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ABSTRACT

The bq26100 is a stand alone device that is used to authenticate peripherals when
challenged by a system containing a microprocessor. An SHA-1 based HMAC is used
to authenticate the bq26100. This document along with the Federal Information
Processing Standards (FIPS) Publication 180-2, provides guidance to a firmware
developer that must develop a driver to authenticate a peripheral containing a bq26100
with an expected 128-bit secret key.
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The SHA-1 is known as a one-way hash function, meaning there is no known mathematical method of
computing the input given only the output. The specification of the SHA-1, as defined by Federal
Information Processing Standards (FIPS) Publication 180-2, states that the input consists of 512 bit blocks
with a total input length less than 264 bits. Inputs which do not conform to integer multiples of 512 bit
blocks are padded before any block is input to the hash function. The SHA-1 algorithm outputs 160 bits,
referred to as the digest. The full SHA-1 specification and algorithm are found at
http://csrc.nist.gov/publications/fips under FIPS 180. (As of April 23, 2004 the latest revision is FIPS
180-2).

The bq26100 generates an SHA-1 input block of 288 bits (total input = 160 bit message +128 bit key). To
complete the 512 bit block size requirement of the SHA-1, the bq26100 pads the key and message with a
1, followed by 159 0’s, followed by the 64 bit value for 288 (000…00100100000), which conforms to the
pad requirements specified by FIPS 180-2:
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2 HMAC Description

3 Logic Symbols
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4.1 First Run of the SHA-1

4.1.1 Preprocessing I

HMAC Description

The SHA-1 engine is used to calculate a modified HMAC value. Using a public message and a secret key,
the HMAC output is considered to be a secure fingerprint that authenticates the device used to generate
the HMAC. To compute the HMAC let:

H designate the SHA-1 hash function
M designate the message transmitted to the bq26100,
KD designate the unique 128 bit device key of the bq26100.

HMAC(M) is defined as:
H[KD || H(KD || M)]
where: || symbolizes an append operation. The message, M, is appended to the device key, KD,
and padded to become the input to the SHA-1 hash. The output of this first calculation is then
appended to the device key, KD, padded again, and cycled through the SHA-1 hash a second time.

The output is the HMAC digest value.

These are logic symbols that are used throughout this document to define functions.

Table 1. Logic Symbols

SYMBOL DESCRIPTION EXAMPLES (HEX FORMAT)

∧ Bitwise AND ABCD1234 ∧ 567890EF = 02481024

∨ Bitwise OR ABCD1234 ∨ 567890EF = FFFD92FF

¬ Bitwise complement ¬ABCD1234 = 5432EDCB

⊕ Bitwise XOR ABCD1234 ⊕ 567890EF = FDB582DB

+ Addition Modulo 232 ABCD1234 + 567890EF = 0245A323

x << n Shift x, n bits to the left 80008001 << 2 = 00020004

x >> n Shift x, n bits to the right 80008001 >> 2 = 20002000

The information contained in this section is based on the SHA-1 specification in FIPS 180-2, but includes
specific data based on the use of bq26100. The SHA-1/HMAC needed to authenticate the bq26100
requires running the SHA-1 algorithm twice. The whole process is described in this document. As an
example, the secret key is in hexadecimal format

00000000 00000000 00000000 00000000

(which is not recommended in the actual application) and the message is “C82CA3CA 10DEC726
8E070A7C F0D1FE82 20AAD3B8”.

The first step is to append the key with the message resulting as:
“00000000 00000000 00000000 00000000 C82CA3CA 10DEC726 8E070A7C F0D1FE82 20AAD3B8”

Then as described in the SHA-1 Description section of this document the key || message is padded with
“ 80000000 00000000 00000000 00000000 00000000 00000000 00000120”.
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4.1.2 SHA-1 Computation I
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Writing the SHA-1 Algorithm

The bq26100 uses only a single 512-bit block message. To keep consistency with the FIPS 180-2
examples our padded key and message are broken down into the first 16 values of the message schedule
as:

W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = C82CA3CA
W5 = 10DEC726
W6 = 8E070A7C
W7 = F0D1FE82
W8 = 20AAD3B8
W9 = 80000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000120

From this section, what must be remembered by the firmware developer is that when authenticating with
the bq26100 on the first run of the SHA-1, W0 through W3 correspond to the secret key, W4 through W8
correspond to the random message, and W9 through W15 are always the same as with this example.

The remaining 64 values of the message schedule are obtained with the function:
Wt = ROTL1 (Wt-3 ⊕ Wt-8⊕ Wt-14⊕ Wt-16) for 16 ≤ t ≤ 79

In which ROTLn (x) = (x << n) v (x >> w – n).

Initialize the initial hash values and variables a, b, c, d, and e in hexadecimal format as follows:
H0 = a = 67452301
H1 = b = EFCDAB89
H2 = c = 98BADCFE
H3 = d = 10325476
H4 = e = C3D2E1F0

Keep updating the variables a, b, c, d, and e with a Repeat For loop in which:
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4.2 Second Run of the SHA-1

4.2.1 Preprocessing II

Writing the SHA-1 Algorithm

For t = 0 to 79:
{

Temp = ROTL5 (a) + ft (b,c,d) + e + Kt + Wt
e = d
d = c
c = ROTL30(b)
b = a
a = Temp

}

Determine the hash value for the first run of SHA-1 by computing:
H0 = a + H0
H1 = b + H1
H2 = c + H2
H3 = d + H3
H4 = e + H4

The first 160-bit message digest is:
H(KD || M) = H0 || H1 || H2 || H3 || H4

Having the H(KD || M) portion of the bq26100 HMAC, on the second run through the SHA-1 computation,
the H(KD || M) portion replaces the M from the first run. Append the key with the H(KD || M) result so that it
is:

“ 00000000 00000000 00000000 00000000 EBF44E83 D792151C 8BE508BB 6D517C69 B331C0CE”

The padding for the KD || H(KD || M) remains as:
“ 80000000 00000000 00000000 00000000 00000000 00000000 00000120”.

The first 16 values of the message schedule for the second run are:
W0 = 00000000
W1 = 00000000
W2 = 00000000
W3 = 00000000
W4 = EBF44E83
W5 = D792151C
W6 = 8BE508BB
W7 = 6D517C69
W8 = B331C0CE
W9 = 80000000
W10 = 00000000
W11 = 00000000
W12 = 00000000
W13 = 00000000
W14 = 00000000
W15 = 00000120

Notice how W0 through W3 remained the same because the key did not change.
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4.2.2 SHA-1 Computation II
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Writing the SHA-1 Algorithm

As with the first run of the SHA-1, the remaining 64 values of the message schedule are obtained with the
function:

Wt = ROTL1(Wt-3⊕ Wt-8⊕ Wt-14⊕ Wt-16) for 16 ≤ t ≤ 79

The initial hash values and variables a, b, c, d, and e are always initialized the same every time making a
SHA-1 computation.

H0 = a = 67452301
H1 = b = EFCDAB89
H2 = c = 98BADCFE
H3 = d = 10325476
H4 = e = C3D2E1F0

Keep updating the variables a, b, c, d, and e with the Repeat For loop in which:

For t = 0 to 79:
{

Temp = ROTL5 (a) + ft (b,c,d) + e + Kt + Wt
e = d
d = c
c = ROTL30(b)
b = a
a = Temp

}

Determine the hash value for the second run of SHA-1 by computing:
H0 = a + H0
H1 = b + H1
H2 = c + H2
H3 = d + H3
H4 = e + H4

The final 160-bit message digest is:
H[KD || H(KD || M)] = H0 || H1 || H2 || H3 || H4

Based on this example the response given by a bq26100 that contains:
128-bit key = 00000000000000000000000000000000, is challenged with
160-bit message = C82CA3CA10DEC7268E070A7CF0D1FE8220AAD3B8, is
FB8A342458E0B136988CB5203BB23F94DFD4440E.

This document has covered how to use the FIPS 180-2 publication for implementing the SHA-1/HMAC for
the bq26100. Firmware developers may also use the example given on the FIPS 180-2 to debug their
code. It is important to focus on making the first run of the SHA-1 work in the code given. The only
difference with the second run is the values that are initialized into W4 through W8.
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