

Texas Instruments Robotics System Learning Kit

 Module 3
Introduction: ARM Cortex M

Introduction: ARM Cortex M Architecture

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP074

Educational Objectives:

REVIEW Cortex M architecture
UNDERSTAND registers, memory, assembly instructions
DEVELOP logic and arithmetic functions in assembly
LEARN how functions work, and where data is stored
DESIGN, BUILD & TEST A COMPONENT

Nonlinear conversion function for an IR distance sensor

Prerequisites (Module 1)
• Running code on the LaunchPad using CCS (Module 1)

Recommended reading materials for students:
• Chapter 3, Embedded Systems: Introduction to Robotics,

 Jonathan W. Valvano, ISBN: 9781074544300, copyright © 2019

In this class, we will use the TI Launchpad Development Kit with the MSP432
microcontroller, which includes a Cortex-M processor and a suite of input/output
devices derived from the MSP430 family of low power microcontrollers.
Architecture is the manner with which the processor, random access memory
(RAM), read only memory (ROM), and input/output (I/O) ports are combined to
create the microcontroller. See Figure 1.

Figure 1. Architecture of an ARM Cortex M microcontroller.

This module serves as a brief introduction to the Cortex M microcontroller.
Even though we typically program embedded systems in C, it makes sense to
understand a little bit how the microcontroller executes software. Understanding
some of these low level details will make it easier to make high level software
design decisions. Examples where knowing low-level details make for better
high-level decisions include: local verses global variables, numbers verses
pointers, numerical overflow during calculations, numerical dropout during divide

and right shift operations, integer versus floating point calculations, and
interrupts.

There are two reasons we must learn the assembly language of the computer
with which we are using. Sometimes, but not often, we wish to optimize our
application for maximum execution speed or minimum memory size, and thus
writing pieces of our code in assembly language is one approach to such
optimizations. The most important reason, however, is that by observing the
assembly code generated by the compiler for our C code we can truly
understand what our software is doing. Based on this understanding, we can
evaluate, debug, and optimize our system. So the goal of this module is not for
you to become proficient in assembly language, but rather to learn enough so
you can interpret the assembly code generated by the C compiler.

An assembler is system software that converts low-level assembly language
program (human readable format) into object code (machine readable format).
Typically, one line of assembly language creates one machine instruction, and
this translation is simple and obvious. Writing in assembly exposes the low-level
details of the architecture.

A linker builds a single software system by connecting (linking) software
components. In CCS, the build command performs both assembly and linking.
In an embedded system, the loader will program object code into flash ROM.
We place object code in ROM because ROM retains its information if power is
removed and restored. In CCS, the Debug command performs a load operation
and starts the debugger.

A debugger is a set of hardware and software tools we use to verify system is
operating correctly. The two important aspects of a good debugger are control
and observability.

In the lab associated with this module, you will develop and test an assembly
function typical of one the robot might use to perform a numerical calculation.
In particular, the function will convert ADC measurements from a sensor into
distance to the wall. In developing and debugging this function, you will gather
important insights on how the Cortex-M processor executes software.

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	3_Assembly_Intro_NEW
	TI-RSLKMax_Cover

