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A comparison of battery-charger topologies 
for portable applications

Introduction
Battery-powered electronics are becoming ubiquitous in 
sectors far outside the personal electronics space. These 
applications require different voltages and currents, which 
lead to different battery chemistries and configurations.

For example, portable power tools, laptops and drones 
require higher power than fitness devices and wireless 
headphones. The variety of power levels requires a wide 
offering of battery-charger topologies. This article explores 
different battery-charging topologies, along with common 
examples of where to use each one.

Many considerations go into the decision for which 
battery-charger topology to use. All battery-powered 
applications contain a load that must be driven by the 
battery. The requirements of this load will dictate the 
voltage and current levels needed for correct operation. 
The battery pack may include cells connected in series to 
achieve a higher voltage, and/or cells connected in parallel 
to achieve a higher capacity. The pack configuration 
directly imposes specific charger requirements, such as 
charging voltage and current.

In addition to these factors, inside a battery-powered 
device, a charging source must be identified to replenish 
the battery in a reasonable amount of time. Typical power 
sources include dedicated charging adapters and USB 
supplies. While these have different voltage and current 
capabilities, the charger integrated circuit (IC) must be 
able to interface and charge the battery with all of the 
chosen sources.

Battery-charger topologies for Lithium-ion 
batteries
A battery-charger IC takes power from a DC input source 
and uses it to charge a battery. This power conversion can 
be achieved via different topologies, each offering trade-
offs and optimizations.

A linear charger modulates the resistance of a pass 
device in order to regulate the charge current and charge 
voltage. Alternatively, a direct charger modulates the input 
voltage source directly. In this case, the charger consists 
of a pass device used as a shorting resistor, and the 
battery charging system must communicate with the input 
source to achieve a complete charging cycle. Both linear 
and direct chargers require an input voltage that must be 
higher than the battery voltage to function correctly.

A switch-mode charger modulates the duty cycle of a 
switched network and uses a low-pass inductor-capacitor 
(LC) filter to regulate charge current or charge voltage 
regardless of input supply. By rearranging the switching 
elements and LC filter, this type of charger can replenish a 
battery having a voltage that is higher or lower relative to 
the input voltage.

Overview of linear chargers
As shown in Figure 1a, a typical linear charger consists of 
two bidirectional blocking switches to isolate the input 
and output terminals. The middle point or pinout between 
these two switches, often called PMID, can power the 
system. Therefore, the system voltage can range from the 
input voltage (when present) down to the battery voltage 
once the input is removed. This separation of system 
voltage and battery voltage is called power-path manage-
ment, and is a common feature among battery chargers.
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Figure 1. Typical linear charger
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During normal operation with an input present, the first 
switch turns on and shorts the input to PMID, while the 
second switch modulates its resistance in order to regulate 
the current and voltage at the battery output.

A linear charger is most useful because of its simple 
design in applications requiring the smallest printed-
circuit-board (PCB) footprint (12 mm2) and lowest quies-
cent current. This type of charger can also achieve high 
regulation accuracy at low charge currents and has no 
high-frequency switching loops, which minimizes electro-
magnetic interference (EMI) concerns. The main draw-
back associated with this device is the low efficiency (η), 
which is dictated only by the ratio of input and battery volt-
ages, η = VBAT/VIN. For this reason, its use is typically 
limited to applications requiring less than 1 A of charge 
current, such as wearable fitness trackers or wireless 
earbuds. Note that the direct charger described later in 
the article has increased efficiency with the same architec-
ture by keeping VIN very close to VBAT. 

Figure 1b shows an example PCB circuit size for the 
evaluation module (EVM) of a linear-charger design with 
the BQ25150.

Overview of chargers for single-cell batteries
Buck switch-mode chargers
As shown in Figure 2a, a typical buck switch-mode 
charger consists of four switches: the reverse blocking 
field-effect transistor (FET) used to prevent battery 
discharge into the input, two switching FETs used as a 
DC/DC buck converter and a battery FET used to achieve 
the power-path management feature. In this architecture, 
the system is powered from either the buck converter 
output (when an input is present) or the battery (when an 
input is removed or overloaded).

Buck switch-mode chargers address the efficiency limi-
tations of linear chargers. Typically, these devices can 
maintain efficiencies on the order of 91% at the optimal 
point of operation, which is scalable by changing the 
silicon and external components area. A larger circuit area 
translates to higher efficiency at higher charge currents. 
The versatility of this design makes the buck switch-mode 
charger a popular choice when charge currents exceed 
about 1 A. Applications include gaming controllers, hand-
held devices and portable power-bank solutions. The buck 
converter employs high-frequency switching to achieve 
voltage conversion, which also generates noise and poten-
tial EMI concerns. Figure 2b shows an example PCB circuit 
size for the EVM of a buck-charger design with the BQ25898.  

Figure 2. Typical buck charger
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Three-level buck switch-mode chargers 
With the addition of a flying capacitor, CFLY, the three-level 
buck shown in Figure 3a, when compared to the buck 
charger in Figure 2, reduces voltage stress on switching 
FETs by half, doubles the effective switching frequency, 
and the inductor has one-fourth of the peak ripple current. 
These gains translate into both high efficiency and high 
power density, which are usually at odds with each other 
in a buck-converter design. The switch node of a typical 
buck converter alternates from VBUS to GND at all times. 
In the three-level architecture, assuming that CFLY remains 
balanced at VBUS/2, the switch node alternates from VBUS 
to VBUS/2 or VBUS/2 to GND, depending on the conversion 
ratio. This results in a smaller inductance requirement, 
which in turn means higher efficiency and a smaller area.[1]

The three-level buck switch-mode charger can achieve 
even higher efficiency (~95%) and a smaller circuit area 
than traditional buck chargers. The high efficiency and 

excellent thermal performance of this design make it 
attractive for the high charge currents (around 2.5 A to 
4.5 A) required in modern smartphones. Figure 3b shows 
an example PCB circuit size for the EVM of a three-level 
buck-charger design with the BQ25910.  

Direct chargers 
The chargers discussed so far include circuitry to handle 
charge-current or charge-voltage regulation. A direct 
charger offloads the regulation to an external adapter and 
employs a method of directly connecting the input to the 
output of the charger. This method can achieve efficien-
cies upwards of 96%, such as a shorting FET between 
VBUS and VBAT. Therefore, direct-charger solutions today 
are suited for very high charge currents from 4 A up to 8 A. 
The trade-off comes from having an adapter that can 
achieve high-accuracy regulation, with a dedicated host to 
constantly monitor battery values and communicate with 
the adapter to perform the appropriate regulation.

Figure 3. Three-level buck charger
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Two popular types of direct chargers available today are 
the flash charger (Figure 4a) and the 2:1 switched- 
capacitor (SC) charger (Figure 4c). The flash charger 
employs two shorting FETs between VBUS and VBAT to 
achieve charging. This results in the lowest loss for a 
charger and is also the smaller option of the direct-charger 
topologies. The downside is that the battery current is 
equal to the input cable current, requiring expensive 
cables with high current capabilities.

Alternatively, a 2:1 SC charger can achieve very high 
efficiency while reducing the input current requirements. 
The SC charger is an unregulated switching converter that 
simply doubles the input current and halves the input 
voltage. Therefore, this solution requires a smart adapter 
that can be regulated to twice the battery voltage. 
Because IBAT is double IBUS, this architecture achieves the 
highest charge current of 8 A. Figures 4b and 4d show 
examples of PCB circuit sizes for both the flash-charger 
and 2:1 SC-charger designs.  

Figure 4. Typical direct chargers
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(a) Architecture of a flash charger (b) BQ25871 EVM layout

65-mm2 PCB footprint

(c) Architecture of a 2:1 SC charger (d) BQ25970 EVM layout

75-mm2 PCB footprint
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Efficiency comparison of direct and buck-
switching topologies
Figure 5 shows plots of charge efficiency 
against charge current for the topologies 
described so far. Here are the distinguishing 
characteristics of each topology:

•	 Flash charging offers the highest efficiency, 
but requires high cost in the input cable 
and adapter.

•	 The 2:1 SC charger offers high efficiency 
and reduces cost requirements on the input 
cable, but still requires  communication with 
the adapter for regulation at VBUS = 2 × VBAT

•	 The three-level buck charger offers signifi-
cantly higher efficiency than the buck 
charger, with a smaller circuit area. This 
solution is compatible with standard USB 
5-V sources or higher-voltage adapters.

•	 The buck converter is simple and versatile; 
its efficiency can be scaled with circuit cost and area, 
and it is also compatible with standard USB 5-V or 
higher voltage adapters. The buck converter and three-
level buck converter efficiencies are measured at a 9-V 
input.

Overview of a dual charger 
Dual charging has been used in the smartphone industry 
since 2015 to achieve higher charge current, and it 
consists of placing two chargers in parallel. A main charger 
provides charge current and supports the system load. A 
parallel charger provides additional charging current with 
high efficiency. Dual charging is possible with all of the 
switching topologies discussed so far in this article.

Figure 5. Charge efficiency vs. charge current for different 
charger topologies suited for single-cell designs
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Overview of switch-mode chargers for multi-cell 
series batteries
Boost chargers 
A boost charger operates like a buck converter in reverse, 
thereby generating an output voltage for the system that 
is higher than the input voltage. This enables the powering 
of loads that require high voltage and/or high peak currents 
for correct operation, such as motors, printers or speakers.

The typical boost charger available on the market can 
charge a two-cell lithium-ion battery from a standard 5-V 
USB source. Cell balancing is recommended to ensure 
maximum battery-pack capacity and lifetime when 
employing greater than two batteries in series. Some char-
gers may include cell-balancing functionality. Figure 6 
shows the typical architecture and an example PCB circuit 
size for a two-cell boost charger.  

Figure 6. Typical boost charger
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Buck-boost charge controller 
The buck-boost charge controller drives four external 
switching FETs to charge a battery from an input that is 
either below or above the desired charge voltage. This 
controller has a seamless transition among buck, buck-
boost, and boost modes of operation, making it a truly 
universal charger for batteries from one to four cells. The 
input voltage range is compatible with USB power delivery 
(PD), accepting anywhere from 3.5 V up to 24 V. This 
wide range of operating voltages adds flexibility, making 
this solution attractive for robot vacuum cleaners, drones 
and portable computers. Figure 7 shows the typical archi-
tecture and an example PCB circuit size for a buck-boost 
charger.

Figure 7. Typical buck-boost charge controller
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Figure 8. Boost charger and buck-boost charger 
efficiency vs. charge current
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Efficiency comparison of boost and buck-boost switching 
topologies
Figure 8 shows plots for charge efficiency against charge 
current for the boost charger and buck-boost charge 
controller when configured for charging a series two-cell 
battery from a 5-V source. Here are the distinguishing 
characteristics of each topology:

•	 A buck-boost charge controller offers high charging effi-
ciency for high charge current, but requires a larger 
solution size with external power FETs.

•	 The boost charger handles up to 15 W of input power to 
charge a series two-cell battery and integrates all power 
FETs, reducing solution size and simplifying circuit design.
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Table 1. Charger topology summary

Topology Source Battery Voltage Charge Current Key Results Special Value

Linear Adapter, USB 5 V 1S, 2S <1 A 12 mm2 
IBAT <0.4 µA

Smallest PCB size and IQ, no switching 
noise

Buck switch mode Adapter, USB 5 V, USB PD 1S to 6S <1 A to 4.5 A
~70 mm2 
η = ~91%, 
scalable 

Good thermal, versatile design for 
power growth

Three-level buck 
switch mode Adapter, USB 5 V, USB PD 1S 2.5 A to 6 A

~56 mm2 
η = ~ 95%, 
scalable

Excellent thermal, high charge current 

Direct charger
USB PD programmable 
power supply (PPS): 
20-mV/50-mA steps

1S 3.5 A to 8 A ~65 to 75 mm2 
η = ~97%+ Best thermal, highest charge current

Dual charger Adapter, USB 5 V, USB PD, 
PPS 1S 2.5 A to 8 A

~126 to 145 mm2 
η = ~95%, 
scalable 

Combine different topologies for 
flexibility

Boost switch mode Adapter, USB 5 V 2S <2 A ~133 mm2 
η = ~93% 

Higher power loads with simple and 
integrated boost

Buck-boost switch 
mode

USB PD: 5 V to 20 V, 100-W 
max 1S to 4S <3 A (2S)

~600 mm2 
η = ~94%, 
(5 VIN, 2S)

Universal charging for wide-range 
input/output

Conclusion
Charger topologies have evolved to address the challenges 
associated with different battery-powered applications. 
While ultra-low quiescent current might be critical for 
fitness trackers, the ability to handle multiple-cell 
 configurations might be critical in drone designs. 

Table 1 summarizes the various charger topologies, 
along with key metrics and features.
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