SBAS550C June   2011  – May 2015 ADS4229

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: ADS4229 (250 MSPS)
    6. 7.6  Electrical Characteristics: General
    7. 7.7  Digital Characteristics
    8. 7.8  LVDS and CMOS Modes Timing Requirements
    9. 7.9  LVDS Timings at Lower Sampling Frequencies
    10. 7.10 CMOS Timings at Lower Sampling Frequencies
    11. 7.11 Serial Interface Timing Characteristics
    12. 7.12 Reset Timing (Only when Serial Interface is Used)
    13. 7.13 Typical Characteristics
      1. 7.13.1 Typical Characteristics: ADS4229
      2. 7.13.2 Typical Characteristics: Contour
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Functions
      2. 8.3.2 Gain for SFDR/SNR Trade-off
      3. 8.3.3 Offset Correction
      4. 8.3.4 Power-Down
        1. 8.3.4.1 Global Power-Down
        2. 8.3.4.2 Channel Standby
        3. 8.3.4.3 Input Clock Stop
      5. 8.3.5 Output Data Format
    4. 8.4 Device Functional Modes
      1. 8.4.1 Output Interface Modes
        1. 8.4.1.1 Output Interface
        2. 8.4.1.2 DDR LVDS Outputs
        3. 8.4.1.3 LVDS Buffer
        4. 8.4.1.4 Parallel CMOS Interface
        5. 8.4.1.5 CMOS Interface Power Dissipation
        6. 8.4.1.6 Multiplexed Mode of Operation
    5. 8.5 Programming
      1. 8.5.1 Device Configuration
      2. 8.5.2 Parallel Configuration Only
      3. 8.5.3 Serial Interface Configuration Only
      4. 8.5.4 Using Both Serial Interface and Parallel Controls
      5. 8.5.5 Parallel Configuration Details
      6. 8.5.6 Serial Interface Details
        1. 8.5.6.1 Register Initialization
        2. 8.5.6.2 Serial Register Readout
    6. 8.6 Register Maps
      1. 8.6.1 Serial Register Map
      2. 8.6.2 Description of Serial Registers
        1. 8.6.2.1  Register Address 00h (Default = 00h)
        2. 8.6.2.2  Register Address 01h (Default = 00h)
        3. 8.6.2.3  Register Address 03h (Default = 00h)
        4. 8.6.2.4  Register Address 25h (Default = 00h)
        5. 8.6.2.5  Register Address 29h (Default = 00h)
        6. 8.6.2.6  Register Address 2Bh (Default = 00h)
        7. 8.6.2.7  Register Address 3Dh (Default = 00h)
        8. 8.6.2.8  Register Address 3Fh (Default = 00h)
        9. 8.6.2.9  Register Address 40h (Default = 00h)
        10. 8.6.2.10 Register Address 41h (Default = 00h)
        11. 8.6.2.11 Register Address 42h (Default = 00h)
        12. 8.6.2.12 Register Address 45h (Default = 00h)
        13. 8.6.2.13 Register Address 4Ah (Default = 00h)
        14. 8.6.2.14 Register Address 58h (Default = 00h)
        15. 8.6.2.15 Register Address BFh (Default = 00h)
        16. 8.6.2.16 Register Address C1h (Default = 00h)
        17. 8.6.2.17 Register Address CFh (Default = 00h)
        18. 8.6.2.18 Register Address EFh (Default = 00h)
        19. 8.6.2.19 Register Address F1h (Default = 00h)
        20. 8.6.2.20 Register Address F2h (Default = 00h)
        21. 8.6.2.21 Register Address 2h (Default = 00h)
        22. 8.6.2.22 Register Address D5h (Default = 00h)
        23. 8.6.2.23 Register Address D7h (Default = 00h)
        24. 8.6.2.24 Register Address DBh (Default = 00h)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Theory of Operation
      2. 9.1.2 Analog Input
        1. 9.1.2.1 Drive Circuit Requirements
        2. 9.1.2.2 Driving Circuit
      3. 9.1.3 Clock Input
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Analog Input
        2. 9.2.2.2 Common Mode Voltage Output (VCM)
        3. 9.2.2.3 Clock Driver
        4. 9.2.2.4 Digital Interface
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Sharing DRVDD and AVDD Supplies
    2. 10.2 Using DC/DC Power Supplies
    3. 10.3 Power Supply Bypassing
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Grounding
      2. 11.1.2 Exposed Pad
      3. 11.1.3 Routing Analog Inputs
      4. 11.1.4 Routing Digital Outputs
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Definition of Specifications
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply voltage, AVDD –0.3 2.1 V
Supply voltage, DRVDD –0.3 2.1 V
Voltage between AGND and DRGND –0.3 0.3 V
Voltage between AVDD to DRVDD (when AVDD leads DRVDD) –2.4 2.4 V
Voltage between DRVDD to AVDD (when DRVDD leads AVDD) –2.4 2.4 V
Voltage applied to input pins INP_A, INM_A, INP_B, INM_B –0.3 Minimum
(1.9, AVDD + 0.3)
V
CLKP, CLKM(2) –0.3 AVDD + 0.3 V
RESET, SCLK, SDATA, SEN,
CTRL1, CTRL2, CTRL3
–0.3 3.9 V
Operating free-air temperature, TA –40 85 °C
Operating junction temperature, TJ 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP, CLKM is less than |0.3 V|). This configuration prevents the ESD protection diodes at the clock input pins from turning on.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.
MIN NOM MAX UNIT
SUPPLIES
Analog supply voltage, AVDD 1.7 1.8 1.9 V
Digital supply voltage, DRVDD 1.7 1.8 1.9 V
ANALOG INPUTS
Differential input voltage range 2 VPP
Input common-mode voltage VCM ± 0.05 V
Maximum analog input frequency with 2-VPP input amplitude(1) 400 MHz
Maximum analog input frequency with 1-VPP input amplitude(1) 600 MHz
CLOCK INPUT
Input clock sample rate
Low-speed mode enabled(2) 1 80 MSPS
Low-speed mode disabled(2) (by default after reset) 80 250 MSPS
Input clock amplitude differential
(VCLKP – VCLKM)
Sine wave, ac-coupled 0.2 1.5 VPP
LVPECL, ac-coupled 1.6 VPP
LVDS, ac-coupled 0.7 VPP
LVCMOS, single-ended, ac-coupled 1.5 V
Input clock duty cycle
Low-speed mode disabled 35% 50% 65%
Low-speed mode enabled 40% 50% 60%
DIGITAL OUTPUTS
Maximum external load capacitance from each output pin to DRGND, CLOAD 5 pF
Differential load resistance between the LVDS output pairs (LVDS mode), RLOAD 100 Ω
Operating free-air temperature, TA –40 +85 °C
(2) See Serial Interface Configuration for details on programming the low-speed mode.

7.4 Thermal Information

THERMAL METRIC(1) ADS4229 UNIT
RGC (VQFN)
64 PINS
RθJA Junction-to-ambient thermal resistance 23.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 10.9 °C/W
RθJB Junction-to-board thermal resistance 4.3 °C/W
ψJT Junction-to-top characterization parameter 0.1 °C/W
ψJB Junction-to-board characterization parameter 4.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: ADS4229 (250 MSPS)

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, 50% clock duty cycle, –1 dBFS differential analog input, LVDS interface, and 0-dB gain, unless otherwise noted. Minimum and maximum values are across the full temperature range:
TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 12 Bits
Signal-to-noise ratio SNR fIN = 20 MHz 70.5 dBFS
fIN = 70 MHz 70.3 dBFS
fIN = 100 MHz 70.1 dBFS
fIN = 170 MHz, 0-dB gain 69.8 dBFS
fIN = 170 MHz, 3-dB gain 65.5 67.8 dBFS
fIN = 300 MHz 68.2 dBFS
Signal-to-noise and
distortion ratio
SINAD fIN = 20 MHz 70 dBFS
fIN = 70 MHz 69.7 dBFS
fIN = 100 MHz 69.8 dBFS
fIN = 170 MHz, 0-dB gain 68.1 dBFS
fIN = 170 MHz, 3-dB gain 65 67.5 dBFS
fIN = 300 MHz 67.6 dBFS
Spurious-free dynamic range SFDR fIN = 20 MHz 80 dBc
fIN = 70 MHz 79 dBc
fIN = 100 MHz 82 dBc
fIN = 170 MHz, 0-dB gain 80 dBc
fIN = 170 MHz, 3-dB gain 71 81 dBc
fIN = 300 MHz 77 dBc
Total harmonic distortion THD fIN = 20 MHz 78 dBc
fIN = 70 MHz 77 dBc
fIN = 100 MHz 79 dBc
fIN = 170 MHz, 0-dB gain 76 dBc
fIN = 170 MHz, 3-dB gain 69.5 78 dBc
fIN = 300 MHz 75 dBc
Second-harmonic distortion HD2 fIN = 20 MHz 80 dBc
fIN = 70 MHz 79 dBc
fIN = 100 MHz 81 dBc
fIN = 170 MHz, 0-dB gain 80 dBc
fIN = 170 MHz, 3-dB gain 71 81 dBc
fIN = 300 MHz 76 dBc
Third-harmonic distortion HD3 fIN = 20 MHz 85 dBc
fIN = 70 MHz 87 dBc
fIN = 100 MHz 96 dBc
fIN = 170 MHz, 0-dB gain 80 dBc
fIN = 170 MHz, 3-dB gain 71 87 dBc
fIN = 300 MHz 84 dBc
Worst spur
(other than second and third harmonics)
fIN = 20 MHz 92 dBc
fIN = 70 MHz 95 dBc
fIN = 100 MHz 94 dBc
fIN = 170 MHz, 0-dB gain 93 dBc
fIN = 170 MHz, 3-dB gain 77 92 dBc
fIN = 300 MHz 89 dBc
Two-tone intermodulation distortion IMD f1 = 46 MHz, f2 = 50 MHz,
each tone at –7 dBFS
98 dBFS
f1 = 185 MHz, f2 = 190 MHz,
each tone at –7 dBFS
84 dBFS
Crosstalk 20-MHz full-scale signal on channel under observation; 170-MHz full-scale signal on other channel 95 dB
Input overload recovery Recovery to within 1%
(of full-scale) for 6 dB overload with sine-wave input
1 Clock cycle
AC power-supply rejection ratio PSRR For 50-mVPP signal on AVDD supply, up to 10 MHz 30 dB
Effective number of bits ENOB fIN = 170 MHz 11.15 LSBs
Differential nonlinearity DNL fIN = 170 MHz –0.8 ±0.5 1.5 LSBs
Integrated nonlinearity INL fIN = 170 MHz ±1.8 ±4 LSBs

7.6 Electrical Characteristics: General

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, 50% clock duty cycle, and –1 dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and DRVDD = 1.8 V.
PARAMETER MIN TYP MAX UNIT
ANALOG INPUTS
Differential input voltage range 2 VPP
Differential input resistance (at 200 MHz) 0.75
Differential input capacitance (at 200 MHz) 3.7 pF
Analog input bandwidth
(with 50-Ω source impedance, and 50-Ω termination)
550 MHz
Analog input common-mode current
(per input pin of each channel)
1.5 µA/MSPS
Common-mode output voltage VCM 0.95(2) V
VCM output current capability 4 mA
DC ACCURACY
Offset error –15 2.5 15 mV
Temperature coefficient of offset error 0.003 mV/°C
Gain error as a result of internal reference inaccuracy alone EGREF –2 2 %FS
Gain error of channel alone EGCHAN ±0.1 1 %FS
Temperature coefficient of EGCHAN 0.002 Δ%/°C
POWER SUPPLY
IAVDD
Analog supply current
167 190 mA
IDRVDD
Output buffer supply current
LVDS interface, 350-mV swing with 100-Ω external termination, fIN = 2.5 MHz
136 160 mA
IDRVDD
Output buffer supply current
CMOS interface, no load capacitance, fIN = 2.5 MHz(1)
94 mA
Analog power 301 mW
Digital power
LVDS interface, 350-mV swing with 100-Ω external termination, fIN = 2.5 MHz
245 mW
Digital power
CMOS interface, 8-pF external load capacitance(1)
fIN = 2.5 MHz
169 mW
Global power-down 25 mW
(1) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on output pins, input frequency, and the supply voltage (see CMOS Interface Power Dissipation).
(2) VCM changes to 0.87 V when the HIGH PERF MODE[7:2] serial register bits are set.

7.7 Digital Characteristics

At AVDD = 1.8 V and DRVDD = 1.8 V, unless otherwise noted. DC specifications refer to the condition where the digital outputs do not switch, but are permanently at a valid logic level '0' or '1'.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, CTRL1, CTRL2, CTRL3)(1)
High-level input voltage All digital inputs support 1.8-V and 3.3-V CMOS logic levels 1.3 V
Low-level input voltage 0.4 V
High-level input current SDATA, SCLK(2) VHIGH = 1.8 V 10 µA
SEN(3) VHIGH = 1.8 V 0 µA
Low-level input current SDATA, SCLK VLOW = 0 V 0 µA
SEN VLOW = 0 V 10 µA
DIGITAL OUTPUTS, CMOS INTERFACE (DA[13:0], DB[13:0], CLKOUT, SDOUT)
High-level output voltage DRVDD – 0.1 DRVDD V
Low-level output voltage 0 0.1 V
Output capacitance (internal to device) pF
DIGITAL OUTPUTS, LVDS INTERFACE
High-level output
differential voltage
VODH With an external
100-Ω termination
270 350 430 mV
Low-level output
differential voltage
VODL With an external
100-Ω termination
–430 –350 –270 mV
Output common-mode voltage VOCM 0.9 1.05 1.25 V
(1) SCLK, SDATA, and SEN function as digital input pins in serial configuration mode.
(2) SDATA, SCLK have internal 150-kΩ pull-down resistor.
(3) SEN has an internal 150-kΩ pull-up resistor to AVDD. Because the pull-up is weak, SEN can also be driven by 1.8 V or 3.3 V CMOS buffers.
ADS4229 tim_lvds_vo_level_bas550.gif
1. With external 100-Ω termination.
Figure 1. LVDS Output Voltage Levels

7.8 LVDS and CMOS Modes Timing Requirements(1)

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine wave input clock, CLOAD = 5 pF, and RLOAD = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and DRVDD = 1.7 V to 1.9 V.
PARAMETER DESCRIPTION MIN TYP MAX UNIT
tA Aperture delay 0.5 0.8 1.1 ns
Aperture delay matching Between the two channels of the same device ±70 ps
Variation of aperture delay Between two devices at the same temperature and DRVDD supply ±150 ps
tJ Aperture jitter 140 fS rms
Wakeup time Time to valid data after coming out of STANDBY mode 50 100 µs
Time to valid data after coming out of GLOBAL power-down mode 100 500 µs
ADC latency(4) Default latency after reset 16 Clock cycles
Digital functions enabled (EN DIGITAL = 1) 24 Clock cycles
DDR LVDS MODE(2)
tSU Data setup time Data valid(3) to zero-crossing of CLKOUTP 0.6 0.88 ns
tH Data hold time Zero-crossing of CLKOUTP to data becoming invalid(3) 0.33 0.55 ns
tPDI Clock propagation delay Input clock rising edge cross-over to output clock rising edge cross-over 5 6 7.5 ns
LVDS bit clock duty cycle Duty cycle of differential clock, (CLKOUTP-CLKOUTM) 48%
tRISE,
tFALL
Data rise time,
Data fall time
Rise time measured from –100 mV to +100 mV
Fall time measured from +100 mV to –100 mV
1 MSPS ≤ Sampling frequency ≤ 250 MSPS
0.13 ns
tCLKRISE,
tCLKFALL
Output clock rise time,
Output clock fall time
Rise time measured from –100 mV to +100 mV
Fall time measured from +100 mV to –100 mV
1 MSPS ≤ Sampling frequency ≤ 250 MSPS
0.13 ns
PARALLEL CMOS MODE
tPDI Clock propagation delay Input clock rising edge cross-over to output clock rising edge cross-over 4.5 6.2 8.5 ns
Output clock duty cycle Duty cycle of output clock, CLKOUT
1 MSPS ≤ Sampling frequency ≤ 200 MSPS
50%
tRISE,
tFALL
Data rise time,
Data fall time
Rise time measured from 20% to 80% of DRVDD
Fall time measured from 80% to 20% of DRVDD
1 MSPS ≤ Sampling frequency ≤ 200 MSPS
0.7 ns
tCLKRISE,
tCLKFALL
Output clock rise time
Output clock fall time
Rise time measured from 20% to 80% of DRVDD
Fall time measured from 80% to 20% of DRVDD
1 MSPS ≤ Sampling frequency ≤ 200 MSPS
0.7 ns
(1) Timing parameters are ensured by design and characterization and not tested in production.
(2) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and the load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(3) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.
(4) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.

7.9 LVDS Timings at Lower Sampling Frequencies

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine wave input clock, CLOAD = 5 pF, and RLOAD = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and DRVDD = 1.7 V to 1.9 V.
SAMPLING FREQUENCY (MSPS) SETUP TIME (ns) HOLD TIME (ns) tPDI, CLOCK PROPAGATION
DELAY (ns)
MIN TYP MAX MIN TYP MAX MIN TYP MAX
65 5.9 6.6 0.35 0.6 5 6 7.5
80 4.5 5.2 0.35 0.6 5 6 7.5
125 2.3 2.9 0.35 0.6 5 6 7.5
160 1.5 2 0.33 0.55 5 6 7.5
185 1.3 1.6 0.33 0.55 5 6 7.5
200 1.1 1.4 0.33 0.55 5 6 7.5
230 0.76 1.06 0.33 0.55 5 6 7.5

7.10 CMOS Timings at Lower Sampling Frequencies

Typical values are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, sampling frequency = 250 MSPS, sine wave input clock, CLOAD = 5 pF, and RLOAD = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C, AVDD = 1.8 V, and DRVDD = 1.7 V to 1.9 V.
SAMPLING FREQUENCY (MSPS) TIMINGS SPECIFIED WITH RESPECT TO CLKOUT
SETUP TIME(1) (ns) HOLD TIME(1) (ns) tPDI, CLOCK PROPAGATION
DELAY (ns)
MIN TYP MAX MIN TYP MAX MIN TYP MAX
65 6.1 6.7 6.7 7.5 4.5 6.2 8.5
80 4.7 5.2 5.3 6 4.5 6.2 8.5
125 2.7 3.1 3.1 3.6 4.5 6.2 8.5
160 1.6 2.1 2.3 2.8 4.5 6.2 8.5
185 1.1 1.6 1.9 2.4 4.5 6.2 8.5
200 1 1.4 1.7 2.2 4.5 6.2 8.5
(1) In CMOS mode, setup time is measured from the beginning of data valid to 50% of the CLKOUT rising edge, whereas hold time is measured from 50% of the CLKOUT rising edge to data becoming invalid. Data valid refers to a logic high of 1.26 V and a logic low of 0.54 V.
ADS4229 tim_cmos_iface_bas533.gif
1. Dn = bits D0, D1, D2, and so forth, of channels A and B.
Figure 2. CMOS Interface Timing Diagram
ADS4229 tim_latency_bas550.gif
1. ADC latency after reset. At higher sampling frequencies, tPDI is greater than one clock cycle, which then makes the overall latency = ADC latency + 1.
2. E = even bits (D0, D2, D4, and so forth); O = odd bits (D1, D3, D5, and so forth).
Figure 3. Latency Timing Diagram
ADS4229 tim_lvds_iface_422x_bas533.gifFigure 4. LVDS Interface Timing Diagram

7.11 Serial Interface Timing Characteristics

See (1).
PARAMETER MIN TYP MAX UNIT
fSCLK SCLK frequency (equal to 1/tSCLK) > DC 20 MHz
tSLOADS SEN to SCLK setup time 25 ns
tSLOADH SCLK to SEN hold time 25 ns
tDSU SDATA setup time 25 ns
tDH SDATA hold time 25 ns
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C,
AVDD = 1.8 V, and DRVDD = 1.8 V, unless otherwise noted.
ADS4229 tim_serial_iface_bas533.gifFigure 5. Serial Interface Timing Diagram

7.12 Reset Timing (Only when Serial Interface is Used)

See (1).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t1 Power-on delay Delay from AVDD and DRVDD power-up to active RESET pulse 1 ms
t2 Reset pulse width Active RESET signal pulse width 10 ns
1 µs
t3 Register write delay Delay from RESET disable to SEN active 100 ns
(1) Typical values at +25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = +85°C, unless otherwise noted.
ADS4229 tim_reset_bas533.gif
NOTE: A high pulse on the RESET pin is required in the serial interface mode when initialized through a hardware reset. For parallel interface operation, RESET must be permanently tied high.
Figure 6. Reset Timing Diagram

7.13 Typical Characteristics

7.13.1 Typical Characteristics: ADS4229

At TA = +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.
ADS4229 tc_fft_10mhz_bas550.pngFigure 7. Input Signal (10 MHz)
ADS4229 tc_fft_300mhz_bas550.pngFigure 9. Input Signal (300 MHz)
ADS4229 tc_fft_2tone_36dbfs_bas550.pngFigure 11. Two-Tone Input Signal
ADS4229 tc_snr-fin_bas550.pngFigure 13. SNR vs Input Frequency
ADS4229 tc_sinad-g_fin_bas550.pngFigure 15. SINAD vs Gain and Input Frequency
ADS4229 tc_perf-inamp_150mhz_bas550.pngFigure 17. Performance vs Input Amplitude
ADS4229 tc_perf-vcm_150mhz_bas550.pngFigure 19. Performance vs Input Common-Mode Voltage
ADS4229 tc_snr-tmp_avdd_bas550.pngFigure 21. SNR vs Temperature and AVDD Supply
ADS4229 tc_perf-clkamp_40mhz_bas550.pngFigure 23. Performance vs Input Clock Amplitude
ADS4229 tc_perf-clkdcy_bas550.pngFigure 25. Performance vs Input Clock Duty Cycle
ADS4229 tc_cmrr_bas550.gifFigure 27. CMRR Plot
ADS4229 tc_psrr_bas550.gifFigure 29. PSRR Plot
ADS4229 tc_digi_pwr_bas550.pngFigure 31. Digital Power LVDS CMOS
ADS4229 tc_fft_150mhz_bas550.pngFigure 8. Input Signal (150 MHz)
ADS4229 tc_fft_2tone_7dbfs_bas550.pngFigure 10. Two-Tone Input Signal
ADS4229 tc_sfdr-fin_bas550.pngFigure 12. SFDR vs Input Frequency
ADS4229 tc_sfdr-g_fin_bas550.pngFigure 14. SFDR vs Gain and Input Frequency
ADS4229 tc_perf-inamp_40mhz_bas550.pngFigure 16. Performance vs Input Amplitude
ADS4229 tc_perf-vcm_40mhz_bas550.pngFigure 18. Performance vs Input Common-Mode Voltage
ADS4229 tc_sfdr-tmp_avdd_bas550.pngFigure 20. SFDR vs Temperature and AVDD Supply
ADS4229 tc_perf-drvdd_bas550.pngFigure 22. Performance vs DRVDD Supply Voltage
ADS4229 tc_perf-clkamp_150mhz_bas550.pngFigure 24. Performance vs Input Clock Amplitude
ADS4229 tc_cmrr-test_bas550.pngFigure 26. CMRR vs Test Signal Frequency
ADS4229 tc_psrr-test_bas550.pngFigure 28. PSRR vs Test Signal Frequency
ADS4229 tc_ana_pwr-fsample_bas550.pngFigure 30. Analog Power vs Sampling Frequency
ADS4229 tc_digi_pwr_various_bas550.pngFigure 32. Digital Power in Various Modes

7.13.2 Typical Characteristics: Contour

All graphs are at +25°C, AVDD = 1.8 V, DRVDD = 1.8 V, maximum rated sampling frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, High-Performance Mode enabled, 0-dB gain, DDR LVDS output interface, and 32k point FFT, unless otherwise noted.
ADS4229 tc_contour_sfdr_0db_bas550.gifFigure 33. Spurious-Free Dynamic Range (0-dB Gain)
ADS4229 tc_contour_sfdr_6db_bas550.gifFigure 34. Spurious-Free Dynamic Range (6-dB Gain)
ADS4229 tc_contour_snr_0db_bas550.gifFigure 35. Signal-to-Noise Ratio (0-dB Gain)
ADS4229 tc_contour_snr_6db_bas550.gifFigure 36. Signal-to-Noise Ratio (6-dB Gain)