SNAS519H July   2011  – August 2015 ADC12D1000RF , ADC12D1600RF

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Pin Configuration and Functions
    1. 3.1 Pin Attributes
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Electrical Characteristics: Static Converter
    6. 4.6  Electrical Characteristics: Dynamic Converter
    7. 4.7  Electrical Characteristics: Analog Input/Output and Reference
    8. 4.8  Electrical Characteristics: I-Channel to Q-Channel
    9. 4.9  Electrical Characteristics: Sampling Clock
    10. 4.10 Electrical Characteristics: AutoSync Feature
    11. 4.11 Electrical Characteristics: Digital Control and Output Pin
    12. 4.12 Electrical Characteristics: Power Supply
    13. 4.13 Electrical Characteristics: AC
    14. 4.14 Timing Requirements: Serial Port Interface
    15. 4.15 Timing Requirements: Calibration
    16. 4.16 Typical Characteristics
  5. Detailed Description
    1. 5.1 Overview
    2. 5.2 Functional Block Diagram
    3. 5.3 Feature Description
      1. 5.3.1 Input Control and Adjust
        1. 5.3.1.1 AC- and DC-coupled Mode
        2. 5.3.1.2 Input Full-Scale Range Adjust
        3. 5.3.1.3 Input Offset Adjust
        4. 5.3.1.4 DES Timing Adjust
        5. 5.3.1.5 Sampling Clock Phase Adjust
      2. 5.3.2 Output Control and Adjust
        1. 5.3.2.1 SDR / DDR Clock
        2. 5.3.2.2 LVDS Output Differential Voltage
        3. 5.3.2.3 LVDS Output Common-Mode Voltage
        4. 5.3.2.4 Output Formatting
        5. 5.3.2.5 Test Pattern Mode
        6. 5.3.2.6 Time Stamp
      3. 5.3.3 Calibration Feature
        1. 5.3.3.1 Calibration Control Pins and Bits
        2. 5.3.3.2 How to Execute a Calibration
        3. 5.3.3.3 Power-on Calibration
        4. 5.3.3.4 On-Command Calibration
        5. 5.3.3.5 Calibration Adjust
        6. 5.3.3.6 Read/Write Calibration Settings
        7. 5.3.3.7 Calibration and Power Down
        8. 5.3.3.8 Calibration and the Digital Outputs
      4. 5.3.4 Power Down
    4. 5.4 Device Functional Modes
      1. 5.4.1 DES and Non-DES Mode
      2. 5.4.2 Demux and Non-Demux Mode
    5. 5.5 Programming
      1. 5.5.1 Control Modes
        1. 5.5.1.1 Non-Extended Control Mode
          1. 5.5.1.1.1  Dual Edge Sampling Pin (DES)
          2. 5.5.1.1.2  Non-Demultiplexed Mode Pin (NDM)
          3. 5.5.1.1.3  Dual Data Rate Phase Pin (DDRPh)
          4. 5.5.1.1.4  Calibration Pin (CAL)
          5. 5.5.1.1.5  Calibration Delay Pin (CalDly)
          6. 5.5.1.1.6  Power-Down I-channel Pin (PDI)
          7. 5.5.1.1.7  Power-Down Q-channel Pin (PDQ)
          8. 5.5.1.1.8  Test Pattern Mode Pin (TPM)
          9. 5.5.1.1.9  Full-Scale Input Range Pin (FSR)
          10. 5.5.1.1.10 AC- and DC-Coupled Mode Pin (VCMO)
          11. 5.5.1.1.11 LVDS Output Common-mode Pin (VBG)
        2. 5.5.1.2 Extended Control Mode
          1. 5.5.1.2.1 The Serial Interface
    6. 5.6 Register Maps
  6. Application and Implementation
    1. 6.1 Application Information
      1. 6.1.1 The Analog Inputs
        1. 6.1.1.1 Acquiring the Input
        2. 6.1.1.2 Driving the ADC in DES Mode
        3. 6.1.1.3 FSR and the Reference Voltage
        4. 6.1.1.4 Out-Of-Range Indication
        5. 6.1.1.5 Maximum Input Range
        6. 6.1.1.6 AC-Coupled Input Signals
        7. 6.1.1.7 DC-Coupled Input Signals
        8. 6.1.1.8 Single-Ended Input Signals
      2. 6.1.2 The Clock Inputs
        1. 6.1.2.1 CLK Coupling
        2. 6.1.2.2 CLK Frequency
        3. 6.1.2.3 CLK Level
        4. 6.1.2.4 CLK Duty Cycle
        5. 6.1.2.5 CLK Jitter
        6. 6.1.2.6 CLK Layout
      3. 6.1.3 The LVDS Outputs
        1. 6.1.3.1 Common-Mode and Differential Voltage
        2. 6.1.3.2 Output Data Rate
        3. 6.1.3.3 Terminating Unused LVDS Output Pins
      4. 6.1.4 Synchronizing Multiple ADC12D1x00RFS in a System
        1. 6.1.4.1 AutoSync Feature
        2. 6.1.4.2 DCLK Reset Feature
      5. 6.1.5 Recommended System Chips
        1. 6.1.5.1 Temperature Sensor
        2. 6.1.5.2 Clocking Device
        3. 6.1.5.3 Amplifiers for the Analog Input
        4. 6.1.5.4 Balun Recommendations for Analog Input
    2. 6.2 Typical Application
      1. 6.2.1 Design Requirements
      2. 6.2.2 Detailed Design Procedure
      3. 6.2.3 Application Curves
  7. Power Supply Recommendations
    1. 7.1 System Power-on Considerations
      1. 7.1.1 Power-on, Configuration, and Calibration
      2. 7.1.2 Power-on and Data Clock (DCLK)
    2. 7.2 Supply Voltage
  8. Layout
    1. 8.1 Layout Guidelines
      1. 8.1.1 Power Planes
      2. 8.1.2 Bypass Capacitors
      3. 8.1.3 Ground Planes
      4. 8.1.4 Power System Example
    2. 8.2 Layout Example
    3. 8.3 Thermal Management
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Device Nomenclature
        1. 9.1.2.1 Specification Definitions
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Related Links
    4. 9.4 Community Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

4 Specifications

4.1 Absolute Maximum Ratings(1)(2)

MIN MAX UNIT
Supply Voltage (VA, VTC, VDR, VE) 2.2 V
Supply Difference - max(VA/TC/DR/E) - min(VA/TC/DR/E) 0 100 mV
Voltage on Any Input Pin (except VIN±) –0.15 (VA + 0.15) V
VIN± Voltage –0.5 2.5 V
Ground Difference - max(GNDTC/DR/E) – min(GNDTC/DR/E) 0 100 mV
Input Current at Any Pin(3) ±50 mA
ADC12D1x00RF Package Power Dissipation at TA ≤ 85°C(3) 3.45 W
Storage Temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0 V, unless otherwise specified.
(3) When the input voltage at any pin exceeds the power supply limits, that is, less than GND or greater than VA, the current at that pin should be limited to 50 mA. In addition, overvoltage at a pin must adhere to the maximum voltage limits. Simultaneous overvoltage at multiple pins requires adherence to the maximum package power dissipation limits. These dissipation limits are calculated using JEDEC JESD51-7 thermal model. Higher dissipation may be possible based on specific customer thermal situation and specified package thermal resistances from junction to case.

4.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge(1) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(2) ±2500 V
Charged device model (CDM), per JEDEC specification JESD22-C101(3) ±1000
Machine model (MM) ±250
(1) Human body model is 100-pF capacitor discharged through a 1.5-kΩ resistor. Machine model is 220 pF discharged through 0 Ω. Charged device model simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions(1)(2)

MIN NOM MAX UNIT
Ambient Temperature, TA ADC12D1x00RF (Standard JEDEC thermal model) –40 85 °C
Junction Temperature, TJ 140 °C
Supply Voltage (VA, VTC, VE) 1.8 2 V
Driver Supply Voltage (VDR) 1.8 VA V
VIN± Voltage(3) DC-coupled –0.4 2.4 V
VIN± Differential Voltage(4) DC-coupled at 100% duty cycle 1 V
DC-coupled at 20% duty cycle 2
DC-coupled at 10% duty cycle 2.8
VIN± Current(3) AC-coupled –50 50 mA
VIN± Power Maintaining common-mode voltage, AC-coupled 15.3 dBm
Not maintaining common-mode voltage, AC-coupled 17.1
Ground Difference – max(GNDTC/DR/E) -min(GNDTC/DR/E) 0 V
CLK± Voltage 0 VA V
Differential CLK Amplitude 0.4 2 VP-P
VCMI Common-Mode Input Voltage VCMO – 150 VCMO +150 mV
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the Absolute Maximum Ratings. Recommended Operating Conditions indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
(2) All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0 V, unless otherwise specified.
(3) Proper common-mode voltage must be maintained to ensure proper output codes, especially during input overdrive.
(4) This rating is intended for DC-coupled applications; the voltages and duty cycles listed may be safely applied to VIN+/- for the lifetime of the part.

4.4 Thermal Information

THERMAL METRIC(1) ADC12D1x00RF UNIT
NXA [BGA]
40 PINS
RθJA Junction-to-ambient thermal resistance 16 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 2.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.5 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

4.5 Electrical Characteristics: Static Converter

Unless otherwise specified, the following apply after calibration for VA = VDR = VTC = VE = 1.9 V; I- and Q-channels, AC-coupled, unused channel terminated to AC ground, FSR Pin = High; CL = 10 pF; Differential, AC-coupled Sine Wave Sampling Clock, fCLK = 1600/1000 MHz at 0.5 VP-P with 50% duty cycle (as specified); VBG = Floating; Non-Extended Control Mode; Rext = Rtrim = 3300 Ω ± 0.1%; Analog Signal Source Impedance = 100-Ω Differential; Non-Demux Non-DES Mode; Duty Cycle Stabilizer on. All other limits TA = 25°C, unless otherwise noted.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution with No Missing Codes TA = TMIN to TMAX 12 bits
INL Integral Non-Linearity (Best fit) 1 MHz DC-coupled over-ranged sine wave,
TA = 25°C
±2.5 ±7.25 LSB
DNL Differential Non-Linearity 1 MHz DC-coupled over-ranged sine wave,
TA = TMIN to TMAX
±0.4 ±0.96 LSB
VOFF Offset Error 5 LSB
VOFF_ADJ Input Offset Adjustment Range Extended Control Mode ±45 mV
PFSE Positive Full-Scale Error See (4) ±25 mV
NFSE Negative Full-Scale Error See (4) ±25 mV
Out-of-Range Output Code(5) (VIN+) − (VIN−) > + Full Scale,
TA = TMIN to TMAX
4095
(VIN+) − (VIN−) < − Full Scale,
TA = TMIN to TMAX
0
(1) The analog inputs, labeled "I/O", are protected as shown below. Input voltage magnitudes beyond the Absolute Maximum Ratings may damage this device.
ADC12D1000RF ADC12D1600RF 30164404.gif
(2) To ensure accuracy, it is required that VA, VTC, VE and VDR be well-bypassed. Each supply pin must be decoupled with separate bypass capacitors.
(3) Typical figures are at TA = 25°C, and represent most likely parametric norms. Test limits are specified to TI's AOQL (Average Outgoing Quality Level).
(4) Calculation of Full-Scale Error for this device assumes that the actual reference voltage is exactly its nominal value. Full-Scale Error for this device, therefore, is a combination of Full-Scale Error and Reference Voltage Error. See Figure 4-8. For relationship between Gain Error and Full-Scale Error, see Specification Definitions for Gain Error.
(5) This parameter is specified by design and is not tested in production.

4.6 Electrical Characteristics: Dynamic Converter(2)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Bandwidth DESIQ MODE
–3 dB(6) 1.75 GHz
–6 dB 2.7 GHz
DESI, DESQ MODE
–3 dB(6) 1.2 GHz
–6 dB 2.3 GHz
–9 dB 2.7 GHz
–12 dB 3 GHz
NON-DES MODE, DESCLKIQ MODE
–3 dB(6) 2.7 GHz
–6 dB 3.1 GHz
–9 dB 3.5 GHz
–12 dB 4 GHz
Gain Flatness NON-DES MODE
D.C. to Fs/2 ±0.3 dB
D.C. to Fs ADC12D1600RF ±0.8 dB
ADC12D1000RF ±0.4
D.C. to 3Fs/2 ADC12D1600RF ±1 dB
ADC12D1000RF ±0.8
D.C. to 2Fs ADC12D1600RF ±3.6 dB
ADC12D1000RF ±0.9
DESI, DESQ MODE
D.C. to Fs/2 ADC12D1600RF ±2.2 dB
ADC12D1000RF ±1
D.C. to Fs ADC12D1600RF ±7.4 dB
ADC12D1000RF ±2.7
DESIQ MODE
D.C. to Fs/2 ADC12D1600RF ±0.9 dB
ADC12D1000RF ±0.7
D.C. to Fs ADC12D1600RF ±5.4 dB
ADC12D1000RF ±1.3
DESCLKIQ MODE
D.C. to Fs/2 ADC12D1600RF ±0.7
ADC12D1000RF ±0.6
D.C. to Fs ADC12D1600RF ±4.2
ADC12D1000RF ±0.9
CER Code Error Rate 10–18 Error/
Sample
IMD3 3rd order Intermodulation Distortion DES MODE
FIN = 2670 MHz ± 2.5 MHz
at –13 dBFS
ADC12D1600RF –76.7 dBFS
–63.7 dBc
ADC12D1000RF –73 dBFS
–60 dBc
FIN = 2070 MHz ± 2.5 MHz
at –13 dBFS
ADC12D1600RF –78.6 dBFS
–65.6 dBc
ADC12D1000RF –77 dBFS
–64 dBc
FIN = 2670 MHz ± 2.5 MHz
at –16 dBFS
ADC12D1600RF –82.7 dBFS
–66.7 dBc
ADC12D1000RF –85 dBFS
–69 dBc
FIN = 2070 MHz ± 2.5 MHz
at –16 dBFS
ADC12D1600RF –80.1 dBFS
–64.1 dBc
ADC12D1000RF –83 dBFS
–67 dBc
Noise Floor Density 50-Ω single-ended termination,
DES Mode
ADC12D1600RF –154.6 dBm/Hz
–153.6 dBFS/Hz
ADC12D1000RF –154 dBm/Hz
–153 dBFS/Hz
NON-DES MODE(3)(5)(7)
ENOB Effective Number of Bits AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 9.4 bits
ADC12D1000RF 9.6
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 9.3 bits
ADC12D1000RF 9.6
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 8.6(1) 9.2 bits
ADC12D1000RF 8.7(1) 9.4
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 9 bits
ADC12D1000RF 9.3
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF 8.8 bits
ADC12D1000RF 9
SINAD Signal-to-Noise Plus Distortion Ratio AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 58 dB
ADC12D1000RF 59.7
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 57.5 dB
ADC12D1000RF 59.7 dB
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 53.5(1) 57.4 dB
ADC12D1000RF 54.1(1) 58.6
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 55.9 dB
ADC12D1000RF 57.6
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF 54.9 dB
ADC12D1000RF 55.9
SNR Signal-to-Noise Ratio AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 59 dB
ADC12D1000RF 60.1
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 58.6 dB
ADC12D1000RF 60
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 54.6(1) 58.2 dB
ADC12D1000RF 55.1(1) 58.8
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 57 dB
ADC12D1000RF 58.2
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF 55.4 dB
ADC12D1000RF 56.1
THD Total Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –65 dB
ADC12D1000RF –69.7
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –64 dB
ADC12D1000RF –71.9
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –64.9 –60(1) dB
ADC12D1000RF –72 –61(1)
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –62.4 8 dB
ADC12D1000RF –66.
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF –64.1 dB
ADC12D1000RF –69
2nd Harm Second Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –78.6 dBc
ADC12D1000RF –79.3
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –83 dBc
ADC12D1000RF –91.6
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –74 dBc
ADC12D1000RF –86.3
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –70.6 dBc
ADC12D1000RF –73
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF –71 dBc
ADC12D1000RF –73.7
3rd Harm Third Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –67.5 dBc
ADC12D1000RF –71.9
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –64.4 dBc
ADC12D1000RF –75.4
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –71 dBc
ADC12D1000RF –74.8
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –63.2 dBc
ADC12D1000RF –68.9
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF –75.7 dBc
ADC12D1000RF –73.5
SFDR Spurious-Free Dynamic Range AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 67.9 dBc
ADC12D1000RF 71.4
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 64.5 dBc
ADC12D1000RF 75
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 58(1) 66.7 dBc
ADC12D1000RF 61(1) 71.9
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 63.8 dBc
ADC12D1000RF 68.4
AIN = 1448 MHz at –0.5 dBFS ADC12D1600RF 67.3 dBc
ADC12D1000RF 66.5
DES MODE(3)(4)(7)
ENOB Effective Number of Bits AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 9.3 bits
ADC12D1000RF 9.5
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 9.3 bits
ADC12D1000RF 9.4
AIN = 498 MHz at –0.5 dBFS 9.3 bits
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 8.9 bits
ADC12D1000RF 8.8
AIN = 1448 MHz at –0.5 dBFS 8.7 bits
SINAD Signal-to-Noise Plus Distortion Ratio AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 57.9 dB
ADC12D1000RF 58.7
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 57.5 dB
ADC12D1000RF 58.2
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 57.5 dB
ADC12D1000RF 57.7
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 55.1 dB
ADC12D1000RF 54.8
AIN = 1448 MHz at –0.5 dBFS 54.1 dB
SNR Signal-to-Noise Ratio AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 58.8 dB
ADC12D1000RF 59.2
AIN = 248 MHz at –0.5 dBFS 58.5 dB
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 58.1 dB
ADC12D1000RF 58
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 55.9 dB
ADC12D1000RF 55
AIN = 1448 MHz at –0.5 dBFS 54.3 dB
THD Total Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –65.2 dB
ADC12D1000RF –68.1
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –64.2 dB
ADC12D1000RF –68.4
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –66.2 dB
ADC12D1000RF –68.3
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –62.9 dB
ADC12D1000RF –66.4
AIN = 1448 MHz at –0.5 dBFS –67 dB
2nd Harm Second Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –81.5 dBc
ADC12D1000RF –87.4
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –84.2 dBc
ADC12D1000RF –77.1
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –69.7 dBc
ADC12D1000RF –73.4
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –70.5 dBc
ADC12D1000RF –76.4
AIN = 1448 MHz at –0.5 dBFS –73.6 dBc
3rd Harm Third Harmonic Distortion AIN = 125 MHz at –0.5 dBFS ADC12D1600RF –66 dBc
ADC12D1000RF –69.3
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF –63.8 dBc
ADC12D1000RF –73.3
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF –69.7 dBc
ADC12D1000RF –72.6
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF –63.5 dBc
ADC12D1000RF –69.9
AIN = 1448 MHz at –0.5 dBFS –67.1 dBc
SFDR Spurious-Free Dynamic Range AIN = 125 MHz at –0.5 dBFS ADC12D1600RF 66.9 dBc
ADC12D1000RF 69
AIN = 248 MHz at –0.5 dBFS ADC12D1600RF 65 dBc
ADC12D1000RF 67.1
AIN = 498 MHz at –0.5 dBFS ADC12D1600RF 70.4 dBc
ADC12D1000RF 65
AIN = 998 MHz at –0.5 dBFS ADC12D1600RF 64.1 dBc
ADC12D1000RF 61.7
AIN = 1448 MHz at –0.5 dBFS 61.3 dBc
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and/or characterization and is not tested in production.
(3) The Dynamic Specifications are ensured for room to hot ambient temperature only (25°C to 85°C). Refer to the plots of the dynamic performance vs. temperature in Typical Characteristics to see typical performance from cold to room temperature (–40°C to 25°C).
(4) These measurements were taken in Extended Control Mode (ECM) with the DES Timing Adjust feature enabled (Addr: 7h). This feature is used to reduce the interleaving timing spur amplitude, which occurs at fs/2-fin, and thereby increase the SFDR, SINAD and ENOB.
(5) The Fs/2 spur was removed from all the dynamic performance specifications.
(6) The –3 dB point is the traditional Full-Power Bandwidth (FPBW) specification. Although the insertion loss is approximately half at this frequency, the dynamic performance of the ADC does not necessarily begin to degrade to a level below which it may be effectively used in an application. The ADC may be used at input frequencies above the –3 dB FPBW point, for example for the ADC12D1000RF, into the 5th Nyquist zone. Depending on system requirements, it is only necessary to compensate for the insertion loss.
(7) Typical dynamic performance is only tested at Fin = 498 MHz; other input frequencies are specified by design and / or characterization and are not tested in production.

4.7 Electrical Characteristics: Analog Input/Output and Reference

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
VIN_FSR Analog Differential Input Full Scale Range NON-EXTENDED CONTROL MODE
FSR Pin Low 540(1) 600 660(1) mVP-P
FSR Pin High 740(1) 800 860(1) mVP-P
EXTENDED CONTROL MODE
FM(14:0) = 0000h 600 mVP-P
FM(14:0) = 4000h (default) 800 mVP-P
FM(14:0) = 7FFFh 1000 mVP-P
CIN Analog Input Capacitance, Non-DES Mode(3)(4) Differential 0.02 pF
Each input pin to ground 1.6 pF
Analog Input Capacitance, DES Mode(3)(4) Differential 0.08 pF
Each input pin to ground 2.2 pF
RIN Differential Input Resistance 91(1) 100 109(1) Ω
COMMON-MODE OUTPUT
VCMO Common-Mode Output Voltage ICMO = ±100 µA 1.15(1) 1.25 1.35(1) V
TC_VCMO Common-Mode Output Voltage Temperature Coefficient ICMO = ±100 µA(2) 38 ppm/°C
VCMO_LVL VCMO input threshold to set DC-coupling Mode See (2) 0.63 V
CL_VCMO Maximum VCMO Load Capacitance See (3) 80(1) pF
BANDGAP REFERENCE
VBG Bandgap Reference Output Voltage IBG = ±100 µA 1.15(1) 1.25 1.35(1) V
TC_VBG Bandgap Reference Voltage Temperature Coefficient IBG = ±100 µA(2) 32 ppm/°C
CL_VBG Maximum Bandgap Reference load Capacitance See (3) 80(1) pF
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and/or characterization and is not tested in production.
(3) This parameter is specified by design and is not tested in production.
(4) The differential and pin-to-ground input capacitances are lumped capacitance values from design.

4.8 Electrical Characteristics: I-Channel to Q-Channel

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Offset Match See (1) 2 LSB
Positive Full-Scale Match Zero offset selected in Control Register 2 LSB
Negative Full-Scale Match Zero offset selected in Control Register 2 LSB
Phase Matching (I, Q) fIN = 1.0 GHz(1) < 1 Degree
X-TALK Crosstalk from I-channel (Aggressor) to
Q-channel (Victim)
Aggressor = 867 MHz F.S.,
Victim = 100 MHz F.S.
–70 dB
Crosstalk from Q-channel (Aggressor) to
I-channel (Victim)
Aggressor = 867 MHz F.S.,
Victim = 100 MHz F.S.
–70 dB
(1) This parameter is specified by design and/or characterization and is not tested in production.

4.9 Electrical Characteristics: Sampling Clock

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN_CLK Differential Sampling Clock Input Level(2) Sine Wave Clock Differential Peak-to-Peak 0.4(1) 0.6 2(1) VP-P
Square Wave Clock Differential Peak-to-Peak 0.4(1) 0.6 2(1)
CIN_CLK Sampling Clock Input Capacitance(3) Differential 0.1 pF
Each input to ground 1 pF
RIN_CLK Sampling Clock Differential Input Resistance See (2) 100 Ω
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and/or characterization and is not tested in production.
(3) This parameter is specified by design and is not tested in production.

4.10 Electrical Characteristics: AutoSync Feature

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN_RCLK Differential RCLK Input Level(1) Differential Peak-to-Peak 360 mVP-P
CIN_RCLK RCLK Input Capacitance(1) Differential 0.12 pF
Each input to ground 1 pF
RIN_RCLK RCLK Differential Input Resistance See (1) 100 Ω
IIH_RCLK Input Leakage Current; VIN = VA 22 µA
IIL_RCLK Input Leakage Current; VIN = GND 33 µA
VO_RCOUT Differential RCOut Output Voltage –360 mVP-P
(1) This parameter is specified by design and/or characterization and is not tested in production.

4.11 Electrical Characteristics: Digital Control and Output Pin

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL CONTROL PINS (DES, CalDly, CAL, PDI, PDQ, TPM, NDM, FSR, DDRPh, ECE, SCLK, SDI, SCS)
VIH Logic High Input Voltage 0.7×VA(1) V
VIL Logic Low Input Voltage 0.3×VA(1) V
IIH Input Leakage Current; VIN = VA 0.02 μA
IIL Input Leakage Current; VIN = GND FSR, CalDly, CAL, NDM, TPM, DDRPh, DES –0.02 μA
SCS, SCLK, SDI –17 μA
PDI, PDQ, ECE –38 μA
CIN_DIG Digital Control Pin Input Capacitance(3) Measured from each control pin to GND 1.5 pF
DIGITAL OUTPUT PINS (Data, DCLKI, DCLKQ, ORI, ORQ)
VOD LVDS Differential Output Voltage VBG = Floating, OVS = High 400(1) 630 800(1) mVP-P
VBG = Floating, OVS = Low 230(1) 460 630(1) mVP-P
VBG = VA, OVS = High 670 mVP-P
VBG = VA, OVS = Low 500 mVP-P
ΔVO DIFF Change in LVDS Output Swing Between Logic Levels ±1 mV
VOS Output Offset Voltage(2) VBG = Floating 0.8 V
VBG = VA 1.2 V
ΔVOS Output Offset Voltage Change Between Logic Levels See (2) ±1 mV
IOS Output Short-Circuit Current(2) VBG = Floating;
D+ and D− connected to 0.8 V
±4 mA
ZO Differential Output Impedance See (2) 100 Ω
VOH Logic High-Output Level CalRun, IOH = −100 µA,(2)
SDO, IOH = −400 µA(2)
1.65 V
VOL Logic Low-Output Level CalRun, IOL = 100 µA,(2)
SDO, IOL = 400 µA(2)
0.15 V
VCMI_DRST DCLK_RST Common-Mode Input Voltage See (2) 1.25 V
VID_DRST Differential DCLK_RST Input Voltage See (2) VIN_CLK VP-P
RIN_DRST Differential DCLK_RST Input Resistance See (2) 100 Ω
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and/or characterization and is not tested in production.
(3) This parameter is specified by design and is not tested in production.

4.12 Electrical Characteristics: Power Supply

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IA Analog Supply Current PDI = PDQ = Low ADC12D1600RF 1225 mA
ADC12D1000RF 1140
PDI = Low; PDQ = High ADC12D1600RF 670 mA
ADC12D1000RF 625
PDI = High; PDQ = Low ADC12D1600RF 670 mA
ADC12D1000RF 625
PDI = PDQ = High 2.7 mA
ITC Track-and-Hold and Clock Supply Current PDI = PDQ = Low ADC12D1600RF 490 mA
ADC12D1000RF 410
PDI = Low; PDQ = High ADC12D1600RF 290 mA
ADC12D1000RF 250
PDI = High; PDQ = Low ADC12D1600RF 290 mA
ADC12D1000RF 250
PDI = PDQ = High 0.65 µA
IDR Output Driver Supply Current PDI = PDQ = Low 270 mA
PDI = Low; PDQ = High 140 mA
PDI = High; PDQ = Low 140 mA
PDI = PDQ = High 6 µA
IE Digital Encoder Supply Current PDI = PDQ = Low ADC12D1600RF 105 mA
ADC12D1000RF 55
PDI = Low; PDQ = High ADC12D1600RF 50 mA
ADC12D1000RF 30
PDI = High; PDQ = Low ADC12D1600RF 50 mA
ADC12D1000RF 30
PDI = PDQ = High 34 µA
ITOTAL Total Supply Current 1:2 DEMUX MODE
PDI = PDQ = Low
ADC12D1600RF 2090 2310(1) mA
ADC12D1000RF 1875 2105(1)
NON-DEMUX MODE
PDI = PDQ = Low
ADC12D1600RF 2075 mA
ADC12D1000RF 1800
PC Power Consumption 1:2 DEMUX MODE
PDI = PDQ = Low ADC12D1600RF 4 4.4(1) W
ADC12D1000RF 3.6 4(1)
PDI = Low; PDQ = High ADC12D1600RF 2.2 W
ADC12D1000RF 2
PDI = High; PDQ = Low ADC12D1600RF 2.2 W
ADC12D1000RF 2
PDI = PDQ = High 6.4 mW
NON-DEMUX MODE
PDI = PDQ = Low ADC12D1600RF 3.94 W
ADC12D1000RF 3.42
(1) TA = TMIN to TMAX

4.13 Electrical Characteristics: AC

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SAMPLING CLOCK (CLK)
fCLK (max) Maximum Sampling Clock Frequency ADC12D1600RF 1.6(1) GHz
ADC12D1000RF 1(1)
fCLK (min) Minimum Sampling Clock Frequency Non-DES Mode; LFS = 0b 300(1) MHz
Non-DES Mode; LFS = 1b 150(1) MHz
DES Mode 500(1) MHz
Sampling Clock Duty Cycle fCLK(min) ≤ fCLK ≤ fCLK(max)(3) 20%(1) 50% 80%(1)
tCL Sampling Clock Low Time See (2) ADC12D1600RF 200(1) 500 ps
ADC12D1000RF 125(1) 312.5
tCH Sampling Clock High Time See (2) ADC12D1600RF 200(1) 500 ps
ADC12D1000RF 125(1) 312.5
DATA CLOCK (DCLKI, DCLKQ)
DCLK Duty Cycle See (2) 45%(1) 50% 55%(1)
tSR Setup Time DCLK_RST± See (3) 45 ps
tHR Hold Time DCLK_RST± See (3) 45 ps
tPWR Pulse Width DCLK_RST± See (2) 5(1) Sampling Clock Cycles
tSYNC_DLY DCLK Synchronization Delay 90° Mode(2) 4(1) Sampling Clock Cycles
0° Mode(2) 5(1)
tLHT Differential Low-to-High Transition Time 10%-to-90%, CL = 2.5 pF(3) 200 ps
tHLT Differential High-to-Low Transition Time 10%-to-90%, CL = 2.5 pF(3) 200 ps
tSU Data-to-DCLK Setup Time DDR 90° Mode(2) ADC12D1600RF 500 ps
ADC12D1000RF 870
tH DCLK-to-Data Hold Time DDR 90° Mode(2) ADC12D1600RF 500 ps
ADC12D1000RF 870
tOSK DCLK-to-Data Output Skew 50% of DCLK transition to 50% of Data transition
DDR 0° Mode, SDR Mode (2)
±50 ps
DATA INPUT-TO-OUTPUT
tAD Aperture Delay(3) Sampling CLK+ Rise to Acquisition of Data 1.29 ns
tAJ Aperture Jitter See (3) 0.2 ps (rms)
tOD Sampling Clock-to Data Output Delay (in addition to Latency) 50% of Sampling Clock transition to 50% of Data transition(3) 3.2 ns
tLAT Latency in 1:2 Demux Non-DES Mode(2) DI, DQ Outputs 34(1) Sampling Clock Cycles
DId, DQd Outputs 35(1)
Latency in 1:4 Demux DES Mode(2) DI Outputs 34(1)
DQ Outputs 34.5(1)
DId Outputs 35(1)
DQd Outputs 35.5(1)
Latency in Non-Demux Non-DES Mode(2) DI Outputs 34(1)
DQ Outputs 34(1)
Latency in Non-Demux DES Mode(2) DI Outputs 34(1)
DQ Outputs 34.5(1)
tORR Over Range Recovery Time (3) Differential VIN step from ±1.2 V to 0 V to accurate conversion 1 Sampling Clock Cycles
tWU Wake-Up Time (PDI/PDQ low to Rated Accuracy Conversion) Non-DES Mode(2) 500 ns
DES Mode(2) 1 µs
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and is not tested in production.
(3) This parameter is specified by design and/or characterization and is not tested in production.

4.14 Timing Requirements: Serial Port Interface

PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
fSCLK Serial Clock Frequency See (2) 15 MHz
Serial Clock Low Time 30(1) ns
Serial Clock High Time 30(1) ns
tSSU Serial Data-to-Serial Clock Rising Setup Time See (2) 2.5 ns
tSH Serial Data-to-Serial Clock Rising Hold Time See (2) 1 ns
tSCS SCS-to-Serial Clock Rising Setup Time See (3) 2.5 ns
tHCS SCS-to-Serial Clock Falling Hold Time See (3) 1.5 ns
tBSU Bus turnaround time See (3) 10 ns
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and is not tested in production.
(3) This parameter is specified by design and/or characterization and is not tested in production.

4.15 Timing Requirements: Calibration

PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
tCAL Calibration Cycle Time Non-ECM 4.1×107 Sampling Clock Cycles
ECM CSS = 0b
ECM CSS = 1b
tCAL_L CAL Pin Low Time See (2) 1280(1) Sampling Clock Cycles
tCAL_H CAL Pin High Time See (2) 1280(1)
tCalDly Calibration delay determined by CalDly Pin(2) CalDly = Low 224(1) Sampling Clock Cycles
CalDly = High 230(1)
(1) TA = TMIN to TMAX
(2) This parameter is specified by design and is not tested in production.
ADC12D1000RF ADC12D1600RF 30164459.gif
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ, DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-1 Clocking in 1:2 Demux Non-DES Mode
ADC12D1000RF ADC12D1600RF 30164460.gif
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ, DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-2 Clocking in Non-Demux Non-DES Mode
ADC12D1000RF ADC12D1600RF 30164499.gif
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ, DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-3 Clocking in 1:4 Demux DES Mode
ADC12D1000RF ADC12D1600RF 30164496.gif
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ, DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-4 Clocking in Non-Demux Mode DES Mode
ADC12D1000RF ADC12D1600RF 30164420.gifFigure 4-5 Data Clock Reset Timing (Demux Mode)
ADC12D1000RF ADC12D1600RF 30164425.gifFigure 4-6 Power-on and On-Command Calibration Timing
ADC12D1000RF ADC12D1600RF 30164419.gifFigure 4-7 Serial Interface Timing
ADC12D1000RF ADC12D1600RF 30164422.gifFigure 4-8 Input / Output Transfer Characteristic

4.16 Typical Characteristics

VA = VDR = VTC = VE = 1.9 V, fCLK = 1600 MHz / 1000 MHz for the ADC12D1600RF / ADC12D1000RF, respectively, fIN = 498 MHz, TA= 25°C, I-channel, Demux Non-DES Mode, unless otherwise stated.

ADC12D1000RF ADC12D1600RF 30164438.gifFigure 4-9 INL vs Code (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164440.gifFigure 4-11 INL vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164439.gifFigure 4-13 DNL vs Code (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164441.gifFigure 4-15 DNL vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164476.gifFigure 4-17 ENOB vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164479.gifFigure 4-19 ENOB vs Input Frequency (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164458.gifFigure 4-21 ENOB vs VCMI (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164469.gifFigure 4-23 SNR vs Supply Voltage (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164472.gifFigure 4-25 THD vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164475.gifFigure 4-27 THD vs Input Frequency (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164484.gifFigure 4-29 SFDR vs Supply Voltage (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164463.gifFigure 4-31 CROSSTALK vs Source Frequency (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164448.gifFigure 4-33 Insertion Loss (ADC12D1x00RF)
ADC12D1000RF ADC12D1600RF 30164491.gifFigure 4-35 Power Consumption vs Clock Frequency (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164449.gifFigure 4-10 INL vs Code (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164450.gifFigure 4-12 INL vs Temperature (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164451.gifFigure 4-14 DNL vs Code (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164452.gifFigure 4-16 DNL vs Temperature (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164477.gifFigure 4-18 ENOB vs Supply Voltage (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164442.gifFigure 4-20 ENOB vs VCMI (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164468.gifFigure 4-22 SNR vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164471.gifFigure 4-24 SNR vs Input Frequency (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164473.gifFigure 4-26 THD vs Supply Voltage (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164485.gifFigure 4-28 SFDR vs Temperature (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164483.gifFigure 4-30 SFDR vs Input Frequency (ADC12D1600RF)
ADC12D1000RF ADC12D1600RF 30164433.gifFigure 4-32 CROSSTALK vs Source Frequency (ADC12D1000RF)
ADC12D1000RF ADC12D1600RF 30164481.gifFigure 4-34 Power Consumption vs Clock Frequency (ADC12D1600RF)