
Application Report
SPNA199–September 2013

SPI Bootloader for Hercules TMS570LS31x MCU

QuingjunWang

ABSTRACT
This application report describes how to communicate with the Hercules™ serial peripheral interface (SPI)
bootloader. The SPI bootloader is a small piece of code that can be programmed at the beginning of Flash
to act as an application loader as well as an update mechanism for applications running on a Hercules
Cortex™-R4 based TMS570LS31x microcontroller.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spna199.

Contents
1 Introduction .. 1
2 SPI Connections .. 2
3 Application Update .. 3
4 Packet Handling ... 4
5 Command Definitions ... 4
6 Sample Code .. 7
7 References ... 7

List of Figures

1 SPI Connections for TMS570LS31x Bootloader .. 3
2 SPI Packet Format.. 4
3 PING Command for SPI Bootloader.. 5
4 GET_STATUS Command for SPI Bootloader... 5

List of Tables

1 List of Source Code Files Used in SPI Bootloader ... 2
2 Application Update Options.. 3
3 PING Command Definition for SPI Bootloader.. 5
4 GET_Status Command Definition for SPI Bootloader ... 5
5 Other Command Definitions for SPI Bootloader .. 6

1 Introduction
This application report describes how to work with and customize the Hercules sample bootloader
application. The bootloader is a small piece of code that can be programmed at the beginning of Flash to
act as an application loader as well as an update mechanism for an application running on a Hercules
microcontroller. The default build of the bootloader is compiled to use the SPI2 interface for updating
either the application or the bootloader. The bootloader is provided as source code, which allows any part
of the bootloader to be completely customized. The bootloader was built and validated using Code
Composer Studio™ v5 and the TMS570LS31x Hercules Development HDK.

A visual C++ project for the PC is provided to download an application via the bootloader.

Hercules, Code Composer Studio are trademarks of Texas Instruments.
Cortex is a trademark of ARM Limited.
All other trademarks are the property of their respective owners.

1SPNA199–September 2013 SPI Bootloader for Hercules TMS570LS31x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/lit/zip/spna199
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

SPI Connections www.ti.com

Table 1 shows an overview of the organization of the source code provided with the bootloader.

Table 1. List of Source Code Files Used in SPI Bootloader
bl_boot_eabi.asm The start-up code used when the Code Composer Studio compiler is being used to build the

bootloader.
bl_check.c The code to check whether a firmware update is required or not, or if a firmware update is being

requested.
bl_check.h Prototypes for the update check code.
bl_commands.h The list of command and return messages supported by the bootloader.
bl_config.h Bootloader configuration file. This contains all of the possible configuration values.
bl_flash.c The functions for erasing, programming the Flash, and functions for erase and program check
bl_flash.h Prototypes for Flash operations
bl_link.cmd The linker script used when the Code Composer Studio compiler is being used to build the

bootloader.
bl_main.c The main control loop of the bootloader.
bl_packet.c The functions for handling the packet processing of commands and responses.
bl_packet.h Prototypes for the packet handling functions.
bl_spi.c The functions for transferring data via the SPI2 port.
bl_spi.h Prototypes for the SPI2 transfer functions.
bl_vimram.c VIM RAM table definition and initialization
bw_spi.c The low-level SPI drive for transferring data
bw_spi.h Prototypes for the low-level SPI2 transfer functions.
hw_gio.c Low-level GIO driver
hw_gio.h Prototypes for low-level GIO driver
hw_het.c Low-level NHET driver
hw_het.h Prototypes for low-level NHET driver
hw_interrupt_handler.c Define the INT handlers
hw_pinmux.c Function for define the pinmux
hw_pinmux.h Prototypes for pinmux functions
hw_sci.c Low-level SCI driver
hw_sci.h Prototypes for low-level SCI driver
hw_system.c Initialize system registers and PLL
startup_eabi.c Global variables initialization
sys_intvecs.asm Interrupt vectors
sys_svc.asm Software INT routines

2 SPI Connections
The sample code provided with the bootloader supports updating via the SPI2 port, which is available on
Hercules microcontrollers.

The SPI handling functions are SPISend() and SPIReceive(). The connections required to use the SPI
port are the following four pins: SPI_TX, SPI_RX, SPI_Clk, and SPI_CS. The device communicating with
the bootloader is responsible for driving the SPI_RX, SPI_CLK, and SPI_CS pins, while the Hercules
MCU drives the SPI_TX pin. The format used for SPI communications is 8-bit data, clock polarity is 0 and
clock phase is also set to 0.

2 SPI Bootloader for Hercules TMS570LS31x MCU SPNA199–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

TMS570LS31x MCU

SPI_TX

SPI_RX

SPI_CLK

SPI_CS

www.ti.com Application Update

Figure 1. SPI Connections for TMS570LS31x Bootloader

3 Application Update
After HDK reset, the start-up code copies the bootloader from Flash to SRAM, branches to the copy of the
bootloader in SRAM, and checks to see if an application update should be performed by calling
CheckForceUpdate(). If an update is not required, the application is called.

The check for an application update consists of checking the magic word at 0x000017F0 and optionally
checking the state of a GIO (GIOA Pin7 in the sample) pin. If either of these tests fail, then the application
is assumed to be invalid and an update is forced. The GPIO pin check can be enabled with
ENABLE_UPDATE_CHECK in the bl_config.h header file, in which case an update can be forced by
changing the state of a GPIO pin (with the push button S1 on HDK). If the application is valid and the GIO
pin is not requesting an update, the application is called. Otherwise, an update is started by entering the
main loop of the bootloader.

Table 2. Application Update Options
Invalid Valid

Magic word at 0x000017F0 Other 0x5A5A5A5A
GIO pin LOW High

When performing an update via a SPI port, ConfigureDevice() is used to configure the selected SPI port,
making it ready to be used to update the firmware. Then, Updater() sits in an endless loop accepting
commands and updating the firmware when requested. All transmissions from this main routine use the
packet handler functions (SendPacket(), ReceivePacket(), AckPacket(), and NakPacket()). Once the
update is complete, the bootloader can be reset by issuing a reset command to the bootloader.

In the event that the bootloader itself needs to be updated, the bootloader must replace itself in Flash. An
update of the bootloader is recognized by performing a download to address 0x0000,0000.

When a request to update the application comes through, the bootloader first erases the sector(s) for
application before accepting the binary for the new application. Once all of the application Flash area has
been successfully erased, the bootloader proceeds with the download of the new binary. After the
application has been successfully programmed to the Flash, the bootloader will write “0x5A5A5A5A” to
0x000017F0.

In order for the bootloader to be separately erasable from the application, the applications must not be
placed at the first sector, which is reserved for the bootloader. The default application start address in the
sample code is 0x0002 0000.

3SPNA199–September 2013 SPI Bootloader for Hercules TMS570LS31x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

ACK

DataSize

0x03

0xCC0x00

0x000x000x610x6c0x6f0x480x840x06

Check

Sum

Next Command

Size

Packet Handling www.ti.com

4 Packet Handling
All communications are done via defined packets that are acknowledged (ACK) or not Acknowledged
(NAK) by the devices. The packets use the same format for receiving and sending packets. This includes
the method used to acknowledge successful or unsuccessful reception of a packet. The basic packet
format is shown in Figure 2.

Figure 2. SPI Packet Format

The bootloader uses the SendPacket() function in order to send a packet of data to another device. This
function encapsulates all of the steps necessary to send a valid packet to another device including waiting
for the acknowledge or not-acknowledge from the other device. The following steps must be performed to
successfully send a packet:
1. Send out the size of the packet that will be sent to the device. The size is always the size of the data +

2.
2. Send out the checksum of the data buffer to help ensure proper transmission of the command. The

checksum algorithm is implemented in the CheckSum() function provided and is simply a sum of the
data bytes.

3. Send out the actual data bytes.
4. Wait for a single byte acknowledgment from the device that it either properly received the data or that it

detected an error in the transmission.

Received packets use the same format as sent packets. The bootloader uses the ReceivePacket()
function in order to receive or wait for a packet from another device. This function does not take care of
acknowledging or not-acknowledging the packet to the other device. This allows the contents of the packet
to be checked before sending back a response. The following steps must be performed to successfully
receive a packet:
1. Wait for non-zero data to be returned from the device. This is important as the device may send zero

bytes between a sent and received data packet. The first non-zero byte received will be the size of the
packet that is being received.

2. Read the next byte which will be the checksum for the packet.
3. Read the data bytes from the device. There will be packet size - 2 bytes of data sent during the data

phase. For example, if the packet size was 3, then there is only 1 byte of data to be received.
4. Calculate the checksum of the data bytes and ensure if it matches the checksum received in the

packet.
5. Send an acknowledge or not-acknowledge to the device to indicate the successful or unsuccessful

reception of the packet.

The steps necessary to acknowledge reception of a packet are implemented in the AckPacket() function.
Acknowledge bytes are sent out whenever a packet is successfully received and verified by the
bootloader.

A not-acknowledge byte is sent out whenever a sent packet is detected to have an error, usually as a
result of a checksum error or just malformed data in the packet. This allows the sender to re-transmit the
previous packet.

5 Command Definitions
This section defines the list of commands that can be used when communicating with the SPI bootloader.
The first byte of the data in a packet should always be one of the defined commands, followed by data or
parameters as determined by the command that is sent.

4 SPI Bootloader for Hercules TMS570LS31x MCU SPNA199–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

0x230x03 0x23 0x00 0x00 0x00 0x00 0x00

Status Request

ACK

0x00 0xCC 0x03 0x40 0x40

Status Packet

0x200x03 0x20 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0xCC

Ping Request

ACK

www.ti.com Command Definitions

The following two definitions are the values used to indicate successful or unsuccessful transmission of a
packet:
#define COMMAND_ACK 0x66
#define COMMAND_NAK 0x33

The following tables and figures show the details of the commands used in SPI Bootloader.

Table 3. PING Command Definition for SPI Bootloader
COMMAND_PING 0x20 The COMMAND_PING command simply accepts the command and sets the global

status to success. The format of the packet is as follows:

Byte[0] = 0x03;

Byte[1] = checksum(Byte[2]);

Byte[2] = COMMAND_PING;

The ping command requires the standard 2-byte header followed by the value
COMMAND_PING. Since there is only one byte in the command, the checksum is
simply equal to COMMAND_PING. Since the ping command has no real return status,
the receipt of an ACK can be interpreted as a successful ping to the Flash loader.

Figure 3. PING Command for SPI Bootloader

Table 4. GET_Status Command Definition for SPI Bootloader
COMMAND_GET_STATUS 0x23 This command returns the status of the last command that was issued. Typically, this

command should be received after every command is sent to ensure that the previous
command was successful or, if unsuccessful, to properly respond to a failure. The
command requires one byte in the data of the packet and the bootloader should respond
by sending a packet with one byte of data that contains the current status code.
The format of the command is as follows:

Byte[0] = 0x03;

Byte[1] = checksum(Byte[2]);

Byte[2] = COMMAND_GET_STATUS

The following list shows the definitions for the possible status values that can be
returned from the bootloader when this command is sent to the microcontroller.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

Figure 4. GET_STATUS Command for SPI Bootloader

5SPNA199–September 2013 SPI Bootloader for Hercules TMS570LS31x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

Command Definitions www.ti.com

Table 5. Other Command Definitions for SPI Bootloader
COMMAND_DOWNLOAD 0x21 This command is sent to the bootloader to indicate where to store data and how many

bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command
consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is
the address to start programming data into, while the second is the 32-bit size of the data
that will be sent. This command also triggers an erasure of the full application area in the
Flash or possibly the entire Flash depending on the address used. This causes the
command to take longer to send the ACK/NAK in response to the command. This
command should be followed by a COMMAND_GET_STATUS to ensure that the
program address and program size were valid for the microcontroller running the
bootloader.
The format of the command is as follows:

Byte[0] = 11

Byte[1] = checksum(Bytes[2:10])

Byte[2] = COMMAND_DOWNLOAD

Byte[3] = Program Address [31:24]

Byte[4] = Program Address [23:16]

Byte[5] = Program Address [15:8]

Byte[6] = Program Address [7:0]

Byte[7] = Program Size [31:24]

Byte[8] = Program Size [23:16]

Byte[9] = Program Size [15:8]

Byte[10] = Program Size [7:0]

COMMAND_RUN 0x22 This command is sent to the bootloader to transfer execution control to the specified
address. The command is followed by a 32-bit value, transferred MSB first, that is the
address to which the execution control is transferred.
The format of the command is as follows:

Byte[0] = 7

Byte[1] = checksum(Bytes[2:6])

Byte[2] = COMMAND_RUN

Byte[3] = Execute Address[31:24]

Byte[4] = Execute Address[23:16]

Byte[5] = Execute Address[15:8]

Byte[6] = Execute Address[7:0]

COMMAND_GET_STATUS 0x23 This command returns the status of the last command that was issued. Typically, this
command should be received after every command is sent to ensure that the previous
command was successful or, if unsuccessful, to properly respond to a failure. The
command requires one byte in the data of the packet and the bootloader should respond
by sending a packet with one byte of data that contains the current status code.
The format of the command is as follows:

Byte[0] = 0x03;

Byte[1] = checksum(Byte[2]);

Byte[2] = COMMAND_GET_STATUS

The following list shows the definitions for the possible status values that can be returned
from the bootloader when this command is sent to the microcontroller.

COMMAND_RET_SUCCESS
COMMAND_RET_UNKNOWN_CMD
COMMAND_RET_INVALID_CMD
COMMAND_RET_INVALID_ADD
COMMAND_RET_FLASH_FAIL

6 SPI Bootloader for Hercules TMS570LS31x MCU SPNA199–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

www.ti.com Sample Code

Table 5. Other Command Definitions for SPI Bootloader (continued)
COMMAND_SEND_DATA 0x24 This command should only follow a COMMAND_DOWNLOAD command or another

COMMAND_SEND_DATA command, if more data is needed. Consecutive send data
commands automatically increment the address and continue programming from the
previous location. The transfer size is limited by the size of the receive buffer in the
bootloader (as configured by the BUFFER_SIZE parameter). The command terminates
programming once the number of bytes indicated by the COMMAND_DOWNLOAD
command has been received. Each time this function is called, it should be followed by a
COMMAND_GET_STATUS command to ensure that the data was successfully
programmed into the Flash. If the bootloader sends a NAK to this command, the
bootloader will not increment the current address which allows for retransmission of the
previous data.
The format of the command is as follows:

Byte[0] = 11

Byte[1] = checksum(Bytes[2:10])

Byte[2] = COMMAND_SEND_DATA

Byte[3] = Data[0]

Byte[4] = Data[1]

Byte[5] = Data[2]

Byte[6] = Data[3]

Byte[7] = Data[4]

Byte[8] = Data[5]

Byte[9] = Data[6]

Byte[10] = Data[7]

COMMAND_RESET 0x25 This command is used to tell the bootloader to reset. This is used after downloading a
new image to the microcontroller to cause the new application or the new bootloader to
start from a reset. The normal boot sequence occurs and the image runs as if from a
hardware reset. It can also be used to reset the bootloader if a critical error occurs and
the host device wants to restart communication with the bootloader. The bootloader
responds with an ACK signal to the host device before actually executing the software
reset on the microcontroller running the bootloader. This informs the updater application
that the command was received successfully and the part will be reset.
The format of the command is as follows:

Byte[0] = 3

Byte[1] = checksum(Byte[2])

Byte[2] = COMMAND_RESET

6 Sample Code
The SPI bootloader Code Composer Studio v5.4 project and Visual C++ host project are available at:
http://processors.wiki.ti.com/index.php/Category:TMS570.

7 References
• TMS570LS3137 16- and 32-Bit RISC Flash Microcontroller Data Manual (SPNS162)
• F021 Flash API Version 2.00.01 Reference Guide (SPNU501)
• Aardvark I2C/SPI Adaptor (V5.13) Data Sheet http://www.totalphase.com/products/aardvark_i2cspi/

7SPNA199–September 2013 SPI Bootloader for Hercules TMS570LS31x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNS162
http://www.ti.com/lit/pdf/SPNU501
http://www.totalphase.com/products/aardvark_i2cspi/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA199

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	SPI Bootloader for Hercules TMS570LS31x MCU
	1 Introduction
	2 SPI Connections
	3 Application Update
	4 Packet Handling
	5 Command Definitions
	6 Sample Code
	7 References

