
1SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

Application Report
SPRAC41–October 2017

Safety Features on VisionSDK

Chaitanya Ghone, Rishabh Garg

ABSTRACT
This application report describes the integration of various safety modules in TDAx family of System-on-
Chips (SoCs) in VisionSDK. This document is intended to highlight key points like boot-flow, memory
layouts, and so forth to be addressed during integration of these modules into any system.

Contents
1 Introduction ... 2
2 Vision SDK Updates... 3
3 EMIF ECC, IPU ECC, DSP Parity ... 5
4 Freedom From Interference (FFI).. 6
5 DCC/ESM (TDA3x only)... 12
6 RTI/WWDT (TDA3x only) ... 13
7 Driver Changes for FFI .. 14
8 References .. 15

List of Figures

1 Hardware Support for FFI on TDAx SoC ... 7
2 DCC and RTI Integration in VisionSDK ... 12
3 RTI integration in VisionSDK ... 13

List of Tables

1 Features List.. 2
2 Vision SDK Memory Map ... 9
3 XMC Segments for FFI ... 9
4 Regions for L3 Firewall on EMIF ... 10

Trademarks
All trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Introduction www.ti.com

2 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

1 Introduction

Table 1. Features List

TDA2X
(SR 1.1)

TDA2X
(SR 2.0)

TDA2EX
(SR 1.0)

TDA2EX
(SR 2.0)

TDA3X
(SR 1.0)

TDA3X
(SR 2.0)

EMIF ECC NS YES NS YES NS YES
FFI (DSP CPU) -
XMC

YES YES YES YES YES YES

FFI (DSP EDMA)
- L3FW

NS NS NS YES YES YES

FFI (EVE) -
L3FW

NS NS NA NS YES YES

ESM NA NA NA NA YES YES
DCC NA NA NA NA NS YES
RTI NA NA NA NA YES YES
IPU ECC NA NA NA NA YES YES
DSP Parity YES YES YES YES YES YES

Legend:
NA: Feature is not available in hardware
NS: Feature is not available due to silicon errata

The following is a brief summary of these features:
• EMIF ECC

– On TDAx SoC, EMIF1 supports ECC for DDR memories. It supports single bit error correction and
double bit error detection. This feature is available only SR 2.0 versions for TDA2x, TDA2Ex and
TDA3x SoCs. It is not available on SR 1.1 or SR1.0 versions due to silicon erratum i882.

• FFI (DSP CPU) - XMC
– The XMC sub-module in the C66x DSP subsystem can be used to achieve FFI for DSP CPU tasks.

The XMC provides ability to set different read-write permissions for different tasks based on the
CPU mode.

• FFI (DSP EDMA) – L3FW
– L3 firewalls must be used to achieve FFI for DSP EDMA access since these accesses cannot be

controlled via XMC as in the case of DSP CPU.
• FFI (EVE) – L3FW

– L3 firewalls must be used to achieve FFI for EVE CPU and EVE EDMA accesses.
• ESM

– This module allows the software to track multiple events in the SoC using a single interrupt handler
and is available only on TDA3x.

• DCC
– This module allows the software to track drifts between two clock sources and is available only on

TDA3x SR 2.0. In TDA3x SR 1.0, DCC is unusable due to a silicon erratum.
• RTI

– This module provides the WWDT functionality and is available only on TDA3x.
• IPU ECC

– IPU Unicache on TDA3x supports ECC for IPU L2RAM and IPU Unicache.
• DSP EDC

– This module is a part of C66x subsystem and supports parity checks for L1 Program memory/cache
and supports single-bit error correction/double-bit error detection on L2 memory/cache.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com Vision SDK Updates

3SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

2 Vision SDK Updates
The below changes are described in reference to Vision SDK 3.0 release. The file paths, API names,
variable names, and so forth might change in future releases.

2.1 Build Flow
For safety specific features, the following variables are enabled in the particular cfg.mk (depending on the
platform, OS, use cases, and so forth). For example, for enabling safety features for BIOS use cases on
TDA3xx device, changes are made in vision_sdk/apps/configs/tda3xx_evm_bios_all/cfg.mk.
• ECC_FFI_INCLUDE

– To search for all software changes relevant to these, search for following terms and files:
ECC_FFI_INCLUDE
BspSafetyOsal_setSafetyMode
BspSafetyOsal_getSafetyMode
vision_sdk/links_fw/src/rtos/utils_common/src/utils_l3fw.c
vision_sdk/links_fw/src/rtos/utils_common/src/utils_xmc_mpu.c
vision_sdk/links_fw/src/rtos/utils_common/src/utils_emif_ecc.c
vision_sdk/links_fw/src/rtos/utils_common/src/utils_ecc_c66x.c
vision_sdk/links_fw/src/rtos/utils_common/src/safety_osal.c
vision_sdk/links_fw/src/rtos/utils_common/src/tda3xx/utils_ipu_ecc.c

– This enables the consolidated memory map change to allow for ECC and FFI.
– This enables error handlers for interrupts from XMC and L3FW.
– This enables the ECC error handlers
– This also enables IPU ECC error handlers
– This also enables the DSP parity checks and corresponding error handlers
– To ensure that ECC and DSP parity checks work correctly, SBL should be built with following

variables defined correctly in following files based on platform in sbl_lib_config_tda2xx.h /
sbl_lib_config_tda2ex.h / sbl_lib_config_tda3xx.h
• Ensure ECC_FFI_INCLUDE is set to yes in the particular cfg.mk while building SBL
• SBL_LIB_CONFIG_DSP1_PARITY_CHECK = 1
• SBL_LIB_CONFIG_DSP2_PARITY_CHECK = 1
• SBL_LIB_CONFIG_ENABLE_IPU_RAM_ECC = 1
• SBL_LIB_CONFIG_ENABLE_EMIF_ECC = 1
• SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1 (TDA2x only)
• SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1_15X15 (TDA3x 15x15 only)
• SBL_LIB_CONFIG_EMIF_ECC_START_ADDR1_12X12 (TDA3x 12x12 only)
• SBL_LIB_CONFIG_EMIF_ECC_END_ADDR1 (TDA2x only)
• SBL_LIB_CONFIG_EMIF_ECC_ END _ADDR1_15X15 (TDA3x 15x15 only)
• SBL_LIB_CONFIG_EMIF_ECC_END_ADDR1_12X12 (TDA3x 12x12 only)

– The value of these variables will be explained in Section 4.4.
– SBL_LIB_CONFIG_EMIF_ECC_REG1_RANGE_TYPE

For VisionSDK implementation, this is set to EMIF_ECC_ADDR_RANGE_WITHIN. For custom
implementations, this can be changed to EMIF_ECC_ADDR_RANGE_OUTSIDE. These
correspond to values 1 and 0 for REG_ECC_ADDR_RGN_PROT in EMIF_ECC_CTRL_REG
register. For further details, see the device-specific TRM.

• DCC_ESM_INCLUDE
– DCC errors are tracked using ESM. This variable enables the example integration of these two

modules in VisionSDK.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Vision SDK Updates www.ti.com

4 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

• RTI_INCLUDE
– This enables the example integration of RTI WWDT functionality on TDA3x.

• Build commands for VisionSDK for different platforms:
– make -s all MAKEAPPNAME=apps MAKECONFIG=tda2xx_evm_bios_all ECC_FFI_INCLUDE=yes

BUILD_DEPENDENCY_ALWAYS=yes
– make -s all MAKEAPPNAME=apps MAKECONFIG=tda2ex_evm_bios_all ECC_FFI_INCLUDE=yes

BUILD_DEPENDENCY_ALWAYS=yes
– make -s all MAKEAPPNAME=apps MAKECONFIG=tda3xx_evm_bios_all ECC_FFI_INCLUDE=yes

BUILD_DEPENDENCY_ALWAYS=yes DCC_ESM_INCLUDE=yes RTI_INCLUDE=yes
• Build commands for SBL for different platforms

– make -s sbl MAKEAPPNAME=apps MAKECONFIG=tda2xx_evm_bios_all
ECC_FFI_INCLUDE=yes

– make -s sbl MAKEAPPNAME=apps MAKECONFIG=tda2ex_evm_bios_all
ECC_FFI_INCLUDE=yes

– make -s sbl MAKEAPPNAME=apps MAKECONFIG=tda3xx_evm_bios_all
ECC_FFI_INCLUDE=yes DCC_ESM_INCLUDE=yes RTI_INCLUDE=yes"

• AppImage generation
– AppImages can be generated by using the below commands. Please note that CRC check needs

to be enabled for TDA3xx device:
• make -s appimage MAKEAPPNAME=apps MAKECONFIG=tda2xx_evm_bios_all
• make -s appimage MAKEAPPNAME=apps MAKECONFIG=tda2ex_evm_bios_all
• make -s appimage MAKEAPPNAME=apps MAKECONFIG=tda3xx_evm_bios_all

CRC_CALCULATE=yes

2.2 New Plugin and Use-Cases
A new plugin called “safeframecopy” has been added to demonstrate “Freedom from Interference (FFI)”.
This is based on the older “framecopy” plugin in VisionSDK. This plugin is intended to be execute-based
copy and EDMA-based copy for alternate frames. For a special scenario explained in Section 6.2, only
EDMA based copy is used.

2.3 FFI Mode for AlgorithmLink
A new API has been included for AlgorithmLink - AlgorithmLink_setPluginFFIMode(). This is used to set
the FFI mode to ASIL or QM for Algorithm links. By default, all algorithms are provided ASIL (full) access.
The “safeframecopy” plugin registers itself as QM using this API.

2.4 RTI/DCC/ESM
• These are enabled in the “framecopy” and “safeframecopy” based use-cases for TDA3x.
• RTI monitoring code is available in the folder vision_sdk/apps/src/rtos/modules/rti. Other framework

updates are under the macro RTI_INCLUDE.
• DCC and ESM related code is under the macro DCC_ESM_INCLUDE and in following files

vision_sdk/links_fw/src/rtos/utils_common/src/tda3xx/utils_dcc.c,
vision_sdk/links_fw/src/rtos/utils_common/src/tda3xx/utils_esm.c.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com EMIF ECC, IPU ECC, DSP Parity

5SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

3 EMIF ECC, IPU ECC, DSP Parity

3.1 Hardware Requirements
• EMIF ECC

– Available only on SR 2.0 and higher revisions of TDA2x, TDA2Ex, TDA3x
– All write accesses to ECC protected region in EMIF must be 32-bit aligned.
– ECC protected region should be “primed” by doing a write to complete region before performing

any reads
– Since DSP L1 cache is not “write-allocate”, boot time stack pointer should be in L2SRAM to ensure

no un-aligned writes to EMIF. L2 cache must be enabled before moving to a stack in EMIF region
– Priming can be done only by using EDMA or system DMA or by making non-cached “memset” from

CPU. Cached “memset” will not work since cache will always do read before write, which causes
uncorrectable errors.

• IPU ECC
– Available only on TDA3x
– IPU L2RAM and IPU Cache needs to be “primed” by doing writes without any reads
– Unicache “priming” is done by doing a cache preload of a 64kB (size of Unicache) section using the

Unicache maintenance registers. During this step, software must ensure the following steps:
• Ensure cache is enabled
• “Priming” code and its stack is placed in a non-cached section. This is to prevent errors due to

code and data caching during the “priming” step.
• Do full cache write-back and invalidate
• Enable ECC generation and ECC checks using ECC_CFG register in Unicache. For further

details, see the device-specific TRM.
• Preload a 64kB (size of Unicache) section from a cacheable region using CACHE_MAINT,

CACHE_MTSTART and CACHE_MTEND registers in IPU Unicache. This completes the
“priming”.

• Switch back to normal code execution from cached regions
• DSP Parity

– DSP L2RAM needs to be “primed” using 128bit write to ensure valid parity.
– Since EMIF ECC needs boot time to be in L2SRAM (see the bullet point above), L2SRAM “priming”

must happen in SBL

3.2 VisionSDK and SBL Implementation
• Priming

– SBL performs priming for EMIF, IPU and DSP based on macros defined in 2.1. All code can be
found using these macros

– EMIF, IPU L2SRAM and DSP L2SRAM are “primed” using EDMA
– IPU Unicache is primed using maintenance register as explained in Section 3.1

• Ensure the “32-bit” aligned write access for EMIF ECC
– A15/M4

• A15 and M4 support “write-back, write-allocate” cache. This ensures all write accesses to EMIF
are cache line aligned. This is ensured in the A15 and M4 SYS/BIOS configuration files.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Freedom From Interference (FFI) www.ti.com

6 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

– DSP
• DSP L1 cache is not “write-allocate”. This is enabled at reset.
• DSP L2 cache is “write-allocate”. This is not enabled at reset.
• If default “.stack” section is in the ECC protected DDR region, this can generate errors. To avoid

this, the VisionSDK configuration for DSP ensures “.stack” section, which is used as stack
during initial boot of DSP, is kept in L2RAM.

• Using SYS/BIOS cache and reset hooks, L2 cache and DSP parity checks are enabled before
any other code executes.

– EVE
• EVE does not have any data-cache. As a result, EVE code and data must not be kept in ECC

protected regions. Although, theoretically it might be possible to ensure only 32-bit write
accesses from EVE, due to compiler optimizations, typical coding optimizations, it may not be
practical to do so.

• Simplifications to avoid adding complexity to VisionSDK
– IPC, Remote Log, Link Stats, VIP/VPE descriptors are kept in non-cached section

• Since, the region is non-cached, software changes are needed to IPC to ensure all write
accesses are 32-bit aligned. To avoid this, this section is not kept in ECC protected region.

• These are kept in a single section to prevent memory fragmentation and avoid need for extra
regions in L3 firewalls and DSP XMC.

– Debugging
• Breakpoints on IPU are 16-bit instructions. Using this causes ECC errors.
• When combined with FFI features, the code section may not be always writable. This will

prevent user from adding or removing a breakpoint.
• To simplify this and allow easy debugging, all code sections and EVE code and data sections

are kept contiguous and separate from IPU/DSP data sections. This allows you to easily move
code sections out of ECC protected regions for debugging during the development phase.

4 Freedom From Interference (FFI)

4.1 Introduction
The ISO 26262 “Road Vehicles – Functional Safety” standard for automotive products define the
Automotive Safety Integrity Level (ASIL) risk classification scheme – ASIL A through ASIL D in increasing
the order of safety criticality. A typical ECU contains a mix of software modules with different criticalities
including non-critical software, which is classified as quality managed (QM). ISO 26262 allows co-
existence of software modules with different criticalities as long as the system demonstrates “Freedom
from Interference (FFI)” across the different modules. FFI ensures that errors in one module do not
propagate or trigger errors in another – potentially more critical – software module. The system should
address interference on three fronts – Memory usage, Time usage and Communication channels. The
application report discusses how one can achieve FFI for memory accesses on TDAx SoCs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com Freedom From Interference (FFI)

7SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

4.2 FFI on TDAx SoCs

Figure 1. Hardware Support for FFI on TDAx SoC

To achieve FFI on the heterogeneous compute system, like TDA2x/TDA2Ex/TDA3x, a hybrid approach is
needed. Figure 1 shows how to achieve FFI on different IPs in the SoCs.
• A15

– A15 MMU allows switching of MMU tables for different tasks based on "Address-Space IDentifiers"
(ASIDs). These allows application to achieve FFI on memory accesses made by different tasks by
setting different access permissions for each task.

• M4
– In case of M4, FFI between ASIL/QM can only be achieved by switching MMU tables at task-switch

boundaries.
• DSP

– DSP provides XMC to control memory accesses to EMIF and OCMC RAM
– For internal memories, Memory Protection Unit (MPU) serves the same purpose
– XMC and MPU can differentiate access based on the CPU mode (USER vs SUPERVISOR) to

allow FFI between tasks at two different ASIL levels
• EVE, EDMA, and other peripherals like VIP, DSS

– L3 Firewalls can control accesses permissions for different master in the system based on ConnID.
By switching firewall permissions a task boundaries, users can achieve FFI between for accesses
made by these IPs

In VisionSDK, FFI is demonstrated on memory usage by DSP, EVE and their respective EDMAs only.
MPU is not used VisionSDK since L1 memories are used only as cache and L2 memory is used mainly as
scratch. Example usage of MPU is available in PDK CSL example at
ti_components/drivers/pdk/packages/ti/csl/example/xmc_mpu/xmc_mpu_test_app..

4.3 Hardware Requirements
• L3 Firewall

– L3 Firewall uses a 4-bit ConnID as defined in the L3_MAIN Interconnect Functional Description
sub-section in the Interconnect chapter in the TDAx TRMs

– L3 Firewall features:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Freedom From Interference (FFI) www.ti.com

8 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

• Control memory access using connID (master identification) and privilege mode (USER and
SUPERVISOR) using N-regions.

• Regions can overlap. Higher numbered region gets precedence over lower numbered regions.
• The privilege mode setting for any region applies to all connID enabled in that region. For

example, if USER accesses are to be prevented for DSP for a region, USER accesses from M4
will also get blocked for that region.

– EMIF L3 firewall supports 8 regions on TDA2x and TDA2Ex, 16 regions on TDA3x. VisionSDK uses
only 8 regions for keeping code common across platforms.

– L3 Firewall permissions cannot be changed at run-time on TDA2x (SR 1.1 and SR 2.0) and
TDA2Ex (SR 1.0)

– EVE supports only single privilege level which is marked as “USER” at L3 interconnect. As a result,
to ensure EVE accesses always reach EMIF, background region (0th region) in L3 firewall should
allow all USER and SUPERVISOR accesses. Alternately, additional regions can be used to be
defined in L3 firewall, which may or may not be possible due to other system constraints.

– DSP1 CPU and DSP1 EDMA have same connID.
• Any attempt to block EDMA writes using connID will block DSP CPU write as well as cache

writes.
• This is usually not a problem, since DSP EDMA will inherit USER and SUPERVISOR

permissions from DSP CPU and privilege level based access control is sufficient.
– DSP2 CPU and DSP2 EDMA have same connID.

• Any attempt to block EDMA writes using connID will block DSP CPU write as well as cache
writes.

• This is usually not a problem, since DSP EDMA will inherit USER and SUPERVISOR
permissions from DSP CPU and privilege level based access control is sufficient.

– EVE1/2/3/4 CPU and corresponding EDMA have same connID
• If FFI is attempted on multiple EVEs, firewall permissions should be changed atomically from a

single core and software should implement mechanism to track firewall mode changes on all
EVE cores.

– If firewall marks a region as read-only, user cannot put breakpoints in this region. So software must
ensure that code sections for different cores are kept together so that permissions for these can be
easily turned ON/OFF using a single regions for easier debugging.

• XMC
– Features

• Supports 16 regions defined by “address” and “size” where “address” is “size” aligned, “size” is a
power of 2 and “size” is greater than or equal to 4096.

• Access to different regions can be controlled using USER or SUPERVISOR mode
• EDMA accesses do not go through XMC and need to be controlled using L3FW

– Guard-bands at the boundaries of EMIF and OCMC RAM need to be implemented to prevent
prefetch accesses going into invalid region. These regions can be skipped if software ensures that
no access occurs within 4kB from the start and 4kB from the end of the EMIF and OCMC RAMs.

– XMC requirement of “address” being “size” aligned can put limitations on memory segments in
software. If “address” is not “size” aligned for a memory segment, software would need to set up
multiple XMC segments to protect a single contiguous memory region.

• EVE
– EVE does not support privilege levels like USER and SUPERVISOR. As a result, you cannot

differentiate between VisionSDK framework which is assumed ASIL and QM algorithms. The only
way to achieve FFI from QM tasks is to mark ASIL memory sections as read-only in L3FW before
starting QM tasks.

– Interrupts should be disabled during QM algorithm execution. This ensures that the scheduler does
not execute in QM mode as it will not have access to all relevant data structures.

– Since interrupts are disabled, functions like Task_sleep() will not execute for correct time.
• This causes errors for some use-case like RTI. Refer to 6.2 for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com Freedom From Interference (FFI)

9SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

4.4 VisionSDK implementation
• FFI is demonstrated only on DSP for TDA2x and TDA2Ex and for DSP and EVE on TDA3x.
• VisionSDK framework is assumed to be ASIL. All code on A15/M4 is assumed to be ASIL.
• QM memories are writable by all, ASIL memories will be protected in QM algorithms on DSP and EVE

only.
• FFI is implemented only in “safeframecopy” based use-cases.
• EVE does not have a data cache and, therefore, its stack is kept in internal memory. FFI cannot be

achieved using hardware mechanism for EVE internal memories. Software mechanisms can be
employed for stack integrity checks, but VisionSDK examples do not implement these.

• All tasks on DSP and EVE in VisionSDK share a common stack as a framework simplification. As a
result, algorithms’ stack (“DSP QM STACK”) has to be kept in QM regions.

• LINK STATS are accessed by QM algorithms. The corresponding data section needs to be mapped as
QM.

• For EVE, .bss section cannot be kept far away in memory from .const and other data sections due to
linker constraints. EDMA library on EVE does a .bss access from the QM safeframecopy plugin. To
prevent changes in EDMA library, EVE data section is marked as QM.

Table 2. Vision SDK Memory Map

EVE CODE/DATA
IPU/DSP CODE
IPU/DSP DATA

A15 CODE/DATA
ECC + ASIL HEAP
ECC + QM HEAP
DSP QM STACK

NON ECC + ASIL HEAP
NON ECC + QM HEAP

• Memory map (based on ECC and FFI constraints)
– SBL_LIB_CONFIG_EMIF_ECC_START/END macros for SBL will map to (start of “IPU/DSP

CODE”) and (start of “NON ECC + ASIL HEAP” – 1), respectively. Start address must be 64kB
aligned.

– Memory map is defined in
vision_sdk/apps/build/tda2ex/mem_segment_definition_bios.xs
vision_sdk/apps/build/tda2xx/mem_segment_definition_bios.xs
vision_sdk/apps/build/tda3xx/mem_segment_definition_512mb.xs

– Following data sections are added specifically for supporting ECC and FFI
SR1_BUFF_ECC_ASIL_MEM
SR1_BUFF_ECC_QM_MEM
SR1_BUFF_NON_ECC_ASIL_MEM

Table 3. XMC Segments for FFI

ASIL 0x0000_0000 to 0x7FFF_FFFF
ASIL 0x8000_0000 to 0xFFFF_FFFF

4kB Guard Band at OCMC1 start
512kB Guard Band between OCMC1/2 (TDA2x only)

ECC + ASIL HEAP
ECC + QM HEAP + DSP QM STACK

NON ECC + ASIL HEAP
QM LINK STATS

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Freedom From Interference (FFI) www.ti.com

10 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

• XMC segments
– XMC segments are set up in the function Utils_xmcMpuInit() in the file

vision_sdk/links_fw/src/rtos/utils_common/src/utils_xmc_mpu.c

Table 4. Regions for L3 Firewall on EMIF

Full EMIF ASIL
ECC + ASIL HEAP

ECC + QM HEAP + DSP QM STACK
NON ECC + ASIL HEAP

IPC + LINK STATS + LOGS + VIP/VPE Descriptor QM
DSP1 DATA ASIL
DSP2 DATA ASIL

EVE DATA QM

• L3 Firewall regions
– These regions are set up in vision_sdk/links_fw/src/rtos/utils_common/src/utils_l3fw.c. See the

L3FW_VSDK_REGION_xxx macros.
• Algorithm Link

– A new API has been included for AlgorithmLink - AlgorithmLink_setPluginFFIMode(). This is used
to set the FFI mode to ASIL or QM for Algorithm links. By default, all algorithms are provided ASIL
(full) access. The “safeframecopy” plugin registers itself as QM using this API.

• Safety OSAL
– This layer provides two APIs – BspSafetyOsal_setSafetyMode() and

BspSafetyOsal_getSafetyMode() – to allow users to switch the level of execution to QM or ASIL
using appropriate arguments.

– For VisionSDK, this layer is implemented in
vision_sdk/links_fw/src/rtos/utils_common/src/safety_osal.c

– SYS/BIOS OS functions are assumed to be ASIL. Since these can be triggered even during QM
tasks, ensure that the BspOsal layer in drivers/pdk/packages/ti/drv/vps/src/osal/tirtos/bsp_osal.c
switches to ASIL mode before any OS function calls and restores back the QM mode at the end of
OS function call.

– VisionSDK framework is assumed to be ASIL, certain framework commands are triggered from QM
tasks. These function use the safety OSAL layer to temporarily move into ASIL mode and then go
back to QM mode.

• Firewall register configuration
– In case of TDA2x SR 1.1 and SR 2.0, TDA2Ex SR 1.0 and SR 2.0, EMIF firewall configuration is

not allowed when there is activity on EMIF as per Silicon errata i895
• To work around this, users should configure firewalls statically in boot-loader context which

ensures no EMIF activity
• VisionSDK does not follow this recommendation from point of view of software maintenance

only. VisionSDK does firewall configuration only once during the system initialization – Under
such conditions, error may occur but is rare and has not been observed in testing. There is no
firewall reconfiguration in VisionSDK after the first initialization in accordance with the errata.

• This constraint is not applicable to TDA3x
– FFI on EVE requires run-time reconfiguration of firewall registers. Silicon Errata i895 prevents this

on TDA2x SR 1.1 and SR 2.0, TDA2Ex SR1.0. A work-around detailed below exists but not
implemented in VisionSDK to simplify software

– Brief details of work-around for i895 for FFI on EVE
• Alias DDR memory space using DMM_LISA_MAP register. For example, for a 512MB DDR,

same memory can be accessed from 0x8000_0000 and 0xA000_0000.
• All memory accessed at 0xA000_0000 should be marked as ASIL in firewall

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com Freedom From Interference (FFI)

11SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

• By default, access to this aliased space is disabled through EVE MMU. 0x8000_0000 on EVE
gets mapped to 0x8000_0000 by the EVE MMU.

• When switching to an ASIL task, EVE MMU tables are re-mapped to access ASIL region.
0x8000_0000 should be mapped to 0xA000_0000 in EVE MMU.

– In case of warm-reset, firewall configurations are not lost. Bootloader or application must ensure to
reset firewall registers when booting after a warm reset.
• VisionSDK resets the firewall before system initialization to ensure proper booting after warm

reset. Refer to vision_sdk/src/main_app/*/ipu1_0/src/main_ipu1_0.c – Search for
ECC_FFI_INCLUDE in the following files:
• vision_sdk/links_fw/src/rtos/bios_app_common/tda3xx/ipu1_0/src/main_common_ipu1_0.c
• vision_sdk/links_fw/src/rtos/bios_app_common/tda2xx/ipu1_0/src/ipu_primary.c
• vision_sdk/links_fw/src/rtos/bios_app_common/tda2ex/ipu1_0/src/ipu_primary.c

4.5 EMIF Interleaving
TDA2x supports two EMIF interfaces – EMIF1 and EMIF2. The SoC supports interleaving across the two
EMIF interfaces using the Dynamic Memory Manager (DMM) module. If EMIF1 and EMIF2 are used in an
interleaved manner, interleaving is supported at 128-bytes/256-byte/512-byte boundaries as defined in
DMM_LISA_MAP_x and MA_MPU_LISA_MAP_x registers. Consider 128-byte interleaving – even
numbered (0-indexed) sets of 128 bytes will use EMIF1 interface and odd numbered sets of 128 bytes will
use EMIF2 interface.

VisionSDK reference implementation of FFI does not support firewall configuration when EMIF is set up
interleaved mode.

Section 4.5.1 gives an example for firewall configuration in a system with EMIF interleaving.

4.5.1 512 MB DDR on EMIF1, 512 MB DDR on EMIF2, 128-Byte Interleaving Enabled
• Set up 128-byte EMIF interleaving in DMM and MA_MPU

– LISA_MAP_0 = 0x8064_0300
• This will map the address range 0x8000_0000 to 0xBFFF_FFFF to map to both EMIFs in an

interleaved fashion
– All other LISA_MAP_x are assumed to not override the LISA_MAP_0/1 configuration

• Assume that you want to setup a firewall region from 0x9000_0000 to 0x97FF_FFFF. In this case, the
start and end address should be calculated as per the physical address in the memories connected to
EMIF interface as follows:
– Start address: (0x9000_0000 – 0x8000_0000)/2 = 0x0800_0000
– End address: (0x97FF_FFFF – 0x8000_0000)/2 = 0x03FF_FFFF
– The value configured in the START_REGION_x and END_REGION_x registers in the

EMIF_OCP_FW or MA_MPU_NTTP_FW firewalls will need an additional shift by 2 as per the value
in REGUPDATE_CONTROL.FW_ADDR_SPACE_MSB field in these firewalls

• Software should also ensure that both END_REGION_i_ENABLE_CORE0 and
END_REGION_i_ENABLE_CORE1 bits are set in the END_REGION_i register to ensure that firewall
configuration applies to both EMIF1 and EMIF2 interface.

• Behavior of all other firewalls is not affected by EMIF interleaving

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

DCC1 Y DCC6

Clocks from DPLLs

ESM

Other Events in

the SoC

IPU

DCC/ESM (TDA3x only) www.ti.com

12 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

5 DCC/ESM (TDA3x only)

5.1 Hardware Requirements
• DCC (Dual clock comparator)

– DCC tracks the drift between two clock sources and generates an interrupt if the drift exceeds a
specified threshold

– Reference clock for DCC can be SYSCLK or external reference clock. Refer to TRM for additional
details.

– If the clock under test gets “gated”, DCC will detect this as an error. Software must ensure DCC is
turned off if the clock under test is expected to turn off. One such example is CPU clocks. If DSP
goes to a low power state, corresponding DPLL clocks are turned off. If DCC is tracking drifts in
DSP clock, it should be turned off before DSP enters low power mode.

• ESM
– ESM muxes multiple events in the SoC to a single interrupt lines
– DCC error interrupt is one of the events supported by ESM

5.2 Vision SDK Integration

Figure 2. DCC and RTI Integration in VisionSDK

• DCC
– Implemented in vision_sdk/links_fw/src/rtos/utils_common/src/tda3xx/utils_dcc.c
– VisionSDK example for DCC tracks DDR DPLL since it is never turned off in VisionSDK framework.
– DCC is configured to track drifts more than 1% from 532 MHz.
– Reference clock source for DCC can be SYSCLK1, SYSCLK2 or XREF_CLK and is set using the

enumeration dccClkSrc0_t from ti_components/drivers/pdk/packages/ti/csl/src/ip/dcc/V0/dcc.h.
– Different DCC modules support tracking of different clocks in the system. These are listed in the

enumeration dccClkSrc1_t in the file
ti_components/drivers/pdk/packages/ti/csl/soc/tda3xx/cslr_soc_defines.h. Application must ensure
that correct enumeration is used when setting the test clocks.

• ESM
– Implemented in vision_sdk/links_fw/src/rtos/utils_common/src/tda3xx/utils_esm.c
– This provides interface to register different callback function for different ESM events
– Enumeration esmGroup1IntrSrc_t for ESM events is defined in

ti_components/drivers/pdk/packages/ti/csl/soc/tda3xx/cslr_soc_defines.h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

IPU1_C0

DSP1

IPU1_C0

EVE

DSP2

RTI2

RTI3

IPU1_C0

RTI5

RTI4
WWDT Monitoring

WWDT Monitoring

WWDT Monitoring

WWDT Monitoring

Expiry Interrupts

Control

Module
Generate

SoC Reset

www.ti.com RTI/WWDT (TDA3x only)

13SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

– VisionSDK example track DCC error interrupt using ESM
– ESM and DCC usage is triggered only in “framecopy” and “safeframecopy" based use-cases

6 RTI/WWDT (TDA3x only)

6.1 Hardware Requirements
• RTI – WWDT

– RTI module implements the Windowed Watchdog Timer (WWDT) functionality
– If a WWDT is serviced outside its specified window or not serviced at all, the RTI module can

generate an interrupt signal which can be routed to all CPUs in the system using the
IRQ_CROSSBAR. Alternately, the expiry of an RTI can also generate a WARM reset on the SoC.

– RTI1 is used by ROM bootloader and is set up to a time-out of 3 minutes. Application can re-use
RTI1 if this time-out value is acceptable.

– RTI2/3/4/5 can be used by software without any limitations. Software can set up timeout value as
required. This timeout value cannot be changed once configured. For further details, see the
device-specific TRM.

6.2 Vision SDK Integration

Figure 3. RTI integration in VisionSDK

• RTI task
– Implemented in the folder vision_sdk/apps/src/rtos/modules/rti
– Other changes are present under RTI_INCLUDE macro
– This task runs on all cores and registers for WWDT expiry interrupts from all RTI modules
– IPU1_0/DSP1/DSP2/EVE1 setup and service RTI2/3/4/5 respectively in a periodic manner
– If any core other than IPU1_0 is unable to service the WWDT in the configured service-window, all

cores receive the RTI interrupt
• On receiving this interrupt, IPU1_0 resets the corresponding core
• Other cores track this WWDT expiry and stop sending any further message to the expired core.

This allows other frame-work to not hang-up.
– If IPU1_0 is unable to service its RTI correctly, the entire SoC is reset.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

Driver Changes for FFI www.ti.com

14 SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

– To allow debugging with RTI, the emulation suspend lines from the CPU can be connected to the
associated RTI modules to prevent RTI WWDT from continuing the timer when cores are in a
debug-halt state.

– A single file rtiLink_tsk.c is used to implement the task on all cores, the execution is changed on
basis of System_getSelfProcId() which identifies the current CPU.

– Each RTI is configured with a time-out of 4 seconds and a window size of 50% (2 seconds)
• Integration into a use-case. This section is specific to VisionSDK – any integration of RTI does not

require this method in the final system but can be useful during development phase for debugging.
– RTI WWDT servicing is enable only in “framecopy” and “safeframecopy” usecases.
– At the end of the use-case, a special programming sequence is to ensure following:

• RTI tasks stop servicing the WWDT
• SoC reset generation is not generated by RTI associated with IPU1_0
• Change service window to 100% to allow reconfiguration if needed later
• This is implemented in the function rti_service()
• If any re-configuration of RTI register is needed, a different programming sequence is needed.

This is implemented in rti_setup() under the condition (RTIDwwdIsCounterEnabled() == TRUE).
• Special constraints: RTI with FFI on EVE

– FFI on EVE needs interrupts to be disabled. This causes Task_sleep() command to work
incorrectly.

– RTI implementation uses Task_sleep() to wait till WWDT service window is open. Since,
Task_sleep() works incorrectly the WWDT associated with EVE can expire under some scenarios.

– In the safeframecopy plugin, if RTI is enabled, force the copy mode to always use EDMA instead of
CPU. This ensures that the errors in sleep times are not large enough to cause WWDT expiry

• IPC consideration in case of using RTI
– When a core expires, the WWDT expiry interrupt handler on IPU1-0 resets the CPU corresponding

to the WWDT.
– In this case, the core which is in reset will not respond to any new messages.
– There is a small window between core failure and WWDT expiry, where messages sent will not be

acknowledged. This can result in IPC queue getting stuck and prevent software recovery.
– Therefore, IPC waits must use time-outs and check for core status when time-out occurs to avoid

indefinite waits. This is implemented in
"vision_sdk/links_fw/src/rtos/links_common/system/system_ipc_msgq.c". For relevant code, search
for RTI_INCLUDE.

• Warm reset recovery considerations in case of using RTI
– If the WWDT corresponding to master core expires, the system is configured to undergo a

warmreset.
– During a warm-reset, all register configurations are not lost. Significant among these are:

• Control modules registers
• Interrupt crossbar registers
• Firewall configurations

– Software must ensure that to reset such register configurations to ensure that system boots up
correctly after a warm-reset.

7 Driver Changes for FFI
• Safety OSAL

– This layer provides two APIs – BspSafetyOsal_setSafetyMode() and
BspSafetyOsal_getSafetyMode() – to allow users to switch the level of execution to QM or ASIL
using appropriate arguments.

– This interface is defined in
ti_components/drivers/pdk/packages/ti/drv/vps/include/osal/bsp_safety_osal.h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41

www.ti.com References

15SPRAC41–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Safety Features on VisionSDK

– This is implemented in
ti_components/drivers/pdk/packages/ti/drv/vps/src/osal/tirtos/bsp_safety_osal.c

– Driver examples do not implement FFI. Therefore, the safety OSAL implementation uses only
empty functions.

• USER and SUPERVISOR switch in DSP
– Relevant code is available in:

• ti_components\drivers\pdk\packages\ti\csl\arch\c66x\dsp_usrSpvSupport.h
• ti_components\drivers\pdk\packages\ti\csl\arch\c66x\src\dsp_usrSpvSupport.c
• ti_components\drivers\pdk\packages\ti\csl\arch\c66x\src\swenr.asm

– Using the C66x Memory Protection Unit (MPU) and Extended memory controller (XMC), SW can
set up differential access permissions to L1/L2/L3 and DDR memories based on DSP CPU mode.

– DSP CPU supports two modes – USER and SUPERVISOR. At reset, the CPU is in SUPERVISOR
mode. The active mode is available in the CXM bits of the TSR register.

– Current mode can be queried using the DSP_getCpuMode() API or changed using the
DSP_setCpuMode() API.

– Implementation details:
• To switch the CPU mode from SUPERVISOR to USER or vice-versa, use the SWENR

instruction and the corresponding handler isused.
• The SWENR handler is setup in the when DSP_setCpuMode() is called for the first time. The

handler address is set up in the REP register.
• To change the CPU mode, execute the SWENR instruction with argument of 0 or 1. When the

CPU jumps to the handler, the current TSR is copied to NTSR. The handler changes the value
of CXM bit in NTSR to 0 or 1 to switch to SUPERVISOR or USER mode respectively based on
the argument.

– The handler then jumps back to the function which executed the SWENR instruction using the NRP
pointer. This causes the NTSR (with new operating mode) to be copied to the TSR register. This
completes the switch of CPU mode. Normal software can resume at this point.

• Summary of features added to SBL
– “Priming” of EMIF ECC protected regions

• ECC regions must be 64 kB aligned and have length in multiples of 64 kB
• Start and End address are considered inclusive. eg: To define a 64kB region at address

0x8000_0000, start address must be 0x8000_0000 and end address must be 0x8000_FFFF.
– “Priming” of IPU L2RAM and Unicache in TDA3x for ECC.
– “Priming” of DSP L2RAM for parity checking.

• SBL assumes all start of all code/data sections in L2SRAM to be 16 byte aligned and length to
be a multiple of 16 bytes.

– IPU cache is set to write-back, write-allocate mode in TDA3x to allow ECC to work correctly.

8 References
ECC/EDC on TDAxx

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC41
http://www.ti.com/lit/pdf/SPRAC42

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Safety Features on VisionSDK
	1 Introduction
	2 Vision SDK Updates
	2.1 Build Flow
	2.2 New Plugin and Use-Cases
	2.3 FFI Mode for AlgorithmLink
	2.4 RTI/DCC/ESM

	3 EMIF ECC, IPU ECC, DSP Parity
	3.1 Hardware Requirements
	3.2 VisionSDK and SBL Implementation

	4 Freedom From Interference (FFI)
	4.1 Introduction
	4.2 FFI on TDAx SoCs
	4.3 Hardware Requirements
	4.4 VisionSDK implementation
	4.5 EMIF Interleaving
	4.5.1 512 MB DDR on EMIF1, 512 MB DDR on EMIF2, 128-Byte Interleaving Enabled

	5 DCC/ESM (TDA3x only)
	5.1 Hardware Requirements
	5.2 Vision SDK Integration

	6 RTI/WWDT (TDA3x only)
	6.1 Hardware Requirements
	6.2 Vision SDK Integration

	7 Driver Changes for FFI
	8 References

	Important Notice

