JAJSL98B October   2020  – June 2021 LMG3522R030-Q1 , LMG3525R030-Q1

ADVANCE INFORMATION  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
  8. Parameter Measurement Information
    1. 8.1 Switching Parameters
      1. 8.1.1 Turn-On Delays
      2. 8.1.2 Turn-Off Delays
      3. 8.1.3 Drain Slew Rate
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Direct-Drive GaN Architecture
      2. 9.3.2 Drain-Source Voltage Capability
      3. 9.3.3 Internal Buck-Boost DC-DC Converter
      4. 9.3.4 VDD Bias Supply
      5. 9.3.5 Auxiliary LDO
      6. 9.3.6 Fault Detection
        1. 9.3.6.1 Overcurrent Protection and Short-Circuit Protection
        2. 9.3.6.2 Overtemperature Shutdown
        3. 9.3.6.3 UVLO Protection
        4. 9.3.6.4 Fault Reporting
      7. 9.3.7 Drive Strength Adjustment
      8. 9.3.8 Temperature-Sensing Output
      9. 9.3.9 Sync-FET Mode Operation
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Slew Rate Selection
          1. 10.2.2.1.1 Start-Up and Slew Rate With Bootstrap High-Side Supply
        2. 10.2.2.2 Signal Level-Shifting
        3. 10.2.2.3 Buck-Boost Converter Design
    3. 10.3 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Using an Isolated Power Supply
    2. 11.2 Using a Bootstrap Diode
      1. 11.2.1 Diode Selection
      2. 11.2.2 Managing the Bootstrap Voltage
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Power Loop Inductance
      2. 12.1.2 Signal Ground Connection
      3. 12.1.3 Bypass Capacitors
      4. 12.1.4 Switch-Node Capacitance
      5. 12.1.5 Signal Integrity
      6. 12.1.6 High-Voltage Spacing
      7. 12.1.7 Thermal Recommendations
    2. 12.2 Layout Examples
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 サポート・リソース
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Export Control Notice
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information
    1. 14.1 Tape and Reel Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RQS|52
サーマルパッド・メカニカル・データ
発注情報

Using an Isolated Power Supply

Using an isolated power supply to power the high-side device has the advantage that it will work regardless of continued power-stage switching or duty cycle. It can also power the high-side device before power-stage switching begins, eliminating the power-loss concern of switching with an unpowered LMG352xR030-Q1 (see Section 10.2.2.1.1 for details). Finally, a properly-selected isolated supply will introduce less parasitics and reduce noise coupling.

The isolated supply can be obtained with a push-pull converter, a flyback converter, a FlyBuck™ converter, or an isolated power module. When using an unregulated supply, the input of LMG352xR030-Q1 should not exceed the maximum supply voltage. A 16-V TVS diode could be used to clamp the VDD voltage of LMG352xR030-Q1. Minimizing the inter-winding capacitance of the isolated power supply or transformer is necessary to reduce switching loss in hard-switched applications.