JAJSMY4 September   2021 UCC14240-Q1

ADVANCE INFORMATION  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Power Ratings
    6. 6.6 Insulation Specifications
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Stage Operation
      2. 7.3.2 Digital I/O ENA and /PG
      3. 7.3.3 Power-Up and Power-Down Sequencing
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 RLIM Resistor Selection
        2. 8.2.2.2 Capacitor Selection
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
  • DWN|36
サーマルパッド・メカニカル・データ
発注情報

Power Supply Recommendations

The recommended input supply voltage (VIN) for UCC14240-Q1 is between 21 V and 27 V. To help ensure reliable operation, adequate decoupling capacitors must be located as close to supply pins as possible. Local bypass capacitors must be placed between the VIN and GNDP pins at the input; between VDD and VEE at the isolated output supply; and COM and VEE at the lower voltage output supply. Low ESR, ceramic surface mount capacitors are recommended. TI further suggests placing two such capacitors: one with a value of 2.2 μF for supply bypassing and an additional 0.1-μF capacitor in parallel for high frequency filtering. The input supply must have an appropriate current rating to support output load required by the end application.