

🕳 Order

DLP5531-Q1

参考資料

JAJSFP1G - APRIL 2016 - REVISED MAY 2019

DLP5531-Q1 車載外部照明用の 0.55 インチ、1.3 メガピクセル DMD

Technical

Documents

特長 1

- 車載アプリケーションに対応 - DMD アレイの動作温度範囲:-40℃~105℃
- 以下の製品で構成されるDLP5531-Q1 車載用チッ プセット
 - DLP5531-Q1 DMD
 - DLPC230-Q1 DMD コントローラ
 - TPS99000-Q1 システム管理および照明コントロー ラ
- 対角 0.55 インチのマイクロミラー・アレイ
 - 7.6µm のマイクロミラー・ピッチ
 - マイクロミラー傾斜角:±12°(フラット状態に対して)
 - 底面照明による最良の効率と光学エンジン・サイズ
 - 1.3 メガピクセルのアレイを 2:1 の縦横比に構成す ることで、高解像度かつワイド縦横比の車載用アプ リケーションを実現
 - LED またはレーザー照明と互換
- 600MHz の Sub-LVDS DMD インターフェイスに • よる低い消費電力と放射妨害波
- 上限や下限の温度でも 10kHz の DMD リフレッ シュ・レートを維持
- DMD メモリ・セルの内蔵セルフ・テスト
- 2 アプリケーション
- 高解像度ヘッドライト
- LIDAR 光フィルタ

3 概要

🧷 Tools &

Software

DLP5531-Q1 車載用 DMD を DLPC230-Q1 DMD コン トローラ、TPS99000-Q1 システム管理および照明コント ローラと組み合わせることで、高性能高解像度ヘッドライ ト・システムを実現できます。2:1 の縦横比は超広縦横比 設計に対応し、1.3 メガピクセルの解像度は高解像度シン ボル投影と適応型駆動ビーム・アプリケーションを可能に します。DLP5531-Q1の光学スループットは前世代の DLP3030-Q1 車載用 DMD の 3 倍以上であるため、より 大きな視野角と高ルーメン出力を実現できます。

Support &

Community

22

DLP5531-Q1 車載用 DMD マイクロミラー・アレイは、高 効率でより小型の光学エンジン設計が可能な底面照明用 に構成されています。 S450 パッケージは DMD アレイヘ の熱抵抗が低いため、より効率的なサーマル・ソリューショ ンを実現できます。

製品情報⁽¹⁾⁽²⁾

型番	パッケージ	本体サイズ(公称)
DLP5531-Q1	FYK (149)	22.30mm×32.20mm

- (1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。
- このデータシートは、ヘッドライト・アプリケーションでの本 DMD の (2)仕様とアプリケーションに準じています。ヘッドアップ・ディスプレイ の仕様とアプリケーション情報については、DLP5530-Q1 データ シート (DLPS073) を参照してください。

DLP5531-Q1 DLP[®]チップセットのシステム・ブロック図

目次

1	特長	
2	アプ	リケーション1
3	概要	
4	改訂	履歴2
5	Pin	Configuration and Functions 3
6	Spe	cifications8
	6.1	Absolute Maximum Ratings 8
	6.2	Storage Conditions
	6.3	ESD Ratings 8
	6.4	Recommended Operating Conditions 9
	6.5	Thermal Information 11
	6.6	Electrical Characteristics 11
	6.7	Timing Requirements 12
	6.8	Switching Characteristics 16
	6.9	System Mounting Interface Loads 17
	6.10	Physical Characteristics of the Micromirror Array. 18
	6.11	Micromirror Array Optical Characteristics 20
	6.12	Window Characteristics 20
	6.13	Chipset Component Usage Specification 21
7	Deta	niled Description 22
	7.1	Overview 22
	7.2	Functional Block Diagram 23
	7.3	Feature Description

	7.4	System Optical Considerations	26
	7.5	DMD Image Performance Specification	28
	7.6	Micromirror Array Temperature Calculation	28
	7.7	Micromirror Landed-On/Landed-Off Duty Cycle	31
8	Арр	lication and Implementation	32
	8.1	Application Information	32
	8.2	Typical Application	32
9	Pow	er Supply Recommendations	35
	9.1	Power Supply Power-Up Procedure	35
	9.2	Power Supply Power-Down Procedure	35
	9.3	Power Supply Sequencing Requirements	36
10	Lay	out	37
	10.1	Layout Guidelines	37
11	デバ	イスおよびドキュメントのサポート	38
	11.1	デバイス・サポート	38
	11.2	関連リンク	38
	11.3	コミュニティ・リソース	39
	11.4	商標	39
	11.5	静電気放電に関する注意事項	39
	11.6	DMD の取り扱い	39
	11.7	Glossary	39
12	メカニ	ニカル、パッケージ、および注文情報	39

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision F (September 2018) から Revision G に変更

Re	evision E (June 2018) から Revision F に変更	Page
•	Deleted illumination overfill maximum from Window Characteristics	20
•	Added LPSDR hold time to <i>Timing Requirements</i>	12
•	Added LPSDR setup time to Timing Requirements	12
•	Added pulse duration LS_CLK low to Timing Requirements	12
•	Added pulse duration LS_CLK high to Timing Requirements	12
•	Changed ILL _{OVERFILL} from total power (mW) to power density (mW/mm ²) in Recommended Operating Conditions	9
•	Added illumination overfill maximum to Recommended Operating Conditions	9

•	Changed I _{IH} from 100 nA : to 300 nA	12
•	Changed t _{WINDOW} to be a minimum rather than a maximum	12

R	evision D (May 2018) から Revision E に変更 Pa	age
•	デバイスのステータスを事前情報から量産データに変更	. 1

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions – Connector Pins

PIN		TYPE	CIONAL		DESCRIPTION
NAME	NO.	ITPE	SIGNAL	DATA RATE	DESCRIPTION
DATA INPUTS					
D_AN(0)	L2	I	SubLVDS	Double	Data, Negative
D_AN(1)	K2	I	SubLVDS	Double	Data, Negative
D_AN(2)	J2	I	SubLVDS	Double	Data, Negative
D_AN(3)	H2	I	SubLVDS	Double	Data, Negative
D_AN(4)	F2	I	SubLVDS	Double	Data, Negative
D_AN(5)	E2	I	SubLVDS	Double	Data, Negative
D_AN(6)	D2	I	SubLVDS	Double	Data, Negative
D_AN(7)	C2	I	SubLVDS	Double	Data, Negative
D_AP(0)	L1	I	SubLVDS	Double	Data, Positive
D_AP(1)	K1	I	SubLVDS	Double	Data, Positive
D_AP(2)	J1	I	SubLVDS	Double	Data, Positive
D_AP(3)	H1	I	SubLVDS	Double	Data, Positive
D_AP(4)	F1	I	SubLVDS	Double	Data, Positive
D_AP(5)	E1	I	SubLVDS	Double	Data, Positive
D_AP(6)	D1	I	SubLVDS	Double	Data, Positive
D_AP(7)	C1	I	SubLVDS	Double	Data, Positive
D_BN(0)	K19	I	SubLVDS	Double	Data, Negative
D_BN(1)	J19	I	SubLVDS	Double	Data, Negative
D_BN(2)	H19	I	SubLVDS	Double	Data, Negative
D_BN(3)	G19	I	SubLVDS	Double	Data, Negative
D_BN(4)	E19	I	SubLVDS	Double	Data, Negative
D_BN(5)	D19	I	SubLVDS	Double	Data, Negative
D_BN(6)	C19	Ι	SubLVDS	Double	Data, Negative
D_BN(7)	B19	I	SubLVDS	Double	Data, Negative
D_BP(0)	K20	I	SubLVDS	Double	Data, Positive
D_BP(1)	J20	Ι	SubLVDS	Double	Data, Positive

Copyright © 2016–2019, Texas Instruments Incorporated

DLP5531-Q1 JAJSFP1G - APRIL 2016 - REVISED MAY 2019

TEXAS INSTRUMENTS

www.ti.com

Pin Functions – Connector Pins (continued)

PIN					
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION
D_BP(2)	H20	I	SubLVDS	Double	Data, Positive
D_BP(3)	G20	I	SubLVDS	Double	Data, Positive
D_BP(4)	E20	I	SubLVDS	Double	Data, Positive
D_BP(5)	D20	I	SubLVDS	Double	Data, Positive
D_BP(6)	C20	I	SubLVDS	Double	Data, Positive
D_BP(7)	B20	I	SubLVDS	Double	Data, Positive
DCLK_AN	G2	I	SubLVDS	Double	Clock, Negative
DCLK_AP	G1	I	SubLVDS	Double	Clock, Positive
DCLK_BN	F19	I	SubLVDS	Double	Clock, Negative
DCLK_BP	F20	I	SubLVDS	Double	Clock, Positive
LS_CLKN	R3	I	SubLVDS	Single	Clock for Low Speed Interface, Negative
LS_CLKP	Т3	I	SubLVDS	Single	Clock for Low Speed Interface, Positive
LS_WDATAN	R2	I	SubLVDS	Single	Write Data for Low Speed Interface, Negative
LS_WDATAP	T2	I	SubLVDS	Single	Write Data for Low Speed Interface, Positive
CONTROL INPUTS				·	
DMD_DEN_ARSTZ	T10	I	LPSDR		Asynchronous Reset Active Low. Logic High Enables DMD.
LS_RDATA_A	T5	0	LPSDR	Single	Read Data for Low Speed Interface
LS_RDATA_B	T6	0	LPSDR	Single	Read Data for Low Speed Interface
TEMPERATURE SENSE D	IODE				
TEMP_N	P1	0			Calibrated temperature diode used to assist
TEMP_P	N1	I			accurate temperature measurements of DMD die.
RESERVED PINS				·	
VCCH	A8	Ground			
VCCH	A9	Ground			
VCCH	A10	Ground			Received Din Connect to Cround
VCCH	B8	Ground			Reserved Pin. Connect to Ground.
VCCH	B9	Ground			
VCCH	B10	Ground			
VSSH	A11	Ground			
VSSH	A12	Ground			
VSSH	A13	Ground			Record Din Connect to Cround
VSSH	B11	Ground			Reserved Fin. Connect to Ground.
VSSH	B12	Ground			
VSSH	B13	Ground			

Pin Functions – Connector Pins (continued)

PIN		TYPE			DESCRIPTION
NAME	NO.		SIGNAL	DATA KATE	DESCRIPTION
POWER					
VBIAS	T7	Power			Supply voltage for positive bias level at
VBIAS	T15	Power			micromirrors.
VOFFSET	Т9	Power			
VOFFSET	T13	Power			
VOFFSET	A5	Power			Supply voltage for High Voltage CMOS core
VOFFSET	B5	Power			micromirrors
VOFFSET	A16	Power			
VOFFSET	B16	Power			
VRESET	Т8	Power			Supply voltage for negative reset level at
VRESET	T14	Power			micromirrors.
VDD	R4	Power			
VDD	R10	Power			
VDD	R11	Power			
VDD	R20	Power			
VDD	N2	Power			
VDD	M20	Power			
VDD	L3	Power			Supply voltage for Low Voltage CMOS core
VDD	K18	Power			logic; for LPSDR inputs; for normal high level at
VDD	H3	Power			micromirror address electrodes.
VDD	G18	Power			
VDD	E3	Power			
VDD	D18	Power			
VDD	C3	Power			
VDD	A6	Power			
VDD	A18	Power			
VDDI	T4	Power			
VDDI	R1	Power			
VDDI	M3	Power			
VDDI	L18	Power			
VDDI	J3	Power			Supply voltage for Subl VDS receivers
VDDI	H18	Power			Supply voltage for SubLVDS receivers.
VDDI	F3	Power			
VDDI	E18	Power			
VDDI	B3	Power			
VDDI	B18	Power			

DLP5531-Q1 JAJSFP1G - APRIL 2016 - REVISED MAY 2019

Texas Instruments

Fin Functions – Connector Fins (continued)
--

PIN		TYPE	CIONAL		DESCRIPTION
NAME	NO.	ITPE	SIGNAL	DATA RATE	DESCRIPTION
VSS	T1	Ground			
VSS	T16	Ground			
VSS	T19	Ground			
VSS	T20	Ground			
VSS	R5	Ground			
VSS	R6	Ground			
VSS	R7	Ground			
VSS	R8	Ground			
VSS	R9	Ground			
VSS	R13	Ground			
VSS	R14	Ground			
VSS	R15	Ground			
VSS	P2	Ground			
VSS	P3	Ground			
VSS	P20	Ground			
VSS	N19	Ground			
VSS	N20	Ground			
VSS	M1	Ground			
VSS	M2	Ground			
VSS	L19	Ground			Common return. Ground for all power.
VSS	L20	Ground			
VSS	K3	Ground			
VSS	J18	Ground			
VSS	G3	Ground			
VSS	F18	Ground			
VSS	D3	Ground			
VSS	C18	Ground			
VSS	B2	Ground			
VSS	B4	Ground			
VSS	B15	Ground			
VSS	B17	Ground			
VSS	A3	Ground			
VSS	A4	Ground			
VSS	A7	Ground			
VSS	A15	Ground			
VSS	A17	Ground			
VSS	A19	Ground			
VSS	A20	Ground			

NUMBER	SYSTEM BOARD		
T11	Do not connect		
T12	Do not connect		
T17	Do not connect		
T18	Do not connect		
R12	Do not connect		
R16	Do not connect		
R17	Do not connect		
R18	Do not connect		
R19	Do not connect		
P18	Do not connect		
P19	Do not connect		
N3	Do not connect		
N18	Do not connect		
M18	Do not connect		
M19	Do not connect		
B6	Do not connect		
B7	Do not connect		
B14	Do not connect		
A14	Do not connect		

Pin Functions – Test Pads

6 Specifications

6.1 Absolute Maximum Ratings

see $^{(1)}$

		MIN	MAX	UNIT
SUPPLY VOLTAGE				
VDD	Supply voltage for LVCMOS core logic ⁽²⁾ Supply voltage for LPSDR low speed interface	-0.5	2.3	V
VDDI	Supply voltage for SubLVDS receivers ⁽²⁾	-0.5	2.3	V
VOFFSET	Supply voltage for HVCMOS and micromirror electrode ⁽²⁾⁽³⁾	-0.5	8.75	V
VBIAS	Supply voltage for micromirror electrode ⁽²⁾	-0.5	17	V
VRESET	Supply voltage for micromirror electrode ⁽²⁾	-11	0.5	V
VDDI–VDD	Supply voltage delta (absolute value) ⁽⁴⁾		0.3	V
VBIAS-VOFFSET	Supply voltage delta (absolute value) ⁽⁵⁾		8.75	V
VBIAS-VRESET	Supply voltage delta (absolute value) ⁽⁶⁾		28	V
INPUT VOLTAGE				
Input voltage for other inputs LPSDR ⁽²⁾		-0.5	VDD + 0.5	V
Input voltage for other input	ts SubLVDS ⁽²⁾⁽⁷⁾	-0.5	VDDI + 0.5	V
INPUT PINS				
V _{ID}	SubLVDS input differential voltage (absolute value) ⁽⁷⁾		810	mV
I _{ID}	SubLVDS input differential current		10	mA
CLOCK FREQUENCY				
f _{clock}	Clock frequency for low speed interface LS_CLK		130	MHz
f _{clock}	Clock frequency for high speed interface DCLK		620	MHz
ENVIRONMENTAL				
T _{ARRAY}	Operating DMD array temperature (Monitored by TMP411 via DLPC230-Q1) ⁽⁸⁾	-40	105	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device is not implied at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure above or below the Recommended Operating Conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.

(3) VOFFSET supply transients must fall within specified voltages.

(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.

(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.

(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.
 (7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential

inputs must not exceed the specified limit or damage to the internal termination resistors may result.

(8) See Micromirror Array Temperature Calculation section.

6.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system.

		MIN	MAX	UNIT
T _{stg}	DMD storage temperature (Reference location TP1 in Figure 19)	-40	125	°C

6.3 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000		
	Electrostatic discharge	Charged-device model (CDM), Corner Pins, per JESD22-C101 ⁽²⁾	±750	V
		Charged-device model (CDM), All Other Pins, per JESD22-C101 ⁽²⁾	±500	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	NOM	MAX	UNIT
SUPPLY VOLTAGE RANGE	3)				
VDD	Supply voltage for LVCMOS core logic Supply voltage for LPSDR low-speed interface	1.7	1.8	1.95	V
VDDI	Supply voltage for SubLVDS receivers	1.7	1.8	1.95	V
VOFFSET	Supply voltage for HVCMOS and micromirror electrode ⁽⁴⁾	8.25	8.5	8.75	V
VBIAS	Supply voltage for mirror electrode	15.5	16	16.5	V
VRESET	Supply voltage for micromirror electrode	-9.5	-10	-10.5	V
VDDI–VDD	Supply voltage delta (absolute value) ⁽⁵⁾			0.3	V
VBIAS-VOFFSET	Supply voltage delta (absolute value) ⁽⁶⁾			8.75	V
CLOCK FREQUENCY					
f _{clock}	Clock frequency for low speed interface LS_CLK			120	MHz
f _{clock}	Clock frequency for high speed interface DCLK ⁽⁷⁾			600	MHz
	Duty cycle distortion DCLK			56%	
SUBLVDS INTERFACE ⁽⁷⁾					
V _{ID}	SubLVDS input differential voltage (absolute value, see Figure 6, Figure 7)	150	250	350	mV
V _{CM}	Common mode voltage (see Figure 6, Figure 7)	700	900	1100	mV
V _{SUBLVDS}	SubLVDS voltage (see Figure 6, Figure 7)	575		1225	mV
Z _{LINE}	Line differential impedance (PWB/trace)	90	100	110	Ω
Z _{IN}	Internal differential termination resistance (see Figure 8)	80	100	120	Ω
TEMPERATURE DIODE					
I _{TEMP_DIODE}	Max current source into Temperature Diode ⁽⁸⁾			120	μA
ENVIRONMENTAL					
T _{ARRAY}	Operating DMD array temperature ⁽⁹⁾⁽¹⁰⁾⁽¹¹⁾	-40		105	°C
ILL _{UV}	Illumination, wavelength < 395 nm ⁽¹⁰⁾			2	mW/cm ²
ILL _{OVERFILL}	Illumination overfill maximum heat load per side. $^{(12)(13)}$ T _{ARRAY} <= 75°C			40	mW/mm ²
ILL _{OVERFILL}	Illumination overfill maximum heat load per side. ⁽¹²⁾⁽¹³⁾ T _{ARRAY} > 75°C 2			29	mW/mm ²

(1) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.

(2) Recommended Operating Conditions are applicable after the DMD is installed in the final product.

(3) All voltage values are with respect to the ground pins (VSS).

(4) VOFFSET supply transients must fall within specified max voltages.

(5) To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than the specified limit.

(6) To prevent excess current, the supply voltage delta |VBIAS - VOFFSET| must be less than the specified limit.

(7) Refer to the SubLVDS timing requirements in *Timing Requirements*.

(8) Temperature Diode is to allow accurate measurement of the DMD array temperature during operation.

(9) DMD Active Array temperature can be calculated using the TMP411 and DLPC230-Q1 as shown in the *Micromirror Array Temperature* Calculation section.

(10) The maximum operation conditions for operating temperature and UV illumination shall not be implemented simultaneously.

(11) Operating profile information for device micromirror landed duty-cycle and temperature may be provided if requested.

(12) The active area of the DLP5531-Q1 device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The illumination optical system should be designed to minimize light flux incident outside the active array. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation.

(13) Applies to the two regions in Figure 1.

Figure 1. Illumination Overfill Diagram

6.5 Thermal Information

THERMAL METRIC ⁽¹⁾		DLP5531-Q1	
		FYK (CPGA)	UNIT
		149 PINS	
Thermal resistance	Active area-to-test point 1 (TP1) ⁽¹⁾⁽²⁾	1.3	0 0 AA/
	Active area-to-temperature sense diode ⁽¹⁾⁽²⁾	0.8	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the *Recommended Operating Conditions*. The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

(2) The thermal resistance values provided here assumes a non-uniform illumination profile. Refer to *Micromirror Array Temperature Calculation* section for details.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN TYP ⁽³⁾ MAX	UNIT	
CURRENT		<u>.</u>			
	O_{1}	VDD = 1.95 V	369		
IDD	Supply current: VDD(1)(6)	VDD = 1.8 V		mA	
		VDDI = 1.95 V	62		
DDI	Supply current: VDDI()(9)	VDD = 1.8 V		mA	
		VOFFSET = 8.75 V	16.1		
OFFSET	Supply current: VOFFSET	VOFFSET = 8.5 V		mA	
		VBIAS = 16.5 V	1.3		
BIAS	Supply current: VBIAS ⁽⁰⁾	VBIAS = 16 V		mA	
	Supply current: VRESET	VRESET = -10.5 V	-10.2		
RESET		VRESET = -10 V		mA	
POWER ⁽⁷⁾		- 1			
D	Supply power dissipation: VDD ⁽⁴⁾⁽⁵⁾	VDD = 1.95 V	720		
PDD		VDD = 1.8 V		mvv	
П	Supply power discipation: V(DDI ⁽⁴⁾⁽⁵⁾	VDDI = 1.95 V	121	m)///	
PDDI	Supply power dissipation. VDDI (769	VDD = 1.8 V		IIIVV	
D		VOFFSET = 8.75 V	141		
POFFSET	Supply power dissipation: VOFFSET	VOFFSET = 8.5 V		mvv	
D		VBIAS = 16.5 V	22		
PBIAS	Supply power dissipation. VBIAS	VBIAS = 16 V		IIIVV	
D		VRESET = -10.5 V	108		
PRESET	Supply power dissipation: VRESET	VRESET = -10 V		mvv	
P _{TOTAL}	Supply power dissipation: Total		1110	mW	

(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

(2) All voltage values are with respect to the ground pins (VSS).

(3) Typical current consumption is application and video content dependent. Please see a TI applications engineer for additional information.

(4) To prevent excess current, the supply voltage delta |VDDI - VDD| must be less than the specified limit.

(5) Supply power dissipation based on non-compressed commands and data.

(6) To prevent excess current, the supply voltage delta |VBIAS - VOFFSET| must be less than the specified limit.

(7) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are also required.

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP ⁽³⁾ MAX	UNIT
LPSDR INP	UT ⁽⁸⁾				
V _{IH(DC)}	DC input high voltage ⁽⁹⁾		0.7 × VDD	VDD + 0.3	V
V _{IL(DC)}	DC input low voltage ⁽⁹⁾		-0.3	0.3 × VDD	V
V _{IH(AC)}	AC input high voltage ⁽⁹⁾		0.8 × VDD	VDD + 0.3	V
V _{IL(AC)}	AC input low voltage		-0.3	0.2 × VDD	V
ΔV_{T}	Hysteresis (V _{T+} – V _T)	Figure 9	0.1 × VDD	0.4 × VDD	V
IIL	Low-level input current	VDD = 1.95 V; V _I = 0 V	-100		nA
I _{IH}	High-level input current	VDD = 1.95 V; V _I = 1.95 V		300	nA
LPSDR OUT	TPUT ⁽¹⁰⁾				
V _{OH}	DC output high voltage	$I_{OH} = -2 \text{ mA}$	0.8 × VDD		V
V _{OL}	DC output low voltage	$I_{OL} = 2 \text{ mA}$		0.2 × VDD	V
CAPACITAI	NCE				
C	Input capacitance LPSDR	f = 1 MHz		10	۶Ē
CIN	Input capacitance SubLVDS	f = 1 MHz		20	рг
C _{OUT}	Output capacitance	f = 1 MHz		10	pF
C _{RESET}	Reset group capacitance	f = 1 MHz; (1152 × 144) micromirrors	350	400 450	pF
C _{TEMP}	Temperature sense diode capacitance	f = 1 MHz		20	pF

 (8) LPSDR input specifications are for pin DMD_DEN_ARSTZ.
 (9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, *Low-Power Double Data Rate (LPDDR)* JESD209B.
(10) LPSDR output specification is for pins LS_RDATA_A and LS_RDATA_B.

6.7 Timing Requirements

Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

			MIN	NOM M	AX	UNIT
LPSDR						
t _r	Rise slew rate ⁽¹⁾	(20% to 80%) × VDD, see Figure 2	0.25			V/ns
t _f	Fall slew rate ⁽¹⁾	(80% to 20%) × VDD, see Figure 2	0.25			V/ns
t _{W(H)}	Pulse duration LS_CLK high	50% to 50% reference points, see Figure 4	0.75			ns
t _{W(L)}	Pulse duration LS_CLK low	50% to 50% reference points, see Figure 4	0.75			ns
t _{su}	Setup time	LS_WDATA valid before LS_CLK \uparrow or LS_CLK $\downarrow,$ see Figure 4	1.5			ns
t _h	Hold time	LS_WDATA valid after LS_CLK \uparrow or LS_CLK $\downarrow,$ see Figure 4	1.5			ns
SubLVDS						
t _r	Rise slew rate	20% to 80% reference points, see Figure 3	0.7	1		V/ns
t _f	Fall slew rate	80% to 20% reference points, see Figure 3	0.7	1		V/ns
t _c	Cycle time DCLK	See Figure 4	1.61	1.67		ns
t _{W(H)}	Pulse duration DCLK high	50% to 50% reference points, see Figure 4	0.75			ns
t _{W(L)}	Pulse duration DCLK low	50% to 50% reference points, see Figure 4	0.75			ns
t _{WINDOW}	Window time	Setup time + Hold time, see Figure 4, Figure 5	0.3			ns
t _{LVDS-} ENABLE+REFGEN	Power-up receiver ⁽²⁾			20	000	ns

Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 2. (1)

Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding. (2)

VLS_CLK_P , VLS_CLK_N , VLS_WDATA_P , VLS_WDATA_N VDCLK_AP , VDCLK_BP , VDCLK_AN , VDCLK_BN VD_AP(7:0) , VD_BP(7:0) , VD_AN(7:0) , VD_BN(7:0)

Figure 3. SubLVDS Input Rise and Fall Slew Rate

Figure 4. SubLVDS Switching Parameters

TEXAS INSTRUMENTS

Figure 5. High-Speed Training Scan Window

Figure 6. SubLVDS Voltage Parameters

Figure 7. SubLVDS Waveform Parameters

Figure 9. LPSDR Input Hysteresis

DLP5531-Q1

JAJSFP1G-APRIL 2016-REVISED MAY 2019

TEXAS INSTRUMENTS

www.ti.com

6.8 Switching Characteristics⁽¹⁾

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t _{PD}	Output propagation, clock to Q, rising edge of LS_CLK (differential clock signal) input to LS_RDATA output. See Figure 10, Figure 11	C _L = 45 pF		15	ns
	Slew rate, LS_RDATA		0.5		V/ns
	Output duty cycle distortion, LS_RDATA_A and LS_RDATA_B		40%	60%	

(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

See Sub-LVDS Data Interface for more information.

Figure 11. Test Load Circuit for Output Propagation Measurement

6.9 System Mounting Interface Loads

PARAMETER	MIN	NOM	MAX	UNIT
Condition 1: Maximum load evenly distributed within each area ⁽¹⁾				
Thermal Interface Area			110.8	NI
Electrical Interface Area			111.3	IN
Condition 2: Maximum load evenly distributed within each area ⁽¹⁾				
Thermal Interface Area			0	NI
Electrical Interface Area			222.1	IN

(1) See Figure 12.

Later Contended Contenacia Contenacia Contenacia Contenacia Contenacia Contenacia Cont

Figure 12. System Interface Loads

6.10 Physical Characteristics of the Micromirror Array

	PARAMETER			UNIT
М	Number of active columns	See Figure 13	1152	micromirrors
Ν	Number of active rows	See Figure 13	1152	micromirrors
з	Micromirror (pixel) pitch - diagonal	See Figure 14	7.6	μm
Ρ	Micromirror (pixel) pitch - horizontal and vertical	See Figure 14	10.8	μm
	Micromirror active array width	P x M + P / 2; see Figure 13	12.447	mm
	Micromirror active array height	(P × N) / 2 + P / 2; see Figure 13	6.226	mm
	Micromirror active border	Pond of micromirrors (POM) ⁽¹⁾	10	micromirrors/side

(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

Copyright © 2016–2019, Texas Instruments Incorporated

Copyright © 2018, Texas Instruments Incorporated

Figure 13. Micromirror Array Physical Characteristics

Figure 14. Mirror (Pixel) Pitch

6.11 Micromirror Array Optical Characteristics

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
Micromirror tilt angle	DMD landed state ⁽¹⁾		12		degree
Micromirror tilt angle tolerance ⁽²⁾		-1		1	degree

(1) Measured relative to the plane formed by the overall micromirror array at 25°C.

(2) For some applications, it is critical to account for the micromirror tilt angle variation in the overall optical system design. With some optical system designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some optical system designs, the micromirror tilt angle variations, or system contrast variations.

6.12 Window Characteristics

	PARAMETER	MIN	NOM	MAX	UNIT		
Window material designation		Corning Eagle XG					
Window refractive index	at wavelength 546.1 nm		1.5119				
DMD efficiency ⁽¹⁾	420 nm - 700 nm		66%				
Window aperture ⁽²⁾				See (2)			

(1) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency numbers are measured with 100% electronic micromirror landed duty-cycle and do not include system optical efficiency or overfill loss. This number is measured under conditions described above and deviations from these specified conditions could result in a different efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the DMD efficiency factors that are not system dependent are described in detail in the DMD Optical Efficiency Application Note.

(2) See the mechanical package ICD for details regarding the size and location of the window aperture.

6.13 Chipset Component Usage Specification

The DLP5531-Q1 is a component of a chipset. Reliable function and operation of the DLP5531-Q1 requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices used for operating or controlling a DLP DMD.

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously

TEXAS INSTRUMENTS

<u>www.ti.</u>com

7 Detailed Description

7.1 Overview

The DLP5531-Q1 Automotive DMD consists of 1,327,104 highly reflective, digitally switchable, micrometer-sized mirrors organized in a two-dimensional array. As shown in Figure 15, the micromirror array consists of 1152 micromirror columns × 1152 micromirror rows in a diamond pixel configuration with a 2:1 aspect ratio.

Around the perimeter of the 1152 × 1152 array of micromirrors is a uniform band of border micromirrors called the Pond of Micromirrors (POM). The border micromirrors are not user-addressable. The border micromirrors land in the -12° position once power has been applied to the device. There are 10 border micromirrors on each side of the 1152 × 1152 active array.

Due to the diamond pixel configuration, the columns of each odd row are offset by half a pixel from the columns of the even row. Each mirror is switchable between two discrete angular positions: -12° and $+12^{\circ}$. The mirrors are illuminated from the bottom which allows for compact and efficient system optical design.

Although the native resolution of the DLP5531-Q1 is 1152 x 1152, when paired with the DLPC230-Q1 controller, the DLP5531-Q1 can be driven with different resolutions to utilize the 2:1 aspect ratio. For example, Headlight applications typically use a resolution of 1152 x 576. Please see the DLPC230-Q1 automotive DMD controller data sheet (DLPS054) for a list of supported resolutions.

Figure 15. 0.55-in 1.3-MP Micromirror Array

7.2 Functional Block Diagram

Copyright © 2018, Texas Instruments Incorporated

7.3 Feature Description

The DLP5531-Q1 consists of a two-dimensional array of 1-bit CMOS memory cells driven by a sub-LVDS bus from the DLPC230-Q1 and powered by the TPS99000-Q1. The temperature sensing diode is used to continuously monitor the DMD array temperature.

To ensure reliable operation in a high resolution headlight application the DLP5531-Q1 must be used with the DLPC230-Q1 DMD display controller and the TPS99000-Q1 system management and illumination controller.

7.3.1 Sub-LVDS Data Interface

The Sub-LVDS signaling protocol was designed to enable very fast DMD data refresh rates while simultaneously maintaining low power and low emission.

Data is loaded into the SRAM under each micromirror using the sub-LVDS interface from the DLPC230-Q1. This interface consists of 16 pairs of differential data signals plus two clock pairs into two separate buses A and B loading the left and right half of the SRAM array. The data is latched on both transitions creating a double data rate (DDR) interface. The sub-LVDS interface also implements a continuous training algorithm to optimize the data and clock timing to allow for a more robust interface.

The entire DMD array of 1.3 million pixels can be updated at a rate of less than 100 µs as a result of the high speed sub-LVDS interface.

7.3.2 Low Speed Interface for Control

The purpose of the low speed interface is to configure the DMD at power up and power down and to control the micromirror reset voltage levels that are synchronized with the data loading. The micromirror reset voltage controls the time when the mirrors are mechanically switched. The low speed differential interface includes 2 pairs of signals for write data and clock, and 2 single-ended signals for output (A and B).

7.3.3 DMD Voltage Supplies

The micromirrors require unique voltage levels to control the mechanical switching from -12° to $+12^{\circ}$. These voltage levels are nominally 16 V, 8.5 V, and -10 V (VBIAS, VOFFSET, and VRESET), and are generated by the TPS99000-Q1.

7.3.4 Asynchronous Reset

Reset of the DMD is required and controlled by the DLPC230-Q1 via the signal DMD_DEN_ARSTZ.

7.3.5 Temperature Sensing Diode

The DMD includes a temperature sensing diode designed to be used with the TMP411 temperature monitoring device. The DLPC230-Q1 monitors the DMD array temperature via the TMP411 and temperature sense diode. The DLPC230-Q1 operation of the DMD timing is based in part on the DMD array temperature, therefore this connection is essential to ensure reliable operation of the DMD.

Figure 16 shows the typical connection between the DLPC230-Q1, TMP411, and the DMD.

Feature Description (continued)

Figure 16. Temperature Sense Diode Typical Circuit Configuration

7.3.5.1 Temperature Sense Diode Theory

A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor. The diode is formed by connecting the transistor base to the collector. Three different known currents flow through the diode and the resulting diode voltage is measured in each case. The difference in their base–emitter voltages is proportional to the absolute temperature of the transistor.

Refer to the TMP411-Q1 data sheet for detailed information about temperature diode theory and measurement. Figure 17 and Figure 18 illustrate the relationships between the current and voltage through the diode.

Figure 17. Temperature Measurement Theory

Feature Description (continued)

Figure 18. Example of Delta VBE Versus Temperature

7.4 System Optical Considerations

Optimizing system optical performance and image performance strongly relates to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

7.4.1 Numerical Aperture and Stray Light Control

The numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This cone angle defined by the numerical aperture should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The mirror tilt angle defines the DMD's capability to separate the "On" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces.

7.4.2 Pupil Match

TI's optical and image performance specifications assume that the exit pupil of the illumination optics is nominally centered and located at the entrance pupil position of the projection optics. Misalignment of pupils between the illumination and projection optics can degrade screen image uniformity and cause objectionable artifacts in the display's border and/or active area. These artifacts may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.4.3 Illumination Overfill

Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and other surfaces that surround the active array. These artifacts may be visible in the projected image. The illumination optical system should be designed to minimize light flux incident outside the active array and on the window aperture. Depending on the particular system's optical architecture and assembly tolerances, this amount of overfill light on the area outside of the active array may still cause artifacts to be visible.

Illumination light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light impinges directly on the DMD window aperture or near the edge of the DMD window. Heat load on the aperture in the areas shown in Figure 1 should not exceed the values listed in Window Characteristics. This area is a 0.5-mm wide area the length of the aperture opening. The values listed in Window Characteristics assume a uniform distribution. For a non-uniform distribution please contact TI for additional information.

System Optical Considerations (continued)

NOTE

TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING LIMITS DESCRIBED PREVIOUSLY.

(1)

(2)

(3)

NSTRUMENTS

FXAS

7.5 DMD Image Performance Specification

Table 1. DMD Image Performance⁽¹⁾⁽²⁾

PARAMETER	MIN	NOM	MAX	UNIT
Dark Blemishes - Viewed on a linear blue 60 screen. ⁽³⁾			4	
Light Blemishes - Viewed on a linear gray 10 screen.			4	
Bright Pixels - Viewed on a linear gray 10 screen.			0	micromirrors
Dark Pixels - Viewed on a white screen.			4	micromirrors

(1) See the System Optical Considerations section.

(2) Blemish counts do not include reflections or shadows of the same artifact. Any artifact that is not specifically called out in this table is acceptable. Viewing distance must be > 60 in. Screen size should be similar to application image size. All values referenced are in linear gamma. Non-linear gamma curves may be running by default, and it should be ensured with a TI applications engineer that the equivalent linear gamma value as specified is used to judge artifacts.

(3) Linear gray 5 may be substituted in monochrome applications.

7.6 Micromirror Array Temperature Calculation

Figure 19. DMD Thermal Test Points

7.6.1 Temperature Rise Through the Package for Heatsink Design

When designing the DMD heatsink solution, the package thermal resistance from array to reference ceramic temperature (thermocouple location TP1 in Figure 19) can be used to determine the temperature rise through the package as given by the following equations:

 $T_{ARRAY-TO-CERAMIC} = Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC}$

 $Q_{ILLUMINATION} = (Q_{INCIDENT} \times DMD Absorption Constant)$

 $Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$

where

- T_{ARRAY-TO-CERAMIC} = temperature rise from array to thermal test point TP1 (°C/W)
- T_{CERAMIC} = measured ceramic temperature, at the TP1 location in Figure 19 (°C)
- R_{ARRAY-TO-CERAMIC} = DMD package thermal resistance from array to thermal test point TP1 (°C/W) See *Thermal Information*
- Q_{ARRAY} = total power, electrical plus absorbed, on the DMD array (W)
- Q_{ELECTRICAL} = nominal electrical power dissipation by the DMD (W)
- Q_{ILLUMINATION} = absorbed illumination heat load (W)
- Q_{INCIDENT} = incident power on the DMD (W)

The DMD package thermal resistance from array to ceramic (R_{ARRAY-TO-CERAMIC}) assumes a non-uniform illumination distribution on the DMD as shown in Figure 20. For illumination profiles more uniform than the one highlighted in Figure 20, the value provided here is valid. However, for more non-uniform profiles (e.g. Gaussian distribution) the thermal resistance will be higher. Please contact TI to determine an accurate value for this case.

Micromirror Array Temperature Calculation (continued)

Figure 20. Non-Uniform Illumination Profile

The DMD absorption constant is a function of illumination distribution on the active array and the array border, angle of incidence (AOI), f number of the system, and operating state of the mirrors. The absorption constant is higher in the OFF state than in the ON state. Equations to calculate the absorption constant are provided for both ON and OFF mirror states. They assume an AOI of 34 degrees, an f/1.7 system, and they account for the distribution of light on the active array, POM, and array border.

DMD Absorption Constant (OFF state) = $0.895 - 0.004783 \times (\% \text{ of light on ActiveArray + POM})$ (4)

DMD Absorption Constant (ON state) = 0.895 – 0.007208 × (% of light on ActiveArray + POM) (5)

Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies.

Micromirror Array Temperature Calculation (continued)

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

- 1. DMD Absorption Constant = 0.895 0.004783 × 90 = 0.46
- 2. $Q_{ELECTRICAL} = 0.4 \text{ W}$
- 3. $R_{ARRAY-TO-CERAMIC} = 1.3^{\circ}C/W$
- 4. Q_{INCIDENT} = 10 W
- 5. $Q_{ARRAY} = 0.4 \text{ W} + (0.46 \times 10 \text{ W}) = 5 \text{ W}$
- 6. $T_{ARRAY-TO-CERAMIC} = 5 \text{ W} \times 1.3^{\circ}\text{C/W} = 6.5^{\circ}\text{C}$

7.6.2 Monitoring Array Temperature Using the Temperature Sense Diode

The active array temperature can be computed analytically from the temperature sense diode measurement, the thermal resistance from array to diode, the electrical power, and the illumination heat load. The relationship between array temperature and the temperature sense diode is provided by the following equations:

 $T_{ARRAY} = T_{DIODE} + Q_{ARRAY} \times R_{ARRAY-TO-DIODE}$

 $Q_{ILLUMINATION} = (Q_{INCIDENT} \times DMD Absorption Constant)$

 $Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$

where

- T_{ARRAY} = computed array temperature (°C)
- T_{DIODE} = measured temperature sense diode temperature (°C)
- R_{ARRAY-TO-DIODE} = package thermal resistance from array to diode (°C/W)
- Q_{ARRAY} = total power, electrical plus absorbed, on the DMD array (W) Refer to *Temperature Rise Through the Package for Heatsink Design* for details
- Q_{ELECTRICAL} = nominal electrical power dissipation by the DMD (W)
- Q_{ILLUMINATION} = absorbed illumination heat load (W)
- Q_{INCIDENT} = incident power on the DMD (W)

The temperature sense diode to array thermal resistance ($R_{ARRAY-TO-DIODE}$) assumes a non-uniform illumination distribution on the DMD as shown in Figure 20. For illumination profiles more uniform than the one highlighted in Figure 20, the value provided here is valid. However, for more non-uniform profiles (e.g. Gaussian distribution), the thermal resistance will be higher. Please contact TI to determine an accurate value for this case.

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

- 1. DMD Absorption Constant = $0.895 0.004783 \times 90 = 0.46$
- 2. $Q_{ELECTRICAL} = 0.4 \text{ W}$
- 3. $R_{ARRAY-TO-DIODE} = 0.8^{\circ}C/W$
- 4. $Q_{INCIDENT} = 10 W$
- 5. $T_{DIODE} = 50^{\circ}C$

30

- 6. $Q_{ARRAY} = 0.4 \text{ W} + (0.46 \times 10 \text{ W}) = 5 \text{ W}$
- 7. $T_{ARRAY} = 50^{\circ}C + (5 \text{ W} \times 0.8^{\circ}C/\text{W}) = 54.0^{\circ}C$

(8)

(6)

(7)

7.7 Micromirror Landed-On/Landed-Off Duty Cycle

7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

As an example, a landed duty cycle of 90/10 indicates that the referenced pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DLP5531-Q1 chipset is designed to support projection-based automotive applications such as headlight systems.

8.2 Typical Application

The chipset consists of three components—the DLP5531-Q1 automotive DMD, the DLPC230-Q1, and the TPS99000-Q1. The DMD is a light modulator consisting of tiny mirrors that are used to form and project images. The DLPC230-Q1 is a controller for the DMD; it formats incoming video and controls the timing of the DMD illumination sources and the DMD in order to display the incoming video. The TPS99000-Q1 is a high performance voltage regulator for the DMD and a management IC for the entire chipset. In conjunction, the DLPC230-Q1 and the TPS99000-Q1 can be used for system-level monitoring, diagnostics, and failure detection features. Figure 21 is a system level block diagram with these devices in the DLP headlight module configuration and displays the primary features and functions of each device.

Figure 21. Headlight System Block Diagram

Typical Application (continued)

8.2.1 Application Overview

Figure 21 shows the system block diagram for a DLP headlight module. The system uses the DLPC230-Q1, TPS99000-Q1, and the DLP5531-Q1 automotive DMD to enable a headlight projection system with unprecedented resolution and grayscale light control. The combination of the DLPC230-Q1 and TPS99000-Q1 removes the need for external SDRAM and a dedicated microprocessor. The chipset manages the illumination control of LED sources, power sequencing functions, and system management functions. Additionally, the chipset supports numerous system diagnostic and built-in self test (BIST) features. The following paragraphs describe the functionality of the chipset used for a headlight projection system in more detail.

The DLPC230-Q1 is a controller for the DMD and the light sources in the DLP headlight module. It receives input video from the host and synchronizes DMD and light source timing in order to achieve the desired video. The DLPC230-Q1 formats input video data that is displayed on the DMD. It synchronizes these video segments with light source timing in order to create a video with grayscale shading.

The DLPC230-Q1 receives inputs from a host processor in the vehicle. The host provides commands and input video data. Host commands can be sent using either the I²C bus or SPI bus. The bus that is not being used for host commands can be used as a read-only bus for diagnostic purposes. Input video can be sent over an OpenLDI bus or a parallel 24-bit bus. The 24-bit bus can be limited to only 8-bits of data for single light source systems such as headlights. The SPI flash memory provides the embedded software for the DLPC230-Q1's ARM core, any calibration data, and default settings. The TPS99000-Q1 provides diagnostic and monitoring information to the DLPC230-Q1 using an SPI bus and several other control signals such as PARKZ, INTZ, and RESETZ to manage power-up and power-down sequencing. The TMP411 uses an I²C interface to provide the DMD array temperature to the DLPC230-Q1.

The outputs of the DLPC230-Q1 are configuration and monitoring commands to the TPS99000-Q1, timing controls to the LED or laser driver, control and data signals to the DMD, and monitoring and diagnostics information to the host processor. The DLPC230-Q1 communicates with the TPS99000-Q1 over an SPI bus. It uses this to configure the TPS99000-Q1 and to read monitoring and diagnostics information from the TPS99000-Q1. The DLPC230-Q1 sends drive enable signals to the LED or laser driver, and synchronizes this with the DMD mirror timing. The control signals to the DMD are sent using a sub-LVDS interface.

The TPS99000-Q1 is a highly integrated mixed-signal IC that controls DMD power, the timing and amplitude of the LEDs or lasers, and provides monitoring and diagnostics information for the DLP headlight module. The power sequencing and monitoring blocks of the TPS99000-Q1 properly power up the DMD and provide accurate DMD voltage rails (-16 V, 8.5 V, and 10 V), and then monitor the system's power rails during operation. The integration of these functions into one IC significantly reduces design time and complexity. The TPS99000-Q1 also has several output signals that can be used to control a variety of LED or laser driver topologies. The TPS99000-Q1 has several general-purpose ADCs that designers can use for system level monitoring, such as over-brightness detection.

The TPS99000-Q1 receives inputs from the DLPC230-Q1, the power rails it monitors, the host processor, and potentially several other ADC ports. The DLPC230-Q1 sends configuration and control commands to the TPS99000-Q1 over an SPI bus and several other control signals. The DLPC230-Q1's clocks are also monitored by the watchdogs in the TPS99000-Q1 to detect any errors. The power rails are monitored by the TPS99000-Q1 in order to detect power failures or glitches and request a proper power down of the DMD in case of an error. The host processor can read diagnostics information from the TPS99000-Q1 using a dedicated SPI bus, which enables independent monitoring. Additionally the host can request the image to be turned on or off using a PROJ_ON signal. Lastly, the TPS99000-Q1 has several general-purpose ADCs that can be used to implement system level monitoring functions.

Typical Application (continued)

The outputs of the TPS99000-Q1 are diagnostic information and error alerts to the DLPC230-Q1, and control signals to the LED or laser driver. The TPS99000-Q1 can output diagnostic information to the host and the DLPC230-Q1 over two SPI buses. In case of critical system errors, such as power loss, it outputs signals to the DLPC230-Q1 that trigger power down or reset sequences. It also has output signals that can be used to implement various LED or laser driver topologies.

The DMD is a micro-electro-mechanical system (MEMS) device that receives electrical signals as an input (video data), and produces a mechanical output (mirror position). The electrical interface to the DMD is a sub-LVDS interface with the DLPC230-Q1. The mechanical output is the state of more than 1.3 million mirrors in the DMD array that can be tilted $\pm 12^{\circ}$. In a projection system the mirrors are used as pixels in order to display an image.

8.2.2 Reference Design

For information about connecting together the DLP5531-Q1 DMD, DLPC230-Q1 controller, and TPS99000-Q1, please contact the TI Application Team for additional information about the DLP5531-Q1 evaluation module (EVM). TI has optical-mechanical reference designs available, see the TI Application team for more information.

8.2.3 Application Mission Profile Consideration

Each application is anticipated to have different mission profiles, or number of operating hours at different temperatures. To assist in evaluation the Application Report *Reliability Lifetime Estimates for DLP3030-Q1 and DLP553x-Q1 DMDs in Automotive Applications* may be provided. See the TI Application team for more information.

9 Power Supply Recommendations

The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.

CAUTION

For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability.

VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power-up and power-down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD's reliability and lifetime. VSS must also be connected.

9.1 Power Supply Power-Up Procedure

- During power-up, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and VRESET voltages are applied to the DMD.
- During power-up, it is a strict requirement that the delta between VBIAS and VOFFSET must be within the specified limit shown in the *Recommended Operating Conditions*.
- During power-up, the DMD's LPSDR input pins shall not be driven high until after VDD and VDDI have settled at operating voltage.
- During power-up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS. Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements listed previously and in Figure 22.

9.2 Power Supply Power-Down Procedure

- The power-down sequence is the reverse order of the previous power-up sequence. VDD and VDDI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.
- During power-down, it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that the delta between VBIAS and VOFFSET must be within the specified limit shown in the *Recommended Operating Conditions* (Refer to Note 2 in Figure 22).
- During power-down, the DMD's LPSDR input pins must be less than VDDI, the specified limit shown in the *Recommended Operating Conditions*.
- During power-down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements listed previously and in Figure 22.

9.3 Power Supply Sequencing Requirements

- (1) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified in the Recommended Operating Conditions. OEMs may find that the most reliable way to ensure this is to power VOFFSET prior to VBIAS during power-up and to remove VBIAS prior to VOFFSET during power-down. Also, TPS99000-Q1 is capable of managing the timing between VBIAS and VOFFSET.
- (2) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified than the limit shown in the *Recommended Operating Conditions*.
- (3) When system power is interrupted, the TPS9000 initiates hardware power-down that disables VBIAS, VRESET and VOFFSET after the Micromirror Park Sequence.
- (4) Drawing is not to scale and details are omitted for clarity.

Figure 22. Power Supply Sequencing Requirements (Power Up and Power Down)

www.tij.co.jp

10 Layout

10.1 Layout Guidelines

Please refer to the DLPC230-Q1 and TPS99000-Q1 data sheets for specific PCB layout and routing guidelines. For specific DMD PCB guidelines, use the following:

- Match lengths for the LS_WDATA and LS_CLK signals.
- Minimize vias, layer changes, and turns for the HS bus signals.
- Minimum of two 220-nF decoupling capacitors close to VBIAS.
- Minimum of two 220-nF decoupling capacitors close to VRESET.
- Minimum of two 220-nF decoupling capacitors close to VOFFSET.
- Minimum of four 100-nF decoupling capacitors close to VDDI and VDD.
- Temperature diode pins

The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411 temperature sensing IC. PCB traces from the DMD's temperature diode pins to the TMP411 are sensitive to noise. Please see the TMP411 data sheet for specific routing recommendations.

TEXAS INSTRUMENTS

www.tij.co.jp

11 デバイスおよびドキュメントのサポート

- 11.1 デバイス・サポート
- 11.1.1 デバイスの項目表記

11.1.2 デバイスのマーキング

デバイスのマーキングには、人間が読める文字列として「GHJJJJK DLP5531AFYKQ1」が記載されています。GHJJJJK はロットのトレース・コードです。DLP5531AFYKQ1は型番です。

11.2 関連リンク

次の表に、クイック・アクセス・リンクを示します。カテゴリには、技術資料、サポートおよびコミュニティ・リソース、ツールとソフトウェア、およびサンプル注文またはご購入へのクイック・アクセスが含まれます。

表	2.	関連	IJ	ン	ク
---	----	----	----	---	---

製品	プロダクト・フォルダ	サンプルとご購入	技術資料	ツールとソフトウェア	サポートとコミュニティ
DLP5531-Q1	リンク	リンク	リンク	リンク	リンク
DLPC230-Q1	リンク	リンク	リンク	リンク	リンク
TPS99000-Q1	リンク	リンク	リンク	リンク	リンク

www.tij.co.jp

11.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 商標

E2E is a trademark of Texas Instruments. DLP is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.6 DMD の取り扱い

DMD は光学デバイスであるため、ガラス窓の損傷を避けるために十分注意する必要があります。DMD の正しい取り扱い 方法の説明は、『DLPA019 DMD Handling』アプリケーション・ノート (英語)を参照してください。

11.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスに ついて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もありま す。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

DLP5531-Q1

JAJSFP1G - APRIL 2016 - REVISED MAY 2019

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
DLP5531AFYKQ1	Active	Production	CPGA (FYK) 149	33 JEDEC	Yes	Call TI	N/A for Pkg Type	-40 to 105	
				TRAY (5+1)					
DLP5531AFYKQ1.A	Active	Production	CPGA (FYK) 149	33 JEDEC	Yes	Call TI	N/A for Pkg Type	-40 to 105	
				TRAY (5+1)					
DLP5531AFYKQ1.B	Active	Production	CPGA (FYK) 149	33 JEDEC	Yes	Call TI	N/A for Pkg Type	-40 to 105	
			, , , ,	TRAY (5+1)			0 //		

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

			DWG NO.	2514853	^{sн} 1			1	
				REVISIO	NS				
) .	REV	'		DESCRIPT		DATE	BY		
	A	ECC	2155049	INITIAL RELEASE				12/7/2015	BMH
	В	ECC	2165903	ING, SH. 4	4/25/2017	BMH			
	С	ECC	2170159	11/9/2017	BMH				

drawn B. HASKETT	DATE 12/7/2015								
engineer B. HASKETT	12/7/2015								
^{QA/CE} P. KONRAD	12/8/2015		ICD, MECHANICAL, DMD						
^{см} S. SUSI	12/8/2015		.00 2	(F	FYK PACKAGE)				
M. DORAK	12/8/2015	SIZE D		DWG	S NO 2514853 C				
APPROVED B. RAY	12/8/2015	SCALE	4:1		SHEET 1 OF 4				
	2				1				

С

D

В

А

DWG NO. 2514853 SH 2 1	
- (02) - B	D
ECTION C-C DATUM B SCALE 16 : 1	С
0.5 MIN (1.5) + C 1.84 ± 0.13 + C 1.84 ± 0.13 + C SECTION D-D	В
DATUM D-D DATUM C (VIEW ROTATED FOR CLARITY) SCALE 16 : 1 D DWG NO 2514853	A
S SCALE SHEET 2 OF 2 1	4

	8	7	6	5 🛨	4	3	DWG NO. 2514853 SH 3	1	
D		(2.1) — (Ø2) B	39 7.776±0.076 5 ⁴ X (0.108) —	(12.447) ACTIVE ARRAY					D
СВ		(5.15) (5.15) (5.15) (5.15) (5.15) (5.15) (5.15) (6.2262) ACTIVE ARRAY					(8.033) WINDOW APERTURE 7.925±0.05 (10) WINDOW 7.925±0.05		C
			0.356±0.0885	► 12.802±0.0885 (13.158) WINDOW APERTURE 15.1314±0.05					
A				(17.8158) WINDOW VIEW E ACTIVE ARRAY AND WINDON SCALE 12 : 1			DRAWN DATE SIZE DWG NO		A
IN	^{V2013-DLPa} 8	7	6	5	4	I EXAS INSTRUMENTS Dates Texas	B. HASKETT 12/7/2015 D SCALE 2	2014853 C SHEET 3 OF 4	

		DWG NO.	251485	53 ^s	^{SH} 4				1		
ЛІТТ	ED)	E									D
7 =	19.05										С
•											В
	DRAWN		DATE	SIZE		DWG NO		514052		REV	А
ន	B. HAS	SKETT	12/7/2015 ว	D SCALE			2	2514853 She	ет 4 с 1	C F 4	
	1		Z						I		

DWG NO.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated