JAJS137I NOVEMBER   2006  – November 2016 DCH010505D , DCH010505S , DCH010512D , DCH010512S , DCH010515D , DCH010515S

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. Device Comparison Tables
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Repeated High-Voltage Isolation Testing
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Isolation
        1. 8.3.1.1 Operation or Functional Isolation
        2. 8.3.1.2 Basic or Enhanced Isolation
        3. 8.3.1.3 Continuous Voltage
        4. 8.3.1.4 Isolation Voltage
        5. 8.3.1.5 Repeated High-Voltage Isolation Testing
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Optional Input and Output Filters
        1. 9.1.1.1 Input and Output Capacitors
        2. 9.1.1.2 π Filters
      2. 9.1.2 Start-Up
      3. 9.1.3 Connecting the DCH01 in Series
      4. 9.1.4 Connecting the DCH01 in Parallel
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Capacitor
        2. 9.2.2.2 Output Capacitor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 関連リンク
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 コミュニティ・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage (5-V input models) 7 V
Storage temperature, Tstg –55 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
+VI Input voltage 4.5 5.5 V
TA Operating ambient temperature –40 85 °C

Thermal Information

THERMAL METRIC(1) DCH01 SERIES UNIT
EDJ
(SIP-SINGLE)
EDJ
(SIP-DUAL)
7 PINS 7 PINS
RθJA Junction-to-ambient thermal resistance 66 66 °C/W
ψJT Junction-to-top characterization parameter 3 3 °C/W
ψJB Junction-to-board characterization parameter 66 66 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

At TA = 25°C and VI = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VI Input voltage All devices nominal 5 V
VNOM Output voltage 100% load(1) DCH010505S 5.1 V
DCH010505D ±5.2
DCH010512S 12.4
DCH010512D ±12.5
DCH010515S 15.2
DCH010515D ±15.3
Load regulation 10% to 100% load(2) DCH010505S 10%
DCH010505D 9%
DCH010512S 6%
DCH010512D 5%
DCH010515S 6%
DCH010515D 5%
Output ripple 100% LOAD(1) DCH010505S 35 mVPP
DCH010505D 20
DCH010512S 18
DCH010512D 19
DCH010515S 31
DCH010515D 22
IQ Input current No load; 0% load DCH010505x 60 mA
DCH010512x 65
DCH010515x 65
Efficiency 100% load(1) DCH010505x 72%
DCH010512S 74%
DCH010512D 75%
DCH010515S 75%
DCH010515D 76%
CISO Barrier capacitance DCH010505x & DCH010515x 3 pF
DCH010512x 4
Output power 100% full load 1(3) W
Over current duration(3) 1 sec
Input voltage on VI –10% 10%
Isolation voltage 100% tested for 1 second 3.5 kVDC
Line regulation 1% change in VI 1%
Switching frequency (fSW) 70 kHz
Calculated reliability Per Telcordia SR-332, 50% stress,
TA = 40°C
Single output 18 FITS
Dual output 22
100% load current = 1 W / VNOM typical.
Load regulation = (VO at 10% load – VO at 100% load) / VO at 100% load.
This converter does not have continuous over-current protection.

Typical Characteristics

at TA = 25°C and VIN = 5 V (unless otherwise noted)
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05s_eff_bvs073.gif Figure 1. DCH010505S Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05s_load_bvs073.gif Figure 3. DCH010505S Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05s_rip_bvs073.gif Figure 5. DCH010505S Ripple Voltage
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12s_eff_bvs073.gif Figure 7. DCH010512S Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12s_load_bvs073.gif Figure 9. DCH010512S Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12s_rip_bvs073.gif Figure 11. DCH010512S Ripple Voltage
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15s_eff_bvs073.gif Figure 13. DCH010515S Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15s_load_bvs073.gif Figure 15. DCH010515S Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15s_rip_bvs073.gif Figure 17. DCH010515S Ripple Voltage
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_safe_bvs073.gif Figure 19. Safe Operating Area (All DCH0105 Products)
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05d_eff_bvs073.gif Figure 2. DCH010505D Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05d_load_bvs073.gif Figure 4. DCH010505D Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_05d_rip_bvs073.gif Figure 6. DCH010505D Ripple Voltage
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12d_eff_bvs073.gif Figure 8. DCH010512D Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12d_load_bvs073.gif Figure 10. DCH010512D Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_12d_rip_bvs073.gif Figure 12. DCH010512D Ripple Voltage
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15d_eff_bvs073.gif Figure 14. DCH010515D Efficiency
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15d_load_bvs073.gif Figure 16. DCH010515D Load Regulation
DCH010505D DCH010505S DCH010512D DCH010512S DCH010515D DCH010515S tc_15d_rip_bvs073.gif Figure 18. DCH010515D Ripple Voltage