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Introduction: ARM Cortex M Architecture 
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Educational Objectives:  
 
REVIEW Cortex M architecture 
UNDERSTAND registers, memory, assembly instructions 
DEVELOP logic and arithmetic functions in assembly 
LEARN how functions work, and where data is stored 
DESIGN, BUILD & TEST A COMPONENT  

Nonlinear conversion function for an IR distance sensor 
 
Prerequisites (Module 1) 
• Running code on the LaunchPad using CCS (Module 1) 
 
Recommended reading materials for students: 
• Chapter 3, Embedded Systems: Introduction to Robotics,  

   Jonathan W. Valvano, ISBN: 9781074544300, copyright © 2019 
 
In this class, we will use the TI Launchpad Development Kit with the MSP432 
microcontroller, which includes a Cortex-M processor and a suite of input/output 
devices derived from the MSP430 family of low power microcontrollers. 
Architecture is the manner with which the processor, random access memory 
(RAM), read only memory (ROM), and input/output (I/O) ports are combined to 
create the microcontroller. See Figure 1. 
 

 
Figure 1. Architecture of an ARM Cortex M microcontroller. 
 
This module serves as a brief introduction to the Cortex M microcontroller.  
Even though we typically program embedded systems in C, it makes sense to 
understand a little bit how the microcontroller executes software. Understanding 
some of these low level details will make it easier to make high level software 
design decisions. Examples where knowing low-level details make for better 
high-level decisions include: local verses global variables, numbers verses 
pointers, numerical overflow during calculations, numerical dropout during divide 

and right shift operations, integer versus floating point calculations, and 
interrupts. 
 
There are two reasons we must learn the assembly language of the computer 
with which we are using. Sometimes, but not often, we wish to optimize our 
application for maximum execution speed or minimum memory size, and thus 
writing pieces of our code in assembly language is one approach to such 
optimizations. The most important reason, however, is that by observing the 
assembly code generated by the compiler for our C code we can truly 
understand what our software is doing. Based on this understanding, we can 
evaluate, debug, and optimize our system. So the goal of this module is not for 
you to become proficient in assembly language, but rather to learn enough so 
you can interpret the assembly code generated by the C compiler.  
 
An assembler is system software that converts low-level assembly language 
program (human readable format) into object code (machine readable format). 
Typically, one line of assembly language creates one machine instruction, and 
this translation is simple and obvious. Writing in assembly exposes the low-level 
details of the architecture. 
 
A linker builds a single software system by connecting (linking) software 
components. In CCS, the build command performs both assembly and linking.  
In an embedded system, the loader will program object code into flash ROM.  
We place object code in ROM because ROM retains its information if power is 
removed and restored. In CCS, the Debug command performs a load operation 
and starts the debugger. 
 
A debugger is a set of hardware and software tools we use to verify system is 
operating correctly. The two important aspects of a good debugger are control 
and observability. 
 
In the lab associated with this module, you will develop and test an assembly 
function typical of one the robot might use to perform a numerical calculation.  
In particular, the function will convert ADC measurements from a sensor into 
distance to the wall. In developing and debugging this function, you will gather 
important insights on how the Cortex-M processor executes software. 
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