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Introduction

As an excellent alternative to traditional bulky 

and expensive passive filters, active electromagnetic 

interference filters (AEFs) can help designers deal with 

ever-increasing EMI challenges, improve power density, 

and reduce the cost of power solutions. References [1] 

and [2] demonstrate an approximate 50% size reduction 

and >75% volume reduction with an AEF implemented in 

the Texas Instruments LM25149-Q1 buck controller.

Most AEFs use operational amplifier (op amp)-based 

active circuits to sense noise and inject an appropriate 

cancellation signal to reduce EMI, such as the AEF 

integrated into the LM25149-Q1. To achieve the best 

performance with this kind of AEF, the op-amp circuits 

need to be stable and the op amp should not saturate. 

Otherwise, the AEF would have worse performance and 

may even inject additional noise into the system [3]. This 

article discusses the proper compensation and damping 

techniques to achieve stability and the best performance 

of an AEF.

AEF compensation

Figure 1(a) shows an AEF with no compensation. 

In Figure 1, VS is a noise source, ZS is the 

internal impedance, ZL represents the impedance of 

line-impedance stability networks or power sources, Cin 

represents the input capacitors of power converters, L 

is the differential-mode inductor, Csense and Cinj are the 

sensing and injection capacitors, RDC_fb is to provide 

DC feedback for the Op_amp and Cpara is the parasitic 

capacitance between the power trace and ground.

As an op amp-based feedback circuit, the AEF in Figure 

1(a) could become unstable, which would saturate the op 

amp. In such cases, the performance of the AEF could 

be significantly affected, and the AEF may consume 

more power and inject extra noise into the system [3]. 

Since the loading network of the op amp is complex, the 

AEF in Figure 1a could be unstable at both low and high 

frequencies.

At low frequencies (such as between 10 kHz and 50 

kHz), the phase of the loop gain can go to positive 

180 degrees and the system can become unstable, 

primarily because of the voltage dividers formed by Cinj 

and L, and by Csen and RDC_fb. One method for low­

frequency compensation is to add Rcomp and Ccomp in 

parallel with RDC_fb, as shown in Figure 1(b). Ccomp is 

for low-frequency compensation by making the feedback 

network capacitive at low frequencies. Rcomp is to 

ensure the performance of the AEF. In addition, there 

are typically electrolytic capacitors at the input of the 

converter to store energy and ensure converter stability. 

The equivalent series resistance (ESR) of the electrolytic 

capacitors also helps with low-frequency stability.
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Figure 1. An AEF with no compensation (a); with compensation 
(b).

At high frequencies, the output impedance of the op 

amp and Cpara will generate a pole and cause phase 

lag of the loop gain. In addition, op amps typically 

have a low-frequency pole. As a result, the loop gain 

will have two poles at high frequency and its phase 

goes close to negative 180°, which can cause high­

frequency instability. Rcomp1 and Ccomp1 in Figure 1(b) 

are for high-frequency compensation, which can be 100 

nF and 0.5 Ω. Rcomp1 and Ccomp1 can boost the phase 

of the loop gain at high frequencies so that the system 

has enough phase margin to ensure high-frequency 

stability. In certain applications, high-frequency ceramic 

capacitors (such as 10 nF or 100 nF) are necessary for 

high-frequency noise filtering or for protection circuits, 

such as smart diodes for reverse protection. In such 

cases, there are several ways to maintain high-frequency 

stability:

• Insert ferrite beads between the sense/inject node 

and the high-frequency ceramic capacitors to 

decouple them.

• Add small resistors in series with the high-frequency 

capacitors for compensation.

• Place high-frequency capacitors far from the AEF, 

since the ESRs and equivalent series inductances 

(ESLs) of the ceramic capacitors and printed circuit 

board traces can also help with high-frequency 

stability.

Overall, it is essential to make sure that the impedance 

of the sense/inject node to ground is not dominated by 

capacitance at high frequencies (between 10 MHz to 50 

MHz).

AEF damping

Because of thermal variation or switching jitter, power 

converters may generate noise at frequencies lower 

than their switching frequencies, which is referred to 

as low-frequency disturbance in this article. For the 

AEF in Figure 1(b), Equation 1 expresses its equivalent 

impedance as:

Zeq_AEF = Zop+ ZC_inj1 + Gop_amp (1)

where Zop and Gop_amp are the output impedance and 

voltage gain from the sensing node to the output of 

the op amp and ZC_inj is the impedance of the injection 

capacitor [2].

According to Equation 1, the equivalent impedance of 

the AEF in Figure 1(b) is capacitive at low frequency. 

As a result, the AEF can resonate with differential mode 

inductor L at low frequencies, such as between 10 kHz 

to 100 kHz. Given the resonance, the low-frequency 

disturbance could lead to a large op-amp output voltage 

and output current. As the op amp has limited output 

swing and output current capability, the op amp could 

enter the nonlinear region or even become saturated, 

potentially affecting AEF performance and causing the 

AEF to inject additional noise into the system.

Dealing with this problem requires damping the 

resonance. Figure 2 shows two damping methods 

by making the AEF less capacitive at the resonant 

frequency. In Figure 2(a), a damping resistor, Rdamp, is 

inserted in the injection path. In this way, the larger Rdamp 
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is, the better the resonance damping. With the damping 

network inserted, however, Equation 2 expresses the 

equivalent impedance of the AEF as:

Zeq_AEF = Zop+ Zdamp+ ZC_inj1 + Gop_amp (2)

where Zdamp is the impedance of the damping network 

[2].

A large Rdamp would increase Zeq_AEF, thus affecting the 

performance of the AEF. So this damping method mainly 

works for high-frequency switching converters, such as 

2 MHz. To effectively damp the resonance, the quality 

factor should be around or below 1. To get the quality 

factor near 1, calculate Rdamp according to Equation 3:

Rdamp = Gop_ampLCinj (3)

To improve the performance of the AEF shown in 

Figure 2(a), place a capacitor, Cdamp, in parallel with 

the damping resistor, Rdamp, as shown in Figure 2(b). 

At the resonant frequency, resistor Rdamp dominates 

the impedance of the damping network to damp the 

resonance. At high frequencies where the AEF needs 

to attenuate noise, capacitor Cdamp dominates the 

impedance of the damping network, thereby ensuring the 

performance of the AEF. Following a similar optimization 

method as described in [4], Equation 4 and Equation 5 

express a good combination of Rdamp and Cdamp for the 

resonance damping:

Cdamp = 12Cinj (4)

Rdamp = Gop_ampLCinj (5)
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Figure 2. Methods to damp the differential mode inductor and 
AEF resonance: resistor damping (a); resistor and capacitor 
parallel damping (b).

Figure 3 shows the spectrum test results from 10 kHz 

to 1 MHz of a 400-kHz buck converter with AEF off, 

with AEF on but no damping, and with AEF on and 

with resistor-capacitor parallel damping where Rdamp and 

Cdamp are selected based on Equation 4 and Equation 

5. In Figure 4, without damping, there is a spike at 

about 30 kHz from the resonance, which affects the 

AEF performance and increases the noise floor. With the 

damping network, the resonance spike is now at 45 kHz 

but with its magnitude greatly reduced, which means that 

the resonance is successfully damped. As a result, the 

AEF effectively suppresses the high-frequency noise and 

the noise floor is much lower.

Figure 3. Test results with and without damping.

AEF performance with both compensation 
and damping

With proper compensation and damping, an AEF can 

achieve significant noise reduction, as shown in Figure 4. 

The measurement with a 440-kHz power converter was 

conducted, an input voltage of 12 V and an output of 5 

V/5 A. Both the AEF and the converter are implemented 

with the LM25149-Q1. L is 1 µH, Csense is 100 nF, 

RDC_fb is 50 kΩ and Cinj is 470 nF. For compensation, 

1-kΩ Rcomp and 1-nF Ccomp are used for low-frequency 

compensation, and 0.5-Ω Rcomp1 and 100-nF Ccomp1 are 

used for high-frequency compensation.

For damping, a resistor and capacitor parallel damping 

is used; Rdamp is 15 Ω and Cdamp is 220 nF. As shown 

in Figure 4, the AEF can achieve about 50 dB of noise 
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attenuation at 440 kHz. Compared to a passive filter with 

similar performance, it is possible to achieve about a 

50% size reduction and about a 75% volume reduction 

[1], [2].

Figure 4. Noise reduction of a properly compensated and 
damped AEF.

Conclusion

Compensation and damping are important in achieving 

the best AEF performance. The methods discussed in 

this article can all be easily implemented with the AEF 

integrated into the LM25149. With proper compensation 

and damping, an AEF can achieve significant noise 

reduction. Power electronics designers should take 

advantage of AEFs for higher power density, high 

efficiency and lower cost.
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