Sitara 機械学習 SITARA-MACHINE-LEARNING (供給中)

概要/特長

技術資料

サポートとトレーニング

注文情報



概要

Machine learning is a branch of Artificial Intelligence (AI) that uses algorithms to parse and learn from big data to make intelligent decisions. With great advancements in computing power and the availability of enormous labeled data sets, machine learning has the potential to impact the world to the same degree as the internet, or the transistor has done before.

There are two main parts of machine learning: training and inference. The training phase of machine learning is the algorithm’s learning phase. Once the algorithm has been trained to predict information reliably, its parameter values are frozen and deployed into the field to “infer” a result on any new data it receives.

The technology is at the center of Industry 4.0 or Industrial Internet of Things (IIOT) to make factories smart.  It is helping with inspecting parts on an industrial production line, enabling smart robots and machines to autonomously complete tasks with precision and speed, predicting the remaining useable life of a piece of equipment and in many such applications to improve productivity and reduce operation costs.

Running machine learning inference at the edge as opposed to in the cloud helps reduce latency, decrease network bandwidth requirements, and address the security and reliability concerns.

Sitara processors enable machine learning inference at the edge on Arm® Cortex-A cores using ArmNN, the open-source Linux software from Arm. Sitara AM57x devices, specifically, can also perform machine learning inference at the edge using Texas Instruments Deep Learning (TIDL) software framework, which runs on C66x DSP cores and EVE subsystems. Both TIDL software framework and ArmNN software come pre-installed on Processor SDK.


Advantages of using Sitara processors in smart factories:

  • Integrated SoC with key industrial peripherals to provide the processing and connectivity needed for smart factory products:
    • Industrial protocol support.
    • Real-time control and processing with PRU and C66x DSP.
    • Accelerated deep learning for high performance and low power.
    • CSI-2 and parallel interface for camera connection.
    • Support for PCIe, USB3, SATA and more.
  • Enhanced reliability with extended temperature & high voltage I/O, low Failure-In-Time (FIT) and high Power-On-Hours (POH) with device longevity.
  • Lower system cost:
    • Enables machine learning inference at the edge for many machine vision applications.
    • Enables predictive maintenance at the edge in field, controller or operator-level devices.
  • Lower system power, < 5W.
  • Low latency.
  • The same Processor SDK can be used with all Sitara devices.

Example applications where Sitara machine learning can be used:

  • Industrial robots for automated sorting.
  • Vision computer & optical inspection.
  • Automated guided vehicle.
  • Smart HMI.
  • Optimize equipment settings.
  • Track, identify and count people and objects
  • Extracting useful information gathered from the data aggregator.
  • Predictive Maintenance (PdM) (identifies anomalies, machine wear and expected lifetime of equipment).
  • Classify and recognize specific sounds/audio patterns.

How to evaluate Sitara machine learning:

Below are the hardware options and software needed to begin evaluating Sitara machine learning solutions.


Step 1
Choose hardware:

  • BeagleBone AI- Low cost machine learning evaluation module that is supported by the community.
  • AM574x IDK- Highest performance evaluation with dedicated deep learning accelerators and 2x C66x DSPs.
  • AM572 EVM- Evaluation of machine learning with 2x C66x DSPs.
  • AM571 IDK - Evaluation of machine learning with 1x C66x DSP.

Step 2

Download Processor SDK Linux for AM57x:


Step 3

Review the following machine learning reference design demonstrating TIDL software framework on a Sitara AM57x processor:

Machine Learning Inference for Embedded Applications reference design

Software

TI Deep Learning (TIDL) software framework:

TIDL software framework leverages a highly optimized neural network implementation on TI’s Sitara AM57x processors, making use of hardware acceleration on the device. TIDL is a set of open-source Linux software packages and tools that enables offloading of deep learning inference to the Embedded Vision Engine (EVE) subsystem, the C66x DSP subsystem, or both. TIDL software is available as part of TI’s free Processor SDK: 

Other Helpful Resources:

Bringing machine learning to embedded systems (white paper)

関連製品

設計キット&評価モジュール  ( 1 )

名前 型番 ツール・タイプ
AM574x 産業用開発キット(IDK)  TMDSIDK574  評価モジュールと評価ボード 

TI デバイス (20)

型番 名前 製品ファミリ
AM3351  Sitara プロセッサ  Sitara プロセッサ 
AM3352  Application Processor  Sitara プロセッサ 
AM3354  Application Processor  Sitara プロセッサ 
AM3356  Application Processor  Sitara プロセッサ 
AM3358  Application Processor  Sitara プロセッサ 
AM3359  Application Processor  Sitara プロセッサ 
AM4372  AM437x ARM Cortex-A9 マイクロプロセッサ(MPU)  Sitara プロセッサ 
AM4376  AM437x ARM Cortex-A9 マイクロプロセッサ(MPU)  Sitara プロセッサ 
AM4377  AM437x ARM Cortex-A9 マイクロプロセッサ(MPU)  Sitara プロセッサ 
AM4378  AM437x ARM Cortex-A9 マイクロプロセッサ(MPU)  Sitara プロセッサ 
AM4379  AM437x ARM Cortex-A9 マイクロプロセッサ(MPU)  Sitara プロセッサ 
AM5706  Sitara プロセッサ:セキュア・ブート機能搭載のコスト最適化 Arm Cortex-A15 / DSP  Sitara プロセッサ 
AM5708  Sitara プロセッサ:マルチメディア機能とセキュア・ブート機能搭載のコスト最適化 Arm Cortex-A15 / DSP  Sitara プロセッサ 
AM5716  Sitara プロセッサ: Arm Cortex-A15 と DSP  Sitara プロセッサ 
AM5718  Sitara プロセッサ: Arm Cortex-A15 と DSP、マルチメディア  Sitara プロセッサ 
AM5726  Sitara プロセッサ: デュアル Arm Cortex-A15 と DSP  Sitara プロセッサ 
AM5728  AM572x ES1.0 データ・マニュアル  Sitara プロセッサ 
AM5746  Sitara プロセッサ:ECC @ DDR、セキュア・ブート機能搭載のデュアル Arm Cortex-A15 / デュアル DSP  Sitara プロセッサ 
AM5748  Sitara プロセッサ:マルチメディア機能、ECC @ DDR、セキュア・ブート機能搭載のデュアル Arm Cortex-A15 / デュアル DSP  Sitara プロセッサ 
AM5749  Sitara プロセッサ:マルチメディア機能、ECC @ DDR、セキュア・ブート / ディープ・ラーニング機能搭載のデュアル Arm Cortex-A15 / デュアル DSP  Sitara プロセッサ 

サポートとトレーニング

技術的な質問と回答を豊富に掲載している TI の包括的なオンライン・ナレッジ・ベースは 24 時間 365 日ご利用になれます。

TI のエキスパートによる回答の検索

コミュニティ内のコンテンツは、個別の TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。
使用条件をご確認ください

TI 製品の品質、パッケージ、ご注文に関するお問い合わせは、TI のサポート・ページをご覧ください

技術記事