

Sample &

Buy

SN74LVC245A

SCAS218X – JANUARY 1993 – REVISED JANUARY 2015

SN74LVC245A Octal Bus Transceiver With 3-State Outputs

1 Features

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 6.3 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25° C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25° C
- I_{off} Supports Live Insertion, Partial-Power-Down Mode and Back Drive protection
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Latch-Up Performance Exceeds 250 mA
 Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model
 - 1000-V Charged-Device Model

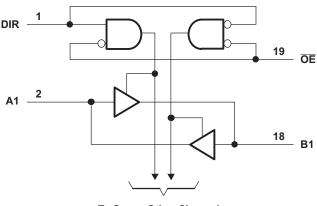
2 Applications

Tools &

Software

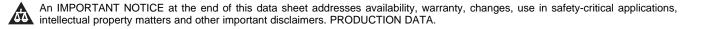
- Cable Modem Termination Systems
- Servers
- LED Displays
- Network Switches
- Telecom Infrastructure
- Motor Drivers
- I/O Expanders

3 Description


These octal bus transceivers are designed for 1.65-V to 3.6-V V_{CC} operation. The 'LVC245A devices are designed for asynchronous communication between data buses.

(1)

Device Information ⁽¹⁾								
PART NUMBER	PACKAGE (PIN)	BODY SIZE						
	VQFN (20)	4.50 mm × 3.50 mm						
	SSOP (20)	7.50 mm × 5.30 mm						
SN74LVC245A	TSSOP (20)	6.50 mm × 4.40 mm						
	TVSOP (20)	5.00 mm × 4.40 mm						
	SOIC (20)	12.80 mm × 7.50 mm						


(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

To Seven Other Channels

Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages.

2

Table of Content

14

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription1
4	Sim	plified Schematic1
5	Rev	ision History2
6	Pin	Configuration and Functions
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Switching Characteristics 6
	7.7	Operating Characteristics7
	7.8	Typical Characteristics 7
8	Para	ameter Measurement Information 8
9	Deta	ailed Description

5 Revision History

Changes from Revision W (May 2013) to Revision X

Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. 1

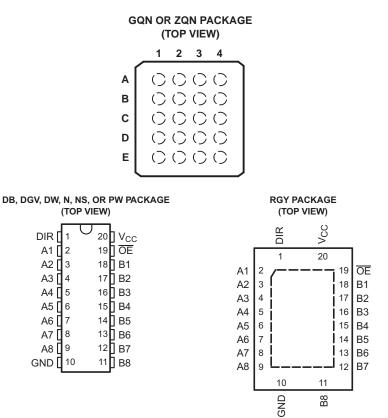
•	Deleted Ordering Information table.		1
CI	hanges from Revision V (September 2010) to Revision W	Pag	е

٠	dded -40°C to 125°C temperature specification to Recommended Operating Conditions table	
---	---	--

Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table,

		Texas Instruments
		www.ti.com
ter	nts	
	9.1	Overview
	9.2	Functional Block Diagram9
	9.3	Feature Description9
	9.4	Device Functional Modes9
10	Арр	lication and Implementation10
	10.1	Application Information 10
	10.2	Typical Application 10
11		ver Supply Recommendations 11
12	Lay	out 11
	12.1	Layout Guidelines 11
	12.2	Layout Example 11
13	Dev	ice and Documentation Support 12

13.1 Trademarks 12 13.2 Electrostatic Discharge Caution 12 13.3 Glossary 12


Information 12

Page

Mechanical, Packaging, and Orderable

6 Pin Configuration and Functions

Pin Functions	
---------------	--

PIN				
NAME	DB, DGV, DW, NS, PW, and RGY	GQN or ZQN	TYPE	DESCRIPTION
A1	2	A1	I/O	Transceiver I/O pin
A2	3	B3	I/O	Transceiver I/O pin
A3	4	B1	I/O	Transceiver I/O pin
A4	5	C2	I/O	Transceiver I/O pin
A5	6	C1	I/O	Transceiver I/O pin
A6	7	D3	I/O	Transceiver I/O pin
A7	8	D1	I/O	Transceiver I/O pin
A8	9	E2	I/O	Transceiver I/O pin
B1	18	B4	I/O	Transceiver I/O pin
B2	17	B2	I/O	Transceiver I/O pin
B3	16	C4	I/O	Transceiver I/O pin
B4	15	C3	I/O	Transceiver I/O pin
B5	14	D4	I/O	Transceiver I/O pin
B6	13	D2	I/O	Transceiver I/O pin
B7	12	E4	I/O	Transceiver I/O pin
B8	11	E3	I/O	Transceiver I/O pin
DIR	1	A2	I	Direction control. When high, the signal propagates from A to B. When low, the signal propagates from B to A.
ŌĒ	19	A4	Ι	Output enable
GND	10	E1		Ground
V _{CC}	20	A3	_	Power pin

Copyright © 1993–2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V_{CC}	Supply voltage range	Supply voltage range				
VI	Input voltage range ⁽²⁾	-0.5	6.5	V		
Vo	Voltage range applied to any output in the high-impedance or	-0.5	6.5	V		
Vo	Voltage range applied to any output in the high or low state ⁽²⁾⁽	(3)	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current VI	< 0		-50	mA	
I _{OK}	Output clamp current V _O	₀ < 0		-50	mA	
I _O	Continuous output current			±50	mA	
	Continuous current through V_{CC} or GND		±100	mA		
T _{stg}	Sto	orage temperature range	-65	150	°C	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	
V	(ESD) discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			T _A =	25°C	–40°C TO	85°C	–40°C TO	LINUT	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V	Supply voltogo	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V
V _{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		v
		V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		0.65 × V _{CC}		
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V
	vonago	V_{CC} = 2.7 V to 3.6 V	2		2		2		
VIL	Low-level input voltage	$V_{\rm CC}$ = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		0.35 × V _{CC}		0.35 × V _{CC}	
		V_{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V
		V_{CC} = 2.7 V to 3.6 V		0.8		0.8		0.8	
VI	Input voltage		0	5.5	0	5.5	0	5.5	V
Vo	Output voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V
		V _{CC} = 1.65 V		-4		-4		-4	
	High-level output	$V_{CC} = 2.3 V$		-8		-8		-8	mA
I _{OH}	current	$V_{CC} = 2.7 V$		-12		-12		-12	ША
		$V_{CC} = 3 V$		-24		-24		-24	
		V _{CC} = 1.65 V		4		4		4	
	Low-level output	$V_{CC} = 2.3 V$		8		8		8	mA
I _{OL}	current	$V_{CC} = 2.7 V$		12		12		12	ШA
		$V_{CC} = 3 V$		24		24		24	
Δt/Δv	Input transition rise	or fall rate		10		10		10	ns/V

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

					SN74L	/C245A				
	THERMAL METRIC ⁽¹⁾	DB ⁽²⁾	DGV ⁽²⁾	DW ⁽²⁾	GQN or ZQN ⁽²⁾	N ⁽²⁾	NS ⁽²⁾	PW ⁽²⁾	RGY ⁽³⁾	UNI T
					20 F	PINS				
$R_{ extsf{ heta}JA}$	Junction-to-ambient thermal resistance	106.5	124.1	92.9	78	59.2	83.6	108.1	44.0	
R _{θJC(t}	Junction-to-case(top) thermal resistance	68.1	39.5	60.6		44.9	49.4	43.0	53.0	
$R_{\theta J B}$	Junction-to-board thermal resistance	61.7	65.5	60.4		40.1	51.2	59.1	22.1	°C/
ΨJT	Junction-to-top characterization parameter	28.5	2.1	28.2		29.9	21.9	4.7	3.0	W
ψ_{JB}	Junction-to-board characterization parameter	61.2	64.9	60.0		39.9	50.8	58.6	22.2	
R _{θJC(b}	Junction-to-case(bottom) thermal resistance	—	—	—		_	—	_	16.6	

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

(2) (3) The package thermal impedance is calculated in accordance with JESD 51-7.

The package thermal impedance is calculated in accordance with JESD 51-5.

SN74LVC245A

SCAS218X - JANUARY 1993 - REVISED JANUARY 2015

www.ti.com

STRUMENTS

EXAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V	T _A =	= 25°C		–40°C TO	85°C	–40°C TO 1	25°C	
				V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		I _{OH} = −100 μA		1.65 V to 3.6 V	V _{CC} - 0.2			V _{CC} – 0.2		V _{CC} – 0.2		
		$I_{OH} = -4 \text{ mA}$		1.65 V	1.29			1.2		1.1		
V _{ОН}		I _{OH} = -8 mA		2.3 V	1.9			1.7		1.6		V
		10 m		2.7 V	2.2			2.2		2.1		
		I _{OH} = -12 mA		3 V	2.4			2.4		2.3		
		I _{OH} = -24 mA		3 V	2.3			2.2		2.1		
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.1		0.2		0.2	V
V _{OL}		$I_{OL} = 4 \text{ mA}$		1.65 V			0.24		0.45		0.60	
• OL		I _{OL} = 8 mA		2.3 V			0.3		0.7		0.75	
		I _{OL} = 12 mA	2.7 V			0.4		0.4		0.6		
		I _{OL} = 24 mA	3 V			0.55		0.55		0.75		
I _I	Control inputs	$V_{I} = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±1		±5		±10	μA
I _{off}		$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±1		±10		±20	μA
$I_{OZ}^{(1)}$		$V_0 = 0$ to 5.5 V		3.6 V			±1		±10		±20	μA
		$V_I = V_{CC}$ or GND	1 = 0	3.6 V			1		10		30	
I _{CC}		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(2)}$	$I_{O} = 0$	3.0 V			1	10		30		μA
ΔI _{CC}		One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND		2.7 V to 3.6 V			500		500		5000	μA
Ci	Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V		4						pF
C _{io}	A or B ports ⁽³⁾	$V_{I} = V_{CC}$ or GND		3.3 V		5.5						pF

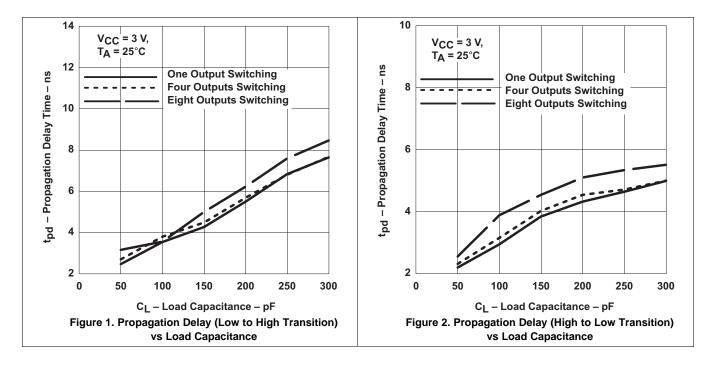
All typical values are at V_{CC} = 3.3 V, T_A = 25 C. (1)

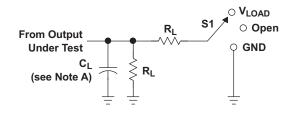
(2) (3) This applies in the disabled state only. For I/O ports, the parameter I_{oz} includes the input leakage current.

7.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

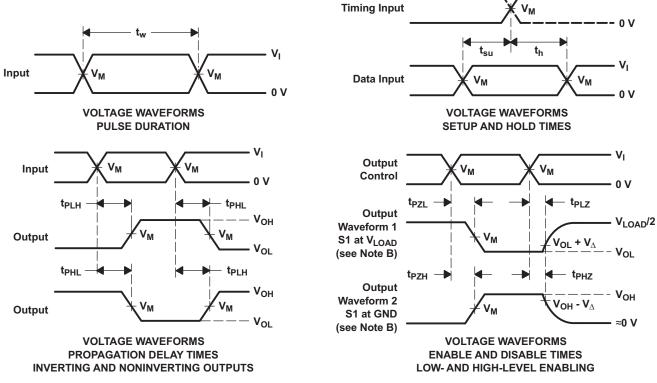
PARAMETER	FROM	TO	V _{cc}	T _A = 25°C			–40°C TO 85°C		–40°C TO 125°C		UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	t _{pd} A or B		1.8 V ± 0.15 V	1	6	12.2	1	12.7	1	13.7	
		B or A	2.5 V ± 0.2 V	1	3.9	7.8	1	8.3	1	9.1	~~
чрd		BOIA	2.7 V	1	4.2	7.1	1	7.3	1	8.3	ns
			3.3 V ± 0.3 V	1.5	3.8	6.1	1.5	6.3	1.5	7.3	
	t _{en} OE	A or B	1.8 V ± 0.15 V	1	7	14.8	1	15.3	1	16.8	ns
			2.5 V ± 0.2 V	1	4.5	10	1	10.5	1	12	
t _{en}	0E		2.7 V	1	5.4	9.3	1	9.5	1	11	
			3.3 V ± 0.3 V	1.5	4.4	8.3	1.5	8.5	1.5	10	
			1.8 V ± 0.15 V	1	7.8	16.5	1	17	1	18	
4	OE	A	2.5 V ± 0.2 V	1	4	9	1	9.5	1	10.5	
t _{dis}	UE	OE A or B 2.7 V 1 4.4 8.3	1	8.5	1	9.5	ns				
			3.3 V ± 0.3 V	1.7	4.1	7.3	1.7	7.5	1.7	8.5	
t _{sk(o)}			3.3 V ± 0.3 V					1		1.5	ns


6

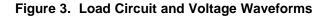

7.7 Operating Characteristics

$T_{A} = 25$	5°C					
	PARAMETER	TEST CONDITIONS	v_{cc}	ТҮР	UNIT	
			1.8 V	42		
		Outputs enabled		2.5 V	43	
<u> </u>	Dower dissinction conscitance per transceiver		f 10 MU-	3.3 V	45	~ [
C _{pd}	Power dissipation capacitance per transceiver		f = 10 MHz	1.8 V	1	pF
		Outputs disabled		2.5 V	1	
				3.3 V	2	

7.8 Typical Characteristics


8 Parameter Measurement Information

LOAD CIRCUIT


TEST	S1
t _{PLH} /t _{PHL} t _{PLZ} /t _{PZL}	Open V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INPUTS		N		•	-	N
V _{cc}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	\mathbf{V}_{Δ}
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V ± 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

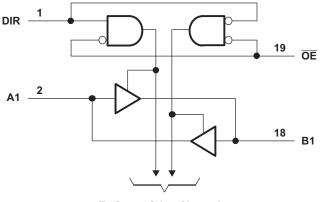
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{od} .
- H. All parameters and waveforms are not applicable to all devices.

V.

SN74LVC245A SCAS218X – JANUARY 1993 – REVISED JANUARY 2015

9 Detailed Description

9.1 Overview


This octal bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC245A device is designed for asynchronous communication between data buses. This device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses effectively are isolated.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

9.2 Functional Block Diagram

To Seven Other Channels

Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages.

9.3 Feature Description

- Allows down voltage translation
 - 5 V to 3.3 V
 - 5 V or 3.3 V to 1.8 V
- Inputs accept voltage levels up to 5.5 V

9.4 Device Functional Modes

 Table 1. Function Table

INPU	JTS	OPERATION				
OE	DIR	OPERATION				
L	L	B data to A bus				
L	Н	A data to B bus				
Н	Х	Isolation				

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

SN74LVC245A is a high drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern. The inputs can accept voltages to 5.5 V at any valid V_{CC} making it ideal for down translation.

10.2 Typical Application

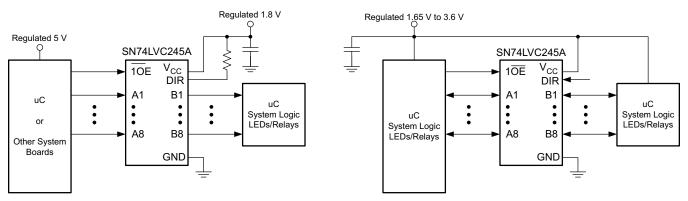
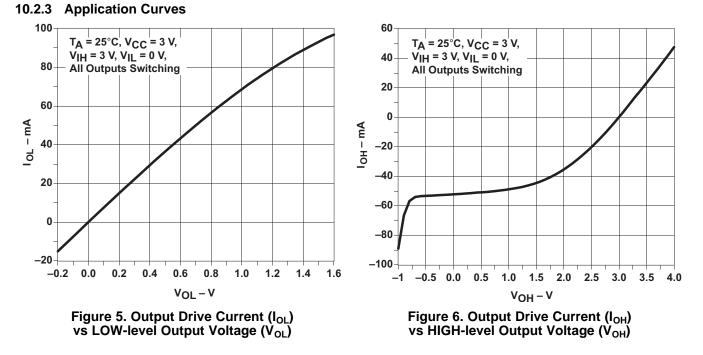


Figure 4. Typical Application Schematic

10.2.1 Design Requirements


This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For rise time and fall time specifications, see ($\Delta t/\Delta V$) in the *Recommended Operating Conditions* table.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in the *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V₁ max) in the *Recommended Operating Conditions* table at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the *Absolute Maximum Ratings* table.
 - Outputs should not be pulled above V_{CC} .

Typical Application (continued)

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F capacitor is recommended. If there are multiple V_{CC} terminals then 0.01 μ F or 0.022 μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient.

12.2 Layout Example

Figure 7. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

www.ti.com

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74LVC245ADBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADBR.B	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADBRE4	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADBRG4	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADGVR	Active	Production	TVSOP (DGV) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADGVR.B	Active	Production	TVSOP (DGV) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADGVRG4	Active	Production	TVSOP (DGV) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADGVRG4.B	Active	Production	TVSOP (DGV) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ADW	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ADW.B	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ADWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ADWR.B	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ADWRG4	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245AN	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74LVC245AN
SN74LVC245AN.B	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74LVC245AN
SN74LVC245ANE4	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74LVC245AN
SN74LVC245ANS.B	Active	Production	SOP (NS) 20	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ANSR	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ANSR.B	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ANSRG4	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245ANSRG4.B	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A
SN74LVC245APW	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APW.B	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWE4	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWG4	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWR.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWRE4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWRG3	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LC245A

17-Jun-2025

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LVC245APWRG3.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWRG4	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWRG4.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWT	Active	Production	TSSOP (PW) 20	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245APWT.B	Active	Production	TSSOP (PW) 20	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A
SN74LVC245ARGYR	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC245A
SN74LVC245ARGYR.B	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC245A
SN74LVC245ARGYRG4	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC245A
SN74LVC245ARGYRG4.B	Active	Production	VQFN (RGY) 20	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC245A

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

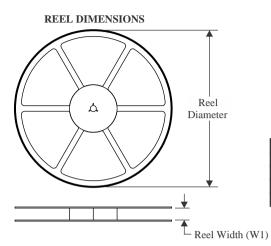
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

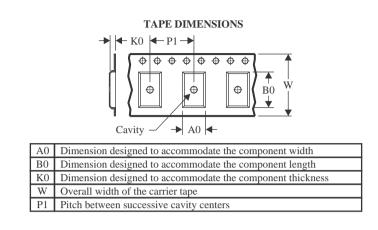
PACKAGE OPTION ADDENDUM

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

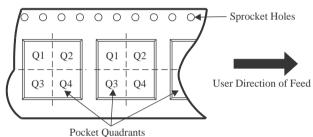
OTHER QUALIFIED VERSIONS OF SN74LVC245A :

• Enhanced Product : SN74LVC245A-EP


NOTE: Qualified Version Definitions:

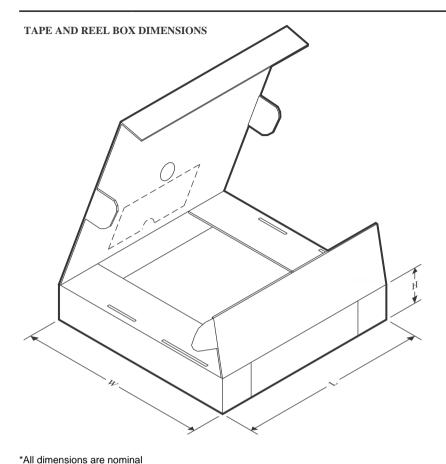

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

Texas


STRUMENTS

TAPE AND REEL INFORMATION

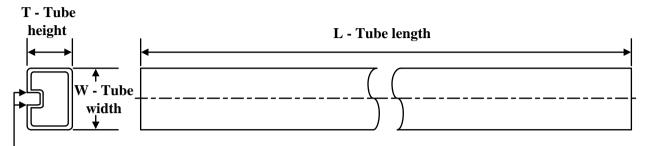
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC245ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVC245ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC245ADGVRG4	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC245ADWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74LVC245ANSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LVC245ANSRG4	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LVC245APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74LVC245APWRG3	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC245APWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74LVC245APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LVC245ARGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1
SN74LVC245ARGYRG4	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

30-Jun-2025


All dimensions are nominal		1			1		
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC245ADBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74LVC245ADGVR	TVSOP	DGV	20	2000	356.0	356.0	35.0
SN74LVC245ADGVRG4	TVSOP	DGV	20	2000	356.0	356.0	35.0
SN74LVC245ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVC245ANSR	SOP	NS	20	2000	367.0	367.0	45.0
SN74LVC245ANSRG4	SOP	NS	20	2000	367.0	367.0	45.0
SN74LVC245APWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LVC245APWRG3	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74LVC245APWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LVC245APWT	TSSOP	PW	20	250	356.0	356.0	35.0
SN74LVC245ARGYR	VQFN	RGY	20	3000	356.0	356.0	35.0
SN74LVC245ARGYRG4	VQFN	RGY	20	3000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

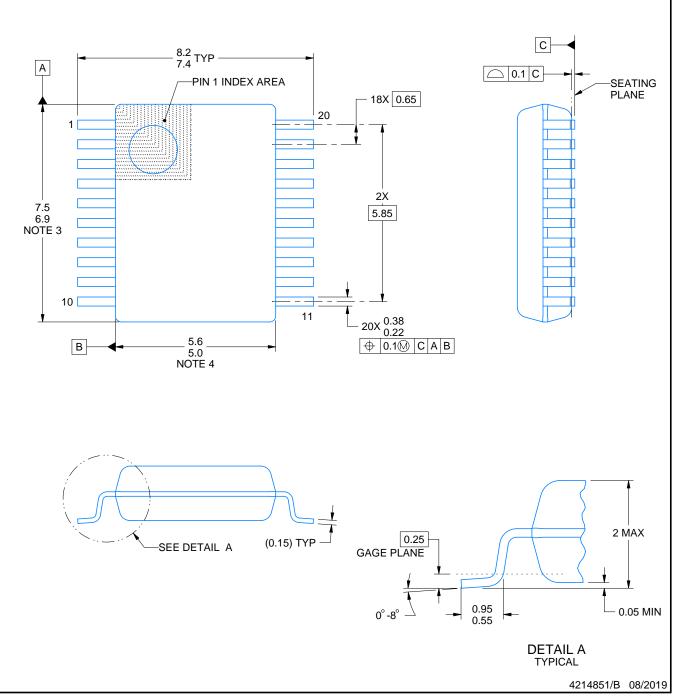
30-Jun-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal	
-----------------------------	--

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LVC245ADW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LVC245ADW.B	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LVC245AN	N	PDIP	20	20	506	13.97	11230	4.32
SN74LVC245AN.B	N	PDIP	20	20	506	13.97	11230	4.32
SN74LVC245ANE4	N	PDIP	20	20	506	13.97	11230	4.32
SN74LVC245ANS.B	NS	SOP	20	40	530	10.5	4000	4.1
SN74LVC245APW	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74LVC245APW.B	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74LVC245APWE4	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74LVC245APWG4	PW	TSSOP	20	70	530	10.2	3600	3.5


DB0020A

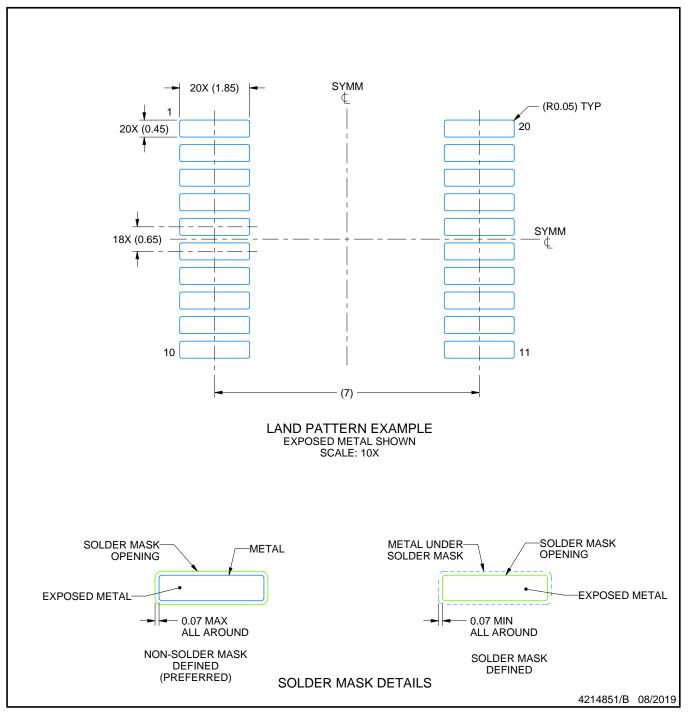
PACKAGE OUTLINE

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0020A

EXAMPLE BOARD LAYOUT

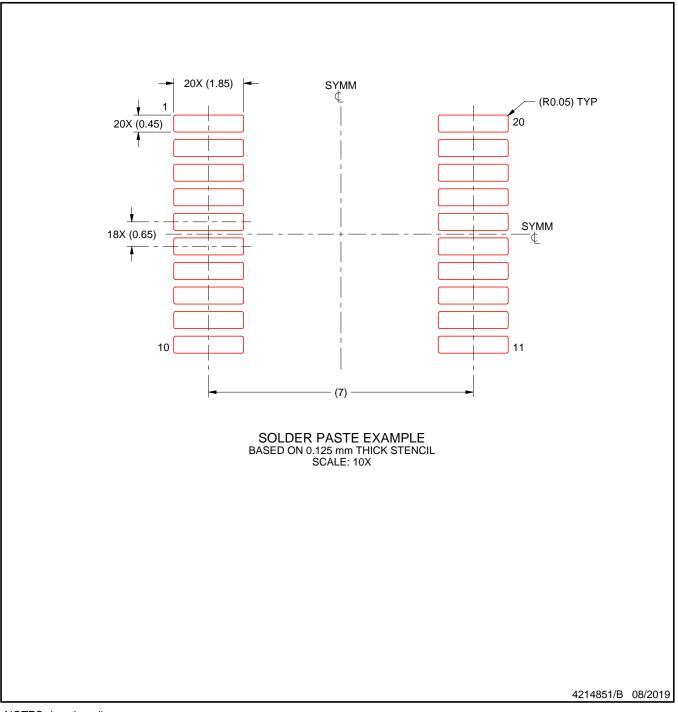
SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DB0020A

EXAMPLE STENCIL DESIGN

SSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

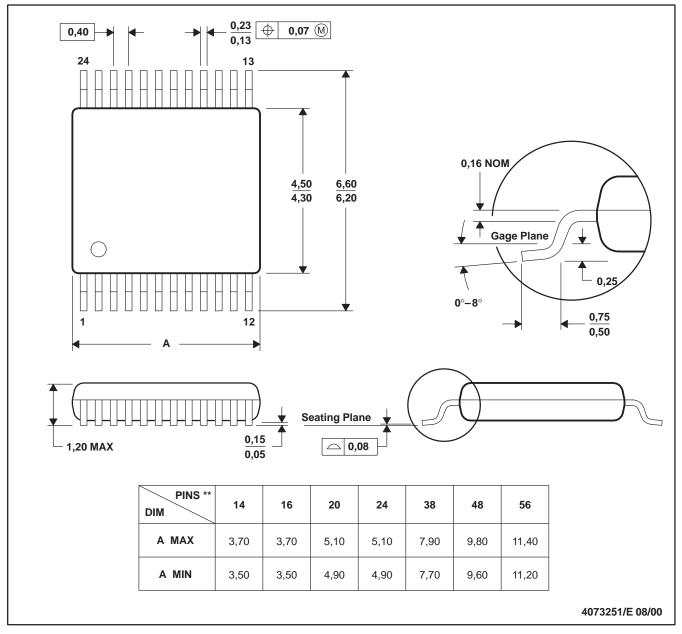
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

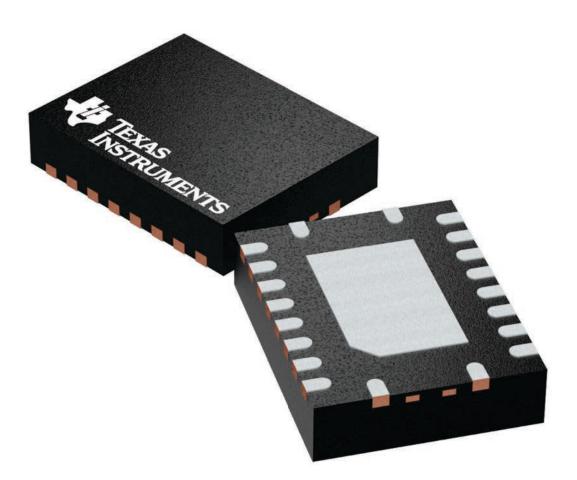
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

GENERIC PACKAGE VIEW


VQFN - 1 mm max height

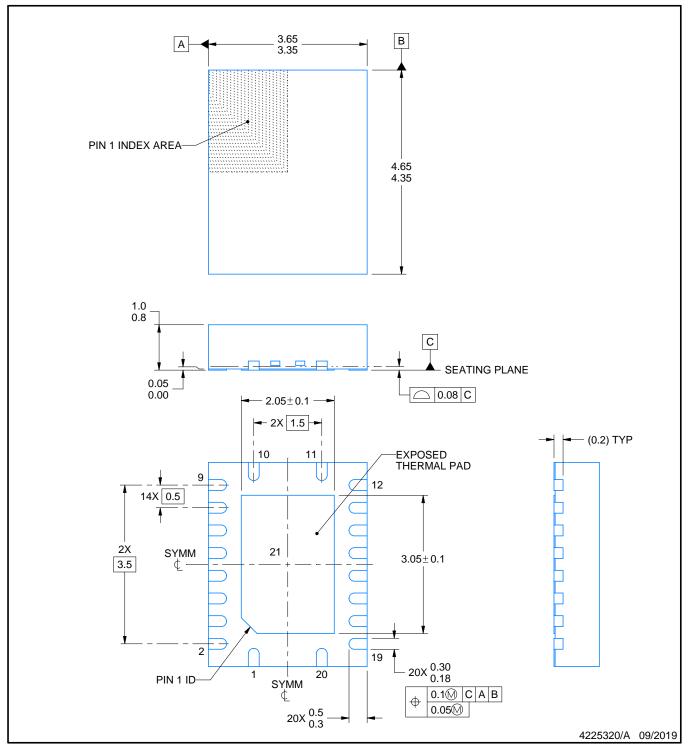
PLASTIC QUAD FGLATPACK - NO LEAD

3.5 x 4.5, 0.5 mm pitch

RGY 20

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4225264/A


RGY0020A

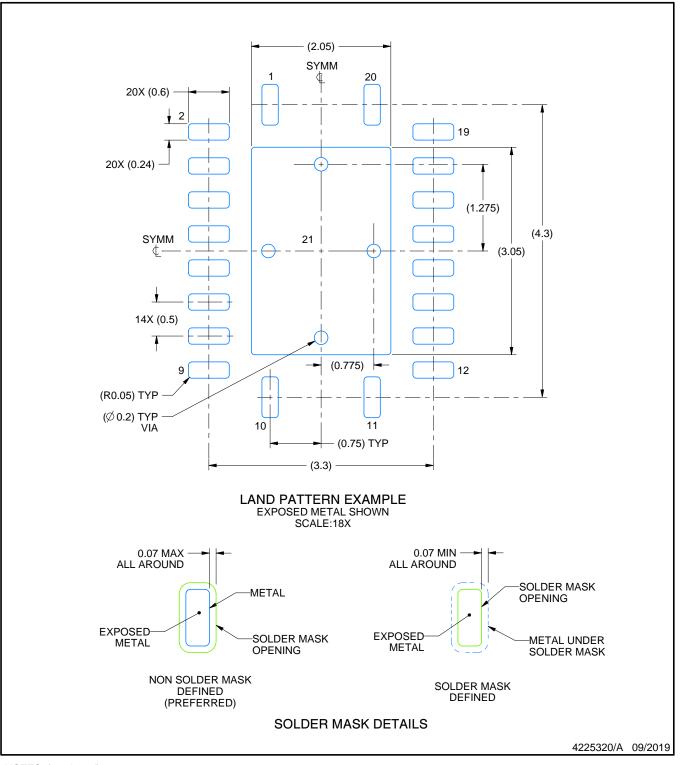
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RGY0020A

EXAMPLE BOARD LAYOUT

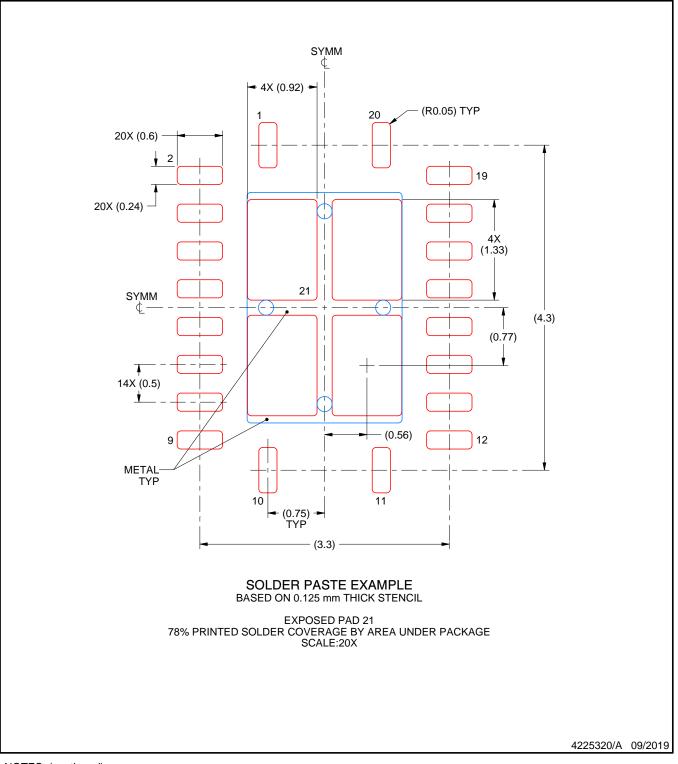
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RGY0020A

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

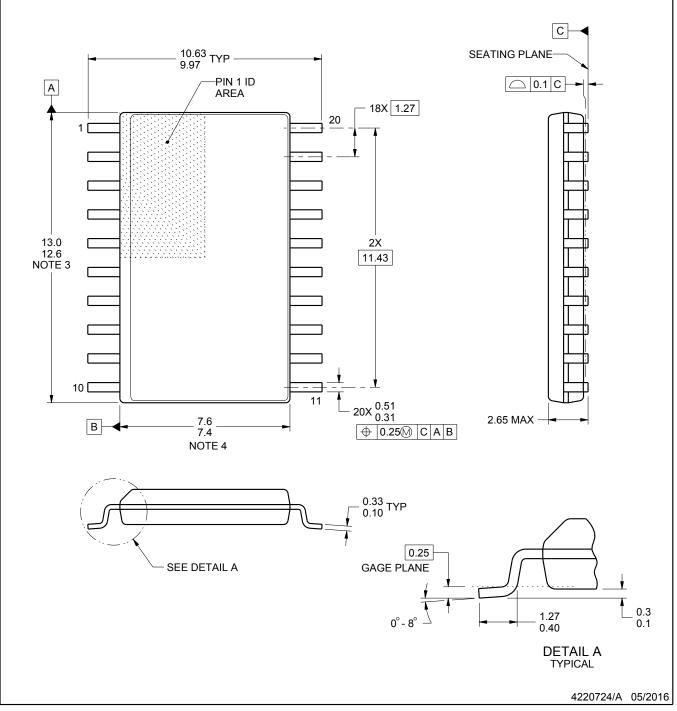
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

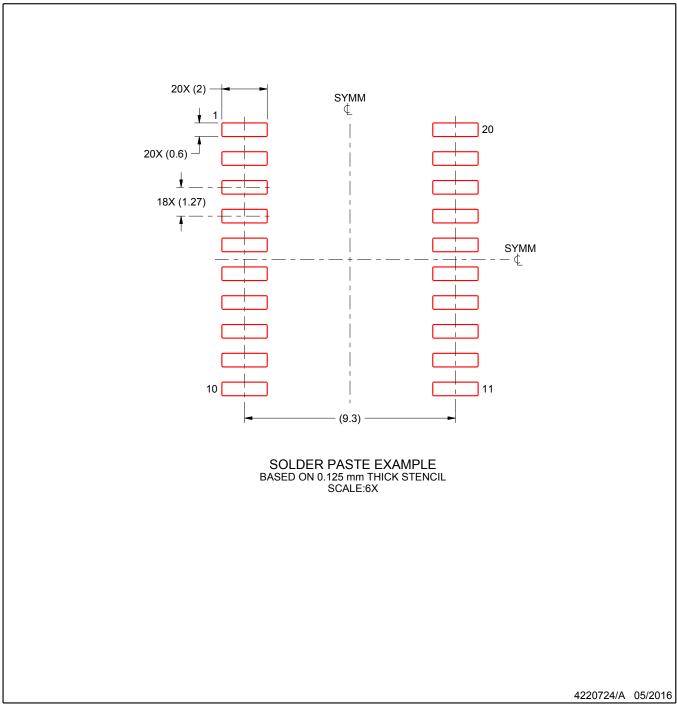
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

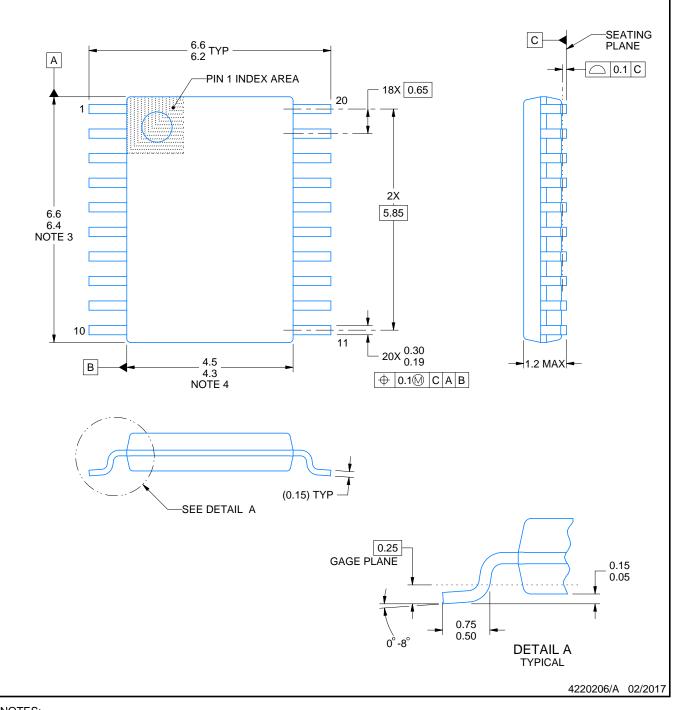
EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


PW0020A

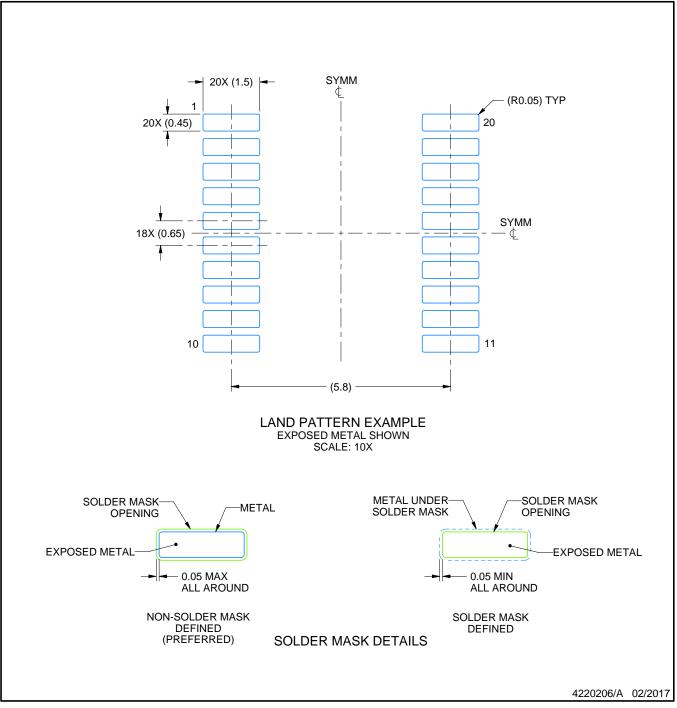
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0020A

EXAMPLE BOARD LAYOUT

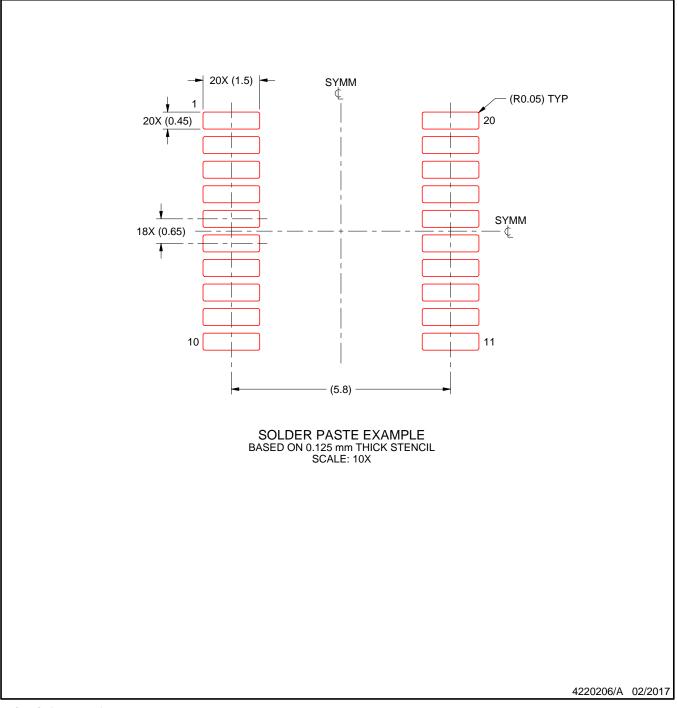
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0020A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated