JAJSFP1G April   2016  – May 2019 DLP5531-Q1

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      DLP5531-Q1 DLPチップセットのシステム・ブロック図
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions – Connector Pins
    2.     Pin Functions – Test Pads
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Micromirror Array Optical Characteristics
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Sub-LVDS Data Interface
      2. 7.3.2 Low Speed Interface for Control
      3. 7.3.3 DMD Voltage Supplies
      4. 7.3.4 Asynchronous Reset
      5. 7.3.5 Temperature Sensing Diode
        1. 7.3.5.1 Temperature Sense Diode Theory
    4. 7.4 System Optical Considerations
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill
    5. 7.5 DMD Image Performance Specification
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Temperature Rise Through the Package for Heatsink Design
      2. 7.6.2 Monitoring Array Temperature Using the Temperature Sense Diode
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application Overview
      2. 8.2.2 Reference Design
      3. 8.2.3 Application Mission Profile Consideration
  9. Power Supply Recommendations
    1. 9.1 Power Supply Power-Up Procedure
    2. 9.2 Power Supply Power-Down Procedure
    3. 9.3 Power Supply Sequencing Requirements
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デバイスの項目表記
      2. 11.1.2 デバイスのマーキング
    2. 11.2 関連リンク
    3. 11.3 コミュニティ・リソース
    4. 11.4 商標
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 DMD の取り扱い
    7. 11.7 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • FYK|149
サーマルパッド・メカニカル・データ
発注情報

Temperature Rise Through the Package for Heatsink Design

When designing the DMD heatsink solution, the package thermal resistance from array to reference ceramic temperature (thermocouple location TP1 in Figure 19)  can be used to determine the temperature rise through the package as given by the following equations:

Equation 1. TARRAY-TO-CERAMIC = QARRAY × RARRAY–TO–CERAMIC
Equation 2. QILLUMINATION = (QINCIDENT × DMD Absorption Constant)
Equation 3. QARRAY = QELECTRICAL + QILLUMINATION

where

  • TARRAY-TO-CERAMIC = temperature rise from array to thermal test point TP1 (°C/W)
  • TCERAMIC = measured ceramic temperature, at the TP1 location in Figure 19 (°C)
  • RARRAY–TO–CERAMIC = DMD package thermal resistance from array to thermal test point TP1 (°C/W)
    See Thermal Information
  • QARRAY = total power, electrical plus absorbed, on the DMD array (W)
  • QELECTRICAL = nominal electrical power dissipation by the DMD (W)
  • QILLUMINATION = absorbed illumination heat load (W)
  • QINCIDENT = incident power on the DMD (W)

The DMD package thermal resistance from array to ceramic (RARRAY–TO–CERAMIC) assumes a non-uniform illumination distribution on the DMD as shown in Figure 20. For illumination profiles more uniform than the one highlighted in Figure 20, the value provided here is valid.  However, for more non-uniform profiles (e.g. Gaussian distribution) the thermal resistance will be higher. Please contact TI to determine an accurate value for this case.

DLP5531-Q1 non_uniform_illum_profile.gifFigure 20. Non-Uniform Illumination Profile

The DMD absorption constant is a function of illumination distribution on the active array and the array border, angle of incidence (AOI), f number of the system, and operating state of the mirrors. The absorption constant is higher in the OFF state than in the ON state. Equations to calculate the absorption constant are provided for both ON and OFF mirror states. They assume an AOI of 34 degrees, an f/1.7 system, and they account for the distribution of light on the active array, POM, and array border.

Equation 4. DMD Absorption Constant (OFF state) = 0.895 – 0.004783 × (% of light on ActiveArray + POM)
Equation 5. DMD Absorption Constant (ON state) = 0.895 – 0.007208 × (% of light on ActiveArray + POM)

Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies.

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

  1. DMD Absorption Constant = 0.895 – 0.004783 × 90 = 0.46
  2. QELECTRICAL = 0.4 W
  3. RARRAY–TO–CERAMIC = 1.3°C/W
  4. QINCIDENT = 10 W
  5. QARRAY = 0.4 W + (0.46 × 10 W) = 5 W
  6. TARRAY-TO-CERAMIC = 5 W × 1.3°C/W = 6.5°C