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Designing a high-efficiency, isolated 
bidirectional power converter for a UPS

Introduction
End equipment like uninterruptable power supplies (UPSs), 
battery backup units, battery banks, and super capacitors 
are used to temporarily store energy. During normal oper-
ation, a battery bank takes power from the high-voltage 
DC bus to charge. In the event of a power failure, the 
energy stored in the battery bank is pumped back into the 
DC bus, thereby ensuring uninterrupted power to the load.

Traditional implementations use two different power 
stages for battery charging and power backup, but there 
are a few drawbacks. One is that the presence of two 
different power stages makes the solution more expensive. 
An alternative approach is to use a single bidirectional  
DC/DC converter, which enables power flow in both direc-
tions. This bidirectional power stage can then work either 
as a battery charger or backup supply depending on the 
high-voltage DC bus condition and seamlessly transition 
between the two modes.

This article reviews some of the possible topologies for 
implementing isolated bidirectional DC/DC converters. 
Included is a UPS design example that uses an active-
clamp, current-fed power converter.

Isolated bidirectional DC/DC converter topologies
An isolated bidirectional converter used in UPS applica-
tions typically operates with a battery pack varying from 
10 V to 60 V on one side and a 400-VDC bus on the high-
voltage side. While working as a battery charger, a bidirec-
tional converter needs to operate as a buck converter, 
which transfers power from the high-voltage DC bus to the 
battery. In backup mode, the bidirectional converter works 
as a boost converter.

There are multiple bidirectional power-stage configura-
tions that can be used in UPS applications, including:

• Current-fed push-pull (low-voltage side) and half/full 
bridge (high-voltage side).

• Current-fed full bridge (low-voltage side) and half/full 
bridge (high-voltage side).

• Dual voltage-fed half/full bridge, also known as dual 
active bridge.

• Dual active bridge with resonant tank.

There are additional configurations based on the various 
control schemes, but a detailed discussion of the pros and 
cons of each of these topologies is beyond the scope of 
this article. Of those listed, the current-fed full bridge and 
dual active bridge are more popular because of the 

reduced number of components and easy control. The 
following discussion is for the current-fed full bridge (low-
voltage side) and full bridge (high-voltage side) topology 
shown in Figure 1. Much of the focus will be placed on the 
boost or backup operation when this converter works as 
an active-clamp current-fed converter. Very little emphasis 
will be given to the working of this converter in the 
 voltage-fed battery-charging mode because its working 
and possible soft-switching variants are widely discussed 
and understood.

Active-clamp current-fed full bridge (low-voltage 
side) and full bridge (high-voltage side)
When working in backup mode, the system takes power 
from the low-voltage battery and boosts it to the 400-VDC 
bus. Since the battery voltage varies over a wide range (in 
this application, for example, it varies from 36 to 60 V), 
the use of current-fed converters has some advantages, 
including reduced input-ripple current (requires fewer 
filter capacitors), optimization of the isolation transformer, 
and inherent protection against flux-walking in the isola-
tion transformer.

One other advantage inherent to current-fed converters 
is that the low-voltage MOSFETs are turned on in the 
zero-current-switching (ZCS) condition and at the same 
time, and the high-voltage MOSFETs are always turned on 
in the zero-voltage-switching (ZVS) condition. This 
reduces the switching loss on both the low-voltage and 
high-voltage MOSFETs.

A major drawback of traditional current-fed converters 
is the high-voltage spike on the MOSFETs at turn off. This 
requires a passive lossy snubber across the FET. To 
improve system efficiency, further modifications to the 
topology help recover a part of the energy dissipated in 
the snubber at turn off. One such modification is known as 
the active clamp.
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Figure 1. Bidirectional power converter
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The active clamp comprises a clamp capacitor and 
MOSFET in series. It contains the voltage spike on the 
low-voltage MOSFET at turn off by diverting the current 
through the MOSFET into the clamp circuit when it turns 
off. Additionally, the active-clamp circuit also creates a 
ZVS condition on the low-voltage MOSFETs just before 
they turn on, thereby reducing the turn-on losses.

Figures 2 and 3 show the power flow in the system when 
it works as a battery charger and backup power supply.

When working as a battery charger, the high-voltage-
side MOSFET bridge can operate either as a normal volt-
age-fed full bridge or a phase-shifted full bridge. The 
low-voltage-side MOSFET bridge, along with the filter 
inductor L1 and filter capacitors, act as a synchronous 
rectifier and output filter.

When working as a backup power supply, the low- 
voltage MOSFET full bridge, along with the active-clamp 
circuit, works as an 
active-clamp current-
fed full bridge. The 
high-voltage MOSFET 
full bridge works as a 
synchronous rectifier.

Active-clamp 
current-fed full-
bridge converter
A current-fed full-
bridge converter 
works like an isolated 
boost converter and 
L1 acts as the boost 
inductor. The battery 
voltage (36 V to 60 V) 
is boosted to about 
65 V and then 
applied across the 
terminals of the 
isolation transformer, 
which has a turns 
ratio of 1-to-6. All 
current-fed convert-
ers have an input 
filter inductor in 
series with the 
switches.

As in a boost converter, the current through the input 
inductor builds up when all four low-voltage switches (Q1 
to Q4) are on. In a traditional current-fed full-bridge 
converter, when either the Q1/Q3 or Q2/Q4 pairs are 
turned off, a huge voltage spike can occur across the 
MOSFET pair that is off. That is because there is no 
decoupling capacitor across the low-voltage MOSFET full 
bridge in a current-fed converter.

In an active-clamp current-fed full-bridge converter, the 
clamp capacitor (CClamp) stores the additional leakage 
energy, thereby limiting the turn-off spike on the 
MOSFETs. Additionally, by controlling the switching of 
QClamp, the primary low-voltage MOSFET can be turned on 
in or close to zero voltage, thereby reducing the turn-on 
switching losses. 

Figure 2. Voltage-fed full-bridge battery charger
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Figure 3. Active-clamp current-fed full-bridge backup supply

T1
36 to 60

VDC

300 to
400-V

DC Bus

Q4Q9 Q3Q8

Q1Q6 Q2Q7

C1

C3

L1

QClamp

CClamp

+

–

Full-Bridge Synchronous Rectifier Active-Clamp Current-Fed/Full-Bridge Converter

Power
Flow

http://www.ti.com/aaj


Texas Instruments 3	 AAJ 3Q 2017

IndustrialAnalog Applications Journal

Figure 4 illustrates the detailed switching scheme and 
critical switching waveforms.

VDS_Q1 represents the drain-to-source voltage of Q1 
and ID_Q1 represents the current through the MOSFET. 
Also, IL1 is the input current of the inductor and IClamp 
is the current through the clamp circuit.

When Q1 turns off, VDS_Q1 starts to rise. Once it 
crosses the clamp capacitor voltage VClamp, the body 
diode of the QClamp is forward-biased and IL1 momen-
tarily begins to flow through it in the form of IClamp. 
IClamp begins to decrease and reverse. The difference 
between IL1 and IClamp begins to flow through Q2.

Before Q1 turns on, QClamp turns off. At this point, the 
current flowing through the leakage inductance of the 
transformer (T1) is given by Equation 1.

 ILeak_T1 = IL1 + IClamp  (1)

Since the current through the input inductor is IL1, 
and the current through the T1 leakage inductance and 
L1 cannot change instantaneously, a portion of the 
difference (IClamp) begins to flow through the body diode 
of Q1. This causes a ZVS condition to occur for VDS_Q1.

Due to the presence of the active clamp, the peak 
voltage at turnoff on the low-voltage MOSFET is limited to 
75 V, well below the 100-V breakdown voltage of the 
MOSFET. By enabling the use of a 100-V MOSFET in this 
application, there is a huge reduction in the switching and 
conduction losses on the low-voltage full bridge compared 
to traditional implementations, which would require a 
>150-V MOSFET.

Figure 5 shows the low-voltage MOSFET’s drain source 
voltage VDS at full load when the input battery voltage is at 
60 V. You can see that the maximum VDS is less than 70 V.

The yellow trace in Figure 6 represents the clamp 
current. The red trace is the gate source voltage VGS of Q1 
and the blue trace represents the VDS of Q1. From this 
waveform, you can see that, when Q1 turns off, the 
current through it transfers to the clamp circuit. Just 
before Q1 turns on, QClamp turns off. This causes the 
clamp current to flow through the body diode of Q1 and 
cause a ZVS condition.

Conclusion
Isolated bidirectional converters have many uses in UPSs, 
power storage and battery backup units. The major chal-
lenge when designing bidirectional converters for these 
applications is that the battery voltage varies over a wide 
range. Because of this, current-fed converters are garner-
ing some interest.

An active-clamp current-fed converter overcomes the 
high-voltage spike problem observed on the MOSFET at 
turn off in traditional current-fed converters, while also 
helping to reduce switching losses at MOSFET turn on. A 
digitally-controlled active-clamp current-fed full bridge 
(low-voltage side) and a full bridge on the high-voltage 
side offer good efficiency for battery charging and backup 
supply modes while achieving very-low (<100 µs) mode-
transition times.

Figure 4. Key waveforms when working as an 
active-clamp current-fed converter
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