
Application Note
UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs

Jonhson He MSP430 Applications

ABSTRACT

The universal asynchronous receiver transmitter (UART) interface and the inter-integrated circuit (I2C) interface
are two common serial communication interfaces. They both enable communication between the MSP430™

microcontroller (MCU) and another device, such as a personal computer (PC), another MCU, or a processor.
Many devices support only one or the other interface, therefore some designs require communication between
devices with these different serial protocols. This application report describe a program that can convert between
UART and I2C protocols. In this program, both hardware UART and I2C modes are used, which can support
baud rates up to 921600 and I2C clock frequencies up to 400 kHz.

Table of Contents
1 Introduction...2
2 Implementation... 2
3 UART Message Format...3

3.1 Write N Bytes to Slave Device... 3
3.2 Read N Bytes From Slave Device..3
3.3 Repeated Start (Read After Write)... 4
3.4 Repeated Start (Write After Write)... 4
3.5 Write to Internal Register..4
3.6 Read From Internal Register..5

4 Internal Registers Available...5
4.1 Register Summary..5
4.2 Baud Rate Generator (BRG)..5
4.3 I2C Bus Clock Rates (I2CClk).. 6

5 Performance..6
6 Application Examples...7

6.1 Test With I2C Slave Device.. 7
6.2 Read and Write EEPROM..7

7 Reference.. 9
8 Revision History..9

Trademarks
MSP430™ and LaunchPad™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

1 Introduction
The MSP430FR2311 MCU has two eUSCI modules that can be used as a low-cost UART-to-I2C bridge
(configured as an I2C master) using the UART and I2C modes. This bridge make it convenient for hardware
devices that support only UART to access I2C protocol devices for data transmission and exchange. To get
started, download the project files and a code example that demonstrate this functionality.

2 Implementation
Figure 2-1 shows the block diagram for the UART-to-I2C bridge. The MSP-TS430PW20 target development
board was used to connect the peripherals to the MSP430FR2311 MCU. Set the jumpers as listed here:

• Populate jumpers JP14, JP15, JP17, and JP18
• Do not populate jumper JP13
• Set jumper JP16 to UART
• Set jumpers JP3 to JP8 all on 1-2
• Set jumper JP11 on 1-3 and 2-4

These jumper settings allow the back-channel UART interface on the MSP-FET programmer and debugger to
simulate the UART device that will communicate with the bridge. At the same time, the 10k resistor is used
as a pullup on the I2C pins. To communication with an I2C device, connect the SCL pin of the I2C device to
J4.19 (P1.3) and connect the SDA pin to J4.20 (P1.2). A simple I2C slave project was implemented on an
MSP430FR2311 LaunchPad™ development kit to demonstrate the functionality of the UART-to-I2C bridge. The
UART-to- I2C bridge functions in I2C master mode.

I
2
C slave device MSP430FR2311 UART device

SDA

SCL

P1.2

P1.3

P1.7

P1.6

P1.2

P1.3

NOTE: Pullup resistors are required on the I2C bus.

Figure 2-1. UART-to-I2C Bridge Block Diagram

Using a PC, open a new serial connection with a terminal program, and connect to the back-channel UART
interface on the MSP-FET by selecting the COM port called MSP Application UART1. In the terminal window,
change the baud rate to 115200. To demonstrate the functionality of the UART-to-I2C bridge, enter a string of
bytes into the terminal window follow command formats and send it. It will be sent to the I2C slave device, and
whatever value was in the TX buffer of the I2C slave device will be displayed in the serial terminal.

Figure 2-2 shows the flowchart for the I2C and UART code.

When an I2C packet is received, the UCRXIFG interrupt flag is set, and the data is read from the I2C RX buffer
and stored in the internal buffer (default size is 100 bytes). Next when the data is receive completed, write this
data to UART TX buffer and send it through the UART.

When a UART packet is received, it is stored in the internal buffer (the default size is 100 bytes), and then the
application analyzes the UART packet command format. Different steps are performed for these two command
formats: read or write data through the I2C interface, or read or write internal register data.

Introduction www.ti.com

2 UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/product/MSP430FR2311
http://www.ti.com/lit/zip/slaa908
http://www.ti.com/tool/MSP-TS430PW20
http://www.ti.com/tool/MSP-TS430PW20
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

Figure 2-2. I2C and UART Code Flow

3 UART Message Format
The host initiates an I2C bus data transfer, or reads from and writes to internal registers through a series of
ASCII commands. Table 3-1 lists the supported ASCII commands and their hexadecimal value representation.
Unrecognized commands are ignored by the device.

Table 3-1. ASCII Commands
ASCII Hex Value Function

S 0x53 I2C start

P 0x50 I2C stop

R 0x52 Read from internal register

W 0x57 Write to internal register

3.1 Write N Bytes to Slave Device
The host issues the write command by sending an S character followed by an I2C bus slave device address, the
total number of bytes to be sent, and I2C bus data which begins with the first byte (DATA 0) and ends with the
last byte (DATA N). The frame is then terminated with a P character. Once the host issues this command, the
MSP430 MCU will access the I2C bus slave device and start sending the I2C bus data bytes.

Note that the second byte sent is the I2C bus device slave address. The least significant bit (W) of this byte must
be set to 0 to indicate this is an I2C bus write command.

Slave address

+ write bit (W)
Start (S)

character
Data 0

Number of

bytes
Data N

Stop (P)

character

Host sends

...

Figure 3-1. Write N Bytes to Slave Device

3.2 Read N Bytes From Slave Device
The host issues the read command by sending an S character followed by an I2C bus slave device address, and
the total number of bytes to be read from the addressed I2C bus slave. The frame is then terminated with a P
character. Once the host issues this command, the MSP430 MCU will access the I2C bus slave device, get the
correct number of bytes from the addressed I2C bus slave, and then return the data to the host.

The second byte sent is the I2C bus device slave address. The least significant bit (R) of this byte must be set to
1 to indicate this is an I2C bus write command.

www.ti.com UART Message Format

SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

Slave address

+ read bit (R)

Start (S)

character

Stop (P)

character

Number of

bytes

Data NData 0

Host sends

Slave responds

...

Figure 3-2. Read N Bytes From Slave Device

3.3 Repeated Start (Read After Write)
The bridge also supports ‘read after write’ command as specified in the I2C bus specification. This allows a
read command to be sent after a write command without having to issue a STOP condition between the two
commands.

The host issues a write command as normal, then immediately issues a read command without sending a STOP
(P) character after the write command.

Slave address
+ write bit (W)

Start (S)
character

Data 0
Number of

bytes

Data NData 0

Host sends

Slave responds

Start (S)
character

Data N
Number of

bytes

Slave address
+ read bit (R)

Stop (P)
character

...

...

...

Figure 3-3. Repeated Start : Read After Write

3.4 Repeated Start (Write After Write)
The bridge also supports ‘write after write’ command as specified in the I2C bus specification. This allows a
write command to be sent after a write command without having to issue a STOP condition between the two
commands.

The host issues a write command as normal, then immediately issues a second write command without sending
a STOP (P) character after the first write command.

Slave address

+ write bit (W)

Start (S)

character
Data 0

Number of

bytes

Host sends

Start (S)

character
Data N

Number of

bytes

Slave address

+ write bit (W)
Data 0

...

... ... Data N
Stop (P)

character

Figure 3-4. Repeated Start : Write After Write

3.5 Write to Internal Register
The host issues the internal register write command by sending a W character followed by the register and data
pair. Each register to be written must be followed by the data byte.

The frame is then terminated with a P character.

UART Message Format www.ti.com

4 UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

Register 0
Write register

(W) character
Data 0 Register N Data N

Host sends

... Stop (P)

character

Figure 3-5. Write to Internal Register

Note

The values of the written registers are stored in the internal FRAM of the MSP430 MCU and have a
memory function.

3.6 Read From Internal Register
The host issues the internal register read command by sending an R character followed by the registers to be
read.

The frame is then terminated with a P character.

Register 0
Read register
(R) character

Stop (P)
character

Register N

Data NData 0

Host sends

MCU responds

...

...

Figure 3-6. Read From Internal Register

4 Internal Registers Available
4.1 Register Summary
Table 4-1 lists the internal registers of the MSP430FR2311 that control this application.

Table 4-1. Internal Registers Summary
Address Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 R/W

0x00 BRG0 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 R/W

0x01 BRG1 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 R/W

0x02 I2CClkL bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 R/W

0x03 I2CClkH bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 R/W

4.2 Baud Rate Generator (BRG)
This register sets the UART baud rate (the default is 115200). Table 4-2 lists the supported rates.

Table 4-2. UART Baud Rate
BRG

UART Baud Rate
(hex) (dec)

0x0023 35 460800

0x0046 70 230400

0x008A 138 115200

0x0116 278 57600

0x0682 1666 9600

The rate is programmed through the BRG register and the baud rate can be calculated as Equation 1.

Baud rate = 16 × 106
BRG1, BRG0 (1)

www.ti.com UART Message Format

SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

Note

For the new baud rate to take effect, both BRG0 and BRG1 must be written with new values
simultaneously. The new baud rate takes effect immediately after BRG0 or BRG1 are written.

4.3 I2C Bus Clock Rates (I2CClk)
This register sets the serial clock frequency (the default is 100 kHz). Table 4-3 lists the supported serial rates.

Table 4-3. I2C Bus Clock Frequency
I2CClk I2C Bus Clock

Frequency (kHz)(hex) (dec)
0x0028 40 400

0x0050 80 200

0x00A0 160 100

0x0140 320 50

0x0280 640 25

The frequency can be determined using Equation 2.

I2C Bit Frequency = 16 × 106
I2CClkH , I2ClkL (2)

Note

For the new bit frequency to take effect, both I2CClkH and I2CClkL must be written with new values
simultaneously. The new baud rate takes effect immediately after I2CClkH or I2CClkL are written.

5 Performance
The firmware supports full duplex UART communication. It also supports UART packets with eight data bits,
least significant bit (LSB) first, no parity bit, and one stop bit. Because two serial interfaces are required, this
firmware can only be used on MSP430 MCUs that have at least two USCI modules.

The firmware creates two 100-bytes buffer to hold the data in the conversion. After the data is stored in the
buffer, the next conversion is performed. Therefore, the maximum number of bytes sent in a single transmission
cannot exceed 100 bytes (including the frame header). If you require packets larger than 100 bytes of data in
single transmission, modify the two parameters I2C_TO_UART_BUFF_SIZE and UART_TO_I2C_BUFF_SIZE in
the firmware to meet the requirements.

Table 5-1. Maximum Rates
Interface Maximum Rate

I2C 400-kHz bit clock

UART 921600-bps baud rate

To change the baud rate of the UART interface or the clock frequency of the I2C interface, change the
UCA0BRW or UCB0BRW register in the code. In this application, SMCLK operates at 16 MHz. To change
this, see the MSP430FR4xx and MSP430FR2xx Family User's Guide for the proper configuration and the
MSP430FR231x Mixed-Signal Microcontrollers datasheet for the maximum I2C clock value. After making these
changes, close the serial terminal, rebuild the code, reprogram and reset the MCU, and then reopen the terminal
with the new baud rate.

The I2C clock speed and the UART baud rate can also be changed using UART commands (see Section 3 and
Section 4). When the baud rate of the UART or the clock frequency of the I2C is changed by the UART, the
change takes effect immediately and is saved after power off and restart.

Internal Registers Available www.ti.com

6 UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU445
https://www.ti.com/lit/pdf/SLASE58
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

To reduce power consumption while the MCU is not receiving or transmitting data, LPM0 is used. Other low-
power modes can achieve lower power consumption, but they might require an external crystal oscillator and
can limit the maximum baud rate due to increased wake-up times.

6 Application Examples
6.1 Test With I2C Slave Device
In this example, another MSP430FR2311 is used as the I2C slave device, and the I2C slave program is loaded
internally You can download the slave program for reference, and you need to add RX interrupts and buffers for
correct operation. The slave address is 0x48. When receiving a write command sent by the host device, the data
is stored in the buffer area. When receiving a read command sent by the host device, the slave device sends
incremental data starting at 0x00.

Figure 6-1 shows the serial port command sent by the I2C master to write data and read the data.

In the write example, the UART data command writes 8 bytes to the I2C slave. The command is composed of
these bytes:

• The first byte is 'S' (0x53) to indicate I2C start
• The second byte indicates the slave address and write command (0x48 << 1 | 0 = 0x90)
• The third byte indicates the length of the write data (0x08)
• The next 8 bytes are the data to write to the slave (0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88)
• The last byte is 'P' (0x50) to indicate I2C stop

In the read example, the UART data command reads 8 bytes from I2C slave.

• The first byte is 'S' (0x53) to indicate I2C start
• The second byte indicates the slave address and the read command (0x48 <<1 | 1 = 0x91)
• The third byte indicates the length of the read data (0x08)
• The last byte is 'P' (0x50) to indicate I2C stop

Figure 6-1. I2C Write and Read

Figure 6-2 shows the waveform of the I2C write data. From the figure, we can see the start bit, slave address,
write command, write data and the end bit in SDA line.

Figure 6-2. I2C Write Data Waveform

Figure 6-3 shows the waveform of the I2C read data. From the figure, we can see the start bit, slave address,
read command, read data and the end bit in SDA line.

Figure 6-3. I2C Read Data Waveform

6.2 Read and Write EEPROM
This firmware was tested using EEPROM as the I2C slave device to verify the correctness of the firmware by
reading and writing the EEPROM. The EEPROM address is 0x50. Figure 6-4 to Figure 6-7 show the read and
write format.

www.ti.com Application Examples

SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 7

Copyright © 2021 Texas Instruments Incorporated

http://dev.ti.com/tirex/explore/node?node=AHjckS5mBhm7tcKeIZuGTQ__IOGqZri__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

Figure 6-4. EEPROM Byte Write

Figure 6-5. EEPROM Page Write

Figure 6-6. EEPROM Random Read

Figure 6-7. EEPROM Sequential Read

The firmware first sets the I2C clock frequency to 100 kHz and sets the UART baud rate to 115200 by writing the
internal registers (Figure 6-8 shows the UART commands to read and write the internal register values). For the
write test, the firmware writes 64 bytes of data to the EEPROM starting at address 0x0000. For the read test, the
firmware reads 64 bytes of data starting at address 0x0000.

Figure 6-8 shows the UART data commands to write to and read from the internal registers.

The write command is composed of these bytes:

• The first byte is 'W' (0x57) to indicate a write to internal registers
• The second byte is the internal register start address to write
• The next four bytes are the data to write
• The last byte is 'P' (0x53) to indicate stop

The read command is composed of these bytes:

Application Examples www.ti.com

8 UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

• The first byte is 'R' (0x52) to indicate a read from internal registers
• The next four bytes are the addresses to read (0x00, 0x01, 0x02, 0x03)
• The last byte is 'P' (0x53) to indicate stop

The final four bytes in the last row of Figure 6-8 are the values of the registers specified in the read command.

Figure 6-8. Write and Read Internal Register (Set I2C Clock Frequency and UART Baud Rate)

Figure 6-9 shows the UART commands to read and write the EEPROM.

The write command is composed of these bytes:

• The first byte is 'S' (0x53) to indicate an I2C start
• The second byte is the EEPROM I2C address and write command (0x50 << 1 | 0 = 0xA0)
• The next three bytes is the length of the write data (0x42), which includes the 2-byte address plus the number

of bytes to write (64 in this case)
• The next two bytes are the start address in the EEPROM to write
• The next 64 bytes are the data
• The last byte is 'P' (0x50) to indicate stop

The read command is composed of these bytes:

• The first byte is 'S' (0x53) to indicate an I2C start
• The second byte is the EEPROM I2C address and write command (0x50 << 1 | 0 = 0xA0)
• The third byte is the length of the data (0x02), which is for the 2-byte address
• The next two bytes are the start address in the EEPROM to read
• The next byte is 'S' (0x53) to indicate an I2C restart
• The next byte is the EEPROM I2C address and the read command (0x50<<1 | 1 = 0xA1)
• The next byte is the length of the read data (64 bytes) (0x40)
• The last byte is 'P' (0x50) to indicate stop

Figure 6-9 shows that the read data is the same as the write data.

Figure 6-9. Write and Read EEPROM Value

7 Reference
1. MSP430FR4xx and MSP430FR2xx Family User's Guide
2. MSP430FR231x Mixed-Signal Microcontrollers data sheet
3. UART-to-SPI Bridge Using Low-Memory MSP430TM MCUs
4. UART-to-UART Bridge Using Low-Memory MSP430TM MCUs
5. Microchip 128Kb I2C compatible 2-wire Serial EEPROM (24LC128)
6. NXP Master I2C bus Controller with UART Interface (SC18IM700IPW)

8 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (20190912) to Revision A (20210929) Page
• Updated the numbering format for tables, figures, and cross references throughout the document..................1
• Corrected Figure 2-2 I2C and UART Code Flow ..2

www.ti.com Reference

SLAA908A – SEPTEMBER 2019 – REVISED SEPTEMBER 2021
Submit Document Feedback

UART-to-I2C Bridge Using Low-Memory MSP430™ MCUs 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU445
https://www.ti.com/lit/pdf/SLASE58
https://www.ti.com/lit/pdf/SLAA796
https://www.ti.com/lit/pdf/SLAA797
http://ww1.microchip.com/downloads/en/DeviceDoc/21191s.pdf
https://www.nxp.com/docs/en/data-sheet/SC18IM700.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLAA908
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA908A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	2 Implementation
	3 UART Message Format
	3.1 Write N Bytes to Slave Device
	3.2 Read N Bytes From Slave Device
	3.3 Repeated Start (Read After Write)
	3.4 Repeated Start (Write After Write)
	3.5 Write to Internal Register
	3.6 Read From Internal Register

	4 Internal Registers Available
	4.1 Register Summary
	4.2 Baud Rate Generator (BRG)
	4.3 I2C Bus Clock Rates (I2CClk)

	5 Performance
	6 Application Examples
	6.1 Test With I2C Slave Device
	6.2 Read and Write EEPROM

	7 Reference
	8 Revision History

