
Application Report
SPNA176A–February 2014

Interfacing TPS65381 With Hercules™ Microcontrollers

Haixiao Weng... MCU Safety Application

ABSTRACT
The application report provides help to design a safety system with both the Hercules safety
microcontrollers and the TPS65381 power supply. The document explains the hardware considerations
and the software flowchart.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spna176.

Contents
1 Introduction .. 1
2 Hardware Interface ... 2
3 Software Flowchart ... 4
4 Troubleshooting Hints .. 7
5 Examples ... 7
6 References ... 8
Appendix A Revision History .. 9

List of Figures

1 Example TPS65381 With Texas Instruments TMS570/RM4x .. 3
2 Circuit to Simulate the IGN Pulse... 4
3 WDT Response Timing in the Examples .. 6

1 Introduction
The Hercules safety microcontroller platform consists of three ARM® Cortex™-based microcontroller
families: TMS470M, TMS570 and RM4x. Designed specifically for IEC 61508 and ISO 26262 safety
critical applications, the Hercules platform provides advanced integrated safety features while delivering
scalable performance, connectivity, and memory options.

The TPS65381 is a multi-rail power supply designed to supply microcontrollers in safety critical
applications, such as those found in automotive.

This application report discusses how to integrate the Hercules MCUs and the TPS65381 together. The
hardware and software examples apply to the RM46 control card.

Hercules, C2000, Code Composer Studio are trademarks of Texas Instruments.
Cortex is a trademark of ARM Limited.
ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.

1SPNA176A–February 2014 Interfacing TPS65381 With Hercules™ Microcontrollers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/lit/zip/spna176
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

Hardware Interface www.ti.com

2 Hardware Interface
Figure 1 shows the block diagram and connections between TPS65381 and a Hercules MCU; it is copied
from the TPS65381-Q1 Multi-Rail Power Supply for Microcontrollers in Safety-Critical Applications Data
Sheet (SLVSBC4). The RM46 control card design followed this recommendation with the following
differences and highlights:
• In Figure 1, the SPI interface from the MCU side is MIBSPI1, 3, 5 while the control card uses SPI2 to

talk to TPS65381.
TPS65381 can accept both the SPI compatibility and MibSPI modes. In the RM46 control card,
MibSP1 is reserved for the mother board, MibSPI3 is used for communication between the MCU and
bridge driver, and MibSPI5 is multiplexed with Ethernet. So, SPI2 is assigned to talk to TPS65381.
If MibSPI was used, the CPU load (RM46) could be reduced by combining several SPI transfers into
one MibSPI transfer. For example, those four Q and A Watchdog answers can be combined into one
MibSPI transfer. Note that the default SPICS inactive time between two adjacent 16-bit data (inside
one MibSPI transfer frame) is much shorter than the SPICS inactive time that the TPS65381 can
handle.

• In Figure 1, VCCAD is connected to 5 V while the control card uses 3.3 V as VCCAD input.
This setup depends on your system. In this system, since the ADC input from the DRV8301
motherboard is trimmed in the range of [0, 3.3 V], a 3.3 V VCCAD and VREFHI can achieve the best
dynamic range and accuracy.

• In the control card, a 10 nF capacitor is added to the DIAG_OUT.
A cap of 10 nF to 33 nF is required, otherwise, the analog voltages on DIAG_OUT cannot be properly
measured.

• In the control card, a DIP switch is placed between the TPS65381 (Pin NRES, ENDRV) and the
Hercules device (Pin nPORRST, GIOA4) so that the user can choose ON (connect) or OFF
(disconnect).
This DIP switch is for debug purpose only. If the watchdog in TPS65381 is not served correctly, the
TPS65381 might keep resetting the MCU. With this DIP switch, during debug stage, you can
disconnect the NRES and MCU nPORRST if this saturation occurs.
In production, this DIP switch is not necessary since the correct Flash image has been programmed
into the device. If reprogramming a system after production is required, the application bootloader can
force the TPS65381 to stay in diagnostic mode, re-program the Flash, and go to active mode after the
program completes.

• In the control card, a 500Ω external pull up resistor is added to the ENDRV pin (TPS65381).
The TPS65381 ENDRV pin internal pull-up resistor is 4.87kΩ. You must consider the pull down
resistance on the high or low end driver side and the timing requirement of the bridge driver. If this
4.87 kΩ cannot pull up the circuit fast enough, a buffer or an external pull up resistor is required.
The RM46 control card works with the DRV8301 motherboard, which has a 1kΩ pulldown resistor at
this pin. The 500 Ω resistor on the control card is implemented to conqueror this 1kΩ pulldown resistor.
Actually, removing the pulldown resistor on the DRV8301 board is preferred from the technical
viewpoint, but it cannot be changed.

• There is a barrel connector in the RM46 control card while all the C2000™ control cards get power
from the mother board (for example, DRV8301).
The TPS65381 requires 5.8 V minimum supply while the DRV8301 motherboard can only provide 5 V.
Therefore, power has to be provided separately.

2 Interfacing TPS65381 With Hercules™ Microcontrollers SPNA176A–February 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLVSBC4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

WakeUp

SPI

CAN

KL30

KL15

CANH/L

Power Supply

Networks

Safety Diagnostics

TPS65381/65383

VDD5 VCCAD

VDD3

VDD1

NCS

SCLK

SDI

SDO

NRES

ENDRV

ERROR
/WDI

DIAG_OUT

VDDIO

VCP

VSIN

VSOUT1

VBATP VCCIO

VCC

DCAN1/2/3

MibADC 1/2

GIO
GIOA/B[x]

ESM

SYS

nPOR_RST

MiBSPI1/3/5

TMS570/RM4x

nERROR

MiBSPIySCS[z]

MiBSPIyCLK

MiBSPIySIMO

MiBSPIySOMI

y=1/3/5

z=3...0

x=7..0

ADvIN[w]

v=1/2

w=7...0

VCCP

C
A

N
R

X

C
A

N
T

X

C
A

N
W

U

IG
N

Protected
Sensor
Supply

Bandgap
Ref 2

CAN
Supply

uC IO
Supply

Pre-
Regulator

Charge
Pump

uC Core
Supply

Analog
MUX

Voltage
Monitoring

Oscillator
Monitor

Tj Over
Temp

Shutdown

Reset/
Enable

Q&A
Watchdog

Diagnose and
Config

uC ERROR
Monitor/
Window

Watchdog

ENABLE for external
Power Stage
(e.g. MotorDriver)

www.ti.com Hardware Interface

Figure 1. Example TPS65381 With Texas Instruments TMS570/RM4x

• In the control card, the following circuit is added to simulate an ignition pulse. The IGN input of
TPS65381 should be kept low before the power supply (VBAT, TPS_POW in Figure 2) reaches 5.8 V.
Otherwise, you have to toggle the IGN pulse again to get the TPS65381 working correctly. There is
internal delay and deglitch in the IGN pin. However, if the power supply ramp is very slow (300 ms
rising time from 0 V to 5.8 V), this internal delay is not long enough and a startup reset circuit is
necessary (see Figure 2). Otherwise, the NRST could be released before the VBAT reaches 5.8 V and
cause a TPS65381 BIST failure. To make it simple, this circuit can be removed if:
– The power supply ramp time is fast (for example, 30 ms from 0 V to 6 V); Or
– The application can apply an ignition pulse later on

3SPNA176A–February 2014 Interfacing TPS65381 With Hercules™ Microcontrollers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

Software Flowchart www.ti.com

Figure 2. Circuit to Simulate the IGN Pulse

3 Software Flowchart
This section provides step-by-step notes on how to configure the TPS65381 with Hercules devices.
1. Initialize the SPI module.

Make sure that the TPS65381 maximum speed for SPICLK is 5 MHz (3.3 V system) and the minimum
setup time NCS (tsucs) and hold time NCS (thcs) are 45 ns. The SPI module default settings (after reset)
do NOT meet this requirement. Notice that SPI Transfer Inactive time (thlcs) should be at least 2-3 sys.
clock cycle (typ. 250 ns). The application code has to set the wdelay field in the SPI Data Format
Register (SPIFMT0) in the MCU side to meet this 750 ns requirement.
The attached examples call the spiInit() function to initialize SPI2.

spiInit();

2. Force the TPS65381 to stay in Diagnostic State.
The attached examples call ecmpInit () to force the TPS65381 to stay in Diagnostic State. Inside this
function, the Hercules devices set the TPS65381 SAFETY_CHECK_CTRL register to 0x17.

ecmpIfSetRegister(ECMP_SAFETY_CHECK_CONTROL, 0x17);

3. Configure the TPS65381 into Q and A watchdog mode and Hercules Error Pin mode.
The following code inside ecmpInit () configures the TPS65381 into Q and A mode and Hercules Error
Pin mode.

ecmpIfSetRegister(ECMP_SAFETY_FUNCTION_CONFIG, 0xE4);

4. Perform Diagnostic test, for example, driving DIAG_OUT pin to the MCU’s ADC module.
The attached examples drive Voltage-monitor band gap (VMON_BG) to RM46 ADIN0 pin to check if it
is in the range [2.2 V, 2.8 V].

ecmpDiagMuxOutputMode(2); //analog output
ecmpDiagMuxSelectSignal(0x80);//select VMON Bandgap
ecmpDiagMuxEnable();

4 Interfacing TPS65381 With Hercules™ Microcontrollers SPNA176A–February 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

www.ti.com Software Flowchart

for(temp=0;temp<20000;temp++);//add some delay so that the output is stable
adcInit();
adcStartConversion(adcREG1,1);
while(adcIsConversionComplete(adcREG1,1)==0);
adcGetData(adcREG1,1, ADC_Group1);
if((ADC_Group1[0].value <2731) || (ADC_Group1[0].value > 3475))
{
//VMON_BG is out of [2.2v 2.8v]
sciSend(scilinREG, 28, (uint8_t *) "\r\nVMON_BG is out of range!\r\n");
while(1);
}

ecmpDiagMuxDisable();

5. Force the program into an infinite loop.
This step is for debug purpose ONLY and should be removed in production. During debug, you can
connect to device using Code Composer Studio™ (or other IDE) and move the program counter (PC)
to next instruction to run the program.

asm(“ b #-8”)

6. Synchronize the MCU Watchdog triggers on the Watchdog timer.
Before serving the watchdog, the application code must synchronize the MCU watchdog triggers and
the watchdog timer (in TPS65381). The attached example start to serve the open window after
configuring the watchdog window because "any write access to WDT_WIN1_CFG or WDT_WIN2_CFG
registers immediately starts a new Watchdog Token-Response Sequence Run" (SLVSBC4). An
alternative way to synchronize is: "Don't serve the watchdog until the watchdog timeout". (The Q and A
open window starts after watchdog timeout).

7. Serve the watchdog.
(a) Watchdog answer calculation.

The function ecmpSendWdgAnswer(void) reads the watchdog token and watchdog status register
to calculate the watchdog answer. The algorithm is shown in the Watchdog Token Value Response
Calculation (or Watchdog Answer Calculation) figure in the TPS65381-Q1 Multi-Rail Power Supply
for Microcontrollers in Safety-Critical Applications Data Sheet (SLVSBC4).

void ecmpSendWdgAnswer(void)
{

unsigned short answer;
unsigned short token0 = ecmpIfGetRegister(ECMP_WDG_TOKEN) & 0xF;
unsigned short token1 = (token0 >> 1) & 1;
unsigned short token2 = (token0 >> 2) & 1;
unsigned short token3 = (token0 >> 3);
unsigned short aswCnt0 = (ecmpIfGetRegister(ECMP_WDG_STATUS) >> 6) & 3;
unsigned short aswCnt1 = (aswCnt0 >> 1) & 1;

token0 &= 1;
aswCnt0 &= 1;

answer = (token0 ^ (aswCnt1 ^ token3)) |
((token0 ^ aswCnt1 ^ (token1 ^ token2)) << 1) |
((token0 ^ aswCnt1 ^ (token3 ^ token1)) << 2) |
((token2 ^ aswCnt1 ^ (token0 ^ token3)) << 3) |
((token1 ^ aswCnt0) <, 4) |
((token3 ^ aswCnt0) << 5) |
((token0 ^ aswCnt0) << 6) |
((token2 ^ aswCnt0) << 7);

ecmpIfSetRegister(ECMP_WDG_ANSWER, answer);

5SPNA176A–February 2014 Interfacing TPS65381 With Hercules™ Microcontrollers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLVSBC4
http://www.ti.com/lit/pdf/SLVSBC4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

0 40ms 45ms 55ms

Open Window Close Window

Q&A [n] Q&A [n+1]

WD answer 3-1 WD answer 0

Software Flowchart www.ti.com

}

This function is calculating one answer and needs to be called 4 times in one watchdog period.
After each answer generation the answer needs to be sent to the TPS65381 to decrement the
answer counter. Then the function can be called to calculate the next answer. This function is only
valid for WDT_TOKEN_FDBCK [7:4] = 0 (default condition).

(b) Trigger watchdog in MCU side.
To serve the watchdog within the correct window, the attached two examples are slightly different.
In the project CCS_RM46_NoRTOS, the watchdog trigger is controlled by the RTI interrupt. The
RTI interrupt service routine (ISR) calls the ecmpSendWdgAnswer() to serve the watchdog. The
project CCS_RM46_FreeRTOS create a task vTaskSendWdgAnswer to serve the watchdog. The
watchdog trigger is controlled by the vTaskDelay function.
In both cases, MCU serves the watchdog at similar time stamp as shown in Figure 2. It provides
three open window watchdog responses in the middle of the open window and the fourth response
5 ms after the close window starts. As mentioned in the TPS65381-Q1 Multi-Rail Power Supply for
Microcontrollers in Safety-Critical Applications Data Sheet (SLVSBC4), “After this final correct SPI
WD Token response, next TOKEN will be generated within 1 sys. clock cycle (typ. 250ns), after
which next WD OPEN WINDOW (Q and A + 1) starts”. Therefore, MCU and the TPS65381
watchdog are synchronized as the fourth response is provided.

Figure 3. WDT Response Timing in the Examples

(c) Go to active state.
Once the watchdog failure counter reduces to zero, the example code.
(i) Enable the watchdog reset.

ecmpEnableWdg()

(ii) Force the MCU leaving the diagnostic mode.

ecmpLeaveDiagnosticState()

Besides forcing the TPS65381 leaving diagnostic state, this function cleans the error status
register (If this register is not equal to zero, the TPS65381 will go to safe state) and enables the
ENDRV signal.

6 Interfacing TPS65381 With Hercules™ Microcontrollers SPNA176A–February 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLVSBC4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

www.ti.com Troubleshooting Hints

4 Troubleshooting Hints

Q. My program cannot go to the diagnostic state. It stays at:
while (ecmpIfGetBit(ECMP_WDG_STATUS, 2) == 1);

A. Make sure the DIP switch PORRST position is ‘on’. If it is ‘off’, the MCU SPI might send the command
before the TPS65381 is ready (it is running a selftest). After that, power cycle the board or press the
PORCYC push button (S2) to generate a IGN pulse.
Q. After programing the RM46 device and click ‘run’ in CCS, it goes to the safe state.
A. Usually, after programing the Flash, you need to power cycle the board to get the code running
correctly. TPS65381 cannot go back to diagnostic or active state from safe state without resetting the
device. The recommended debug sequence is:
1) Program the Flash.
2) Make sure the DIP switch nPORRST position is ‘on’.
3) Power cycle the board.
4) Connect with Code Composer Studio. Now the code should stops at the:
asm(“ b #-8”)

5) Move the PC to next instruction.
6) Click ‘run’ in Code Composer Studio.
Q. The TPS device keeps resetting the MCU (the PRST orange LED is flashing), what can I do?
A. Switch off the PORRST DIP position. Or, hold on the nRST push button (S1), press or release the
PORCYC push button (S2), after one second, release the nRST button. By doing this, the TPS655381
device will be forced into the safe state, in which the nPORRST is high, 3.3 V and 1.2 V are provided
normally and ENDRV is driven low. Then, you can re-flash the device.
Q. My code works well without optimization. However, after I enabled the optimization, the TPS65381
watchdog fails and reset the MCU, what happened?
A. With optimization, the time between two adjacent SPI transfers is shorter. Check thlcs, the minimum CS
high time between two adjacent SPI transfers. On the Hercules devices, this can be adjusted by the SPI
Transmit Data Register (SPIDAT1) and the SPI Data Format Registers (SPIFMT[0-2]). It is
recommended to set the wdelay field in the SPIFMT register as 0x3F (with 80 MHz VCLK) as a tradeoff
between efficiency and timing margin. For more details, see Section 5.

5 Examples
Two examples are provided to demo the TPS65381 safety drivers based on the RM46 control card: a
FreeRTOS project and a NoRTOS project (without any RTOS). The FreeRTOS and NoRTOS project
support the HyperTerminal (19200 baud rate, two stop bits and no parity). This section briefly explains
how all these three projects are generated.

5.1 FreeRTOS Project
1. Open the FreeRTOS_CCS_RM46.hcg with the HalCoGen 03.02.02, generating code. (The RM48

FreeRTOS template is used because HalCoGen 03.02.02 does not support RM46 FreeRTOS)
2. Copy os_app.c, ecmp_if.c and ecmp.c to source; Copy ecmp_if.h and ecmp.h to include;
3. Modify sys_main.c and notification.c. All the modifications are in-between /* USER CODE BEGIN */

and /* USER CODE END */.

7SPNA176A–February 2014 Interfacing TPS65381 With Hercules™ Microcontrollers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

References www.ti.com

5.2 NoRTOS Project
1. Open the NoRTOS_CCS_RM46.hcg with the HalCoGen 03.02.02, generating code.
2. Copy ecmp_if.c and ecmp.c to source; Copy ecmp_if.h and ecmp.h to include;
3. Modify sys_main.c and notification.c. All the modifications can be tracked by the /* USER CODE

BEGIN */ and /* USER CODE END */.

6 References
• RM46x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU514)
• RM46L852 16/32-Bit RISC Flash Microcontroller Data Sheet (SPNS185)
• TPS65381-Q1 Multi-Rail Power Supply for Microcontrollers in Safety-Critical Applications Data Sheet

(SLVSBC4)

8 Interfacing TPS65381 With Hercules™ Microcontrollers SPNA176A–February 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNU514
http://www.ti.com/lit/pdf/SPNS185
http://www.ti.com/lit/pdf/SLVSBC4
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

www.ti.com

Appendix A Revision History

This document has been revised from SPNA176 to SPNA176A because of the following technical
change(s).

Table 1. SPNA176A Revisions

Location Additions, Deletes, and Edits
Figure 1 Remove [z] after SIMO and SOMI.

9SPNA176A–February 2014 Interfacing TPS65381 With Hercules™ Microcontrollers
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA176A

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Interfacing TPS65381 With Hercules Microcontrollers
	1 Introduction
	2 Hardware Interface
	3 Software Flowchart
	4 Troubleshooting Hints
	5 Examples
	5.1 FreeRTOS Project
	5.2 NoRTOS Project

	6 References
	Appendix A Revision History

