SLUSAS9B NOVEMBER   2013  – December 2014 TPS53915

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
    7. 6.7 Thermal Performance
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1  Powergood
      2. 7.3.2  D-CAP3 Control and Mode Selection
      3. 7.3.3  D-CAP3 Mode
      4. 7.3.4  Sample and Hold Circuitry
      5. 7.3.5  Adaptive Zero-Crossing
      6. 7.3.6  Forced Continuous-Conduction Mode
      7. 7.3.7  Current Sense and Overcurrent Protection
      8. 7.3.8  Overvoltage and Undervoltage Protection
      9. 7.3.9  Out-Of-Bounds Operation (OOB)
      10. 7.3.10 UVLO Protection
      11. 7.3.11 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Auto-Skip Eco-Mode Light-Load Operation
      2. 7.4.2 Forced Continuous-Conduction Mode
    5. 7.5 Programming
      1. 7.5.1  The PMBus General Descriptions
      2. 7.5.2  PMBus Slave Address Selection
      3. 7.5.3  PMBus Address Selection
      4. 7.5.4  Supported Formats
        1. 7.5.4.1 Direct Format: Write
        2. 7.5.4.2 Combined Format: Read
        3. 7.5.4.3 Stop-Separated Reads
      5. 7.5.5  Supported PMBus Commands
        1. 7.5.5.1 Unsupported PMBus Commands
        2. 7.5.5.2 OPERATION [01h] (R/W Byte)
        3. 7.5.5.3 ON_OFF_CONFIG [02h] (R/W Byte)
        4. 7.5.5.4 WRITE_PROTECT [10h] (R/W Byte)
      6. 7.5.6  CLEAR_FAULTS [03h] (Send Byte)
      7. 7.5.7  STORE_DEFAULT_ALL [11h] (Send Byte)
      8. 7.5.8  RESTORE_DEFAULT_ALL [12h] (Send Byte)
      9. 7.5.9  STATUS_WORD [79h] (Read Word)
      10. 7.5.10 CUSTOM_REG (MFR_SPECIFIC_00) [D0h] (R/W Byte)
      11. 7.5.11 DELAY_CONTROL (MFR_SPECIFIC_01) [D1h] (R/W Byte)
      12. 7.5.12 MODE_SOFT_START_CONFIG (MFR_SPECIFIC_02) [D2h] (R/W Byte)
      13. 7.5.13 FREQUENCY_CONFIG (MFR_SPECIFIC_03) [D3h] (R/W Byte)
      14. 7.5.14 VOUT_ADJUSTMENT (MFR_SPECIFIC_04) [D4h] (R/W Byte)
      15. 7.5.15 Output Voltage Fine Adjustment Soft Slew Rate
      16. 7.5.16 VOUT_MARGIN (MFR_SPECIFIC_05) [D5h] (R/W Byte)
      17. 7.5.17 Output Voltage Margin Adjustment Soft-Slew Rate
      18. 7.5.18 UVLO_THRESHOLD (MFR_SPECIFIC_06) [D6h]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Choose the Switching Frequency
        2. 8.2.2.2 Choose the Operation Mode
        3. 8.2.2.3 Choose the Inductor
        4. 8.2.2.4 Choose the Output Capacitor
        5. 8.2.2.5 Determine the Value of R1 and R2
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage range(2) EN –0.3 7.7 V
SW DC –3 30
Transient < 10 ns –5 32
VBST –0.3 36
VBST(3) –0.3 6
VBST when transient < 10 ns 38
VDD –0.3 28
VIN –0.3 30
ADDR, FB, MODE, SDA, SCL, VO –0.3 6
Output voltage range PGOOD –0.3 7.7 V
ALERT, TRIP, VREG –0.3 6
Junction Temperature, TJ –40 150 °C
Storage Temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
(2) All voltages are with respect to network ground terminal.
(3) Voltage values are with respect to the SW terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage range EN –0.1 7 V
SW –3 27
VBST –0.1 28
VBST(1) –0.1 5.5
VDD 4.5 25
VIN 1.5 18
ADDR, FB, MODE, SDA, SCL, VO –0.1 5.5
Output voltage range PGOOD –0.1 7 V
ALERT, TRIP, VREG –0.1 5.5
TA Operating free-air temperature –40 85 °C
(1) Voltage values are with respect to the SW pin.

6.4 Thermal Information

THERMAL METRIC(1) TPS53915 UNIT
RVE
28 PINS
θJA Junction-to-ambient thermal resistance(2) 37.5 °C/W
θJCtop Junction-to-case (top) thermal resistance(3) 34.1
θJB Junction-to-board thermal resistance(4) 18.1
ψJT Junction-to-top characterization parameter(5) 1.8
ψJB Junction-to-board characterization parameter(6) 18.1
θJCbot Junction-to-case (bottom) thermal resistance(7) 2.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

6.5 Electrical Characteristics

over operating free-air temperature range, VREG = 5 V, VEN = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
IVDD VDD bias current TA = 25°C, No load
Power conversion enabled (no switching)
1350 1850 µA
IVDDSTBY VDD standby current TA = 25°C, No load
Power conversion disabled
850 1150 µA
IVIN(leak) VIN leakage current VEN = 0 V 0.5 µA
VREF OUTPUT
VVREF Reference voltage FB w/r/t GND, TA = 25°C 597 600 603 mV
VVREFTOL Reference voltage tolerance FB w/r/t GND, TJ = 0°C to 85°C –0.6% 0.5%
FB w/r/t GND, TJ = –40°C to 85°C –0.7% 0.5%
OUTPUT VOLTAGE
IFB FB input current VFB = 600 mV 50 100 nA
IVODIS VO discharge current VVO = 0.5 V, Power Conversion Disabled 10 12 15 mA
INTERNAL DAC REFERENCE
VDACTOL1 DAC voltage tolerance 1 FB w/r/t GND, 0°C ≤ TA ≤ 85°C, with certain VOUT_ADJUSTMENT settings only (2) –4.8 4.8 mV
VDACTOL2 DAC voltage tolerance 2 FB w/r/t GND, 0°C ≤ TA ≤ 85°C, with certain VOUT_MARGIN settings only (3) –4.8 4.8 mV
VDACTOL3 DAC voltage tolerance 3 FB w/r/t GND, 0°C ≤ TA ≤ 85°C, with VOUT_ADJUSTMENT=0Dh and VOUT_MARGIN=70h for 5% –4.8 4.8 mV
VDACTOL4 DAC voltage tolerance 4 FB w/r/t GND, 0°C ≤ TA ≤ 85°C, with VOUT_ADJUSTMENT=13h and VOUT_MARGIN=07h for -5% –4.8 4.8 mV
SMPS FREQUENCY
fSW VO switching frequency VIN = 12 V, VVO = 3.3 V, FS<2:0> = 000 250 kHz
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 001 300
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 010 400
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 011 500
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 100 600
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 101 750
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 110 850
VIN = 12 V, VVO = 3.3 V, FS<2:0> = 111 1000
tON(min) Minimum on-time TA = 25°C(1) 60 ns
tOFF(min) Minimum off-time TA = 25°C 175 240 310 ns
INTERNAL BOOTSTRAP SW
VF Forward Voltage VVREG–VBST, TA = 25°C, IF = 10 mA 0.15 0.25 V
IVBST VBST leakage current TA = 25°C, VVBST = 33 V, VSW = 28 V 0.01 1.5 µA
LOGIC THRESHOLD
VENH EN enable threshold voltage 1.3 1.4 1.5 V
VENL EN disable threshold voltage 1.1 1.2 1.3 V
VENHYST EN hysteresis voltage 0.22 V
VENLEAK EN input leakage current –1 0 1 µA
SOFT-START
tSS Soft-start time SST <1:0> = 00 1 ms
SST <1:0> = 01 2
SST <1:0> = 10 4
SST <1:0> = 11 8
POWERGOOD COMPARATOR
VPGTH PGOOD threshold PGOOD in from higher 104% 108% 111%
PGOOD in from lower 89% 92% 96%
PGOOD out to higher 113% 116% 120%
PGOOD out to lower 80% 84% 87%
tPGDLY PGOOD delay time Delay for PGOOD going in PGD<2:0>=000 165 256 320 μs
Delay for PGOOD going in PGD<2:0>=001 409 512 614 μs
Delay for PGOOD going in PGD<2:0>=010 0.819 1.024 1.228 ms
Delay for PGOOD going in PGD<2:0>=011 1.638 2.048 2.458 ms
Delay for PGOOD going in PGD<2:0>=100 3.276 4.096 4.915 ms
Delay for PGOOD going in PGD<2:0>=101 6.553 8.192 9.83 ms
Delay for PGOOD going in PGD<2:0>=110 13.104 16.38 19.656 ms
Delay for PGOOD going in PGD<2:0>=111 105 131 157 ms
Delay tolerance for PGOOD coming out 2 µs
IPG PGOOD sink current VPGOOD = 0.5 V 4 6 mA
IPGLK PGOOD leakage current VPGOOD = 5.0 V –1 0 1 µA
POWER-ON DELAY
tPODLY Power-on delay time Delay from enable to switching POD<2:0>=000 356 µs
Delay from enable to switching POD<2:0>=001 612 µs
Delay from enable to switching POD<2:0>=010 1.124 ms
Delay from enable to switching POD<2:0>=011 2.148 ms
Delay from enable to switching POD<2:0>=100 4.196 ms
Delay from enable to switching POD<2:0>=101 8.292 ms
Delay from enable to switching POD<2:0>=110 16.48 ms
Delay from enable to switching POD<2:0>=111 32.86 ms
CURRENT DETECTION
RTRIP TRIP pin resistance range 20 70
IOCL Current limit threshold, valley RTRIP = 52.3 kΩ 10.1 12.0 13.9 A
RTRIP = 38 kΩ 7.2 9.1 11.0
IOCLN Negative current limit threshold, valley RTRIP = 52.3 kΩ –15.3 –11.9 –8.5 A
RTRIP = 38 kΩ –12 –9 –6
VZC Zero cross detection offset 0 mV
PROTECTIONS
VVREGUVLO VREG undervoltage-lockout (UVLO) threshold voltage Wake-up 3.25 3.34 3.41 V
Shutdown 3.00 3.12 3.19
VVDDUVLO VDD UVLO threshold voltage Wake-up (default) 4.15 4.25 4.35 V
Shutdown 3.95 4.05 4.15
VOVP Overvoltage-protection (OVP) threshold voltage OVP detect voltage 116% 120% 124%
tOVPDLY OVP propagation delay With 100-mV overdrive 300 ns
VUVP Undervoltage-protection (UVP) threshold voltage UVP detect voltage 64% 68% 71%
tUVPDLY UVP delay UVP filter delay 1 ms
THERMAL SHUTDOWN
TSDN Thermal shutdown threshold(1) Shutdown temperature 140 °C
Hysteresis 40
LDO VOLTAGE
VREG LDO output voltage VIN = 12 V, ILOAD = 10 mA 4.65 5 5.45 V
VDOVREG LDO low droop drop-out voltage VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C 365 mV
ILDOMAX LDO over-current limit VIN = 12 V, TA = 25°C 170 200 mA
INTERNAL MOSFETS
RDS(on)H High-side MOSFET on-resistance TA = 25°C 13.8 15.5
RDS(on)L Low-side MOSFET on-resistance TA = 25°C 5.9 7.0
PMBus SCL and SDA INPUT BUFFER LOGIC THRESHOLDS
VIL-PMBUS SCL and SDA low-level input voltage(1) 0°C ≤ TJ ≤ 85°C 0.8 V
VIH-PMBUS SCL and SDA high-level input voltage(1) 0°C ≤ TJ ≤ 85°C 2.1 V
VHY-PMBUS SCL and SDA hysteresis voltage(1) 0°C ≤ TJ ≤ 85°C 240 mV
PMBus SDA and ALERT OUTPUT PULLDOWN
VOL1-PMBUS SDA and ALERT low-level output voltage(1) VDDPMBus = 5.5 V, RPULLUP = 1.1 kΩ,
0°C ≤ TJ ≤ 85°C
0.4 V
VOL2-PMBUS SDA and ALERT low-level output voltage(1) VDDPMBus = 3.6 V, RPULLUP = 0.7 kΩ,
0°C ≤ TJ ≤ 85°C
0.4 V
(1) Specified by design. Not production tested.
(2) Tested at these VOUT_ADJUSTMENT settings: -9.0%, -8.25%, -5.25%, -2.25%, 0.0%, 3.00%, 6.00%, 9.0%
(3) Tested at these VOUT_MARGIN settings: -11.62%, -10.74%, -7.06%, -3.15%, 0%, 3.7%, 7.74%, 12.05%

6.6 Typical Characteristics

C003_SLUSBN5.pngFigure 1. Efficiency vs. Output Current
C005_SLUSBN5.pngFigure 3. Efficiency vs. Output Current
C007_SLUSBN5.pngFigure 5. Output Voltage vs. Output Current
C009_SLUSBN5.pngFigure 7. Output Voltage vs. Output Current
C011_SLUSBN5.pngFigure 9. Switching Frequency vs. Output Current
soa_01_slusbn5.gifFigure 11. Safe Operating Area, VOUT = 1.2 V
wf1_auto_skip_slusbn5.gifFigure 13. Auto-Skip Steady-State Operation
wf3_auto_skip_slusbn5.gifFigure 15. Auto-Skip Steady-State Operation
wf5_auto_skip_slusbn5.gifFigure 17. Auto-Skip Steady-State Operation
wf7_auto_skip_load_slusbn5.gifFigure 19. Auto-Skip Mode Load Transient
wf9_start_up_slusbn5.gifFigure 21. Start-Up
wf11_start_up_slusbn5.gifFigure 23. Start-Up
wf13_shutdown_slusbn5.gifFigure 25. Shutdown Operation
wf15_shutdown_slusbn5.gifFigure 27. Shutdown Operation
C004_SLUSBN5.pngFigure 2. Efficiency vs. Output Current
C006_SLUSBN5.pngFigure 4. Efficiency vs. Output Current
C008_SLUSBN5.pngFigure 6. Output Voltage vs. Output Current
C010_SLUSBN5.pngFigure 8. Output Voltage vs. Output Current
C012_SLUSBN5.pngFigure 10. Switching Frequency vs. Output Current
soa_02_slusbn5.gifFigure 12. Safe Operating Area, VOUT = 5 V
wf2_FCCM_slusbn5.gifFigure 14. FCCM Steady-State Operation
wf4_FCCM_slusbn5.gifFigure 16. FCCM Steady-State Operation
wf6_FCCM_slusbn5.gifFigure 18. FCCM Steady-State Operation
wf8_fccm_load_slusbn5.gifFigure 20. FCCM Mode Load Transient
wf10_fccm_load_slusbn5.gifFigure 22. Start-Up
wf12_fccm_load_slusbn5.gifFigure 24. Start-Up
wf14_shutdown_slusbn5.gifFigure 26. Shutdown Operation
wf16_shutdown_slusbn5.gifFigure 28. Shutdown Operation
wf17_shutdown_slusbn5.gifFigure 29. Pre-Bias Operation
wf18_ovp_slusbn5.gifFigure 30. Overvoltage Protection
wf19_OCP_slusbn5.gifFigure 31. Overcurrent Protection
waveform02_slusas9.pngFigure 33. 1 MHz to 250 KHz
waveform04_slusas9.pngFigure 35. VOUT(adj) = 6%, VOMH = 12% to 0%
waveform01_slusas9.pngFigure 32. I2C READ (Address=31d, Cmd=0x79): ACK 0x10C8. IOC = 15 A
waveform03_slusas9.pngFigure 34. 31d_FFh_FFh
waveform05_slusas9.pngFigure 36. VOUT(adj) = 9%, VOMH = 0% to 12%
waveform06_slusas9.pngFigure 37. 250 kHz to MHz

6.7 Thermal Performance

fSW = 500 kHz, VIN = 12 V, VOUT = 5 V, IOUT = 12 A, COUT = 10 × 22 µF (1206, 6.3V, X5R), RBOOT = 0 Ω, SNB = 3 Ω + 470 pF Inductor: LOUT = 1 µH, PCMC135T-1R0MF, 12.6 mm × 13.8 mm × 5 mm, 2.1 mΩ (typ)
thermal_slusas9.gifFigure 38. SP1: 75.6℃ (TPS53915), SP2: 57.7℃ (Inductor)