

TPS51604

SLUSBA6B - DECEMBER 2012 - REVISED OCTOBER 2015

TPS51604 Synchronous Buck FET Driver for High-Frequency CPU Core Power

Features

- Reduced Dead-Time Drive Circuit for Optimized
- Automatic Zero Crossing Detection for Optimized DCM Efficiency
- Multiple Low-Power Modes for Optimized Light-Load Efficiency
- Optimized Signal Path Delays for High-Frequency Operation
- Integrated BST Switch Drive Strength Optimized for Ultrabook FETs
- Optimized for 5-V FET Drive
- Conversion Input Voltage Range (V_{IN}): 4.5 to 28 V
- 2-mm x 2-mm, 8-Pin, WSON Thermal Pad Package

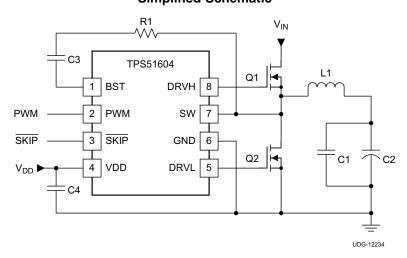
2 Applications

- Tablets Using High-Frequency CPUs With the Following Power Input:
 - Adapter
 - **Battery**
 - **NVDC**
 - 5-V or 12-V Rails

3 Description

The TPS51604 drivers are optimized for highfrequency CPU V_{CORE} applications. Advanced features such as reduced dead-time drive and auto zero crossing are used to optimize efficiency over the entire load range.

The SKIP pin provides the option of CCM operation to support controlled management of the output voltage. In addition, the TPS51604 supports two lowpower modes. With the PWM input in tri-state, quiescent current is reduced to 130 µA, with immediate response. When SKIP is held at tri-state, the current is reduced to 8 µA (typically 20 µs is required to resume switching). Paired with the appropriate TI controller, the drivers deliver an exceptionally high performance power supply system.


The TPS51604 device is packaged in a space saving, thermally-enhanced 8-pin, 2-mm x 2-mm WSON package and operates from -40°C to 105°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS51604	WSON (8)	2.00 mm × 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

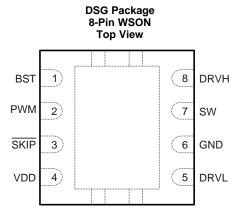
Simplified Schematic

Table of Contents

1	Features 1		7.4 Device Functional Modes	13
2	Applications 1	8	Application and Implementation	14
3	Description 1		8.1 Application Information	14
4	Revision History2		8.2 Typical Application	14
5	Pin Configuration and Functions 3	9	Power Supply Recommendations	19
6	Specifications4	10	Layout	19
•	6.1 Absolute Maximum Ratings4		10.1 Layout Guidelines	19
	6.2 ESD Ratings		10.2 Layout Example	19
	6.3 Recommended Operating Conditions	11	Device and Documentation Support	20
	6.4 Thermal Information		11.1 Device Support	20
	6.5 Electrical Characteristics 5		11.2 Documentation Support	20
	6.6 Typical Characteristics		11.3 Community Resources	20
	6.7 Typical Power Block MOSFET Characteristics 9		11.4 Trademarks	20
7	Detailed Description 10		11.5 Electrostatic Discharge Caution	20
	7.1 Overview 10		11.6 Glossary	20
	7.2 Functional Block Diagram 10	12	Mechanical, Packaging, and Orderable Information	20
	7.3 Feature Description			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision A (August 2013) to Revision B

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes section, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation

5 Pin Configuration and Functions

Pin Functions

PIN		I/O ⁽¹⁾	DESCRIPTION
NAME	NO.	1/0(-/	DESCRIPTION
BST	1	I	High-side N-channel FET bootstrap voltage input; power supply for high-side driver
DRVH	8	0	High-side N-channel gate drive output
DRVL	5	0	Synchronous low-side N-channel gate drive output
GND	6	G	Synchronous low-side N-channel gate drive return and device reference
PWM	2	1	PWM input. A tri-state voltage on this pin turns off both the high-side (DRVH) and low-side drivers (DRVL)
SKIP 3 I		I	When \$\overline{SKIP}\$ is LO, the zero crossing comparator is active. The power chain enters discontinuous conduction mode when the inductor current reaches zero. When \$\overline{SKIP}\$ is HI, the zero crossing comparator is disabled, and the driver outputs follow the PWM input. A tri-state voltage on \$\overline{SKIP}\$ puts the driver into a very-low power state.
SW	7	I/O	High-side N-channel gate drive return. Also, zero-crossing sense input
VDD	4	I	5-V power supply input; decouple to GND with a ceramic capacitor with a value of 1 µF or greater
Thermal Pad G		G	Tie to system GND plane with multiple vias

⁽¹⁾ I = Input, O = Output, G = Ground

6 Specifications

6.1 Absolute Maximum Ratings (1) (2)

over operating free-air temperature (unless otherwise noted)

			MIN	MAX	UNIT
lancet college	VDD		-0.3	6	V
Input voltage	PWM, SKIP		-0.3	6	V
	BST		-0.3	35	
	BST (transient <20 ns)		-0.3	38	
	BST to SW; DRVH to SW		-0.3	6	.,
Output voltage	SW		-2	30	V
	DRVH, SW (transient <20 ns)		- 5	38	
	DRVL		-0.3	6	
Ground pins	GND to PAD		-0.3	0.3	V
Operating junction temperature, T _J			-40	125	°C
Storage temperature range, T _{stq}			- 55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	\/
V _(ESD)	discharge Charged dev	Charged device model (CDM), per AEC Q100-011	±750	V

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Input voltage	VDD	4.5	5 5.9	5
	PWM, SKIP	-0.1	5.9	5 V
0.1.1.1	BST	-0.1	34	1
	BST to SW; DRVH to SW	-0.1	5.5	5
Output voltage	SW	-1	28	3 V
	DRVL	-0.1	5.9	5
Ground pins	GND to PAD	-0.1	0.	I V
Operating junction to	emperature, T _J	-40	10	o °C

6.4 Thermal Information

		TPS51604	
	THERMAL METRIC ⁽¹⁾	WSON (DSG)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	63.1	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	74.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	34.3	°C/W
ΨЈΤ	Junction-to-top characterization parameter	2.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	34.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	11.7	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

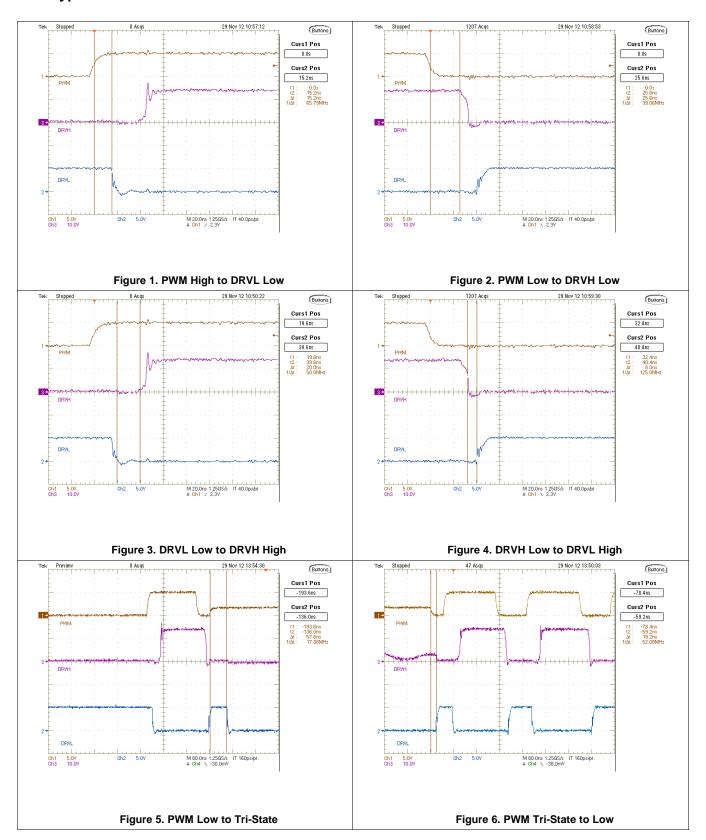
All voltage values are with respect to the network ground terminal unless otherwise noted.

6.5 Electrical Characteristics

These specifications apply for $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 105^{\circ}\text{C}$, and $\text{V}_{\text{VDD}} = 5 \text{ V}$ unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VDD INPUT	SUPPLY					
		$V_{\overline{SKIP}} = V_{VDD}$ or $V_{\overline{SKIP}} = 0$ V, PWM = High		160	600	
I _{CC}	Supply current (operating)	$V_{\overline{SKIP}} = V_{VDD} \text{ or } V_{\overline{SKIP}} = 0 \text{ V},$ PWM = Low		250		μΑ
		$V_{SKIP} = V_{VDD}$ or $V_{SKIP} = 0 V$, PWM = Float		130		
		V _{SKIP} = Float		8		
VDD UNDER	VOLTAGE LOCKOUT (UVLO)					
V_{UVLO}	UVLO threshold	Rising threshold			4.15	V
VUVLO	OVEO unesnoid	Falling threshold	3.7			V
V _{UVHYS}	UVLO hysteresis			0.2		V
PWM AND S	KIP I/O SPECIFICATIONS					
R_{I}	Input impedance	Pullup to VDD		1.7		ΜΩ
IN .	input impedance	Pulldown (to GND)		800		kΩ
V_{IL}	Low-level input voltage				0.6	V
V_{IH}	High-level input voltage		2.65			V
V_{IHH}	Hysteresis			0.2		V
V_{TS}	Tri-state voltage		1.3		2.0	V
t _{THOLD(off1)}	Tri-state activation time (falling) PWM			60		ns
$t_{THOLD(off2)}$	Tri-state activation time (rising) PWM			60		ns
t _{TSKF}	Tri-state activation time (falling) SKIP			1		μs
t _{TSKR}	Tri-state activation time (rising) SKIP			1		μs
t _{3RD(PWM)}	Tri-state exit time PWM				100	ns
t _{3RD(SKIP)}	Tri-state exit time SKIP				50	μs
HIGH-SIDE C	SATE DRIVER (DRVH)				·	
$t_{R(DRVH)}$	Rise time	DRVH rising, C _{DRVH} = 3.3 nF; 20% to 80%		30		ns
t _{RPD(DRVH)}	Rise time propogation delay	C _{DRVH} = 3.3 nF		40		ns
R _{SRC}	Source resistance	Source resistance, (V _{BST} - V _{SW}) = 5 V, high state, (V _{BST} - V _{DRVH}) = 0.1 V		4	8	Ω
t _{F(DRVH)}	Fall time	DRVH falling, C _{DRVH} = 3.3 nF		8		ns
t _{FPD(DRVH)}	Fall-time propagation delay	C _{DRVH} = 3.3 nF		25		ns
R _{SNK}	Sink resistance	Sink resistance, (V _{BST} - V _{SW}) forced to 5 V, low state (V _{DRVH} - V _{SW}) = 0.1 V		0.5	1.6	Ω
R _{DRVH}	DRVH to SW resistance ⁽¹⁾	2		100		kΩ

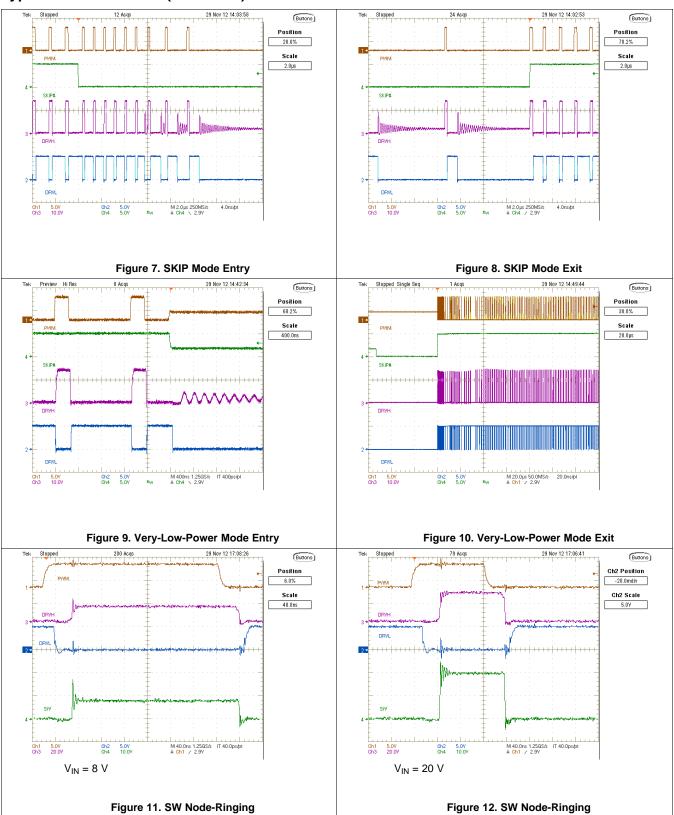
⁽¹⁾ Specified by design. Not production tested.


Electrical Characteristics (continued)

These specifications apply for $-40^{\circ}\text{C} \le T_{\text{J}} \le 105^{\circ}\text{C}$, and $V_{\text{VDD}} = 5 \text{ V}$ unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LOW-SIDE	GATE DRIVER (DRVL)					
t _{R(DRVL)}	Rise time	DRVL rising, C _{DRVL} = 3.3 nF; 20% to 80%		15		ns
t _{RPD(DRVL)}	Rise time propagation delay	C _{DRVL} = 3.3 nF		35		ns
R _{SRC}	Source resistance	Source resistance, $(V_{VDD}$ -GND) = 5 V, high state, $(V_{VDD} - V_{DRVL})$ = 0.1 V		1.5	3	Ω
t _{F(DRVL)}	Fall time	DRVL falling, C _{DRVL} = 3.3 nF		10		ns
t _{FPD(DRVL)}	Fall-time propagation delay	C _{DRVL} = 3.3 nF		15		ns
R _{SNK}	Sink resistance	Sink resistance, $(V_{VDD}-GND) = 5 \text{ V}$, low state, $(V_{DRVL}-GND) = 0.1 \text{ V}$		0.4	1.6	Ω
R _{DRVL}	DRVL to GND resistance (1)			100		kΩ
GATE DRIV	ER DEAD-TIME					
t _{R(DT)}	Rising edge		0	20	35	ns
t _{F(DT)}	Falling edge		0	10	25	ns
ZERO CRO	SSING COMPARATOR					
V _{ZX}	Zero crossing offset	SW voltage rising	-2.25	0	2.00	mV
BOOTSTRA	IP SWITCH					
V _{FBST}	Forward voltage	I _F = 10 mA		120	240	mV
I _{RLEAK}	Reverse leakage	$(V_{BST} - V_{VDD}) = 25 \text{ V}$			2	μΑ
R _{DS(on)}	On-resistance			12	24	Ω

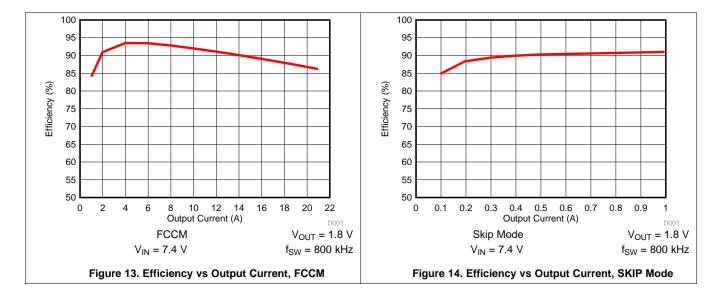
6.6 Typical Characteristics



Copyright © 2012–2015, Texas Instruments Incorporated

Submit Documentation Feedback

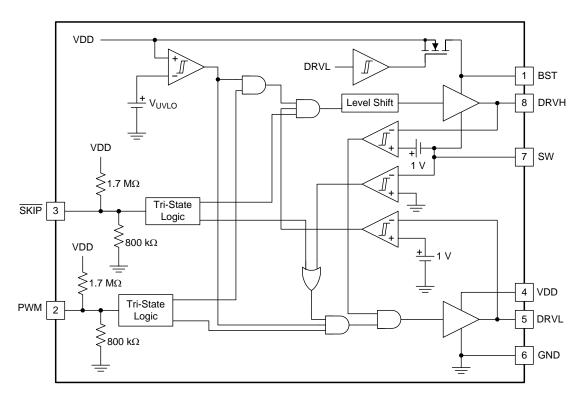
Typical Characteristics (continued)


Submit Documentation Feedback

Copyright © 2012–2015, Texas Instruments Incorporated

6.7 Typical Power Block MOSFET Characteristics

Power block MOSFET: CSD87330, Inductor: 0.22 μF , 1.1-m Ω DCR



7 Detailed Description

7.1 Overview

The TPS51604 device is a synchronous-buck MOSFET driver designed to drive both high-side and low-side MOSFETs. It allows high-frequency operation with current driving capability matched to the application. The integrated boost switch is internal. The TPS51604 device employs dead-time reduction control and shoot-through protection, which helps avoid simultaneous conduction of high-side and low-side MOSFETs. Also, the drivers improve light-load efficiency with integrated DCM-mode operation using adaptive crossing detection. Typical applications yield a steady-state duty cycle of 60% or less. For high steady-state duty cycle applications, including a small external Schottky diode may help to ensure sufficient charging of the bootstrap capacitor.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 UVLO Protection

The UVLO comparator evaluates the VDD voltage level. As V_{VDD} rises, both DRVH and DRVL hold actively low at all times until V_{VDD} reaches the higher UVLO threshold (V_{UVLO_H}). Then, the driver becomes operational and responds to PWM and \overline{SKIP} commands. If VDD falls below the lower UVLO threshold ($V_{UVLO_L} = V_{UVLO_H} - V_{UVLO_L}$), the device disables the driver and drives the outputs of DRVH and DRVL actively low. Figure 15 shows this function.

CAUTION

Do not start the driver in the very low power mode (SKIP = Tri-state).

Feature Description (continued)

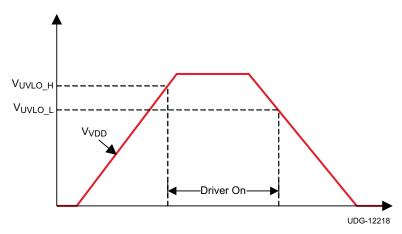


Figure 15. UVLO Operation

7.3.2 PWM Pin

The PWM pin incorporates an input tri-state function. The device forces the gate driver outputs to low when PWM is driven into the tri-state window and the driver enters a low power state with zero exit latency. The pin incorporates a weak pullup to maintain the voltage within the tri-state window during low-power modes. Operation into and out of a tri-state condition follows the timing diagram outlined in Figure 16.

When VDD reaches the UVLO_H level, a tri-state voltage range (window) is set for the PWM input voltage. The window is defined as the PWM voltage range between PWM logic high (V_{IH}) and logic low (V_{II}) thresholds. The device sets high-level input voltage and low-level input voltage threshold levels to accommodate both 3.3-V (typical) and 5-V (typical) PWM drive signals.

When the PWM exits the tri-state condition, the driver enters CCM for a period of 4 µs, regardless of the state of the SKIP pin. Typical operation requires this time period in order for the auto-zero comparator to resume.

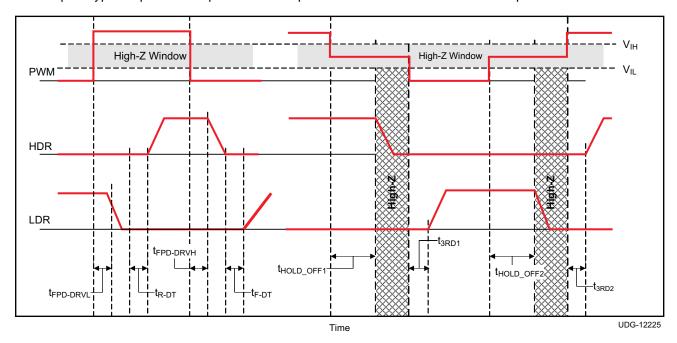


Figure 16. PWM Tri-State Timing Diagram

Product Folder Links: TPS51604

Copyright © 2012-2015, Texas Instruments Incorporated

Feature Description (continued)

7.3.3 **SKIP** Pin

The \overline{SKIP} pin incorporates the input tri-state buffer as PWM. The function is somewhat different. When \overline{SKIP} is low, the zero crossing (ZX) detection comparator is enabled, and DCM mode operation occurs if the load current is less than the critical current. When \overline{SKIP} is high, the ZX comparator disables, and the converter enters FCCM mode. When the \overline{SKIP} pin is in a tri-state condition, typical operation forces the gate driver outputs low and the driver enters a very-low-power state. In the low-power state, the UVLO comparator remains off to reduce quiescent current. When the \overline{SKIP} pin voltage is pulled either low or high, the driver wakes up and is able to accept PWM pulses in less than 50 µs.

Table 1 shows the logic functions of UVLO, PWM, SKIP, DRVH, and DRVL.

	· a · · - · g. · · · · · · · · · · · · · · · · ·									
UVLO	PWM	SKIP	DRVL	DRVH	MODE					
Active	_	_	Low	Low	Disabled					
Inactive	Low	Low	High ⁽¹⁾	Low	DCM ⁽¹⁾					
Inactive	Low	High	High	Low	FCCM					
Inactive	High	H or L	Low	High						
Inactive	Tri-state	H or L	Low	Low	Low power					
Inactive	_	Tri-state	Low	Low	Very-low power					

Table 1. Logic Functions of the TPS51604

7.3.3.1 Zero Crossing (ZX) Operation

The zero crossing comparator is adaptive for improved accuracy. As the output current decreases from a heavy load condition, the inductor current also reduces and eventually arrives at a *valley*, where it touches zero current, which is the boundary between continuous conduction and discontinuous conduction modes. The SW pin detects the zero-current condition. When this zero inductor current condition occurs, the ZX comparator turns off the rectifying MOSFET.

7.3.4 Adaptive Dead-Time Control and Shoot-Through Protection

The driver utilizes an anti-shoot-through and adaptive dead-time control to minimize low-side body diode conduction time and maintain high efficiency. When the PWM input voltage becomes high, the low-side MOSFET gate voltage begins to fall after a propagation delay. At the same time, DRVL voltage is sensed, and high-side driving voltage starts to increase after DRVL voltage is lower than a proper threshold.

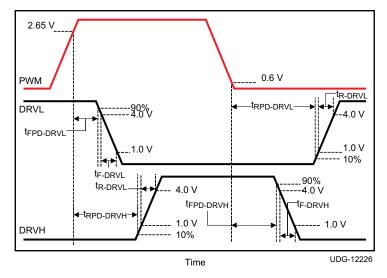


Figure 17. Rise and Fall Timing and Propagation Delay Definitions

⁽¹⁾ Until zero crossing protection occurs.

Typical operation manages to near zero the dead-time between the low-side gate turn-off to high-side gate voltage turn-on, and high-side gate turn-off to low-side gate turn-on, in order to avoid simultaneous conduction of both MOSFETs, as well as to reduce body diode conduction and recovery losses. This operation also reduces ringing on the leading edge of the SW waveform.

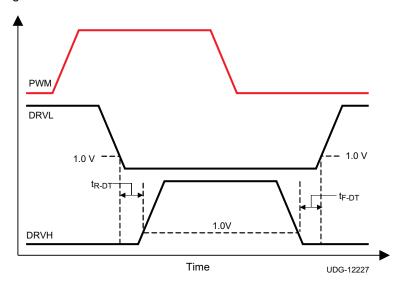


Figure 18. Dead-Time Definitions

7.3.5 Integrated Boost-Switch

To maintain a BST-SW voltage close to VDD (to get lower conduction losses on the high-side FET), the conventional diode between the VDD pin and BST pin is replaced by a FET, which is gated by the DRVL signal.

7.4 Device Functional Modes

The TPS51604 device operates in CCM mode when the SKIP pin is high, and it enters DCM mode when the SKIP pin is low. When both the SKIP pin and the PWM pin are in a tri-state condition, it forces the gate driver outputs low and the driver enters a very-low-power state.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS51604 driver is optimized for high-frequency CPU V_{CORE} applications. Advanced features such reduced dead-time drive and Auto Zero Crossing are used to optimize efficiency over the entire load range.

8.2 Typical Application

Figure 19 and Figure 20 show a 2-phase design example where TPS51604 device works with the TPS51632 controller and the CSD87381 power block.

Typical Application (continued)

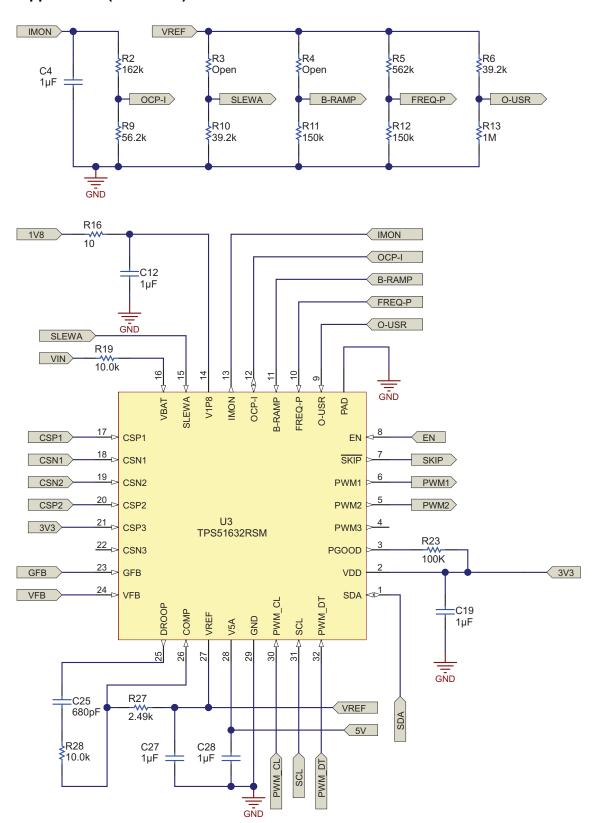
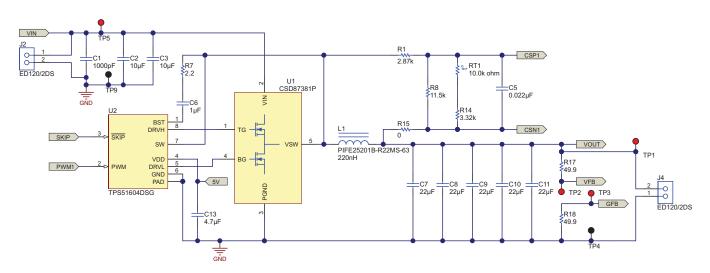



Figure 19. Controller Schematic

Typical Application (continued)

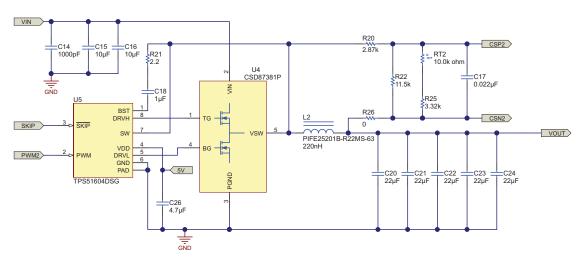


Figure 20. Driver, Power Block, and Output Stage Schematic

Typical Application (continued)

8.2.1 Design Requirements

The design example uses the input parameters summarized in Table 2.

Table 2. Design Requirements

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IN}	Input voltage		6	12	20	V
V_{OUT}	Output voltage			1.2		V
V _{P_P}	Output ripple voltage	I _{OUT} = 12 A		20		mV
I _{OUT}	Output current		0		12	Α
η	Efficiency	I _{OUT} = 12 A, V _{IN} - 12 V		80%		
f_{SW}	Switching frequency			1000		kHz

8.2.2 Detailed Design Procedure

8.2.2.1 Step 1: Select the Input (VDD) Capacitor

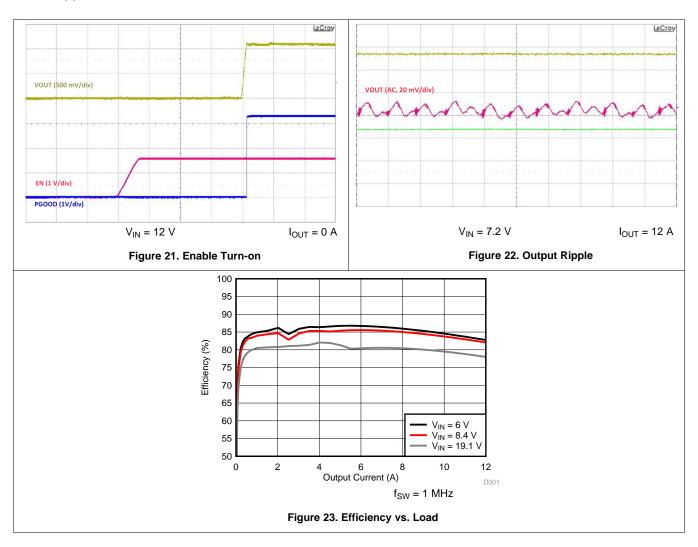
A 5-V power supply is suggested for VDD. Placed a ceramic capacitor with a value of 1 uF or greater between VDD and GND.

8.2.2.2 Step 2: Select Boot Capacitor and Boot Resistor

The boot capacitor is the power supply for high-side driver. Place a ceramic capacitor with a value of 0.1 μ F or greater between the BST pin and the SW pin.

To reduce the voltage spike on switch node, use a boot resistor with a value of several Ohms in series with boot capacitor to slow the turn-on of high-side FET.

8.2.2.3 Step 3: Establish Connection Between TPS51604 and Controller


Connect the PWM pin of the TPS51604 device to the PWM pin of the controller. The TRIP pins can be used for DCM mode or very-low-power state. Leave the TRIP pin floating if it is not in use.

8.2.2.4 Step 4: Establish Connection Between TPS51604 and the Power Block

Connect the DRVH pin of the TPS51604 device to the gate of the high-side FET of the power block. Connect the DRVL pin of the TPS51604 device to the gate of the low-side FET of the power block. Connect the SW pins of the TPS51604 device to the switch node as required by the high-side driver fo the power block.

8.2.3 Application Curves

Submit Documentation Feedback

9 Power Supply Recommendations

The voltage range for the VDD pin is between 4.5 V and 5.5 V. A 5-V power supply is recommended for the VDD pin of the TPS51604 device.

10 Layout

10.1 Layout Guidelines

To improve the switching characteristics and design efficiency, these layout rules must be considered:

- Locate the driver as close as possible to the MOSFETs.
- Locate the VDD and bootstrap capacitors as close as possible to the driver.
- Pay special attention to the GND trace. Use the thermal pad of the package as the GND by connecting it to the GND pin. The GND trace or pad from the driver goes directly to the source of the MOSFET, but should not include the high current path of the main current flowing through the drain and source of the MOSFET.
- Use a similar rule for the switch-node as for the GND.
- Use wide traces for DRVH and DRVL closely following the related SW and GND traces. A width of between 80 and 100 mils is preferable where possible.
- Place the bypass capacitors as close as possible to the driver.
- Avoid PWM and enable traces going close to the SW and pad where high dV/dT voltage can induce significant noise into the relatively high-impedance leads.

A poor layout can decrease the reliability of the entire system.

10.2 Layout Example

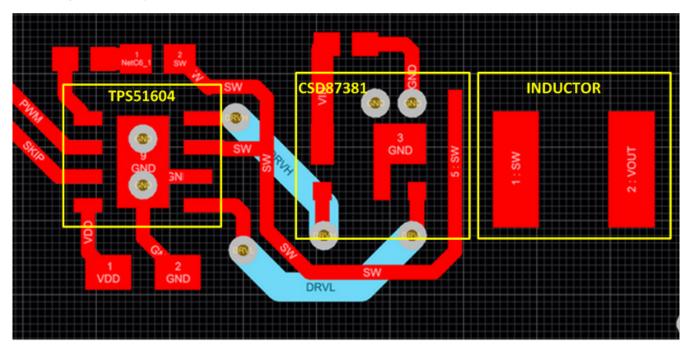


Figure 24. Layout Recommendation

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

For the Power Stage Designer, go to www.ti.com/tool/powerstage-designer.

11.2 Documentation Support

11.2.1 Related Documentation

- TPS51632 3-2-1 Phase D-Cap+ ™Step-Down Driverless Controller for Tegra® CPUs SLUSBM3
- CSD87330 30-V Synchronous Buck NexFET™ Power Block SLPS284

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

D-Cap+, NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 17-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPS51604DSGR	Active	Production	WSON (DSG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604
TPS51604DSGR.A	Active	Production	WSON (DSG) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604
TPS51604DSGT	Active	Production	WSON (DSG) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604
TPS51604DSGT.A	Active	Production	WSON (DSG) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604
TPS51604DSGTG4	Active	Production	WSON (DSG) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604
TPS51604DSGTG4.A	Active	Production	WSON (DSG) 8	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	1604

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

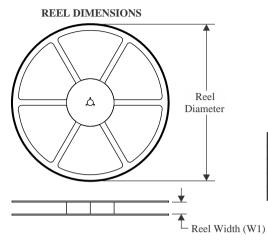
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

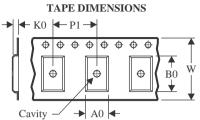
PACKAGE OPTION ADDENDUM

www.ti.com 17-Jun-2025

OTHER QUALIFIED VERSIONS OF TPS51604:

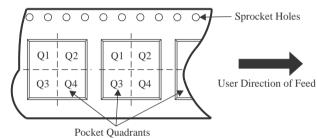
Automotive: TPS51604-Q1


NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

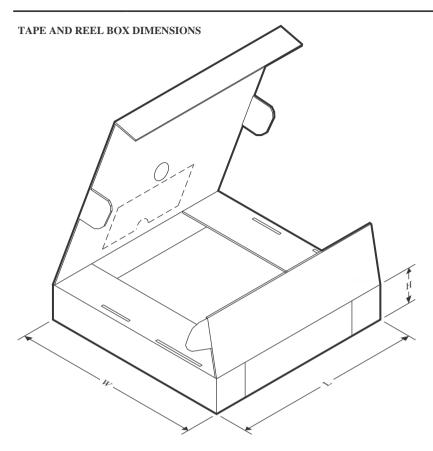
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jun-2025


TAPE AND REEL INFORMATION

	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

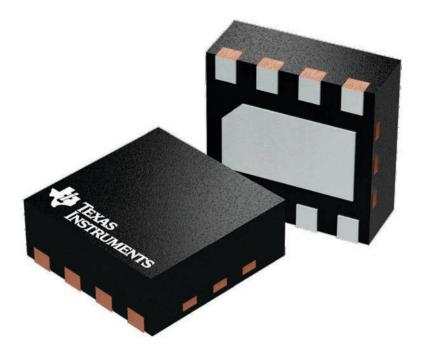
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

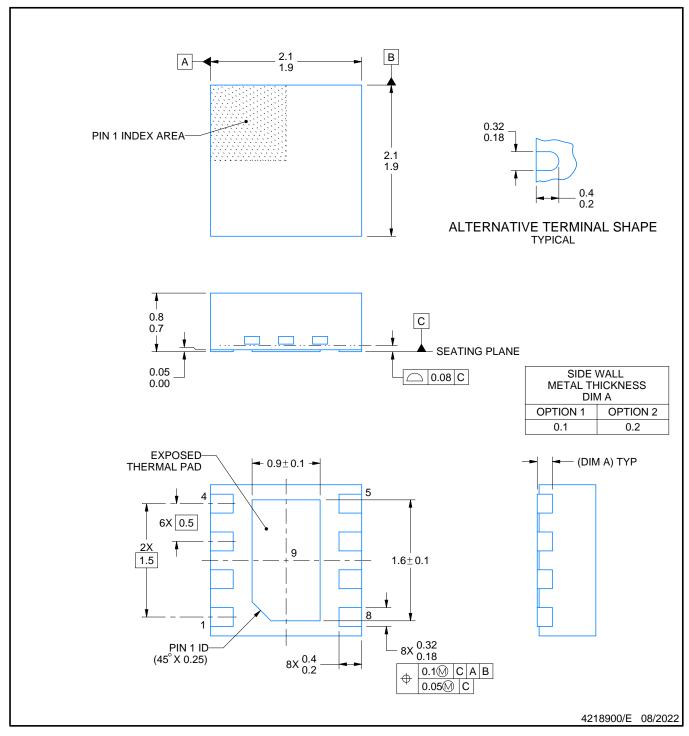
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS51604DSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS51604DSGT	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
TPS51604DSGTG4	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2

www.ti.com 25-Jun-2025


*All dimensions are nominal

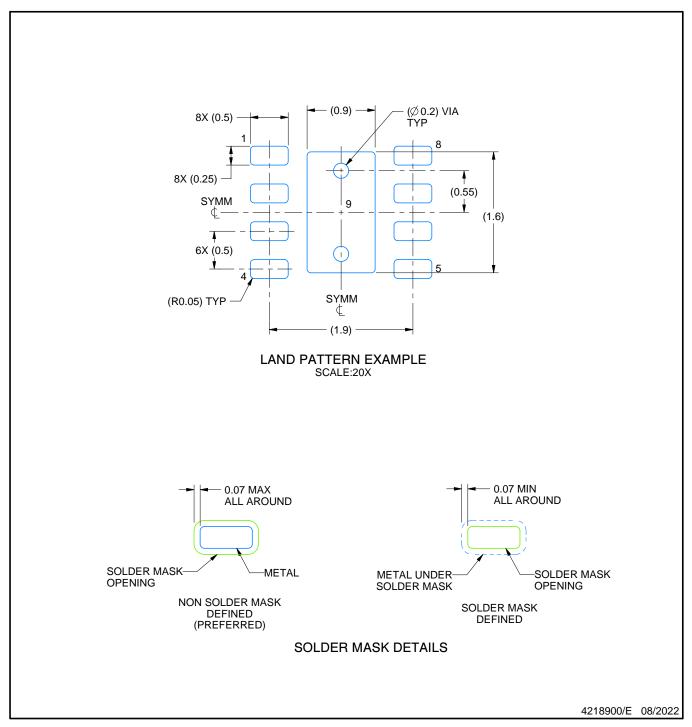
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS51604DSGR	WSON	DSG	8	3000	182.0	182.0	20.0
TPS51604DSGT	WSON	DSG	8	250	182.0	182.0	20.0
TPS51604DSGTG4	WSON	DSG	8	250	182.0	182.0	20.0

2 x 2, 0.5 mm pitch


PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

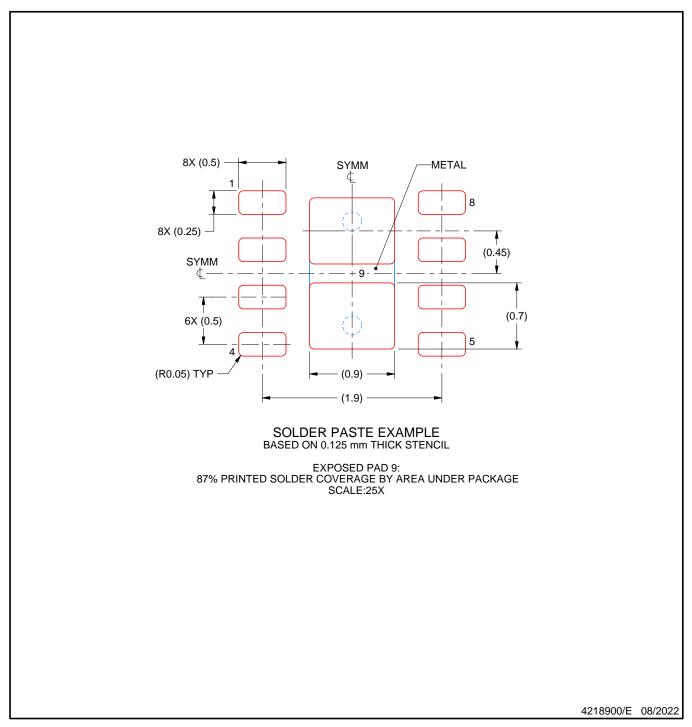
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated