
1 SHA-1 Description

64 bits

000 . . . 0100100000

159 bits

1 000 . . . 000

Application Report
SLUA389A–July 2006–Revised October 2006

How to Implement SHA-1/HMAC Authentication for
bq26100

Michael Vega... PMP Portable Power

ABSTRACT

The bq26100 is a stand alone device that is used to authenticate peripherals when
challenged by a system containing a microprocessor. An SHA-1 based HMAC is used
to authenticate the bq26100. This document along with the Federal Information
Processing Standards (FIPS) Publication 180-2, provides guidance to a firmware
developer that must develop a driver to authenticate a peripheral containing a bq26100
with an expected 128-bit secret key.

Contents
1 SHA-1 Description .. 1
2 HMAC Description .. 2
3 Logic Symbols .. 2
4 Writing the SHA-1 Algorithm .. 2

List of Tables

1 Logic Symbols .. 2

The SHA-1 is known as a one-way hash function, meaning there is no known mathematical method of
computing the input given only the output. The specification of the SHA-1, as defined by Federal
Information Processing Standards (FIPS) Publication 180-2, states that the input consists of 512 bit blocks
with a total input length less than 264 bits. Inputs which do not conform to integer multiples of 512 bit
blocks are padded before any block is input to the hash function. The SHA-1 algorithm outputs 160 bits,
referred to as the digest. The full SHA-1 specification and algorithm are found at
http://csrc.nist.gov/publications/fips under FIPS 180. (As of April 23, 2004 the latest revision is FIPS
180-2).

The bq26100 generates an SHA-1 input block of 288 bits (total input = 160 bit message +128 bit key). To
complete the 512 bit block size requirement of the SHA-1, the bq26100 pads the key and message with a
1, followed by 159 0’s, followed by the 64 bit value for 288 (000…00100100000), which conforms to the
pad requirements specified by FIPS 180-2:

SLUA389A–July 2006–Revised October 2006 How to Implement SHA-1/HMAC Authentication for bq26100 1
Submit Documentation Feedback

http://csrc.nist.gov/publications/fips
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA389A

www.ti.com

2 HMAC Description

3 Logic Symbols

4 Writing the SHA-1 Algorithm

4.1 First Run of the SHA-1

4.1.1 Preprocessing I

HMAC Description

The SHA-1 engine is used to calculate a modified HMAC value. Using a public message and a secret key,
the HMAC output is considered to be a secure fingerprint that authenticates the device used to generate
the HMAC. To compute the HMAC let:

H designate the SHA-1 hash function
M designate the message transmitted to the bq26100,
KD designate the unique 128 bit device key of the bq26100.

HMAC(M) is defined as:
H[KD || H(KD || M)]
where: || symbolizes an append operation. The message, M, is appended to the device key, KD,
and padded to become the input to the SHA-1 hash. The output of this first calculation is then
appended to the device key, KD, padded again, and cycled through the SHA-1 hash a second time.

The output is the HMAC digest value.

These are logic symbols that are used throughout this document to define functions.

Table 1. Logic Symbols

SYMBOL DESCRIPTION EXAMPLES (HEX FORMAT)

∧ Bitwise AND ABCD1234 ∧ 567890EF = 02481024

∨ Bitwise OR ABCD1234 ∨ 567890EF = FFFD92FF

¬ Bitwise complement ¬ABCD1234 = 5432EDCB

⊕ Bitwise XOR ABCD1234 ⊕ 567890EF = FDB582DB

+ Addition Modulo 232 ABCD1234 + 567890EF = 0245A323

x << n Shift x, n bits to the left 80008001 << 2 = 00020004

x >> n Shift x, n bits to the right 80008001 >> 2 = 20002000

The information contained in this section is based on the SHA-1 specification in FIPS 180-2, but includes
specific data based on the use of bq26100. The SHA-1/HMAC needed to authenticate the bq26100
requires running the SHA-1 algorithm twice. The whole process is described in this document. As an
example, the secret key is in hexadecimal format

00000000 00000000 00000000 00000000

(which is not recommended in the actual application) and the message is “C82CA3CA 10DEC726
8E070A7C F0D1FE82 20AAD3B8”.

The first step is to append the key with the message resulting as:
“00000000 00000000 00000000 00000000 C82CA3CA 10DEC726 8E070A7C F0D1FE82 20AAD3B8”

Then as described in the SHA-1 Description section of this document the key || message is padded with
“ 80000000 00000000 00000000 00000000 00000000 00000000 00000120”.

2 How to Implement SHA-1/HMAC Authentication for bq26100 SLUA389A–July 2006–Revised October 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA389A

www.ti.com

4.1.2 SHA-1 Computation I

(b c) (b d) 0 t 19

b c d 20 t 39
(, ,)

(b c) (b d) (c d) 40 t 59

b c d 60 t 79

f b c dt

Ù Å Ø Ù £ £ì
ï Å Å £ £ï

= í
Ù Å Ù Å Ù £ £ï

ï Å Å £ £î

5A827999 0 t 19

6ED9EBA1 20 t 39

8F1BBCDC 40 t 59

CA62C1D6 60 t 79

Kt

£ £ì
ï £ £ï

= í
£ £ï

ï £ £î

Writing the SHA-1 Algorithm

The bq26100 uses only a single 512-bit block message. To keep consistency with the FIPS 180-2
examples our padded key and message are broken down into the first 16 values of the message schedule
as:

W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = C82CA3CA
W5 = 10DEC726
W6 = 8E070A7C
W7 = F0D1FE82
W8 = 20AAD3B8
W9 = 80000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000120

From this section, what must be remembered by the firmware developer is that when authenticating with
the bq26100 on the first run of the SHA-1, W0 through W3 correspond to the secret key, W4 through W8
correspond to the random message, and W9 through W15 are always the same as with this example.

The remaining 64 values of the message schedule are obtained with the function:
Wt = ROTL1 (Wt-3 ⊕ Wt-8⊕ Wt-14⊕ Wt-16) for 16 ≤ t ≤ 79

In which ROTLn (x) = (x << n) v (x >> w – n).

Initialize the initial hash values and variables a, b, c, d, and e in hexadecimal format as follows:
H0 = a = 67452301
H1 = b = EFCDAB89
H2 = c = 98BADCFE
H3 = d = 10325476
H4 = e = C3D2E1F0

Keep updating the variables a, b, c, d, and e with a Repeat For loop in which:

SLUA389A–July 2006–Revised October 2006 How to Implement SHA-1/HMAC Authentication for bq26100 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA389A

www.ti.com

4.2 Second Run of the SHA-1

4.2.1 Preprocessing II

Writing the SHA-1 Algorithm

For t = 0 to 79:
{

Temp = ROTL5 (a) + ft (b,c,d) + e + Kt + Wt
e = d
d = c
c = ROTL30(b)
b = a
a = Temp

}

Determine the hash value for the first run of SHA-1 by computing:
H0 = a + H0
H1 = b + H1
H2 = c + H2
H3 = d + H3
H4 = e + H4

The first 160-bit message digest is:
H(KD || M) = H0 || H1 || H2 || H3 || H4

Having the H(KD || M) portion of the bq26100 HMAC, on the second run through the SHA-1 computation,
the H(KD || M) portion replaces the M from the first run. Append the key with the H(KD || M) result so that it
is:

“ 00000000 00000000 00000000 00000000 EBF44E83 D792151C 8BE508BB 6D517C69 B331C0CE”

The padding for the KD || H(KD || M) remains as:
“ 80000000 00000000 00000000 00000000 00000000 00000000 00000120”.

The first 16 values of the message schedule for the second run are:
W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = EBF44E83
W5 = D792151C
W6 = 8BE508BB
W7 = 6D517C69
W8 = B331C0CE
W9 = 80000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000120

Notice how W0 through W3 remained the same because the key did not change.

How to Implement SHA-1/HMAC Authentication for bq261004 SLUA389A–July 2006–Revised October 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA389A

www.ti.com

4.2.2 SHA-1 Computation II

(b c) (b d) 0 t 19

b c d 20 t 39
(, ,)

(b c) (b d) (c d) 40 t 59

b c d 60 t 79

f b c dt

Ù Å Ø Ù £ £ì
ï Å Å £ £ï

= í
Ù Å Ù Å Ù £ £ï

ï Å Å £ £î

5A827999 0 t 19

6ED9EBA1 20 t 39

8F1BBCDC 40 t 59

CA62C1D6 60 t 79

Kt

£ £ì
ï £ £ï

= í
£ £ï

ï £ £î

Writing the SHA-1 Algorithm

As with the first run of the SHA-1, the remaining 64 values of the message schedule are obtained with the
function:

Wt = ROTL1(Wt-3⊕ Wt-8⊕ Wt-14⊕ Wt-16) for 16 ≤ t ≤ 79

The initial hash values and variables a, b, c, d, and e are always initialized the same every time making a
SHA-1 computation.

H0 = a = 67452301
H1 = b = EFCDAB89
H2 = c = 98BADCFE
H3 = d = 10325476
H4 = e = C3D2E1F0

Keep updating the variables a, b, c, d, and e with the Repeat For loop in which:

For t = 0 to 79:
{

Temp = ROTL5 (a) + ft (b,c,d) + e + Kt + Wt
e = d
d = c
c = ROTL30(b)
b = a
a = Temp

}

Determine the hash value for the second run of SHA-1 by computing:
H0 = a + H0
H1 = b + H1
H2 = c + H2
H3 = d + H3
H4 = e + H4

The final 160-bit message digest is:
H[KD || H(KD || M)] = H0 || H1 || H2 || H3 || H4

Based on this example the response given by a bq26100 that contains:
128-bit key = 00000000000000000000000000000000, is challenged with
160-bit message = C82CA3CA10DEC7268E070A7CF0D1FE8220AAD3B8, is
FB8A342458E0B136988CB5203BB23F94DFD4440E.

This document has covered how to use the FIPS 180-2 publication for implementing the SHA-1/HMAC for
the bq26100. Firmware developers may also use the example given on the FIPS 180-2 to debug their
code. It is important to focus on making the first run of the SHA-1 work in the code given. The only
difference with the second run is the values that are initialized into W4 through W8.

SLUA389A–July 2006–Revised October 2006 How to Implement SHA-1/HMAC Authentication for bq26100 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA389A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated

	1 SHA-1 Description
	2 HMAC Description
	3 Logic Symbols
	4 Writing the SHA-1 Algorithm
	4.1 First Run of the SHA-1
	4.1.1 Preprocessing I
	4.1.2 SHA-1 Computation I

	4.2 Second Run of the SHA-1
	4.2.1 Preprocessing II
	4.2.2 SHA-1 Computation II

