
Why Use a Real-Time
Operating System in
MCU Applications

Introduction

Are you adding more features to each new

generation of your microcontroller application?

And are internet connectivity and touchscreen UIs

becoming mandatory? If so then it’s time to switch

to a real-time operating system (RTOS). Taking

advantage of an off-the-shelf RTOS environment

frees you up from focusing too much on low-level

peripheral control software and allows you more

resources for differentiation.

Nick Lethaby
OS Product Manager

Texas Instruments Incorporated

W H I T E P A P E R

Traditionally, MCU developers implement software applications around sequential processing

loops and state machines. While adequate when the MCU is performing a rather limited number

of functions, a different approach is required as MCUs integrate more memory and peripherals.

A growing number of MCU applications are now based on a Real-Time Operating Systems (RTOS).

The key driver of RTOS adoption is application complexity. An RTOS will often be used when there

are more interrupt sources, more functions, and more standard communications interfaces that

need to be supported. If the application is <64KB in size, an RTOS is not necessary. Conversely if,

the applications is 1 MB, an RTOS will likely be used.

 Internal debates within development teams considering use of an RTOS for the first time are

passionate. Many MCU developers are accustomed to having intimate control over 100% of the

code base and highly optimizing every byte of code and data. It can be challenging to give up this

level of control and rely on code from a third-party. While it is unlikely that third-party software will

completely match the efficiency of a highly customized run-time, using an RTOS counterbalances

this by increasing development team productivity through greater code reuse.

 This debate is analogous to “C vs. assembly language”. An experienced assembly language

programmer will typically generate faster and smaller code than a C compiler. However, using C

is almost universally considered a superior approach because the amount of effort to develop an

application is much less than when using assembly language. While it is quite possible to do a

custom RTOS implementation, it is questionable whether such an approach is optimal. The

availability of no-cost off-the-shelf RTOS solutions such as TI-RTOS and FreeRTOS™ remove any

barriers associated with product cost. Furthermore, the cost of commercial RTOS products such

as µC/OS III®, ThreadX®, SMX®, and Nucleus® is typically much lower than having in-house

engineers develop and maintain a custom RTOS implementation.

The below are five productivity advantages and top reasons to condsider using an RTOS:

1. Preemptive multitasking design paradigm: For more complex real-time applications,

especially those with a code base that is progressively enhanced in each release, the

preemptive multitasking design paradigm is superior. This design paradigm makes

response-times to each real-time event relatively independent of each other. As a result, new

functions can be added without disrupting existing hard real-time ones. In contrast, in a

sequential processing loop where each event is checked by polling, the addition of a new event

will affect the response times for all events. Although real-time response for critical events can

be maintained by use of background/foreground loops or other mechanisms to more frequently

poll critical events, more complex real-time applications designed in this way often become

very difficult to maintain and modify. Unlike a custom run-time, RTOSs are typically designed

to support a wide range of application scenarios and do not need to be modified to support

a new application.

2. Pre-tested and pre-integrated communications stacks and drivers: An RTOS will typically offer

communications stacks such as TCP/IP and USB along with drivers for these and other peripherals. Having

such software available working “out of box”, eliminates the need for developers to implement it from scratch or

spend time integrating third-party software into their run-time environment. In addition most MCU developers are

not expert in communications stacks. An RTOS that provides these allows a developer to focus on their area of

application expertise and not spend time on undifferentiated system capabilities such as internet connectivity.

3. Application portability: By providing a standardized set of stack and driver APIs that abstracts the specifics of

the underlying hardware, an RTOS makes applications much more portable. There is much less risk that applica-

tion software will get interleaved with code performing low-level accesses to peripheral control registers specific

to a device. Highly portable code increases ease-of-software reuse.

4. System-level debug and analysis tools: As an application becomes more complex, it becomes more likely

that it can behave in unanticipated ways. Excessive memory usage or leaks, delayed response to real-time

events, or greater than expected CPU loads are all problems that can occur. Problems of this nature are often

difficult to diagnose since they require a high-level understanding of system behavior and resource usage. Most

RTOSs have associated system-level debugging tools that enable application behavior and resource usage to

be examined. For example, TI-RTOS has associated tools that enable developers to look at stack usage and

compare it against how much stack was assigned to a task. This makes it straightforward to detect stack over-

flows or to optimize task stack sizes to free up RAM for other parts of the application. For a custom run-time, a

development team will need to create and maintain custom tools.

5. More efficient use of CPU resources: Simple loop-based run-times typically do a lot of polling to check

if interrupts have occurred. As a result a great deal of processor time is occupied doing nothing. Because

multitasking RTOS-based applications are interrupt-driven, it is possible to largely eliminate polling from the

application. This frees up processor resources for useful work and enables power-saving modes to be invoked

during idle periods.

 If you are finding that each generation of your MCU application is adding more and more features and that

internet connectivity and touchscreen UIs are becoming mandatory, it may be time to consider switching to an

RTOS. Taking advantage of an off-the-shelf software environment like TI RTOS frees you up from focusing too

much on low-level peripheral control SW and allows more resources for differentiating your application.

2Texas Instruments

SPRY238

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard terms and conditions of sale.
Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance,
customer’s applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

The platform bar is a trademark of Texas Instruments. ThreadX is a registered trademark of Express Logic, Inc. Nucleus is a registered trademark of Mentor Graphics
Corporation. µC/OS III® is a registered trademark of Micrium, Inc. SMX is a registered trademark of Micro Digital, Inc. FreeRTOS is a trademark of Real Time Engineers, Ltd.

E010208

© 2013 Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

