
Application Note
Real-time Benchmarks Showcasing C2000™ Control
MCU's Optimized Signal Chain

Ashwini Athalye

ABSTRACT

The key to real-time control is reduced latency of performing sensing, processing and actuation defined
together as the real-time signal chain. Many software benchmarks only focus on the processing aspect
typically expressed in million instructions per second (MIPS), without full regard for the interaction between
peripherals, CPU, and co-processors. Such benchmarks do not provide a full view of the real-time performance
capabilities of a system. This application note describes a real-time benchmark created around a real world
control application that highlights the intricacies of real-time control and the need for this more comprehensive
benchmarking approach. The data from the real-time benchmark provides an insight into features of the C2000™

control MCUs that make it an excellent platform for real-time control applications.

Table of Contents
1 Introduction...3
2 ACI Motor Control Benchmark Application..3

2.1 Source Code.. 4
2.2 CCS Project for TMS320F28004x..4
2.3 CCS Project for TMS320F2837x..5
2.4 Validate Application Behavior...6
2.5 Benchmarking Methodology...7
2.6 ERAD Module for Profiling Application...8

3 Real-time Benchmark Data Analysis.. 9
3.1 ADC Interrupt Response Latency.. 10
3.2 Peripheral Access...11
3.3 TMU (math enhancement) Impact... 12
3.4 Flash Performance...13
3.5 Control Law Accelerator (CLA).. 14

4 C2000 Value Proposition..17
4.1 Efficient Signal Chain Execution With Better Real-Time Response Than Higher Computational MIPS Devices............ 18
4.2 Excellent Real-Time Interrupt Response With Low Latency.. 19
4.3 Tight Peripheral Integration That Scales Applications With Large Number of Peripheral Accesses................................20
4.4 Best in Class Trigonometric Math Engine.. 21
4.5 Versatile Performance Boosting Compute Engine (CLA)...22
4.6 Deterministic Execution due to Low Execution Variance... 23

5 Summary... 24
6 References.. 24
7 Revision History... 25

List of Figures
Figure 1-1. Real-Time Signal Chain...3
Figure 2-1. ACI Motor Benchmark Application Block Diagram.. 3
Figure 2-2. Graphical View of Alpha Phase Current (DualTimeA) and Per Unit Motor Speed (DualTimeB)............................... 6
Figure 2-3. ACI Motor Benchmarking Output.. 7
Figure 2-4. Real-Time Benchmarking Phases...8
Figure 2-5. Script Output With Application Stats Profiled by ERAD.. 9
Figure 3-1. ACI Motor Benchmark Interrupt Response Components.. 10
Figure 3-2. ACI Motor Benchmark Interrupt Response Benchmark Data..10

www.ti.com Table of Contents

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Figure 3-3. ACI Motor Benchmark Peripheral Access Benchmark Data..11
Figure 3-4. Control Loop Execution Time Out of RAM With TMU and FastRTS... 12
Figure 3-5. Application Size Compiled for TMU and FastRTS...12
Figure 3-6. TMS320F28004x Execution Time From RAM and Flash.. 13
Figure 3-7. TMS320F2837x Execution Time From RAM and Flash.. 13
Figure 3-8. ACI Motor Benchmark Output for CLA Executing Full Signal Chain... 15
Figure 3-9. ACI Motor Benchmark Output for C28x With CLA Offloading... 17
Figure 4-1. ACI Motor Control Benchmark Execution (relative cycles and relative time).. 18
Figure 4-2. ADC Interrupt Response Latency (relative cycles and relative time).. 19
Figure 4-3. ADC Read and Convert to Float Efficiency (relative cycles and relative time)..20
Figure 4-4. Park Transform With Trigonometric Math Engine (relative cycles and relative time).. 21
Figure 4-5. ACI Motor Control Benchmark CLA Execution (relative cycles and relative time).. 22
Figure 4-6. ACI Motor Control Benchmark Execution Variance from Flash (relative cycles and relative time)......................... 23

List of Tables
Table 3-1. Theoretical Estimate of F28004x ADC INT Response Duration... 11
Table 3-2. Estimated Peripheral Access Cycles for Real Control Applications..12
Table 3-3. Flash Execution Performance Compared to RAM.. 14
Table 3-4. ADC Interrupt Response Latency for CLA and C28x on F28004x..15
Table 3-5. Peripheral Access Latency for CLA and C28x on F28004x..15
Table 3-6. CLAmath Performance for F28004x... 16

Trademarks
C2000™ and Code Composer Studio™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

1 Introduction
A real-time benchmark gives a holistic view of signal chain performance. As illustrated in Figure 1-1, this
includes interrupt response time, context save overhead, peripheral reads and writes along with control
algorithms, all of which together compose a real-time control operation.

Figure 1-1. Real-Time Signal Chain

The C2000 architecture has unique capabilities that make it a microcontroller optimized for real-time control by
minimizing the sample to output time. The benchmarking in this document demonstrates these C2000 features.

2 ACI Motor Control Benchmark Application
The ACI Motor Control Benchmark simulates the sensorless AC induction motor control application. The
application performs all the typical operations: analog-to-digital converter (ADC) reads for sensing phase
currents, transform blocks that operate on the sensed current and PWM writes to control phase voltages. No
special external hardware is needed to provide stimulus as the application has a block of code that models the
behavior of an induction motor. To simulate closed loop behavior, the expected current from the motor model is
fed into the ADC via the DAC modules. A single ADC is configured to sense the phase A and phase B currents
via two channels sequentially. Phase C current is not sensed as it can be derived from phase A and phase B
currents. Three PWM writes simulate control of duty cycle of the three phase A, B and C voltages. Figure 2-1
represents the execution blocks in the control loop interrupt routine of the benchmark application. The control
loop interrupt is triggered at a rate of 2 KHz and 1024 iterations of the control loop interrupt routine are executed
before the application terminates.

In this block diagram, the dark gray blocks represent the peripheral accesses, the light gray blocks represent the
control algorithms and the white blocks represent the code blocks that are not part of a real ACI motor control
application but are used in the benchmark for simulating the behavior of the motor.

Figure 2-1. ACI Motor Benchmark Application Block Diagram

www.ti.com Introduction

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

2.1 Source Code
The software benchmark example is available in C2000Ware.

• C28x CPU benchmark available in C2000Ware version 3.04.00.00 onwards
• CLA accelerator benchmark available in C2000Ware version 4.00.00.00 onwards.

The example can be found at the following location within the C2000Ware installation.

<C2000Ware>\examples\demos\benchmark\aci_motor_benchmark

The top level folders are:

• common
• device_support
• f28004x
• f2837x

The source code is located in the 'common' and 'device_support' folders. The 'common' folder contains device
independent code such as transform algorithms, motor modeling code, and so forth. The 'device_support' folder
contains code that is specific to the particular device such as device configuration, peripheral read/write. and so
forth within sub folders named for that device.

The application is supported in Code Composer Studio™ (CCS) for TMS320F28004x and TMS320F2837x
devices and can be executed on TMS320F28004x Launchpad as well as TMS320F2837x Launchpad. The
respective CCS projects are located in the sub-folder 'ccs' within the 'f28004x' and 'f2837x' top level folders.

The application has multiple implementation variants; one variant uses the math engine Trigonometric Math
Unit (TMU) for performing trigonometric calculations needed by the Park, Inverse Park and Flux Estimator
control algorithms, the other variant uses a software library called FastRTS to perform the trigonometric
calculations. The FastRTS library is included in C2000Ware, the library and documentation can be found at
<C2000Ware>\libraries\math\FPUfastRTS\c28\. The goal with these two variants is to show the performance
boost the math engine TMU can provide as compared to a software library based implementation.

Another set of implementation variants involve the CLA. One variant is with the C28x CPU offloading part of the
compute to CLA and another variant is with the benchmarking control code executing entirely from CLA only The
goal of these two variants is to show how CLA can be used to aid in meeting real-time goals.

2.2 CCS Project for TMS320F28004x
The project can be imported in CCS using "Import Project" option and selecting the project located at
'f28004x\ccs'. The project comes with several pre-defined build configurations. Once the project is imported,
the project can be built for these different build configurations that are described below:

• SignalChain_RAM_TMU:The application compiles for the full signal chain executing out of RAM using the
TMU instructions for control algorithms like Park and Inverse Park that use trigonometric math. The build
setting is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=0.

• SignalChain_FLASH_TMU: The application compiles for the full signal chain similar to the
SignalChain_RAM_TMU except that it executes out of FLASH. The build setting is controlled by the defines
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and _FLASH.

• SignalChain_RAM_FastRTS: The application compiles for the full signal chain executing out of RAM using
the FastRTS library instead of TMU for control algorithms like Park, Inverse Park that use trigonometric math.
The build setting is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=1.

• SignalChain_FLASH_FastRTS: The application compiles for the full signal chain similar to the
SignalChain_RAM_FastRTS except that it executes out of Flash. The build setting is controlled by the defines
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=1 and _FLASH.

• ControlAlgo_RAM_TMU: The application compiles for just the control algorithm and not the full signal chain,
that is, peripherals are not configured and interrupts are not generated in this build configuration. This can
be used as a starting point for porting this application to other devices. The build setting is controlled by the
defines SIGNAL_CHAIN=0 and USE_FAST_TRIG_LIB=0.

ACI Motor Control Benchmark Application www.ti.com

4 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

• SignalChain_RAM_TMU_CLA_OFFLOAD: The application compiles for the full signal chain executing
out of RAM using the TMU instructions for control algorithms like Park and Inverse Park that use
trigonometric math on the C28x CPU side. The C28x CPU offloads some of the control code compute to
CLA resulting in parallelized execution. The build setting is controlled by the defines SIGNAL_CHAIN=1,
USE_FAST_TRIG_LIB=0 and CLA_OFFLOAD.

• SignalChain_FLASH_TMU_CLA_OFFLOAD: The application compiles for the full signal chain similar to
the SignalChain_RAM_TMU except that the C28x CPU code executes out of FLASH. The build setting is
controlled by the defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0, CLA_OFFLOAD and _FLASH.

• SignalChain_RAM_CLAmath_CLA: The application compiles for the full signal chain executing out of RAM
from CLA using the CLAmath library for control algorithms like Park and Inverse Park that use trigonometric
math as unlike C28x CPU, the CLA accelerator does not have a TMU. The build setting is controlled by the
defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and CLA_CPU.

Once the application is built, load the application to the target and select the run option in CCS to execute the
application.

The data from the seven SignalChain build configurations are used in this application report to compare TMU vs
FastRTS execution, RAM vs Flash execution and CLA execution.

2.3 CCS Project for TMS320F2837x
The project can be imported in CCS using "Import Project" option and selecting the project located at 'f287x\ccs'.
The project comes with several pre-defined build configurations. Once the project is imported, the project can be
built for different build configurations which are described below:

• SignalChain_RAM_TMU: The application compiles for the full signal chain executing out of RAM using the
TMU instructions for control algorithms like Park, Inverse Park that use trigonometric math. The build setting
is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=0.

• SignalChain_FLASH_TMU: The application compiles for the full signal chain similar to the
SignalChain_RAM_TMU except that it executes out of Flash. The build setting is controlled by the defines
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and _FLASH.

• SignalChain_RAM_TMU_CLA_OFFLOAD: The application compiles for the full signal chain executing
out of RAM using the TMU instructions for control algorithms like Park and Inverse Park that use
trigonometric math on the C28x CPU side. The C28x CPU offloads some of the control code compute to
CLA resulting in parallelized execution. The build setting is controlled by the defines SIGNAL_CHAIN=1,
USE_FAST_TRIG_LIB=0 and CLA_OFFLOAD.

• SignalChain_FLASH_TMU_CLA_OFFLOAD: The application compiles for the full signal chain similar to
the SignalChain_RAM_TMU except that the C28x CPU code executes out of FLASH. The build setting is
controlled by the defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0, CLA_OFFLOAD and _FLASH.

• SignalChain_RAM_CLAmath_CLA: The application compiles for the full signal chain executing out of RAM
from CLA using the CLAmath library for control algorithms like Park and Inverse Park that use trigonometric
math as unlike C28x CPU, the CLA accelerator does not have a TMU. The build setting is controlled by the
defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and CLA_CPU.

Once the application is built, go into CCS menu option 'Tools->Debugger Options->Auto Run and Launch
Options' and uncheck 'On program load or restart' option for 'Auto run to main symbol'. This is needed because
there are limited breakpoints on this device and the printf messages in the application use CIO that requires the
use of the break point resources. So, the Auto run to main option needs to be disabled for the application to work
correctly. Load the application and select the run option to execute the application.

The data from the five build configurations are used in this application report to compare RAM vs Flash
execution as F2837x has a different and better performing Flash than F28004x and to understand CLA
execution.

www.ti.com ACI Motor Control Benchmark Application

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

2.4 Validate Application Behavior
The application executes the control loop for 1024 iterations before terminating. The application saves the
alpha phase current as well as the per unit motor speed for each execution iteration in buffers DLogCh1 and
DLogCh2. These saved values can be plotted in the graphical view in CCS. The profiles of these plots are
similar to what would be generated in a real sensorless AC induction motor application. To check that the
application has executed correctly, halt the target after the test completes and then graph the saved values by
opening 'Tools->Graph->Dual Time', click on 'Import' and select the graph properties file 'aci.graphProp' located
in top level folder 'f28004x'. The same graph properties file can also be used for any of the build configuration
applications executing on TMS320F28004x or TMS32F2337x target. The alpha phase current is plotted in
DualTimeA graph and the per unit motor speed in DualTimeB graph. The X axis has a data point for each of the
1024 samples and the Y axis has the respective values for each of the data points. The profile of the graphs
should be similar to Figure 2-2 with the alpha current taking on a sinusoidal-like pattern and the motor speed
converging to the expected value of 0.5 units.

Figure 2-2. Graphical View of Alpha Phase Current (DualTimeA) and Per Unit Motor Speed (DualTimeB)

ACI Motor Control Benchmark Application www.ti.com

6 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

2.5 Benchmarking Methodology
The application uses a timer counter and a PWM counter to benchmark various parts of the application in
cycle counts. As such, no external hardware like a scope is needed for measuring the benchmark results. The
benchmark data is collected for each of the 1024 control loop execution iterations and output on the console
window by printf messages in the application. The device type, CPU clock frequency and RAM or Flash (with
wait state) execution information is output along with cycle counts (avg, max, min) for each of the application
execution blocks. Figure 2-3 shows a sample output of execution on F28004x from RAM with TMU.

Figure 2-3. ACI Motor Benchmarking Output

www.ti.com ACI Motor Control Benchmark Application

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

2.5.1 Details of Benchmarking With Counters

Real-time benchmarking requires measuring performance along different phases of the signal chain. As
indicated in Figure 2-4, this can be largely broken up into three parts: hardware response, compiler generated
context save and user code inside the interrupt service routine(ISR).

Figure 2-4. Real-Time Benchmarking Phases

Measuring execution inside the ISR is a straightforward task. The timer peripheral can be used to benchmark
code inside the ISR by inserting pieces of code that read the timer counter before and after a block of code
and calculating the difference. The application measures the control code and the ADC read and PWM writes
using this method. This approach however is not possible for the compiler generated context save and for the
hardware response measurement.

In this particular application, the PWM is used to trigger ADC sampling when the PWM counter reaches a certain
value (timebase period) and the ADC in turn generates an interrupt when sampling completes. While it is not
possible to measure the hardware response and the compiler generated context save separately, they can be
measured together by reading the PWM counter as the first operation inside the ISR code and calculating the
difference between the PWM value read and the PWM value when ADC sampling was triggered. This is the
method by which the application measures the INT response (hardware response + compiler context save).

2.6 ERAD Module for Profiling Application
The F28004x devices have a hardware module called ERAD (Embedded Real-time Analysis and Diagnostics)
which has comparators and counters that can be used for profiling applications. The 'f28004x' directory contains
a script called 'aci_stats_using_erad.js' that demonstrates how the ERAD can be used non-intrusively and
without modifying the application to measure and analyze application execution. The script can be used to
verify the number of times the interrupt was taken (should be 1024) and also serves as an example of
how ERAD can be used to measure execution cycles from ADC interrupt generation to ISR entry, and ISR
user code execution. This script is only provided for ERAD demonstration and application validation purpose.
Measurements generated by this script are not used in the real-time benchmarking analysis in this document.

Note
The script only works as is for the F28004x SignalChain_RAM_TMU configuration. The script needs to
be modified to benchmark an application built for another configuration as the ISR addresses profiled
in the script are hard coded for the "SignalChain_RAM_TMU" configuration build.

ACI Motor Control Benchmark Application www.ti.com

8 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Follow these steps to use the script:

1. Load the application compiled for 'SignalChain_RAM_TMU' configuration to the target.
2. Open Scripting Console view in CCS.
3. Start the script by typing the following command:

loadJSFile
"C:\TI\c2000\C2000Ware_3_04_00_00\examples\demos\benchmark\aci_motor_benchmark\f
28004x\aci_stats_using_erad.js"

4. The script will print out the initial measurement that is 0 for all.
5. Run the target and once the test completes halt the target.
6. Upon halting the target the script will output the captured measurements.

Figure 2-5 shows the output from the script.

Figure 2-5. Script Output With Application Stats Profiled by ERAD

Note
The ERAD module measures the "INT to ISR cycle count" that cycles from ADC interrupt generation
to ISR entry. This does not account for the ADC sampling and ADC trigger times that are included in
the "INT response (trigger to ISR) cycle count" measured by the application code. Hence, the "INT to
ISR cycle count" measured by ERAD script is less than the "INT response (trigger to ISR) cycle count"
measured by the application code by ~10 cycles, which is equal to the ADC sampling and trigger
duration.

3 Real-time Benchmark Data Analysis
As described in previous sections, the application has code that profiles different parts of the signal chain
and outputs the measured execution in cycle counts to the console. An analysis of these numbers will reveal
features of the C2000 architecture that make it optimized for real-time control. The analysis will also reveal the
importance of a real-time benchmarking approach to truly assess a system for its real-time performance.

Note
The benchmarking data for TI C2000 devices presented in this chapter was gathered using application
released in C2000Ware v3.04.00.00 in 2021 and executed on TMS320F280049C Launchpad
and TMS320F28379D Launchpad. The application was executed using Code Composer Studio
v10.1.0.00010 and compiled with TI v20.2.1.LTS compiler with optimization set to the recommended
level - 2 (Global optimizations) and optimized for speed - 5. The application was compiled in COFF
format.

www.ti.com Real-time Benchmark Data Analysis

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

3.1 ADC Interrupt Response Latency
Interrupt latency is an important factor in understanding the response time of a real-time system. The typical
method by which interrupt latency of a system is assessed is the number of cycles it takes for the hardware to
respond to an interrupt and branch to the interrupt vector (hardware latch and respond). However, in a real-time
application this is only part of the response latency.

Consider the sensorless ACI motor benchmark application, the PWM triggers the ADC to initiate sampling. The
ADC takes a certain number of cycles to finish sampling or conversion, which is dependent on the system
configuration as well as ADC capability. Once the ADC is ready it generates an interrupt. In the ACI motor
benchmark the ADC is configured for early interrupt generation where the interrupt is generated after sampling
completes and just as conversion starts instead of at the end of conversion. Once the ADC generates the
interrupt, the hardware responds to the interrupt and branches to the interrupt vector. However, the interrupt
service routine does not start executing user code right away but before that can happen some compiler
generated context save must be performed and then the user code is executed.

In effect, as illustrated in the Figure 3-1, the real interrupt latency is an aggregate of four components: trigger
delay + ADC sampling duration + hardware latch and respond + compiler generated context save.

Figure 3-1. ACI Motor Benchmark Interrupt Response Components

The ACI real-time benchmark outputs this value as "INT Response (trigger to ISR entry)". As can be seen
in Figure 3-2, the C28x INT response time on an average is 49 cycles and represents the real latency for
when an application can start responding to a sensing event for the sensorless ACI motor example. Traditional
benchmarks do not measure the system in this fashion. The variance in the INT response cycles between the
Min and Max value is expected as there may be additional cycles needed to complete an ongoing background
instruction before the asynchronous interrupt event can be taken by the CPU.

Figure 3-2. ACI Motor Benchmark Interrupt Response Benchmark Data

Real-time Benchmark Data Analysis www.ti.com

10 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Table 3-1 lists a theoretical estimate of the contribution of each individual element and as can be seen the total
cycles aligns with the minimum cycles benchmarked by the application.

Table 3-1. Theoretical Estimate of F28004x ADC INT Response Duration

Trigger Delay (1)
ADC Sampling Duration

(2)
HW Latch and
Response(3) Compiler Context Save(4) Total (cycles)

2 8 14 23 47

(1) From ADC timing diagram in device-specific data sheet.
(2) Configured by application per device-specific data sheet recommendation.
(3) From peripheral interrupt description in device-specific TRM.
(4) Derived from inspecting generated code and calculating cycles.

A look at the individual components that contribute to the total cycles shows that the PWM and ADC are closely
integrated and the trigger delay contributes to few additional cycles. The ADC early interrupt generation feature
allows the ADC conversion to proceed in parallel while the system is responding to the interrupt. This allows the
conversion cycles to overlap with the interrupt generation and compiler context save cycles, thus reducing the
overall time required for responding to the ADC sampling event. In comparison, for any other system that does
not have the ADC early interrupt generation feature, the interrupt response will include the conversion cycles
thus increasing the overall response time. The other advantage of this feature is that ADC result can be applied
to the system closer in time to when it was sampled resulting in more accurate system control.

3.2 Peripheral Access
The ACI real-time benchmark has two peripheral access responses: ADC read and convert to float as well as
PWM write. For the response times for each of these operations, see Figure 3-3.

Figure 3-3. ACI Motor Benchmark Peripheral Access Benchmark Data

In this particular implementation, only two ADC inputs are being read and three PWM outputs are being written.
As can be seen in Table 3-2, in other practical applications involving motor control or digital power the number of
these operations can be larger and can have a bigger impact on the execution duration of a control application.

In the C2000 architecture the CPU is closely integrated with the peripherals and the instruction set architecture is
optimized for floating point operations. From the benchmark data in Table 3-3, it can be derived that it takes only
~2 cycles to read one ADC input and convert it to float and just ~3 cycles to write one PWM output. As such,
C2000 architecture can effectively scale to applications with large number of peripheral accesses.

www.ti.com Real-time Benchmark Data Analysis

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Table 3-2 captures the estimated cycles for some real control applications based on the benchmarking data.

Table 3-2. Estimated Peripheral Access Cycles for Real Control Applications
Application Number of ADC Reads Number of PWM Writes Estimated Total Cycles

3 Phase AC
motor control application

7 3 23 (1)

Totem-pole PFC digital power
application

10 9 47 (2)

(1) 7 ADC reads (2 cycles each) + 3 PWM writes (3 cycles each) = (7 x 2) + (3 x 3) = 23
(2) 10 ADC reads (2 cycles each) + 9 PWM writes (3 cycles each) = (10 X 2) + (9 X 3) = 47

3.3 TMU (math enhancement) Impact
Many C2000 targets have a math extension called Trigonometric Math Unit (TMU) ,which is an extension
of the Floating-Point Unit (FPU) and enhances the instruction set of the C28x+FPU by efficiently executing
trigonometric and arithmetic operations that are commonly used in control system applications.

The ACI motor control application has control algorithms: Park, Inverse Park and Flux estimator that
involve trigonometric math. To demonstrate the impact that the TMU can make, the F28004x has two build
configurations SignalChain_RAM_TMU and SignalChain_RAM_FastRTS.

In the following figures, Figure 3-4 shows the execution time derived from the benchmark cycles data and Figure
3-5 shows application size (code and data) for the control code (driver libraries and runtime are excluded) as
indicated in the compiler tools generated linker map file, for each of the two configurations.

Figure 3-4. Control Loop Execution Time Out of
RAM With TMU and FastRTS Figure 3-5. Application Size Compiled for TMU and

FastRTS

The data in the graphs show that the TMU has a two-fold impact:

• Faster Execution Time: The execution of the application becomes faster by 28%.
• Smaller Application Size: A typical trigonometric implementation involves lookup tables and floating-point

computations to calculate common trigonometric operations. The TMU provides instructions for these
trigonometric operations and eliminates both the lookup tables and complex floating point code. This
translates into smaller application size allowing smaller memory devices with TMU to be able to support
the application. In this particular example the application size reduces by 14%.

Real-time Benchmark Data Analysis www.ti.com

12 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

3.4 Flash Performance
Many applications are configured to execute out of flash. As such flash performance is a critical criteria for
measuring the capability of a real-time system. Typical benchmarks compute flash efficiency by executing
synthetic code that may not reveal performance when executing a control application with its combinations of
non-linear code flow, data tables and peripheral accesses.

The F28004x and F2837x have two build configurations: 'SignalChain_RAM_TMU' and
'SignalChain_FLASH_TMU'. The execution time for these configurations are displayed in Figure 3-6 and Figure
3-7.

Figure 3-6. TMS320F28004x Execution Time From RAM and Flash

Figure 3-7. TMS320F2837x Execution Time From RAM and Flash

The flash performance as derived from the total average execution cycles benchmark data is listed in Table 3-3.

www.ti.com Real-time Benchmark Data Analysis

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Table 3-3. Flash Execution Performance Compared to RAM

RAM Execution (cycles) Flash Execution (cycles)

Flash Relative
Performance
(RAM_cycles * 100 /
Flash_cycles) Flash Technology

TMS320F28004x 529 648 82% • 100 MHz CPU Clock
• 20 MHz Flash Speed
• 4 Wait States

TMS320F2837x 537 582 92% • 200 MHz CPU Clock
• 50 MHz Flash Speed
• 3 Wait States

As can be seen by the data in the table, the flash performance of C2000 devices for a real world application like
ACI motor control is very good (~80-90%) when compared to the RAM performance.

3.5 Control Law Accelerator (CLA)
The CLA is a task driven fully-programmable independent 32-bit floating-point hardware accelerator that is
designed for math intensive computations. The CLA also has access to control peripherals like ADC and PWM.
The CLA supports eight hardware tasks. A hardware task can be initiated by the C28x CPU or by a control
peripheral. More details on CLA can be found in the documentation linked in the References section. These
capabilities make the CLA a powerful ally in achieving real-time system performance goals in two ways:

1. The CLA can be triggered by a peripheral and can execute the entire control loop thus freeing up the C28x
CPU for other activities such as running communications stack and thus effectively doubling up the available
compute power.

2. The C28x CPU can offload parts of the compute to the CLA that can reduce execution time and thus boost
performance.

The ACI real-time benchmark has been ported to showcase both these usages of the CLA.

3.5.1 Full Signal Chain Execution on CLA

The CLA is a task driven architecture and has close integration with control peripherals. The device-specific
TRM and data sheet have information on the peripherals that are accessible by the CLA.

The ADC can trigger a task on the CLA just like it triggers an interrupt on the C28x CPU. The CLA can also
write to the PWM. These capabilities allow the entire ACI Signal Chain to be executed on the CLA with the ADC
triggering the CLA task and the CLA task executing the entire control loop. While the CLA is executing the signal
chain, the C28x CPU is idle. This demonstrates that in a more comprehensive example, the application can be
partitioned to run the control loops from CLA and have the C28x CPU run other operations like communications
stacks.

For the implementation, see the 'SignalChain_RAM_CLAmath_CLA' build configuration.

Real-time Benchmark Data Analysis www.ti.com

14 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Figure 3-8. ACI Motor Benchmark Output for CLA Executing Full Signal Chain

The insights from the benchmarking are detailed as follows.

3.5.1.1 CLA ADC Interrupt Response Latency

The CLA is a task driven architecture and hence does not have context save and restore overheads of a
traditional interrupt architecture. As a result the CLA has a low interrupt latency that allows it to read the ADC
samples "just in time". More information on this topic can be found in the CLA section of the device-specific
TRM.

In the application, the ADC setup to trigger the CLA Task is the same as the configuration where the ADC
triggers the C28x interrupt. Table 3-4 shows how the CLA compares to the C28x and demonstrates the low
latency in the absence of any context save overhead.

Table 3-4. ADC Interrupt Response Latency for CLA and C28x on F28004x
Compute Core ADC Interrupt Response (cycles)
CLA 17

C28x 47

3.5.1.2 CLA Peripheral Access

The CLA is closely integrated with the ADC and PWM peripherals just like the C28x CPU. The peripheral access
latency for CLA is similar to C28x CPU and as such the CLA is also similarly efficient. This efficiency is critical for
control loop execution.

Table 3-5. Peripheral Access Latency for CLA and C28x on F28004x
Compute Core 2 ADC reads (cycles) 3 PWM writes (cycles)
CLA 4 6

C28x 4 9

www.ti.com Real-time Benchmark Data Analysis

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

3.5.1.3 CLA Trigonometric Math Compute

The CLA is efficient at floating point compute. However, unlike the C28x CPU which has the TMU
hardware accelerator, the CLA does not have a trigonometric hardware accelerator and requires a software
implementation. The C2000Ware software package provides CLAmath library that has efficient implementation
of trigonometric operations. In the ACI application, the CLAmath library APIs are used for Park, Inverse Park and
Flux Estimator compute blocks that contain trigonometric operations.

Table 3-6. CLAmath Performance for F28004x
Compute Core Park/Inverse Park (cycles) Flux Estimator (cycles)
CLA 83/85 342

C28x 18/24 167

It is easy to port code created for C28x CPU utilizing TMU operations to CLA. The C28x TMU compiler intrinsics
map to CLAmath libray functions when compiled for CLA. As such the ACI benchmark control code running on
C28x CPU with TMU did not need to be modified to run from CLA and only required linking the CLAmath library
and including the CLAmath.h header file.

3.5.2 Offloading Compute to CLA

The C28x CPU can software trigger a CLA task using the IACK instruction. This can be used by the C28x to
offload computations to the CLA at specific points in the code running on the C28x CPU. The ACI benchmark
example is fairly linear in that one control algorithm block requires an input from a previous control algorithm
block. However there are two instances where parallelism can be introduced:

1. PID control block:

There are three instances of the PID control algorithm and one of these (PID Id instance) does not have
dependencies on the others and can be parallelized. In the implementation, the C28x offloads the PID Id
control execution to the CLA Task 2 while the C28x is executing the PID for Speed and Iq in parallel.

2. SVGen control block:

The SVGen control block depends on the output of the Inverse Park transform. Since this is a sensor-less
ACI implementation additional control blocks are also present such as Flux and Speed Estimators. The
SVGen is not dependent on these and can be parallelized with the Estimators. In the implemetation the
C28x offloads the SVGen calculation to the CLA Task 1.

For the implementation, see the 'SignalChain_RAM_TMU_CLA_OFFLOAD' build configuration. The
implementation demonstrates how easy it is to transition code to offload compute to the CLA. The same PID
inline C function header file is included on the C28x source file as well as CLA source file and gets compiled into
C28x code on C28x side and CLA code on CLA side.

Real-time Benchmark Data Analysis www.ti.com

16 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

Figure 3-9. ACI Motor Benchmark Output for C28x With CLA Offloading

The opportunity to offload compute to CLA resulted in an execution cycle count reduction thus boosting
performance by 12%.

4 C2000 Value Proposition
The ACI motor control benchmarking application is self-contained and does not require any special external
hardware to execute. Hence, this application can be easily ported to any device to evaluate real-time control
performance. A multi-device analysis demonstrates that the C2000 platform offers a rich feature set with an
optimized architecture which leads to excellent performance across the real-time signal chain.

Note
1. The multi-device analysis for TI C2000 and Competition A and B devices presented in this chapter

is based on actual measured data compiled by TI internally in 2021 with ACI motor benchmark
example in C2000Ware 3.04.00.00 ported to these devices.

2. All of the measurements were performed by setting the tool chain to compile code for maximum
performance/speed and operating the devices at the maximum CPU frequency.

3. The cycles/time was measured for each of the devices and the numbers were compared against
the F28004x executing from RAM to determine relative performance. The relative performance
is represented in each of the graphs and this is why F28004x is marked as "Reference" and is
always 1.0.

4. In the graphs, a lower relative number indicates fewer cycles or lesser time and hence better
performance.

5. The classification of the categories in the graph as "Entry/Mid performance" and "High
performance" is based on TI nomenclature. The competition devices are placed in the same
category as the TI device that competes with the competition device.

www.ti.com C2000 Value Proposition

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

17

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.1 Efficient Signal Chain Execution With Better Real-Time Response Than Higher
Computational MIPS Devices
The ACI benchmark data reveals that C2000 devices are able to quickly respond to a sampling event and
efficiently execute a response thus resulting in a fast sample-to-output response. This also allows for more
available MIPS for additional operations. With a good flash execution efficiency (RAM execution time/Flash
execution time) of 82% for F28004x (entry/mid performance device) and 92% for F2837x (high performance
device), execution out of flash is also a viable option to meet real-time performance requirements.

* As indicated in the Note, F28004x execution from RAM is the reference.

** Best case and worse case performance numbers using faster RAM or standard RAM banks.

*** Best case and worse case performance with warm and cold cache

Figure 4-1. ACI Motor Control Benchmark Execution (relative cycles and relative time)

C2000 Value Proposition www.ti.com

18 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.2 Excellent Real-Time Interrupt Response With Low Latency
The C2000 devices have excellent analog peripherals. The ADCs have a fast sampling rate and early
interrupt generation feature where in an interrupt can be triggered while the first ADC channel value in a
sequence is still being converted. Together with an efficient interrupt architecture this translates to fewer
cycles when responding to a trigger to an ADC sampling event.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-2. ADC Interrupt Response Latency (relative cycles and relative time)

www.ti.com C2000 Value Proposition

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

19

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.3 Tight Peripheral Integration That Scales Applications With Large Number of Peripheral
Accesses
The C2000 instruction set and tight peripheral integration make it possible to read an ADC result and convert
to float in just 2 cycles. As such the overhead for ADC access is extremely small and hence highly scalable to
applications with a large number of ADC accesses.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-3. ADC Read and Convert to Float Efficiency (relative cycles and relative time)

C2000 Value Proposition www.ti.com

20 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.4 Best in Class Trigonometric Math Engine
Trigonometric operations are common in many control algorithms, Park transform is one such example. Efficient
execution of trigonometric operations can be vital for minimizing compute duration. All Gen-3 C2000 devices
across a wide performance range from entry/mid performance devices like F28004x to high performance
devices like F2837x have a trigonometric math engine called Trigonometric Math Unit (TMU). The TMU
extends the instruction set for trigonometric operations. With an easy to use programming model through the
support of compiler intrinsics, it is easy to apply the performance boost of the TMU to real-time control algorithms
executing on C2000 devices.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-4. Park Transform With Trigonometric Math Engine (relative cycles and relative time)

www.ti.com C2000 Value Proposition

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

21

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.5 Versatile Performance Boosting Compute Engine (CLA)
Many C2000 devices have a CLA (Control Law Accelerator) which runs at the same frequency as the C28x CPU
and can be utilized in two different ways to achieve real-time application goals.

• CLA executing full signal chain - CLA executing independent of C28x CPU, freeing up C28x CPU for other
activities and effectively doubling the available MIPS.

• C28x CPU offloading compute to CLA - parallelism resulting in better execution performance by reducing the
sample to output response time.

* As indicated in the Note, F28004x execution from RAM is the reference.

CLA runs from RAM only and hence does not have a Flash execution data point.

Figure 4-5. ACI Motor Control Benchmark CLA Execution (relative cycles and relative time)

C2000 Value Proposition www.ti.com

22 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

4.6 Deterministic Execution due to Low Execution Variance
Deterministic execution is highly desired for real-time systems. The C2000 family of devices have tiny prefetch
buffers for improving Flash execution but do not have any caches. While caches can improve performance, they
can also introduce a large variance in execution duration due to cache operations resulting from cache misses
and coherency operations. The C2000 devices perform well without caches and in turn also allow deterministic
execution with a low execution variance.

* F2837x execution from Flash is the reference.

Figure 4-6. ACI Motor Control Benchmark Execution Variance from Flash (relative cycles and relative
time)

www.ti.com C2000 Value Proposition

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

23

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

5 Summary
This application note demonstrates that typical industry software benchmarks that focus on processing time
alone do not effectively convey the true performance of a system when executing real-time control applications.
Real-time benchmarking approach gives a more comprehensive and realistic picture of the real-time capabilities
of a system. For example, the ACI motor benchmark data for F28004x device with TMU execution from
RAM shows that the non-control-algorithm components (INT response + Read ADC + Write PWM) contribute
about 12% of the total signal chain execution duration which would be unaccounted for in a typical software
benchmark. This percentage will vary for different devices depending on the architecture and analog capabilities
and can be higher for a device where the peripheral accesses or ADC sampling takes longer as well as for other
real-time control applications with a greater number of peripheral accesses.

The real-time benchmarking data in this application note showcases the differentiated features of the C2000
architecture such as tight peripheral integration, ADC early interrupt feature, optimized instruction set with math
enhancement like TMU and efficient flash technology that together help reduce the sample to output response
time and thus make the C2000 MCUs highly optimized for real-time control applications.

6 References
• Texas Instruments: TMS320F28004x Microcontrollers Technical Reference Manual
• Texas Instruments: TMS320F28004x Microcontrollers Data Sheet
• Texas Instruments: TMS320F2837xD Dual-Core Microcontrollers Technical Reference Manual
• Texas Instruments: TMS320F2837xD Dual-Core Microcontrollers Data Sheet
• Texas Instruments: Software Development Kit - C2000Ware for C2000 MCUs
• Texas Instruments: TMU instruction set - TMS320C28x Extended Instruction Sets Technical Reference

Manual
• Texas Instruments: TMU additional details - Enhancing the Computational Performance of the C2000™

Microcontroller Family
• Texas Instruments: CLA details - Enhancing the Computational Performance of the C2000™ Microcontroller

Family
• Texas Instruments: The Essential Guide for Developing With C2000™ Real-Time Microcontrollers
• Texas Instruments: CLA Application Report - Software Examples to Showcase Unique Capabilities of TI’s

C2000™ CLA

Summary www.ti.com

24 Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUI33
https://www.ti.com/lit/pdf/SPRS945
https://www.ti.com/lit/pdf/SPRUHM8
https://www.ti.com/lit/pdf/SPRS880
https://www.ti.com/tool/C2000WARE
https://www.ti.com/lit/pdf/SPRUHS1
https://www.ti.com/lit/pdf/SPRUHS1
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/lit/pdf/SPRY288
https://www.ti.com/lit/spracn0
https://www.ti.com/lit/spracs0
https://www.ti.com/lit/spracs0
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (April 2021) to Revision A (December 2021) Page
• Update was made in the Abstract of this document... 1
• Updated the numbering format for tables, figures and cross-references throughout the document...................3
• Update was made in Section 1... 3
• Update was made in Section 2.1.. 4
• Update was made in Section 2.2.. 4
• Update was made in Section 2.3.. 5
• Update was made in Section 2.5.1... 8
• Update was made in Section 2.6.. 8
• Update was made in Section 3... 9
• Update was made in Section 3.1.. 10
• Update as made in Section 3.2...11
• Added new Section 3.5...14
• Update was made in Section 4.1.. 18
• Update was made in Section 4.2.. 19
• Update was made in Section 4.3.. 20
• Update was made in Section 4.4.. 21
• Added new Section 4.5...22
• Added new Section 4.6...23
• Update was made in Section 5... 24
• Update as made in Section 6..24

www.ti.com Revision History

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal
Chain

25

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 ACI Motor Control Benchmark Application
	2.1 Source Code
	2.2 CCS Project for TMS320F28004x
	2.3 CCS Project for TMS320F2837x
	2.4 Validate Application Behavior
	2.5 Benchmarking Methodology
	2.5.1 Details of Benchmarking With Counters

	2.6 ERAD Module for Profiling Application

	3 Real-time Benchmark Data Analysis
	3.1 ADC Interrupt Response Latency
	3.2 Peripheral Access
	3.3 TMU (math enhancement) Impact
	3.4 Flash Performance
	3.5 Control Law Accelerator (CLA)
	3.5.1 Full Signal Chain Execution on CLA
	3.5.1.1 CLA ADC Interrupt Response Latency
	3.5.1.2 CLA Peripheral Access
	3.5.1.3 CLA Trigonometric Math Compute

	3.5.2 Offloading Compute to CLA

	4 C2000 Value Proposition
	4.1 Efficient Signal Chain Execution With Better Real-Time Response Than Higher Computational MIPS Devices
	4.2 Excellent Real-Time Interrupt Response With Low Latency
	4.3 Tight Peripheral Integration That Scales Applications With Large Number of Peripheral Accesses
	4.4 Best in Class Trigonometric Math Engine
	4.5 Versatile Performance Boosting Compute Engine (CLA)
	4.6 Deterministic Execution due to Low Execution Variance

	5 Summary
	6 References
	7 Revision History

