SNAS674B September   2015  – February 2017 LMK61E2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Supply
    6. 6.6  LVPECL Output Characteristics
    7. 6.7  LVDS Output Characteristics
    8. 6.8  HCSL Output Characteristics
    9. 6.9  OE Input Characteristics
    10. 6.10 ADD Input Characteristics
    11. 6.11 Frequency Tolerance Characteristics
    12. 6.12 Power-On/Reset Characteristics (VDD)
    13. 6.13 I2C-Compatible Interface Characteristics (SDA, SCL)
    14. 6.14 PSRR Characteristics
    15. 6.15 Other Characteristics
    16. 6.16 PLL Clock Output Jitter Characteristics
    17. 6.17 Typical 156.25-MHz Output Phase Noise Characteristics
    18. 6.18 Typical 161.1328125 MHz Output Phase Noise Characteristics
    19. 6.19 Additional Reliability and Qualification
    20. 6.20 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Device Output Configurations
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Block-Level Description
      2. 8.3.2  Device Configuration Control
      3. 8.3.3  Register File Reference Convention
      4. 8.3.4  Configuring the PLL
      5. 8.3.5  Integrated Oscillator
      6. 8.3.6  Reference Doubler
      7. 8.3.7  Phase Frequency Detector
      8. 8.3.8  Feedback Divider (N)
      9. 8.3.9  Fractional Circuitry
      10. 8.3.10 Charge Pump
      11. 8.3.11 Loop Filter
      12. 8.3.12 VCO Calibration
      13. 8.3.13 High-Speed Output Divider
      14. 8.3.14 High-Speed Clock Output
      15. 8.3.15 Device Status
        1. 8.3.15.1 Loss of Lock
    4. 8.4 Device Functional Modes
      1. 8.4.1 Interface and Control
    5. 8.5 Programming
      1. 8.5.1 I2C Serial Interface
      2. 8.5.2 Block Register Write
      3. 8.5.3 Block Register Read
      4. 8.5.4 Write SRAM
      5. 8.5.5 Write EEPROM
      6. 8.5.6 Read SRAM
      7. 8.5.7 Read EEPROM
    6. 8.6 EEPROM Map
    7. 8.7 Register Map
      1. 8.7.1 Register Descriptions
        1. 8.7.1.1  VNDRID_BY1 Register; R0
        2. 8.7.1.2  VNDRID_BY0 Register; R1
        3. 8.7.1.3  PRODID Register; R2
        4. 8.7.1.4  REVID Register; R3
        5. 8.7.1.5  SLAVEADR Register; R8
        6. 8.7.1.6  EEREV Register; R9
        7. 8.7.1.7  DEV_CTL Register; R10
        8. 8.7.1.8  XO_CAPCTRL_BY1 Register; R16
        9. 8.7.1.9  XO_CAPCTRL_BY0 Register; R17
        10. 8.7.1.10 DIFFCTL Register; R21
        11. 8.7.1.11 OUTDIV_BY1 Register; R22
        12. 8.7.1.12 OUTDIV_BY0 Register; R23
        13. 8.7.1.13 PLL_NDIV_BY1 Register; R25
        14. 8.7.1.14 PLL_NDIV_BY0 Register; R26
        15. 8.7.1.15 PLL_FRACNUM_BY2 Register; R27
        16. 8.7.1.16 PLL_FRACNUM_BY1 Register; R28
        17. 8.7.1.17 PLL_FRACNUM_BY0 Register; R29
        18. 8.7.1.18 PLL_FRACDEN_BY2 Register; R30
        19. 8.7.1.19 PLL_FRACDEN_BY1 Register; R31
        20. 8.7.1.20 PLL_FRACDEN_BY0 Register; R32
        21. 8.7.1.21 PLL_MASHCTRL Register; R33
        22. 8.7.1.22 PLL_CTRL0 Register; R34
        23. 8.7.1.23 PLL_CTRL1 Register; R35
        24. 8.7.1.24 PLL_LF_R2 Register; R36
        25. 8.7.1.25 PLL_LF_C1 Register; R37
        26. 8.7.1.26 PLL_LF_R3 Register; R38
        27. 8.7.1.27 PLL_LF_C3 Register; R39
        28. 8.7.1.28 PLL_CALCTRL Register; R42
        29. 8.7.1.29 NVMSCRC Register; R47
        30. 8.7.1.30 NVMCNT Register; R48
        31. 8.7.1.31 NVMCTL Register; R49
        32. 8.7.1.32 MEMADR Register; R51
        33. 8.7.1.33 NVMDAT Register; R52
        34. 8.7.1.34 RAMDAT Register; R53
        35. 8.7.1.35 NVMUNLK Register; R56
        36. 8.7.1.36 INT_LIVE Register; R66
        37. 8.7.1.37 SWRST Register; R72
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Jitter Considerations in Serdes Systems
      2. 9.2.2 Frequency Margining
        1. 9.2.2.1 Fine Frequency Margining
        2. 9.2.2.2 Coarse Frequency Margining
      3. 9.2.3 Design Requirements
        1. 9.2.3.1 Detailed Design Procedure
          1. 9.2.3.1.1 Custom Design With WEBENCH® Tools
          2. 9.2.3.1.2 Device Selection
          3. 9.2.3.1.3 VCO Frequency Calculation
          4. 9.2.3.1.4 Device Configuration
          5. 9.2.3.1.5 PLL Loop Filter Design
          6. 9.2.3.1.6 Spur Mitigation Techniques
            1. 9.2.3.1.6.1 Phase Detection Spur
            2. 9.2.3.1.6.2 Integer Boundary Fractional Spur
            3. 9.2.3.1.6.3 Primary Fractional Spur
            4. 9.2.3.1.6.4 Sub-Fractional Spur
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Ensured Thermal Reliability
      2. 11.1.2 Best Practices for Signal Integrity
      3. 11.1.3 Recommended Solder Reflow Profile
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VDD Device supply voltage –0.3 3.6 V
VIN Output voltage for logic inputs –0.3 VDD + 0.3 V
VOUT Output voltage for clock outputs –0.3 VDD + 0.3 V
TJ Junction temperature 150 °C
Tstg Storage temperature –40 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Device supply voltage 3.135 3.3 3.465 V
TA Ambient temperature –40 25 85 °C
TJ Junction temperature 125 °C
tRAMP VDD power-up ramp time 0.1 100 ms

Thermal Information

THERMAL METRIC(1) LMK61E2 (2) (3) (4) UNIT
QFM (SIA)
8 PINS
AIRFLOW (LFM) 0 AIRFLOW (LFM) 200 AIRFLOW (LFM) 400
RθJA Junction-to-ambient thermal resistance 54 44 41.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 34 n/a n/a °C/W
RθJB Junction-to-board thermal resistance 36.7 n/a n/a °C/W
ψJT Junction-to-top characterization parameter 11.2 16.9 21.9 °C/W
ψJB Junction-to-board characterization parameter 36.7 37.8 38.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a n/a °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The package thermal resistance is calculated on a 4-layer JEDEC board.
Connected to GND with 3 thermal vias (0.3-mm diameter).
ψJB (junction-to-board) is used when the main heat flow is from the junction to the GND pad. See the Layout section for more information on ensuring good system reliability and quality.

Electrical Characteristics - Power Supply(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDD Device current consumption LVPECL(2) 162 208 mA
LVDS 152 196
HCSL 155 196
IDD-PD Device current consumption when output is disabled OE = GND 136 mA
See Parameter Measurement Information for relevant test conditions.
On-chip power dissipation should exclude 40 mW, dissipated in the 150-Ω termination resistors, from total power dissipation.

LVPECL Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency(2) 10 1000 MHz
VOD Output voltage swing
(VOH – VOL)(2)
700 800 1200 mV
VOUT, DIFF, PP Differential output peak-to-peak swing 2 × |VOD| V
VOS Output common-mode voltage VDD – 1.55 V
tR / tF Output rise/fall time (20% to 80%)(3) 120 200 ps
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 156.25 MHz –165 dBc/Hz
ODC Output duty cycle(3) 45% 55%
See Parameter Measurement Information for relevant test conditions.
An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.
Ensured by characterization.

LVDS Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency(1) 10 900 MHz
VOD Output voltage swing
(VOH – VOL)(1)
300 390 480 mV
VOUT, DIFF, PP Differential output peak-to-peak swing 2 × |VOD| V
VOS Output common-mode voltage 1.2 V
tR / tF Output rise/fall time (20% to 80%)(2) 150 250 ps
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 156.25 MHz –162 dBc/Hz
ODC Output duty cycle(2) 45% 55%
ROUT Differential output impedance 125 Ω
An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.
Ensured by characterization.

HCSL Output Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOUT Output frequency 10 400 MHz
VOH Output high voltage 600 850 mV
VOL Output low voltage –100 100 mV
VCROSS Absolute crossing voltage(2)(3) 250 475 mV
VCROSS-DELTA Variation of VCROSS(2)(3) 0 140 mV
dV/dt Slew rate(4) 0.8 2 V/ns
PN-Floor Output phase noise floor (fOFFSET > 10 MHz) 100 MHz –164 dBc/Hz
ODC Output duty cycle(4) 45% 55%
See Parameter Measurement Information for relevant test conditions.
Measured from –150 mV to +150 mV on the differential waveform with the 300-mVpp measurement window centered on the differential zero crossing.
Ensured by design.
Ensured by characterization.

OE Input Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.4 V
VIL Input low voltage 0.6 V
IIH Input high current VIH = VDD –40 40 µA
IIL Input low current VIL = GND –40 40 µA
CIN Input capacitance 2 pF

ADD Input Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.4 V
VIL Input low voltage 0.4 V
IIH Input high current VIH = VDD –40 40 µA
IIL Input low current VIL = GND –40 40 µA
CIN Input capacitance 2 pF

Frequency Tolerance Characteristics(1)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fT Total frequency tolerance All output formats, frequency bands and device junction temperature up to 125°C; includes initial freq tolerance, temperature & supply voltage variation, solder reflow and aging (10 years) –50 50 ppm
Ensured by characterization.

Power-On/Reset Characteristics (VDD)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VTHRESH Threshold voltage(1) 2.72 2.95 V
VDROOP Allowable voltage droop(2) 0.1 V
tSTARTUP Start-up time (1) Time elapsed from VDD at 3.135 V to output enabled 10 ms
tOE-EN Output enable time(2) Time elapsed from OE at VIH to output enabled 50 µs
tOE-DIS Output disable time(2) Time elapsed from OE at VIL to output disabled 50 µs
Ensured by characterization.
Ensured by design.

I2C-Compatible Interface Characteristics (SDA, SCL)(1)(2)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH Input high voltage 1.2 V
VIL Input low voltage 0.6 V
IIH Input leakage –40 40 µA
CIN Input capacitance 2 pF
COUT Input capacitance 400 pF
VOL Output low voltage IOL = 3 mA 0.6 V
fSCL I2C clock rate 100 400 kHz
tSU_STA START condition setup time SCL high before SDA low 0.6 µs
tH_STA START condition hold time SCL low after SDA low 0.6 µs
tPH_SCL SCL pulse width high 0.6 µs
tPL_SCL SCL pulse width low 1.3 µs
tH_SDA SDA hold time SDA valid after SCL low 0 0.9 µs
tSU_SDA SDA setup time 115 ns
tR_IN / tF_IN SCL/SDA input rise and fall time 300 ns
tF_OUT SDA output fall time CBUS = 10 pF to 400 pF 250 ns
tSU_STOP STOP condition setup time 0.6 µs
tBUS Bus free time between STOP and START 1.3 µs
Total capacitive load for each bus line ≤ 400 pF.
Ensured by design.

PSRR Characteristics(1)

VDD = 3.3 V, TA = 25°C, PLL bandwidth = 400 kHz, VCO Frequency = 5 GHz (Integer-N PLL), Output Divider = 32, Output Type = LVPECL/LVDS/HCSL
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PSRR Spurs induced by 50-mV power supply ripple(2)(3) at 156.25-MHz output, all output types Sine wave at 50 kHz –70 dBc
Sine wave at 100 kHz –70
Sine wave at 500 kHz –70
Sine wave at 1 MHz –70
See Parameter Measurement Information for relevant test conditions.
Measured maximum spur level with 50-mVpp sinusoidal signal between 50 kHz and 1 MHz applied on VDD pin
DJSPUR (ps, pk-pk) = [2 × 10(SPUR/20) / (π × fOUT)] × 1e6, where PSRR or SPUR in dBc and fOUT in MHz.

Other Characteristics

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fVCO VCO frequency range 4.6 5.6 GHz

PLL Clock Output Jitter Characteristics(1)(3)

VDD = 3.3 V ± 5%, TA = –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
(1 kHz – 5 MHz)
fOUT ≥ 100 MHz, Integer-N PLL, All output types 100 200 fs RMS
RJ RMS phase jitter(2)
(12 kHz – 20 MHz)
(1 kHz – 5 MHz)
fOUT ≥ 100 MHz, Fractional-N PLL, All output types 150 300 fs RMS
See Parameter Measurement Information for relevant test conditions.
Ensured by characterization.
Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).

Typical 156.25-MHz Output Phase Noise Characteristics(1)(2)

VDD = 3.3 V, TA = 25°C, PLL bandwidth = 400 kHz, VCO Frequency = 5 GHz, Integer-N PLL, Output Divider = 32, Output Type = LVPECL/LVDS/HCSL
PARAMETER OUTPUT TYPE UNIT
LVPECL LVDS HCSL
phn10k Phase noise at 10-kHz offset –143 –143 –143 dBc/Hz
Phn20k Phase noise at 20-kHz offset –143 –143 –143 dBc/Hz
phn100k Phase noise at 100-kHz offset –144 –144 –144 dBc/Hz
Phn200k Phase noise at 200-kHz offset –145 –145 –145 dBc/Hz
phn1M Phase noise at 1-MHz offset –150 –150 –150 dBc/Hz
phn2M Phase noise at 2-MHz offset –154 –154 –154 dBc/Hz
phn10M Phase noise at 10-MHz offset –165 –162 –164 dBc/Hz
phn20M Phase noise at 20-MHz offset –165 –162 –164 dBc/Hz
See Parameter Measurement Information for relevant test conditions.
Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).

Typical 161.1328125 MHz Output Phase Noise Characteristics(1)(2)

VDD = 3.3 V, TA = 25°C, PLL bandwidth = 400 kHz, VCO Frequency = 5.15625 GHz, Fractional-N PLL, Output Divider = 32, Output Type = LVPECL/LVDS/HCSL
PARAMETER OUTPUT TYPE UNIT
LVPECL LVDS HCSL
phn10k Phase noise at 10-kHz offset –136 –136 –136 dBc/Hz
phn20k Phase noise at 20-kHz offset –136 –136 –136 dBc/Hz
phn100k Phase noise at 100-kHz offset –140 –140 –140 dBc/Hz
phn200k Phase noise at 200-kHz offset –141 –141 –141 dBc/Hz
phn1M Phase noise at 1-MHz offset –148 –148 –148 dBc/Hz
phn2M Phase noise at 2-MHz offset –156 –156 –156 dBc/Hz
phn10M Phase noise at 10-MHz offset –161 –159 –160 dBc/Hz
phn20M Phase noise at 20-MHz offset –162 –160 –161 dBc/Hz
See Parameter Measurement Information for relevant test conditions.
Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).

Additional Reliability and Qualification

PARAMETER CONDITION / TEST METHOD
Mechanical Shock MIL-STD-202, Method 213
Mechanical Vibration MIL-STD-202, Method 204
Moisture Sensitivity Level J-STD-020, MSL3

Typical Characteristics

LMK61E2 D001_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 1. Closed-Loop Phase Noise of LVPECL Differential Output at 156.25 MHz
LMK61E2 D003_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 3. Closed-Loop Phase Noise of HCSL Differential Output at 156.25 MHz
LMK61E2 D005_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 5. Closed-Loop Phase Noise of LVDS Differential Output at 161.1328125 MHz
LMK61E2 D007_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 7. 156.25 ± 78.125-MHz LVPECL Differential Output Spectrum
LMK61E2 D009_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 9. 156.25 ± 78.125-MHz HCSL Differential Output Spectrum
LMK61E2 D011_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 11. 161.1328125 ± 80.56640625-MHz LVDS Output Spectrum
LMK61E2 D013_SNAS674.gif
Figure 13. LVPECL Differential Output Swing vs Frequency
LMK61E2 D015_SNAS674.gif
Figure 15. HCSL Differential Output Swing vs Frequency
LMK61E2 D002_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 2. Closed-Loop Phase Noise of LVDS Differential Output at 156.25 MHz
LMK61E2 D004_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 4. Closed-Loop Phase Noise of LVPECL Differential Output at 161.1328125 MHz
LMK61E2 D006_SNAS674.png
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 6. Closed-Loop Phase Noise of HCSL Differential Output at 161.1328125 MHz
LMK61E2 D008_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5 GHz
Integer-N PLL Output Divider = 32
Figure 8. 156.25 ± 78.125-MHz LVDS Differential Output Spectrum
LMK61E2 D010_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 10. 161.1328125 ± 80.56640625-MHz LVPECL Differential Output Spectrum
LMK61E2 D012_SNAS674.gif
PLL Bandwidth = 400 kHz VCO Frequency = 5.15625 GHz
Fractional-N PLL Output Divider = 32
Figure 12. 161.1328125 ± 80.56640625-MHz HCSL Output Spectrum
LMK61E2 D014_SNAS674.gif
Figure 14. LVDS Differential Output Swing vs Frequency