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ABSTRACT

Higher voltage batteries are becoming more prevalent in automotive and eBike applications. The extended 
VIN range is causing designers to examine more closely the line regulation of the pre-regulator. Furthermore, 
the pre-regulator might need to support a no load to full load condition, so load regulation is also of high 
importance. This application note reviews line and load regulation for 48-V battery and eBike, pre-regulators 
using LM5013-Q1 as an example.
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1 Introduction
A common control topology employed in buck regulators is constant-on-time (COT). This control topology is 
being adopted in several 48-V battery and eBike, pre-regulators such as LM5013-Q1. This application note is 
an overview of how line and load regulation can be optimized with LM5013-Q1 for wide-VIN range applications, 
specifically, the 48 V battery and eBike applications.

2 Overview of COT
Figure 2-1 produces a regulated output voltage by using its feedback comparator to servo the output by 
comparing the sampled output voltage, VFB, and the reference voltage, VREF. The feedback comparator issues 
an on-time pulse, after it trips. This cycle continues at the programmed switching frequency for the set output 
voltage, dictated by the on-time (RRON) and feedback (RFBT, RFBB) resistors. Equation 1 and Equation 2 illustrate 
the necessary calculations.
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Figure 2-1. LM5013 Functional Block Diagram

RRON kΩ = VOUT V × 2500FSW kHz (1)

RFBB = VREFVOUT− VREF × RFBT (2)

The feedback comparators terminal connected to the FB node must have sufficient ripple such that during the 
on-time, the FB node can be charged sufficiently above the reference voltage (VREF). This outcome is achieved 
with example ripple injection circuit Figure 2-2.
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Figure 2-2. LM5013 Design With External Ripple Injection

The integrator (RA, CA) generates a voltage ramp , in-phase with the inductor current and is AC coupled with CB. 
By following Equation 3, Equation 4, and Equation 5 sufficient ramp amplitude is applied to the feedback node 
for stability and transient performance is optimized. Note, the recommended minimum ramp amplitude, 12 mV 
in the case of LM5013, is advised for the device's given hysteresis, along with margin for reduced sensitivity to 
noise. Please refer to the LM5013-Q1 Automotive 100-V Input, 3.5-A Non-Synchronous Buck DC/DC Converter 
with Ultra-low IQ data sheet for the recommended value and further clarification of terms. Additional theory on 
this design is provide in the Stability Analysis and Design of COT Type-3 Ripple Circuit application note.

CA ≥ 10FSW × RFBT RFBB (3)

VRAMP = VIN− VOUT ×  tONRACA (4)

CB ≥ tTR3 × RFBT (5)

3 Line Regulation
The injected ramp waveform leads to the average feedback voltage exceeding the reference voltage for which 
the output voltage was programmed with. Additionally, the waveform’s peak (Equation 4) is directly proportional 
to the input voltage, leading to further variance as VIN changes. This variance is gained up through the feedback 
divider, resulting in the output voltage varying from the set point. Figure 3-1 and Table 3-1 gives a conceptual 
and quantitative measure how higher, peak ramp amplitude results in an increase in average feedback voltage 
(VFB(AVG)).
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Figure 3-1. Peak Ramp Amplitude vs VFB(AVG) 
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Table 3-1. Measured Peak Ramp Amplitude v. VFB(AVG) 
Ramp Amplitude, VPEAK (mV) VFB(AVG) (V)

13.488 1.204

15.437 1.206

20.342 1.212

23.353 1.217

23.945 1.216

4 Load Regulation
Load regulation is often a concern as well in buck regulators. Typically, regulators have a light-load mode to 
make sure the light load efficiency is optimized. The implementations can differ, though, in the case of LM5013 
the switching frequency decreases with reduced loading. This point is illustrated in Figure 4-1. The reduced 
frequency leads to the average feedback voltage reducing. Similarly to the previous discussion, this leads to 
output variance. Figure 4-2 shows how a 12-V output decreases with reduced switching frequency.
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Figure 4-1. Light-load, Frequency Reduction Impact on VFB(AVG) 

Figure 4-2. Light-load, Frequency Reduction Impact on VOUT Regulation

This behavior can be avoided by changing the inductor so that the inductor current does not go discontinuous. 
The point at which the inductor current goes discontinuous is often the entry point for light-load mode in the case 
of LM5013. Alternatively, a minimum load can be applied at the output to make sure that the inductor current 
does not go discontinuous. Equation 6 demonstrates the minimum inductance (LOUT) to make sure the inductor 
current does not go discontinuous at the application's minimum load current (IOUT,min) with the consequence of 
(potential) reduced efficiency.

LOUT ≥ VOUT2 × IOUT,min × FSW × 1− VOUTVIN (6)

If it is not possible to manipulate either the inductance, or application's minimum load current, then an alternative 
device with FPWM needs to be considered such as LMR38020-Q1 4.2-V to 80-V, 2-A Automotive Synchronous 
SIMPLE SWITCHER® Power Converter with 40-µA IQ data sheet. By operating in FPWM, the device's average 
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feedback voltage will not be impacted as much by loading, as in the case of most devices who employ a 
light-load mode.

5 48 VIN Design Example
This application note concludes with a typical design for LM5013-Q1, a 48 V to 12 V design. The LM5013-Q1 
supports a load current up to 3 A. This design often requires the input to tolerate a VIN range of 36 V to 60 
V. The following calculations are presented for the ramp injection circuit selection to minimize VOUT variation. 
Additionally, line and load regulation data is included, along with VOUT transient waveform in the case VIN falls 
below the designed minimum VIN of 36 V, resulting in the injected ripple falling out of device specification.

1. The frequency is selected to be 300 kHz and the RRON resistor is calculated for the output voltage of 12 V.
2. The corresponding feedback resistances are calculated for for the output voltage of 12 V and selected RFBT 

= 453 kΩ.
3. The ramp capacitor (CA) can be calculated with the previously selected components.
4. The ramp resistor (RA) is calculated for the minimum, input voltage (largest tON), and LM5013's minimum 

recommended ramp voltage of 12 mV.
5. The ramp coupling cap (CB) is determined by the arbitrarily selected transient settling time of 50 us.
6. The output capacitance of 44 μF is selected for typical load transient requirements which often supersedes 

the capacitance requirements for steady state/stability. A calculation wasn't necessarily followed.
7. CIN and CBST are selected per the minimum LM5013-Q1 Automotive 100-V Input, 3.5-A Non-Synchronous 

Buck DC/DC Converter with Ultra-low IQ data sheet recommendation. DSW is selected to be a Schottky 
diode with a DC rating of 100 V and current rating of 3 A.

RRON kΩ = VOUT V × 2500FSW kHz = 12 × 2500300 = 100 kΩ   (7)

RFBB = VREFVOUT− VREF × RFBT = 1.212− 1.2 × 453 kΩ   = 50.33kΩ;  RFBB = 49.9  kΩ   (8)

CA ≥ 10FSW × RFBT RFBB = 10300 kHz × 44.95 kΩ = 741pF;  CA =  3.3nF (9)

RA = VIN,MIN− VOUT ×  tON,MAXVRAMP,MIN × CA = 36− 12 × 100 kΩ36 × 2.5 × 10−612 mV × 3.3 nF = 673 kΩ  (10)

CB ≥ tTR3 × RFBT = 50 us3*453 kΩ = 36 pF; CB = 56 pF (11)
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Figure 5-1. 48 V to 12 V, LM5013-Q1 Design
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Figure 5-2. Load and Line Regulation

The load and line regulation data above was taken at VIN = 36 V, 42 V, 48 V, 54 V, and 60 V. The load current 
was varied from 0 A to 3 A.

Figure 5-3. Line Transient (48 V to 15 V), Outside of Design Specification

A line transient below the design's VIN range was applied and recorded was the VOUT transient. The converter 
matained regulation after the transient, with the net effect being reduced, peak-to-peak ripple and the DC output 
voltage falling. The ripple and DC output voltage fell as a result of the decreased inductor current ripple and 
average feedback voltage reducing, respectfully.
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Figure 5-4. Line Transient (48 V to 15 V), Zoom-in of Double Pulsing on VSW as a Result of Insufficient 
Ramp Injection

A zoom-in of the VSW and VOUT was taken to highlight the effect of insufficient ramp injection. The injected ramp 
voltage falling much below 12 mV caused false triggering of PWM comparator used in the COT architecture. It 
can be seen that the switching behavior becomes less periodic as a result of the double pulses on VSW (small, 
then large).

6 Summary
48 VIN applications larger VIN and load current range puts a bigger focus on line and load regulation for the pre-
regulator in those designs. LM5013-Q1, a popular 48 VIN pre-regulator uses a COT topology, which by nature, 
is controlled by feedback voltage variation. Increasing line and load ranges do not create worry by following the 
steps outlined in this article to minimize the output variation. The concepts covered in this article need to be 
used in your future design to make sure best practices are being followed and the highest performance can be 
achieved.

7 References
• Texas Instruments, Stability Analysis and Design of COT Type-3 Ripple Circuit, application note.
• Texas Instruments, Selecting an Ideal Ripple Generation Network for Your COT Buck Converter, application 

note.
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