TLVx369 コスト最適化された800nA、1.8V、クロスオーバー歪み0のレール・ツー・レールI/Oオペアンプ

1 特長
- コスト最適化された高精度アンプnanoPower: 800nA/Ch (標準値)
- 低いオフセット電圧: 400µV (標準値)
- レール・ツー・レールの入出力
- クロスオーバー歪みが0
- 低いオフセット・ドリフト: 0.5 µV/°C (標準値)
- ゲイン帯域幅: 12kHz
- 電源電圧: 1.8V〜5.5V
- microSizeパッケージ: SC70-5、VSSOP-8

2 アプリケーション
- 血糖値計
- 試験用機器
- 低電力のセンサ・シグナル・コンディショニング
- ポータブル・デバイス

3 概要
TLV369ファミリはシングルおよびデュアルのオペアンプで、コスト最適化された世代の1.8V nanopowerアンプを代表する製品です。
クロスオーバー歪みが0の回路により、これらのアンプは同相モードの入力範囲全体にわたって高い直線性を持ち、クロスオーバー歪みがないため、真のレール・ツー・レール入力が可能で、1.8V〜5.5Vの単一電源で動作します。
このファミリは、業界標準の公称電圧3.0V、3.3V、5.0Vとも互換性があります。

TLV369 (シングル・バージョン)は5ピンのSC70パッケージで提供されます。 TLV2369 (デュアル・バージョン)は8ピンのVSSOPおよびSOICパッケージで提供されます。

<table>
<thead>
<tr>
<th>型番</th>
<th>パッケージ</th>
<th>本体サイズ（公称）</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV369</td>
<td>SC70 (5)</td>
<td>2.00mm×1.25mm</td>
</tr>
<tr>
<td>TLV2369</td>
<td>VSSOP (8)</td>
<td>3.00mm×3.00mm</td>
</tr>
<tr>
<td></td>
<td>SOIC (8)</td>
<td>4.90mm×3.91mm</td>
</tr>
</tbody>
</table>

(1) 提供されているすべてのパッケージについては、巻末の注文情報に参考してください。

TLV369ファミリでは、電源電圧範囲の全体にわたってクロスオーバー歪みを排除できます。

![Normalized Offset Voltage (V)](image-url)

Common-Mode Voltage (V)
目次

1 特長.. 1
2 アプリケーション ... 1
3 概要.. 1
4 改訂履歴.. 2
5 Pin Configuration and Functions 3
6 Specifications .. 4
 6.1 Absolute Maximum Ratings 4
 6.2 ESD Ratings ... 4
 6.3 Recommended Operating Conditions....................... 4
 6.4 Thermal Information: TLV369 5
 6.5 Thermal Information: TLV2369 5
 6.6 Electrical Characteristics 6
 6.7 Typical Characteristics ... 7
7 Detailed Description ... 10
 7.1 Overview .. 10
 7.2 Functional Block Diagram 10
 7.3 Feature Description .. 11
8 Application and Implementation 12
 8.1 Application Information ... 12
 8.2 Typical Application ... 12
 8.3 System Examples ... 14
9 Power Supply Recommendations 15
10 Layout .. 16
 10.1 Layout Guidelines .. 16
 10.2 Layout Example ... 16
11 デバイスおよびドキュメントのサポート 17
 11.1 ドキュメントのサポート 17
 11.2 コミュニティ・リソース .. 17
 11.3 商標 .. 17
 11.4 静電気放電に関する注意事項 17
 11.5 Glossary .. 17
12 メカニカル、パッケージ、および注文情報 17

4 改訂履歴

<table>
<thead>
<tr>
<th>日付</th>
<th>改訂内容</th>
<th>注</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016年5月</td>
<td>*</td>
<td>初版</td>
</tr>
</tbody>
</table>
Pin Configuration and Functions

Pin Functions: TLV369

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>–IN</td>
<td>3</td>
<td>I Negative (inverting) input</td>
</tr>
<tr>
<td>+IN</td>
<td>1</td>
<td>I Positive (noninverting) input</td>
</tr>
<tr>
<td>OUT</td>
<td>4</td>
<td>O Output</td>
</tr>
<tr>
<td>V–</td>
<td>2</td>
<td>— Negative (lowest) power supply for single-supply operation</td>
</tr>
<tr>
<td>V+</td>
<td>5</td>
<td>— Positive (highest) power supply</td>
</tr>
</tbody>
</table>

Pin Functions: TLV2369

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>–IN A</td>
<td>2</td>
<td>I Inverting input, channel A</td>
</tr>
<tr>
<td>–IN B</td>
<td>6</td>
<td>I Inverting input, channel B</td>
</tr>
<tr>
<td>+IN A</td>
<td>3</td>
<td>I Noninverting input, channel A</td>
</tr>
<tr>
<td>+IN B</td>
<td>5</td>
<td>I Noninverting input, channel B</td>
</tr>
<tr>
<td>OUT A</td>
<td>1</td>
<td>O Output, channel A</td>
</tr>
<tr>
<td>OUT B</td>
<td>7</td>
<td>O Output, channel B</td>
</tr>
<tr>
<td>V–</td>
<td>4</td>
<td>— Negative (lowest) power supply</td>
</tr>
<tr>
<td>V+</td>
<td>8</td>
<td>— Positive (highest) power supply</td>
</tr>
</tbody>
</table>
6 Specifications

6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>0</td>
<td>+7</td>
<td>V</td>
</tr>
<tr>
<td>Supply, (V_S = (V+) - (V-))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal input pin(^{(2)})</td>
<td>((V-) - 0.5)</td>
<td>((V+) + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Current</td>
<td>-10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Signal input pin(^{(2)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output short-circuit(^{(3)})</td>
<td>Continuous</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Operating, (T_A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction, (T_J)</td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage, (T_{stg})</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under **Absolute Maximum Ratings** may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under **Recommended Operating Conditions**. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

(3) Short-circuit to \(V_S/2\), one amplifier per package.

6.2 ESD Ratings
over operating free-air temperature range (unless otherwise noted).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{(ESD)})</td>
<td>±4000</td>
<td>V</td>
</tr>
<tr>
<td>Electrostatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discharge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(^{(1)})</td>
<td>(±4000)</td>
<td>V</td>
</tr>
<tr>
<td>Charged device model (CDM), per JEDEC specification JESD22-C101(^{(2)})</td>
<td>(±1500)</td>
<td>V</td>
</tr>
</tbody>
</table>

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_S)</td>
<td>1.8</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified temperature</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Thermal Information: TLV369

<table>
<thead>
<tr>
<th>THERMAL METRIC⁽¹⁾</th>
<th>TLV369</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCK (SC70)</td>
<td>5 PINS</td>
</tr>
<tr>
<td>(R_{\text{JA}})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>293.3</td>
</tr>
<tr>
<td>(R_{\text{JC(top)}})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>95.2</td>
</tr>
<tr>
<td>(R_{\text{JB}})</td>
<td>Junction-to-board thermal resistance</td>
<td>83.4</td>
</tr>
<tr>
<td>(\psi_{\text{JT}})</td>
<td>Junction-to-top characterization parameter</td>
<td>2.9</td>
</tr>
<tr>
<td>(\psi_{\text{JB}})</td>
<td>Junction-to-board characterization parameter</td>
<td>82.4</td>
</tr>
<tr>
<td>(R_{\text{JC(bot)}})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>n/a</td>
</tr>
</tbody>
</table>

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Thermal Information: TLV2369

<table>
<thead>
<tr>
<th>THERMAL METRIC⁽¹⁾</th>
<th>TLV2369</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D (SOIC)</td>
<td>DGK (VSSOP)</td>
</tr>
<tr>
<td>(R_{\text{JA}})</td>
<td>Junction-to-ambient thermal resistance</td>
<td>121.5</td>
</tr>
<tr>
<td>(R_{\text{JC(top)}})</td>
<td>Junction-to-case (top) thermal resistance</td>
<td>66.3</td>
</tr>
<tr>
<td>(R_{\text{JB}})</td>
<td>Junction-to-board thermal resistance</td>
<td>62.5</td>
</tr>
<tr>
<td>(\psi_{\text{JT}})</td>
<td>Junction-to-top characterization parameter</td>
<td>22.8</td>
</tr>
<tr>
<td>(\psi_{\text{JB}})</td>
<td>Junction-to-board characterization parameter</td>
<td>61.9</td>
</tr>
<tr>
<td>(R_{\text{JC(bot)}})</td>
<td>Junction-to-case (bottom) thermal resistance</td>
<td>n/a</td>
</tr>
</tbody>
</table>

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
6.6 Electrical Characteristics

V_S (total supply voltage) = 1.8 V to 5.5 V; at $T_A = 25^\circ$C, and $R_L = 100 \text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSET VOLTAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Input offset voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At $T_A = 25^\circ$C</td>
<td>0.4</td>
<td>2</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>At $T_A = -40^\circ$ to +85$^\circ$C</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dV_{OS}/dT Drift</td>
<td>At $T_A = -40^\circ$ to +85$^\circ$C</td>
<td>0.5</td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power-supply rejection ratio</td>
<td>$V_S = 1.8$ V to 5.5 V</td>
<td>80</td>
<td>94</td>
<td>dB</td>
</tr>
</tbody>
</table>

INPUT VOLTAGE RANGE					
V_{CM}	Common-mode voltage range				V
V_{CM}	Common-mode rejection ratio	$(V-) \leq V_{CM} \leq (V+)$	80	110	dB

INPUT BIAS CURRENT					
I_B	Input bias current				pA
At $T_A = 25^\circ$C	10				
At $T_A = -40^\circ$ to +85$^\circ$C	See Figure 8				
I_{OS}	Input offset current				pA
Z_{ID}	Differential	$10^{13} \parallel 3$	Ω	pF	
Z_{IC}	Common-mode	$10^{13} \parallel 6$	Ω	pF	

NOISE					
E_{in}	Input voltage noise	$f = 0.1$ Hz to 10 Hz	4		μVpp
e_{in}	Input voltage noise density	$f = 1$ kHz	300		nV/\sqrt{Hz}
i_{in}	Input current noise density	$f = 1$ kHz	1		fA/\sqrt{Hz}

OPEN-LOOP GAIN					
A_{OL} Open-loop voltage gain	At $V_S = 5.5$ V, 100 mV $\leq V_O \leq (V+) - 100$ mV, $R_L = 100$ kΩ	130			dB
At $V_S = 5.5$ V, 500 mV $\leq V_O \leq (V+) - 500$ mV, $R_L = 10$ kΩ	80	120			

OUTPUT					
V_O	Voltage output swing from rail	$R_L = 10$ kΩ	25		mV
I_{SC} Short-circuit current	10				mA
C_{LOAD} Capacitive load drive	See Figure 10				

FREQUENCY RESPONSE					
GBP Gain bandwidth product	12				kHz
SR Slew rate	$G = 1$	0.005			V/μs
t_{OR} Overload recovery time	$V_{IN} \times \text{gain} = V_S$	250			μs

POWER SUPPLY					
V_S Specified voltage range	1.8	5.5			V
I_O Quiescent current	$I_O = 0$ mA, at $V_S = 5.5$ V	800	1300		nA

TEMPERATURE					
Specified range	-40		85		°C
Operating range	-40		125		°C
6.7 Typical Characteristics

at $T_A = 25^\circ C$, $V_S = 5\, V$, and $R_L = 100\, k\Omega$ connected to $V_S / 2$ (unless otherwise noted)

Figure 1. Normalized Offset Voltage vs Common-Mode Voltage

Figure 2. 0.1-Hz to 10-Hz Noise

Figure 3. Open-Loop Gain and Phase vs Frequency

Figure 4. Open-Loop Gain vs Temperature

Figure 5. Common-Mode Rejection Ratio vs Frequency

Figure 6. Output Voltage Swing from Rail vs Temperature
Typical Characteristics (continued)

at $T_A = 25°C$, $V_S = 5\, V$, and $R_L = 100\, kΩ$ connected to $V_S/2$ (unless otherwise noted)

Figure 7. Maximum Output Voltage vs Frequency

Figure 8. Input Bias Current vs Temperature

Figure 9. Open-Loop Output Impedance vs Frequency

Figure 10. Small-Signal Overshoot vs Capacitive Load

Figure 11. Small-Signal Step Response

Figure 12. Large-Signal Step Response
Typical Characteristics (continued)

at $T_A = 25^\circ C$, $V_S = 5\, V$, and $R_L = 100\, k\Omega$ connected to $V_S / 2$ (unless otherwise noted)

Figure 13. Overload Recovery
7 Detailed Description

7.1 Overview
The TLVx369 family of operational amplifiers minimizes power consumption and operates on supply voltages as low as 1.8 V. The zero-crossover distortion circuitry enables high linearity over the full input common-mode range, achieving true rail-to-rail input from a 1.8-V to 5.5-V single supply.

7.2 Functional Block Diagram
7.3 Feature Description

7.3.1 Operating Voltage

The TLV369 series op amps are fully specified and tested from 1.8 V to 5.5 V (±0.9 V to ±2.75 V). Parameters that vary significantly with supply voltage are described in the Typical Characteristics section.

7.3.2 Input Common-Mode Voltage Range

The TLV369 family is designed to eliminate the input offset transition region typically present in most rail-to-rail, complementary-stage operational amplifiers, allowing the TLV369 family of amplifiers to provide superior common-mode performance over the entire input range.

The input common-mode voltage range of the TLV369 family typically extends to each supply rail. CMRR is specified from the negative rail to the positive rail; see Figure 1, Normalized Offset Voltage vs Common-Mode Voltage.

7.3.3 Protecting Inputs from Overvoltage

Input currents are typically 10 pA. However, large inputs (greater than 500 mV beyond the supply rails) can cause excessive current to flow in or out of the input pins. Therefore, in addition to keeping the input voltage between the supply rails, the input current must also be limited to less than 10 mA. This limiting is easily accomplished with an input resistor, as shown in Figure 14.

A current-limiting resistor is required if the input voltage exceeds the supply rails by ≥ 0.5 V.

Figure 14. Input Current Protection for Voltages That Exceed the Supply Voltage

7.4 Device Functional Modes

The TLV369 family has a single functional mode. These devices are powered on as long as the power-supply voltage is between 1.8 V (±0.9 V) and 5.5 V (±2.75 V).
8 Application and Implementation

NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information
When designing for ultra-low power, choose system components carefully. To minimize current consumption, select large-value resistors. Any resistors can react with stray capacitance in the circuit and the input capacitance of the operational amplifier. These parasitic RC combinations can affect the stability of the overall system. Use of a feedback capacitor assures stability and limits overshoot or gain peaking.

8.2 Typical Application
A typical application for an operational amplifier is an inverting amplifier, as shown in Figure 15. An inverting amplifier takes a positive voltage on the input and outputs a signal inverted to the input, making a negative voltage of the same magnitude. In the same manner, the amplifier also makes negative input voltages positive on the output. In addition, amplification can be added by selecting the input resistor \(R_I \) and the feedback resistor \(R_F \).

8.2.1 Design Requirements
The supply voltage must be chosen to be larger than the input voltage range and the desired output range. The limits of the input common-mode range \(V_{CM} \) and the output voltage swing to the rails \(V_O \) must also be considered. For instance, this application scales a signal of ±0.5 V (1 V) to ±1.8 V (3.6 V). Setting the supply at ±2.5 V is sufficient to accommodate this application.
Typical Application (continued)

8.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

\[A_V = \frac{V_{OUT}}{V_{IN}} \] \hspace{1cm} (1)
\[A_V = \frac{1.8}{-0.5} = -3.6 \] \hspace{1cm} (2)

When the desired gain is determined, choose a value for \(R_I \) or \(R_F \). Choosing a value in the kilohm range is desirable for general-purpose applications because the amplifier circuit uses currents in the milliamp range. This milliamp current range ensures that the device does not draw too much current. The trade-off is that very large resistors (100s of kilohms) draw the smallest current but generate the highest noise. Very small resistors (100s of ohms) generate low noise but draw high current. This example uses 10 kΩ for \(R_I \), meaning 36 kΩ is used for \(R_F \). These values are determined by Equation 3:

\[A_V = -\frac{R_F}{R_I} \] \hspace{1cm} (3)

8.2.3 Application Curve

![Inverting Amplifier Input and Output](image)

Figure 16. Inverting Amplifier Input and Output
8.3 System Examples

8.3.1 Battery Monitoring

The low operating voltage and quiescent current of the TLV369 series make the family an excellent choice for battery-monitoring applications, as shown in Figure 17.

![Figure 17. Battery Monitor](image_url)

In this circuit, V_{STATUS} is high as long as the battery voltage remains above 2 V. A low-power reference is used to set the trip point. Resistor values are selected as follows:

1. Selecting R_F: Select R_F such that the current through R_F is approximately 1000 times larger than the maximum bias current over temperature, as given by Equation 4:

$$R_F = \frac{V_{\text{REF}}}{1000 (I_{\text{BMAX}})} = \frac{1.2 \text{ V}}{1000 \times (50 \text{ pA})} = 24 \text{ M}\Omega \approx 20 \text{ M}\Omega$$

(4)

2. Choose the hysteresis voltage, V_{HYST}. For battery-monitoring applications, 50 mV is adequate.

3. Calculate R_1 as calculated by Equation 5:

$$R_1 = R_F \left(\frac{V_{HYST}}{V_{BATT}} \right) = 20 \text{ M}\Omega \left(\frac{50 \text{ mV}}{2.4 \text{ V}} \right) = 420 \text{ k}\Omega$$

(5)

4. Select a threshold voltage for V_{IN} rising (V_{THRS}) = 2.0 V.

5. Calculate R_2 as given by Equation 6:

$$R_2 = \frac{1}{\left(\frac{V_{\text{THRS}}}{V_{BATT}} - \frac{1}{R_1} - \frac{1}{R_2} \right)}$$

$$= \frac{1}{\left(\frac{2 \text{ V}}{1.2 \text{ V} \times 420 \text{ k}\Omega} - \frac{1}{420 \text{ k}\Omega} - \frac{1}{20 \text{ M}\Omega} \right)}$$

$$= 650 \text{ k}\Omega$$

(6)

6. Calculate R_{BIAS}: The minimum supply voltage for this circuit is 1.8 V. The REF1112 has a current requirement of 1.2 μA (max). Providing the REF1112 with 2 μA of supply current assures proper operation. Therefore, R_{BIAS} is as given by Equation 7.

$$R_{\text{BIAS}} = \frac{V_{\text{BATTMIN}}}{I_{\text{BIAS}}} = \frac{1.8 \text{ V}}{2 \mu\text{A}} = 0.9 \text{ M}\Omega$$

(7)
System Examples (continued)

8.3.2 Window Comparator

Figure 18 shows the TLV2369 used as a window comparator. The threshold limits are set by V_H and V_L, with V_H greater than V_L. When V_{IN} is less than V_H, the output of A1 is low. When V_{IN} is greater than V_L, the output of A2 is low. Therefore, both op amp outputs are at 0 V as long as V_{IN} is between V_H and V_L. This architecture results in no current flowing through either diode, Q1 is in cutoff, with the base voltage at 0 V, and V_{OUT} forced high.

![Diagram of a window comparator](image-url)

If V_{IN} falls below V_L, the output of A2 is high, current flows through D2, and V_{OUT} is low. Likewise, if V_{IN} rises above V_H, the output of A1 is high, current flows through D1, and V_{OUT} is low. The window comparator threshold voltages are set as shown by Equation 8 and Equation 9:

$$V_H = \frac{R_2}{R_1 + R_2}$$ \hspace{1cm} (8)

$$V_L = \frac{R_4}{R_3 + R_4}$$ \hspace{1cm} (9)

9 Power Supply Recommendations

The TLV369 family is specified for operation from 1.8 V to 5.5 V (±0.9 V to ±2.75 V); many specifications apply from −40°C to +125°C. The Typical Characteristics section presents parameters that can exhibit significant variance with regard to operating voltage or temperature.

CAUTION

Supply voltages larger than 7 V can permanently damage the device (see the Absolute Maximum Ratings table).

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement; see the Layout Guidelines section.
10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the operational amplifier. Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.

 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications.

- Separate grounding for analog and digital portions of the circuitry is one of the simplest and most effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. For more detailed information, see *Circuit Board Layout Techniques*, SLOA089.

- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicularly is much better than crossing in parallel with the noisy trace.

- Place the external components as close to the device as possible. Keep RF and RG close to the inverting input in order to minimize parasitic capacitance, as shown in Figure 19.

- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.

- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

10.2 Layout Example

Figure 19. Operational Amplifier Board Layout for Noninverting Configuration

Figure 20. Schematic Representation of Figure 19
11 デバイスおよびドキュメントのサポート

11.1 ドキュメントのサポート

11.1.1 関連資料

以下に紹介するのは、TLVx369の使用に関連し、参照用として推奨されるドキュメントです。特記されていない限り、これらのドキュメントはwww.ti.comからダウンロードできます。

- REF1112データシート、SBOS283
- 『基板のレイアウト技法』、SLOA089
- 『オペアンプ・アプリケーション・ハンドブック』、SBOA092
- 『アナログ技術者向けポケット・リファレンス』、SLWY038

11.1.1.1 関連リンク

表1に、クイック・アクセス・リンクの一覧を示します。カテゴリーには、技術資料、サポートおよびコミュニティ・リソース、ツールとソフトウェア、およびサンプル注文またはご購入へのクイック・アクセスが含まれます。

<table>
<thead>
<tr>
<th>製品</th>
<th>プロダクト・フォルダ</th>
<th>サンプルとご購入</th>
<th>技術資料</th>
<th>ツールとソフトウェア</th>
<th>サポートとコミュニティ</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV369</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
</tr>
<tr>
<td>TLV2369</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
<td>ここをクリック</td>
</tr>
</tbody>
</table>

11.2 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support
TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商標

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.4 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

11.5 Glossary

SLYZ022 — *Ti Glossary.*
This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページに、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV2369IDGKR</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>13JV</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV2369IDGKT</td>
<td>ACTIVE</td>
<td>VSSOP</td>
<td>DGK</td>
<td>8</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAUAG</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>13JV</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV2369IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>TL2369</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV369IDCKR</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>3000</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>12K</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV369IDCKT</td>
<td>ACTIVE</td>
<td>SC70</td>
<td>DCK</td>
<td>5</td>
<td>250</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>NIPDAU</td>
<td>Level-2-260C-1 YEAR</td>
<td>-40 to 125</td>
<td>12K</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
- **RoHS Exempt**: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
- **Green**: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) **MSL, Peak Temp.** - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) **Lead/Ball Finish -** Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
DGK (S-PDSO-G8) PLASTIC SMALL-OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per end.
D. Body width does not include interlead flash. Interlead flash shall not exceed 0.50 mm per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

www.ti.com
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Fits within JEDEC MO–203 variation AA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.
重要なお知らせと免責事項

TIは、技術データと信頼性データ（データシートを含みます）、設計リソース（リファレンス・デザインを含みます）、アプリケーションや設計に関する各種アドバイス、Webツール、安全情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。これらのリソースは、TI製品を使用する設計の経験を積んだ開発者への提供を意図したもので、お客様のアプリケーションに適したTI製品の選定、お客様のアプリケーションの設計、検証、試験、お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されているTI製品を使用するアプリケーションの開発の目的のみならず、TIはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TIや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを使用した結果発生するあらゆる申し立て、損害、費用、損失、責任については、TIおよびその代理人を完全に補償するものとし、TIは一切の責任を拒否します。

TIの製品は、TIの販売条件（www.tij.co.jp/ja-jp/legal/termsofsale.html）、またはti.comやかかるTI製品の関連資料などのいずれかを通して提供する適用可能な条項の下で提供されています。TIがこれらのリソースを提供することは、適用されるTIの保証または他の保証の拡大や変更を意味するものではありません。

Copyright © 2020, Texas Instruments Incorporated
日本語版 日本テキサス・インスツルメンツ株式会社