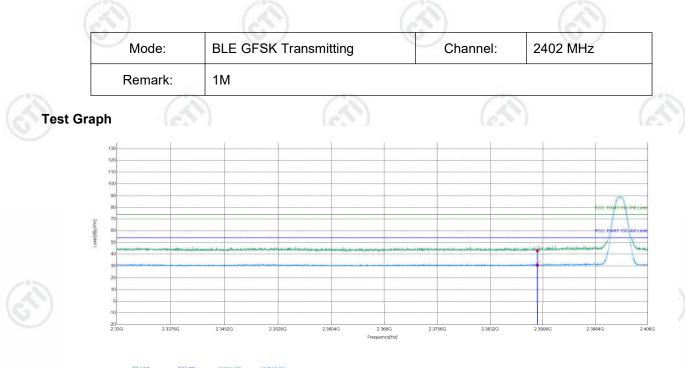
During the test, the Radiates Emission from above 1GHz was performed in all modes, only the worst case lowest channel of GFSK 1M and lowest channel of 2.4GHz 802.11n MIMO simultaneous transmission was recorded in the report.

2	Mode	:		BL	.E GFSK + 8()2.11n mimo)	Channel:		2402 MHz MHz	+ 2412
	NO	Freq. [MHz]	Factor [dB]		Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1255.2255	0.95		40.20	41.15	74.00	32.85	Pass	Н	PK
	2	1867.8868	3.79		38.94	42.73	74.00	31.27	Pass	Н	PK
	3	3379.0253	-20.12		57.47	37.35	74.00	36.65	Pass	Н	PK
	4	4824.1216	-16.22		71.22	55.00	74.00	19.00	Pass	Н	PK
	5	7205.2804	-11.83		54.71	42.88	74.00	31.12	Pass	Н	PK
107	6	11831.5888	-6.02		49.70	43.68	74.00	30.32	Pass	Н	PK
~	7	4825.1217	-16.22		66.21	49.99	54.00	4.01	Pass	Н	AV
6	8	1399.84	1.39		39.74	41.13	74.00	32.87	Pass	V	PK
	9	1847.0847	3.63		38.52	42.15	74.00	31.85	Pass	V	PK
	10	4824.1216	-16.22		68.57	52.35	74.00	21.65	Pass	V	PK
	11	7206.2804	-11.83		53.61	41.78	74.00	32.22	Pass	V	PK
	12	11261.5508	-6.55		50.04	43.49	74.00	30.51	Pass	V	PK
	13	16317.8879	1.33		47.56	48.89	74.00	25.11	Pass	V	PK


Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

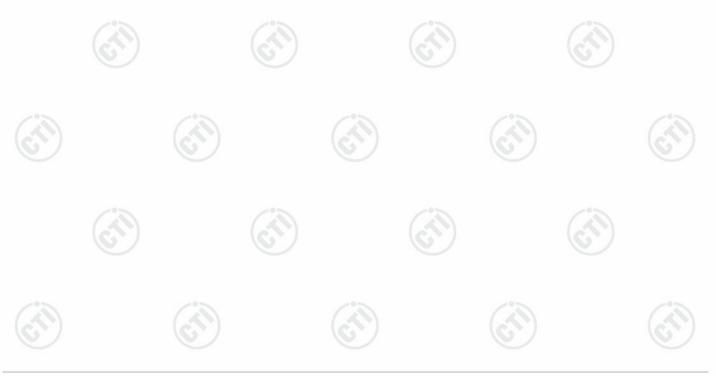
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Page 31 of 48

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.23	43.00	74.00	31.00	PASS	Vertical	PK
U	2	2390	5.77	24.98	30.75	54.00	23.25	PASS	Vertical	AV

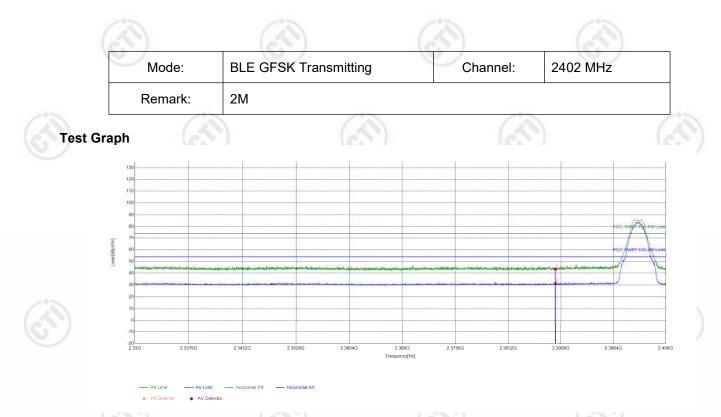


Page 32 of 48

Suspected List Factor Freq. Reading Level Limit Margin [dB] NO Result Polarity Remark [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] 6.57 74.00 28.01 PASS ΡK 2483.5 39.42 45.99 Horizontal 1 2 6.57 54.00 22.93 PASS AV 2483.5 24.50 31.07 Horizontal

Page 33 of 48

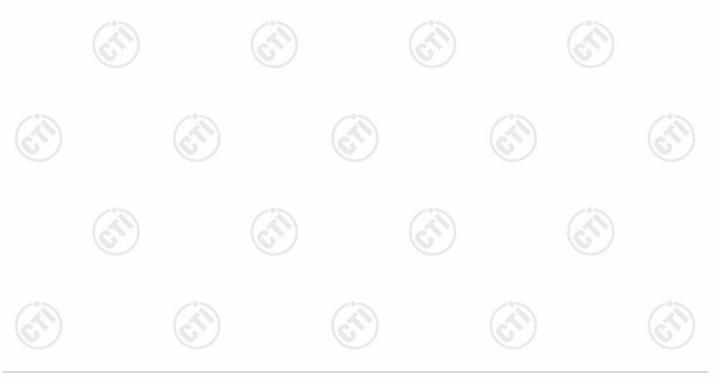
Remark


Suspected List NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dBμV/m] Result Polarity

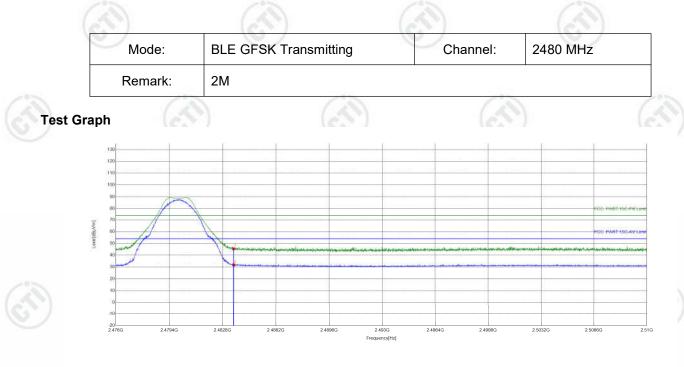
100		[[IVI⊓∠]		[ασμν]	[ασμν/m]	[ασμν/m]	[авј		-	
	1	2483.5	6.57	37.97	44.54	74.00	29.46	PASS	Vertical	PK
6	2	2483.5	6.57	24.44	31.01	54.00	22.99	PASS	Vertical	AV

Page 34 of 48

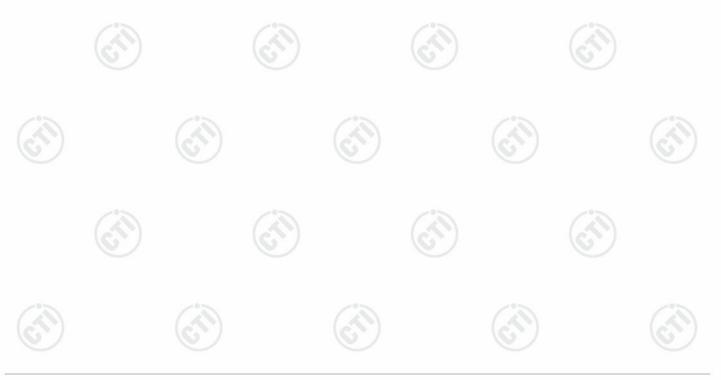
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390	5.77	37.77	43.54	74.00	30.46	PASS	Horizontal	PK
(U)	2	2390	5.77	25.41	31.18	54.00	22.82	PASS	Horizontal	AV



Page 35 of 48


Climit AV Limit Vertical PK –

	101	3 J.		(C.)		16.7	l		C ~ 1	
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2390	5.77	38.58	44.35	74.00	29.65	PASS	Vertical	PK
(U)	2	2390	5.77	25.34	31.11	54.00	22.89	PASS	Vertical	AV



Page 36 of 48

PK Limit AV Limit Horizontal PK Horizontal AV AV Detector

	Suspecte	d List		1645.7		10.01			1887 /	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5	6.57	38.91	45.48	74.00	28.52	PASS	Horizontal	PK
(C)	2	2483.5	6.57	25.20	31.77	54.00	22.23	PASS	Horizontal	AV

Page 37 of 48

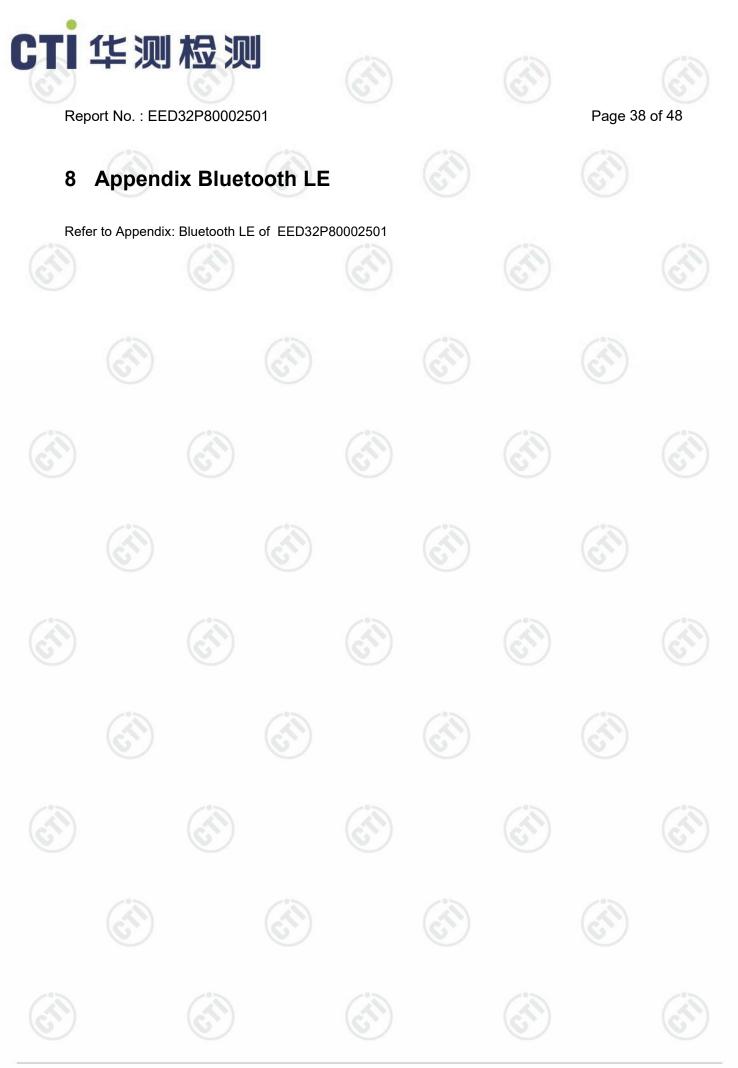
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5	6.57	39.51	46.08	74.00	27.92	PASS	Vertical	PK
C	2	2483.5	6.57	25.14	31.71	54.00	22.29	PASS	Vertical	AV

Note:

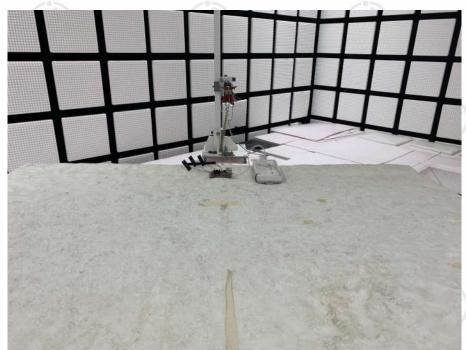
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor



Hotline:400-6788-333


Page 39 of 48

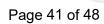
9 PHOTOGRAPHS OF TEST SETUP

Test model No.: BeaglePlay

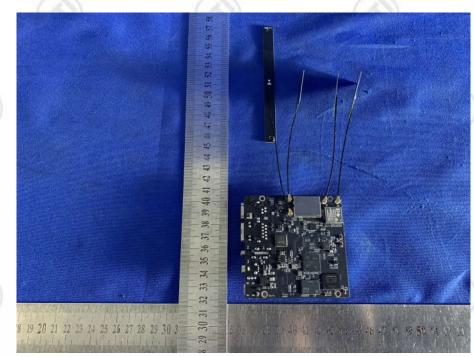
Radiated spurious emission Test Setup-1(Below 1GHz)

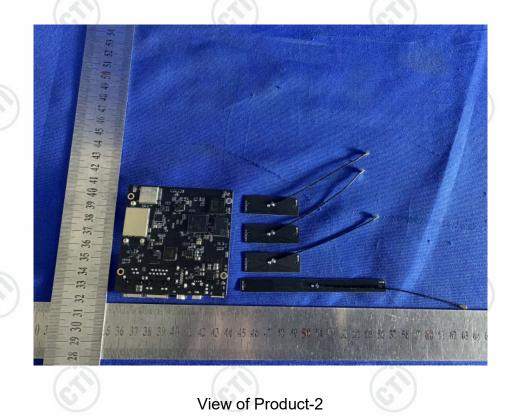
Radiated spurious emission Test Setup-2(Above 1GHz)

Page 40 of 48


Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

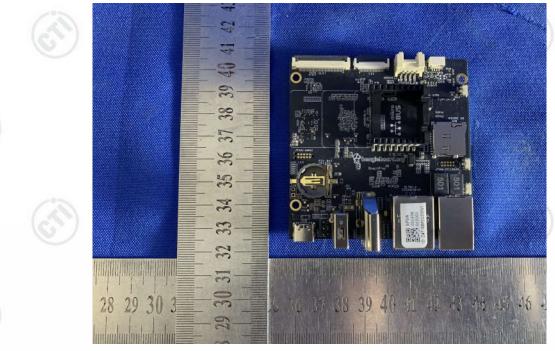
Conducted Emissions Test Setup

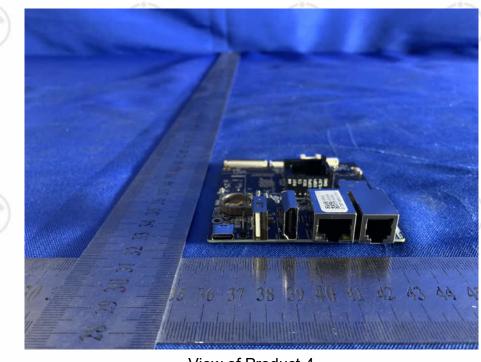




10 PHOTOGRAPHS OF EUT Constructional Details

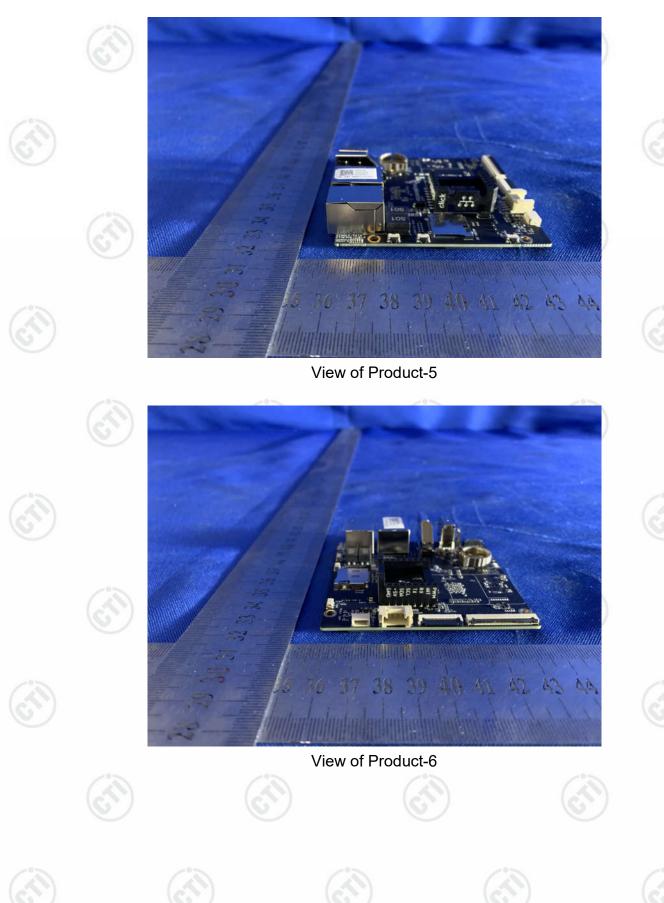
Test model No.: BeaglePlay

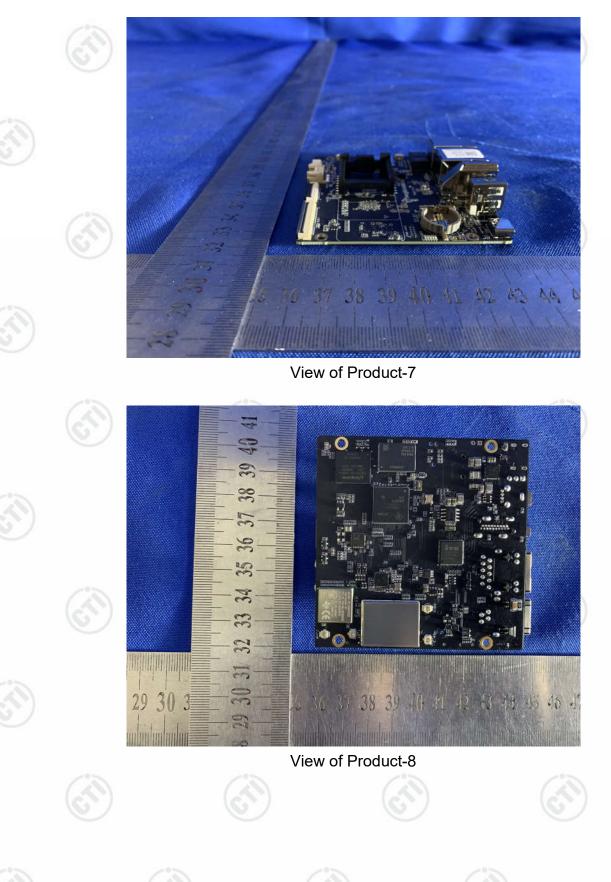


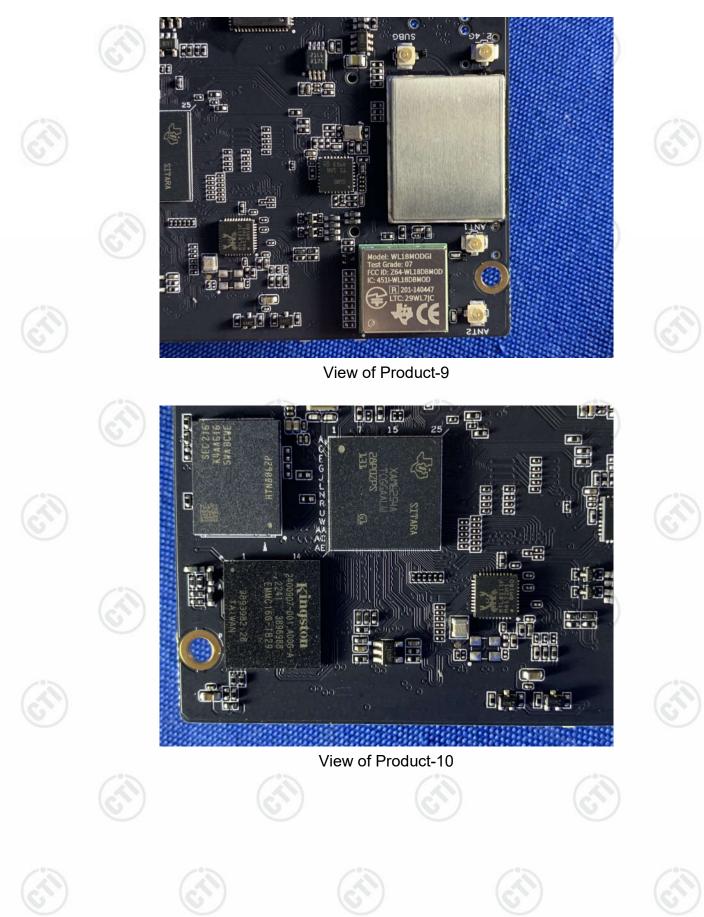


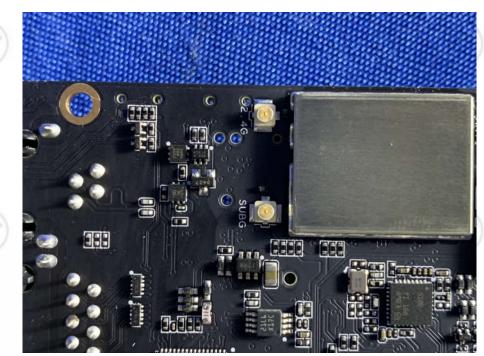
View of Product-3

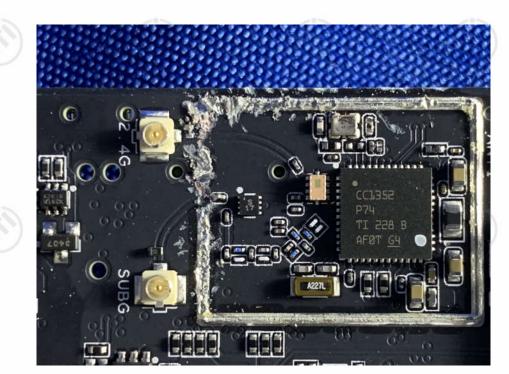
View of Product-4





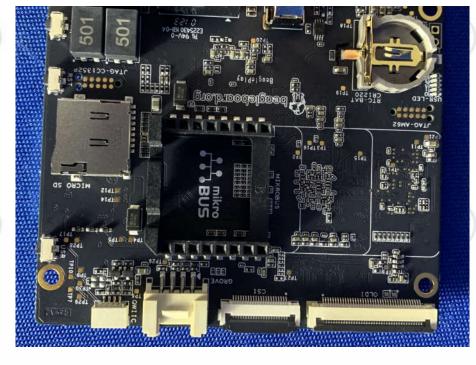


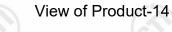

Page 45 of 48



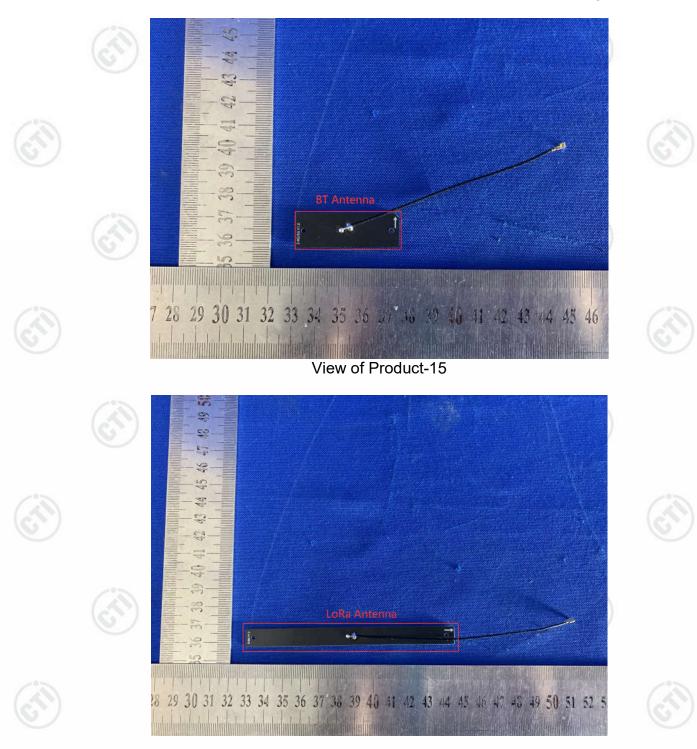
View of Product-11

View of Product-12





View of Product-13



View of Product-16

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated