
Application Note
Implementing a FTP Server on TI 66AK2H Device With
RTOS

Eric Ding

ABSTRACT

This application report shows how to implement a FTP server example on TI KeyStone II 66AK2H device. The
example is built with TI Processor SDK RTOS and NDK packages. While the note explains the software porting
and development procedures, it focuses on methods how to tune up the network throughput. Those tuning
methods are applicable to other TI processors and common TCP/IP networks in general.

Table of Contents
1 Introduction...2

1.1 TI Processor SDK RTOS ...2
1.2 TI NDK..2
1.3 66AK2H Device..2
1.4 FTP Offering in TI Processor SDK RTOS.. 2

2 Hardware and Software..3
3 Develop the FTP Server on K2H..3

3.1 Reference FTP Server Example.. 3
3.2 Create K2H FTP Server Example ... 4
3.3 Test K2H FTP Server Example ... 7

4 Performance Tuning .. 8
4.1 Quick Code Check... 8
4.2 Increase the TCP Buffer Sizes ..9
4.3 UIA CPU Load Instrumentation..10
4.4 What Can We Do on the PC Side?.. 11
4.5 What Else Can We Do on the K2H Side?.. 14
4.6 Final FTP Throughput Results... 15

5 Summary... 16
6 References.. 16

List of Figures
Figure 3-1. K2G Hello World Project File...4
Figure 3-2. K2G FTP Server Project File...4
Figure 3-3. K2H FTP Server Project Creation With Script...5
Figure 3-4. K2H FTP Server CCS Project .. 6
Figure 3-5. FTP Server Function Test With a PC ... 7
Figure 4-1. Update FTP Server Example Compiler Optimization ... 8
Figure 4-2. Heap Memory RTOS Object View ..9
Figure 4-3. Adding UIA Module Into CCS Project..10
Figure 4-4. UIA Analysis Configuration..10
Figure 4-5. A15 CPU Load Under FTP Transmitting and Receiving..11
Figure 4-6. TCP Window Size..11
Figure 4-7. TCP Round Trip Time ...12
Figure 4-8. TCP Scaling Check on Windows PC ..12
Figure 4-9. Wireshark Analysis of ACK Packet Frequency... 13
Figure 4-10. Windows PC Interrupt Coalescing Configuration ... 13
Figure 4-11. Effect of Interrupt Coalescing Setting on ACK Packet Generation ...14
Figure 4-12. Code Cycle Count Analysis Before and After Code Optimization .. 15

www.ti.com Table of Contents

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Trademarks
Code Composer Studio™ is a trademark of Texas Instruments.
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

1 Introduction

1.1 TI Processor SDK RTOS
The Processor Software Development Kit (Processor SDK) provides the core foundation and building blocks
that facilitate application software development on TI’s embedded processors. The package consists of device
and platform dependent modules, core dependent software with source code and prebuilt libraries, TI Real-Time
Operating System (RTOS) kernel, utilities and application examples. The TI Processor SDK RTOS is available
as a free download with all components in one installer.

1.2 TI NDK
The Network Development Kit (NDK) https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/
index_Foundational_Components.html#ndk is a platform for development and demonstration of network enabled
RTOS applications on TI processors and includes demonstration software showcasing capabilities across a
range of network enabled applications.

The NDK provides an IPv6 and IPv4 compliant TCP/IP stack working with the TI-RTOS Kernel. It primarily
focuses on providing the core Layer 3 and Layer 4 stack services along with additional higher-level network
applications. The NDK itself does not include any platform or device specific software. The NDK interfaces
through well-defined transport interface, Network Interface Management Unit (NIMU), to the PDK and platform
software elements needed for operation.

1.3 66AK2H Device
The 66AK2Hxx (a.k.a. K2H) platform combines four Arm® Cortex®-A15 processors with up to eight
TMS320C66x high-performance DSPs using the KeyStone II architecture. K2H device is optimal for embedded
infrastructure applications like cloud computing, media processing, high-performance computing and so forth.
The K2H has a five-port Gigabit Ethernet switch, with one port to host, and four Serial Gigabit Media
Independent Interface (SGMII) ports connected to the networks.

1.4 FTP Offering in TI Processor SDK RTOS
The File Transfer Protocol (FTP) is a common network protocol used for file transfer between a
client and a server structure. The FTP uses TCP protocol for reliable data transfer. As seen from
the TI Processor SDK RTOS user guide: https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/
index_Foundational_Components.html#id140, an FTP server example is available to some processors, but not
including K2H.

As a multi-core high performance processor, it is desired to have such an example on the K2H device for
customer network application reference. Porting the existing one to K2H is expected to be straightforward. The
note explains how to create a Code Composer Studio™ (CCS) project, port the code and test. Moreover, network
performance is very important in real life. Such discussions may spread over the TI (E2E forums) or wider
Internet communities. The application report examines how to optimize the network throughput from various
approaches and summarizes what we learnt from this practice.

Trademarks www.ti.com

2 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_Foundational_Components.html#ndk
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_Foundational_Components.html#ndk
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_Foundational_Components.html#id140
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_Foundational_Components.html#id140
https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

2 Hardware and Software
The K2H EVM () is used for the FTP server development and test. The EVM provides connectivity for the four
SGMII Gigabit Ethernet ports:

• An Ethernet PHY is connected to SGMII ports 0 and 1, respectively, to provide a copper interface and routed
to a Gigabit RJ-45 connector

• The SGMII ports 2 and 3 are routed to ports 0 and 1 of the AMC edge connector backplane interface

In the test, the SGMII port 0 is used by directly connecting to a Gigabit Ethernet port of a Windows 10 PC. The
software configures the K2H with a fixed IP address 192.168.1.4 by default, the Windows PC has to be on the
same subnet 192.168.1.xxx.

The software installer is downloaded from https://software-dl.ti.com/processor-sdk-rtos/esd/K2HK/latest/
index_FDS.html. As time of the development, the latest 06_03_00_106 release is used. The installer contains
all the packages necessary for the work, except that TI Code Composer Studio (CCS) needs to be downloaded
separately. The packages used in the work are listed as follows:

• SYSBIOS: 6.76.03.01
• XDCTools: 3.55.02.22
• PDK K2HK: 4.0.16
• NDK: 3.61.01.01 + NS: 2.60.01.06
• UIA: 2.30.01.02
• Arm Compiler: arm-none-eabi-gcc-7.2.1 (GNU Tools for Arm Embedded Processors 7-2017-q4-major)
• CCS 9.3.0.00012

3 Develop the FTP Server on K2H
3.1 Reference FTP Server Example
A reference FTP server example called NIMU_FtpExample_<board>_<core>Exampleproject is available
inside pdk_k2hk_4_0_xx. As explained in the PDK Example and Test Project Creation section in https://
software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html#rebuild-pdk, the CCS project can
be created using batch script:

pdkProjectCreate [soc] [board] [endian] [module] [project type] [processor] [pdkDir]

where module is nimu.

The script searches through the pdk_k2hk_4_0_xx\packages\ti\transport\ndk\nimu (refer
to as NIMU_INSTALL_DIR hereafter for brevity) folder for the existence of
NIMU_FtpExample_<board>_<core>Exampleproject.txt to create the CCS project. The FTP example is
available for several devices, like AM335x, AM437x, K2G and so forth, but not for K2H. The K2G
is another KeyStone II processor with ARM A15 and C66x cores, the K2G project can be used
as a reference for K2H because of the similarity between the two processors. As an example,
file NIMU_INSTALL_DIR \example\ftpApp\k2g\armv7\bios\NIMU_FtpExample_evmK2G_armExampleproject.txt
shows all the files, compiler and linker setups for the CCS project on Arm A15.

www.ti.com Hardware and Software

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 3

Copyright © 2022 Texas Instruments Incorporated

https://www2.advantech.com/Support/TI-EVM/EVMK2HX.aspx
https://software-dl.ti.com/processor-sdk-rtos/esd/K2HK/latest/index_FDS.html
https://software-dl.ti.com/processor-sdk-rtos/esd/K2HK/latest/index_FDS.html
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html#rebuild-pdk
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html#rebuild-pdk
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

3.2 Create K2H FTP Server Example
The K2G device has a FTP server example and a basic hello world example, while the K2H device only has the
latter. One may compare the two K2G projects for differences, then apply those to the K2H using the hello world
example as the template. The note illustrates the steps on how to create the Arm A15 project. The same applies
to the C66x project.

As shown below between two .txt files for K2G:

• NIMU_INSTALL_DIR\example\helloWorld\k2g\armv7\bios\NIMU_BasicExample_evmK2G_armExampleproje
ct.txt

Figure 3-1. K2G Hello World Project File

• NIMU_INSTALL_DIR\example\ftpApp\k2g\armv7\bios\NIMU_FtpExample_evmK2G_armExampleproject.txt

Figure 3-2. K2G FTP Server Project File

Develop the FTP Server on K2H www.ti.com

4 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

It is evident that:

• The main source files are different
• The FTP server example has three FTP related source files under ftpserver folder, replacing the udpHello.c

for the hello world example.
• The pre-defined symbols are different: -DNIMU_FTP_APP is an addition to the FTP server example .

Keeping those differences in mind, one can create a FTP example project file for K2H,
NIMU_INSTALL_DIR\example\ftpApp\k2h\armv7\bios\NIMU_FtpExample_EVMK2H_armExampleProject.txt,
using
NIMU_INSTALL_DIR\example\helloWorld\k2h\armv7\bios\NIMU_emacExample_EVMK2H_armBiosExampleProj
ect.txt as the template. The text file shall have the following contents:

-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/src/main_k2h.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/ftpApp/ftpserver/ftp_commands.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/ftpApp/ftpserver/ftp_filerout.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/ftpApp/ftpserver/ftpserver.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/helloWorld/src/nimu_osal.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/helloWorld/src/
nimu_cppi_qmss_iface.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/helloWorld/src/nimu_pa_iface.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/helloWorld/src/setuprm.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/drv/rm/device/k2h/policy_dsp-only.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/drv/rm/device/k2h/policy_dsp_arm.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/drv/rm/device/k2h/global-resource-list.c"
-ccs.linkFile "PDK_INSTALL_PATH/ti/transport/ndk/nimu/example/helloWorld/k2h/armv7/bios/
helloWorld_ftp.cfg"
-ccs.setLinkerOptions " -lrdimon -lgcc -lm -lnosys -l:os.aa15fg -nostartfiles -static -Wl,--gc-
sections -L${NDK_INSTALL_DIR}/packages/ti/ndk/os/lib"
-ccs.setCompilerOptions "-c -mcpu=cortex-a15 -mtune=cortex-a15 -marm -mfloat-abi=hard -DSOC_K2H
-DDEVICE_K2H -DNIMU_FTP_APP -D_LITTLE_ENDIAN=1 -g -gstrict-dwarf -Wall -MMD -MP -I$
{PDK_INSTALL_PATH} -I{NDK_INSTALL_DIR}/packages" -rtsc.enableRtsc

where:

• main_k2h.c is updated from the helloword.c, the major change is that it calls ftpserver_init() instead of
DaemonNew()inside NetworkOpen()

• helloWorld_ftp.cfg is a duplicate copy of helloWorld.cfg for further modification as will be seen later

Then, the CCS project can be created by: pdkProjectCreate K2H all little nimu all arm.

Figure 3-3. K2H FTP Server Project Creation With Script

www.ti.com Develop the FTP Server on K2H

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Finally, one can import the project into CCS and build:

Figure 3-4. K2H FTP Server CCS Project

Note
The FTP server source codes include header files from <ti/fs/fatfs/ff.h>. However the PDK K2H
package doesn’t contain them. One can copy those from PDK package for other devices like K2G
or clone from TI GIT repository: . Three files are needed under pdk_k2hk_4_0_xx\packages\ti\fs\fatfs
folder: ff.h, ffconf.h and integer.h.

Develop the FTP Server on K2H www.ti.com

6 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://git.ti.com/cgit/keystone-rtos/fatfs/tree/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

3.3 Test K2H FTP Server Example
An out file called NIMU_FtpExample_EVMK2H_armExampleProject.out should be built. The example runs as
the FTP server with a default IP address 192.168.1.4 on the K2H EVM. The PC acts as the FTP client with an IP
address 192.168.1.11 as an example. The major test steps include:

• Set the K2H EVM in no-boot mode and use the standard GEL file for initialization
• Use CCS/JTAG to connect to the first A15 (arm_A15_0) core, load the program and run
• From the PC side, FTP to EVM with User: user and Password: password
• From the PC side, use get command to read a file from EVM into PC and put command to send a file from

PC to EVM, corresponding to EVM transmission and reception, respectively

A sample test screenshot shown in Figure 3-5, showing the PC test commands and FTP throughput reported.
This proves the functionality of the K2H FTP server example. Note that the server does not really host a file
system on the K2H EVM, get/put commands are simply memory operations.

Figure 3-5. FTP Server Function Test With a PC

www.ti.com Develop the FTP Server on K2H

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

4 Performance Tuning
As seen from previous section, the EVM transmitting speed is approximately 11MB/s and receiving speed is
approximately 23MB/s. There should be rooms for improvement. This section discusses methods and debugging
techniques to improve the Ethernet throughput.

4.1 Quick Code Check
4.1.1 FTP Transmitting Code Check

Test result shows that 2,560,000 bytes data is transferred in a short duration. It is good to run a longer transfer
with more data for measurement accuracy.

The transmitting is controlled inside ftp_filerout.c file:

int32_t ftp_filerout_read(io_handler_t *ioh, char *path)
{
 ……
 for (i=0; i<5000;i++)
 {
 send(ioh->data_socket, ioh->DataBuf, DATA_BUFFER_SIZE, 0);
 Task_yield();
 }
 .….
}

The DATA_BUFFER_SIZE is defined as 512. This is how 2,560,000 bytes (5,000 x 512) comes from. The
packets captured on the wire show the packet size is 566 bytes, as a result of 54 bytes header (14 bytes
Ethernet + 20 bytes IP + 20 bytes TCP) in addition to the 512 bytes data payload. This will not fully utilize the
maximum Ethernet packet size which can be up to 1,514 bytes without fragmentation. One may update the
DATA_BUFFER_SIZE to 1,460 (=1,514 – 54) and use a larger for() loop, e.g. 200,000 for test. This effectively
transmits 292,000,000 bytes data with Maximum Transmission Unit (MTU) size.

Task_yield() is used to yield current task to other tasks with the same priority. It is unnecessary in such a simple
test, so it can be commented out to tighten the for() loop.

4.1.2 FTP Receiving Code Check

One thing can be done to increase the throughput is to use the No-Copy APIs inside NDK. The regular socket
APIs performs a CPU copy of the data received on the wire. On the contrary, the No-Copy APIs do not do that by
merely passing the data pointer. You have to manually free the received buffer from APIs. For more information,
see the Enhanced No-Copy Socket Operation section in the TI Network Developer's Kit (NDK) API Reference
Guide.

Checking the FTP receiving function in the same ftp_filerout.c file:

int32_t ftp_filerout_write(io_handler_t *ioh, char *path)
{
…
 bytesRead = (int)recvnc(ioh->data_socket, (void**)&pBuf, 0, &hBuffer);
…
}

The code already uses No-Copy API recvnc(), so no further change is needed.

4.1.3 CCS Project Optimization

The CCS project is created with –Og, which is optimized for debugging. This can be changed to –O3:

Figure 4-1. Update FTP Server Example Compiler Optimization

Performance Tuning www.ti.com

8 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru524
https://www.ti.com/lit/pdf/spru524
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Those are simple checks one can do very quickly, the throughput is improved to approximately 23MB/s for
transmitting and receiving directions after the change.

4.2 Increase the TCP Buffer Sizes
The default TCP transmitting and receiving buffer sizes are defined in
ndk_3_xx_xx_xx\packages\ti\ndk\inc\stack\inc\resif.h with 8192 bytes for devices with small memory footprint:

#define DEF_SOCK_TCPTXBUF 8192
#define DEF_SOCK_TCPRXBUF 8192
#define DEF_SOCK_TCPRXLIMIT 8192

Those buffers can be increased in the FTP server main_k2h.c code before NC_NetStart() is called:

 //
 // This code sets up the TCP and UDP buffer sizes
 // (Note 8192 is actually the default. This code is here to
 // illustrate how the buffer and limit sizes are configured.)
 //
 // TCP Transmit buffer size
 rc = 65536;
 CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPTXBUF,
 CFG_ADDMODE_UNIQUE, sizeof(uint32_t), (uint8_t *)&rc, 0);

 // TCP Receive buffer size (copy mode)
 CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPRXBUF,
 CFG_ADDMODE_UNIQUE, sizeof(uint32_t), (uint8_t *)&rc, 0);

 // TCP Receive limit (non-copy mode)
 CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_SOCKTCPRXLIMIT,
 CFG_ADDMODE_UNIQUE, sizeof(uint32_t), (uint8_t *)&rc, 0);

65,536 bytes is the maximum size for a TCP buffer. However, with such changes, you may see the FTP
connection is refused while ping to the EVM is still responsive.

The most common reason is memory allocation failure. To check this, one can add print statement for failure
code in socket() and accept() API calls inside ftpserver.c:

 if ((listen_sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP)) == INVALID_SOCKET)
 {
 printf("Failed to open listen socket with error %d\n", fdError());
}

 if((client_sock = accept(listen_sock, (struct sockaddr*)&client_addr, &len)) == INVALID_SOCKET)
 {
 /* Timeout, Wait a short time and try again */
 printf("Failed to accept with error %d\n", fdError());
 …
 }

As expected, the fdError() returns NDK_ENOMEM (12) in one of the error conditions. So the NDK
memory needs to be increased. If another number returns, one can translate that number with
ndk_3_xx_xx_xx\packages\ti\ndk\inc\serrno.h.

TCP buffers are directly allocated from heap, while all other NDK modules allocate buffers from NDK memory
table, which is also allocated from heap. The heap size is controlled by BIOS.heapSize inside the .cfg file,
increasing it from 0x40000 to 0x100000 resolves the FTP connection failure issue. The ROV view provides a
snapshot of heap memory usage. The Ethernet throughput is improved to 50-60MB/s after increasing the TCP
buffer sizes.

Figure 4-2. Heap Memory RTOS Object View

www.ti.com Performance Tuning

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

4.3 UIA CPU Load Instrumentation
Before moving deeper into network setting and NIMU driver tuning, it is good to understand if the throughput is
limited by the CPU load, which is probably 100% busy? Such can be answered by using Unified Instrumentation
Architecture (UIA) module for CPU load measurement. The major steps include:

Figure 4-3. Adding UIA Module Into CCS Project

1. Add the below configuration into the .cfg file. The SYSBIOS has a default CPU speed info which needs to be
updated with the real CPU speed as well:
BIOS.cpuFreq.lo = 1000000000; /*1GHz CPU*/

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup');
LoggingSetup.loadLogging = true;
LoggingSetup.loadLoggerSize = 32768;
LoggingSetup.mainLoggerSize = 32768;
LoggingSetup.sysbiosLoggerSize = 32768;
LoggingSetup.sysbiosSemaphoreLogging = true;
LoggingSetup.loadTaskLogging = true;
LoggingSetup.loadSwiLogging = true;
LoggingSetup.loadHwiLogging = true;
LoggingSetup.enableTaskProfiler = true;
LoggingSetup.eventUploadMode = LoggingSetup.UploadMode_JTAGSTOPMODE;

2. Enable the UIA measurement in CCS by selecting Tools → RTOS Analyzer → Load Analysis:

Figure 4-4. UIA Analysis Configuration
3. Run the test.
4. Halt CPU to collect the CPU load graph. Below is an example with Tx throughput 61MB/s followed by Rx

throughput 59MB/s. The CPU load is 55% and 68%, respectively, so there is still CPU processing power left.

Performance Tuning www.ti.com

10 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Figure 4-5. A15 CPU Load Under FTP Transmitting and Receiving
5. Note that the UIA module adds a little bit overhead as every context switch is being timestamped to get more

accurate CPU load number. Remove the UIA code in the .cfg file once the measurement is performed.

4.4 What Can We Do on the PC Side?
Wireshark is a good tool to capture and analyze packet traffic for further insight. A usage example is illustrated
below for a long data transfer from the K2H EVM to PC with throughput 45MB/s.

4.4.1 TCP Window Scaling Check

Through TCP stream analysis, it shows the TCP window size is always 64KB, no scaling happened.

Figure 4-6. TCP Window Size

www.ti.com Performance Tuning

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 11

Copyright © 2022 Texas Instruments Incorporated

https://www.wireshark.org/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

The stream analysis also shows Round Trip Time (RTT) is about 0.60 millisecond mostly:

Figure 4-7. TCP Round Trip Time

With this RTT and TCP window size, the transfer supports: 64KB/0.6 ms = 107MB/s throughput. The TCP
window size is big enough even without scaling, this is not a factor limiting the throughput. Nevertheless, it
is worthy to check and make sure the TCP window scaling is enabled on the Windows PC side, by using
command: netsh interface tcp show global. A larger TCP window helps to improve the throughput especially in
high RTT scenario.

Figure 4-8. TCP Scaling Check on Windows PC

Performance Tuning www.ti.com

12 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

4.4.2 Receive Interrupt Coalescing Check

As shown from the packet capture, the data transfer size is 1514 bytes from the K2H EVM to the PC. The PC
sends an ACK packet for every 2920 bytes (2 packets) received by examining the successive ACK packets’
acknowledge number field:

Figure 4-9. Wireshark Analysis of ACK Packet Frequency

The frequent reception of TCP ACK packets drives up the CPU usage during receiving interrupt handling. The
way to reduce the interrupt generation and hence the interrupt handling is called interrupt coalescing. It prevents
interrupts from being raised to a CPU until a specific amount of events are pending. The CPU is relaxed and the
throughput can be potentially increased with fewer interrupts.

Interrupt coalescing can be explored on either side, or both sides. From the Windows 10 PC side, if
the generated TCP ACK packets can be suppressed to less frequent, then the K2H CPU saves the
power for receiving interrupt handling. The interrupt coalescing is configured in the Windows 10 registry
under Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\
{Interface_name}, one can use regedit utility to add two additional fields: TcpAckFrequency and TcpDelAckTicks.
An ACK packet is transmitted every receiving number of TcpAckFrequency packets or when TcpDelAckTicks (in
unit of 100 millisecond) delay timer expires, whichever happens first. An example is depicted below:

Figure 4-10. Windows PC Interrupt Coalescing Configuration

www.ti.com Performance Tuning

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Those numbers are based on trials and the PC needs to reboot for the setting to take into effect. With
TcpAckFrequency = 10 and TcpDelAckTicks = 1, the ACK is now transmitted for every 10 (from 2) received
packets:

Figure 4-11. Effect of Interrupt Coalescing Setting on ACK Packet Generation

4.5 What Else Can We Do on the K2H Side?
4.5.1 TCP/IP Checksum Offloading Check

In the K2H device, Packet Accelerator (PA) is one of the main components of the network coprocessor
peripheral. The PA is a firmware that works with the Gigabit Ethernet switch subsystem to perform packet
processing operations such as packet header classification, checksum generation, and multi-queue routing. On
the other hand, the NDK software supports both Layer 3 and Layer 4 checksums calculation. If this can be
offloaded to the K2H’s PA, then the CPU processing power can be saved.

Current NDK design abstracts at NIMU layer. NDK is device independent without the knowledge of underlying
hardware capabilities. In the receiving path, the PA does the packet classification at Layer 2 then handles the
packets to the NDK stack. In the transmitting path, the NDK forms the packets and pass them to the NIMU
driver. All the Layer 3 and Layer 4 are handled by the NDK software, the checksum calculation can’t be offloaded
to the PA firmware.

4.5.2 NIMU Driver Efficiency Profiling

The NIMU driver source code is NIMU_INSTALL_DIR\src\v2\nimu_eth.c. The transmitting function is
EmacSend() and the receiving function is EmacRxPktISR(). There is a debug macro TIMING can be
enabled to profile the CPU cycles spent in transmitting and receiving routines. The timestamp function is
nimuUtilReadTime32(). One may further expand this debug to record additional cycle count information for each
part of the code, and judge where efforts probably can be spent for driver code optimization.

For example, the transmitting packet number counter, the delta from last time EmacSend() is entered and total
time spent in the EmacSend() are saved in a circular debug buffer for further analysis, as shown below. The
EmacSend() function is found to take about 1550 to 2950 cycles (the third column).

By looking into the implementation of EmacSend(), the driver does transmitting return queue processing (in a
loop over number of descriptors in gTxReturnQHnd), it pops the gTxReturnQHnd and it returns PBM packet
back to the NDK stack, and pushes transmitting descriptor to the transmitting free queue, in addition to actually
sending the packet out. After some code optimization, the cycle is reduced to about 1600 in the same routine,
saving up to 45%.

Performance Tuning www.ti.com

14 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

Figure 4-12. Code Cycle Count Analysis Before and After Code Optimization

Note that the NIMU library needs to be rebuilt and linked with the application for the changes taking into effect.

4.5.3 Receive Interrupt Coalescing

The idea of interrupt coalescing is experimented on the PC side in Section 4.4.2. This can also be achieved
by letting the ACK packets accumulated to certain levels for one-time processing, in case that PC is unable to
throttle the ACK packet generation.

This feature is supported by the K2H and explained in the (KeyStone Architecture Multicore Navigator User's
Guide) under field Interrupt Pacing Mode with 4 options:

• 0 = None — interrupt on entry threshold count only (list full)
• 1 = Time delay since last interrupt. This produces a periodic interrupt (as long as the list does not fill early and

descriptors continue arriving).
• 2 = Time delay since first new packet. This starts the timer countdown with the first packet received following

a previous interrupt.
• 3 = Time delay since last new packet. This restarts the timer countdown with each new packet.

The interrupt pacing mode works with another parameter timerLoadCount, which counts down a global timer
ticks to delay interrupt. The pacing mode is configured in the setup_rx_queue() of driver code nimu_eth.c:

 accCfg.timerLoadCount = 0;
 accCfg.interruptPacingMode = Qmss_AccPacingMode_LAST_INTERRUPT;

After some trials with different settings and cross-checking with Processor SDK Linux K2H usage in:

• – accumulator = <0 47 16 2 50>
• and knav_init_acc_range() in https://git.ti.com/cgit/processor-sdk/processor-sdk-linux/tree/drivers/soc/ti/

knav_qmss_acc.c?h=processor-sdk-linux-4.19.y:

The NIMU driver code is updated with the following:
 accCfg.timerLoadCount = 2; /* 50us/ACC_DEFAULT_PERIOD(25us by firmware) = 2 */
 accCfg.interruptPacingMode = Qmss_AccPacingMode_FIRST_NEW_PACKET;

4.6 Final FTP Throughput Results
With all the changes integrated, the K2H FTP server example achieves transmitting throughput 60-73MB/s and
receiving throughput 67MB/s, both well above the initial results.

www.ti.com Performance Tuning

SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Implementing a FTP Server on TI 66AK2H Device With RTOS 15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/sprugr9
https://www.ti.com/lit/pdf/sprugr9
https://git.ti.com/cgit/processor-sdk/processor-sdk-linux/tree/drivers/soc/ti/knav_qmss_acc.c?h=processor-sdk-linux-4.19.y
https://git.ti.com/cgit/processor-sdk/processor-sdk-linux/tree/drivers/soc/ti/knav_qmss_acc.c?h=processor-sdk-linux-4.19.y
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

5 Summary
This application report explains how to create the FTP server application on TI K2H device, using TI processor
SDK and NDK software offerings with RTOS. The example runs on an Arm A15 core and its network throughput
performance is measured. The steps creating the Arm CCS project also apply to DSP CCS project. The same
can be extended to other TI devices supported by Processor SDK RTOS, which share the same NIMU driver
and NDK stack architecture. In addition, the document illustrates how to measure CPU load using TI UIA tool, to
understand if the CPU processing power a limitation factor.

The document largely explores the network performance tuning by various approaches. At first, application level
code check and project build optimization are tried for simple throughput boost. Next, the NDK driver is updated
with larger TCP buffer sizes. A typical memory allocation issue arises and it is dealt with. Moreover, PC side
improvement is studied by analyzing the packet traffic and implementing interrupt coalescing from TCP ACK
packet generation perspective. Finally, the K2H NIMU driver is optimized and adjusted for receiving packet
interrupt coalescing as an advanced topic.

While the K2H NIMU driver and NDK are TI devices specific, the topics such as TCP window scaling, checksum
offloading and interrupt coalescing are not limited to this and they are applicable to generic TCP/IP network
performance tuning. Collectively with all the changes, significant throughput improvement is achieved. Certainly
there can be more works, like implementing jumbo packets, ensuring the TCP window size is scaled up,
offloading checksum calculation to hardware by redesigning the NDK, NIMU interfaces and so forth. Those may
be investigated in the future.

6 References
• Texas Instruments: TI Network Developer's Kit (NDK) API Reference Guide
• Texas Instruments: (KeyStone Architecture Multicore Navigator User's Guide

Summary www.ti.com

16 Implementing a FTP Server on TI 66AK2H Device With RTOS SPRACT8 – SEPTEMBER 2020
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru524
https://www.ti.com/lit/pdf/sprugr9
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACT8
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACT8&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 TI Processor SDK RTOS
	1.2 TI NDK
	1.3 66AK2H Device
	1.4 FTP Offering in TI Processor SDK RTOS

	2 Hardware and Software
	3 Develop the FTP Server on K2H
	3.1 Reference FTP Server Example
	3.2 Create K2H FTP Server Example
	3.3 Test K2H FTP Server Example

	4 Performance Tuning
	4.1 Quick Code Check
	4.1.1 FTP Transmitting Code Check
	4.1.2 FTP Receiving Code Check
	4.1.3 CCS Project Optimization

	4.2 Increase the TCP Buffer Sizes
	4.3 UIA CPU Load Instrumentation
	4.4 What Can We Do on the PC Side?
	4.4.1 TCP Window Scaling Check
	4.4.2 Receive Interrupt Coalescing Check

	4.5 What Else Can We Do on the K2H Side?
	4.5.1 TCP/IP Checksum Offloading Check
	4.5.2 NIMU Driver Efficiency Profiling
	4.5.3 Receive Interrupt Coalescing

	4.6 Final FTP Throughput Results

	5 Summary
	6 References

