BUF802 JAJSMA5C - JUNE 2021 - REVISED MARCH 2022 # BUF802 広帯域幅、2.3nV/√Hz、高入力インピーダンス・バッファ # 1 特長 - 大信号带域幅 (1V_{PP}):3.1GHz - スルーレート:7000V/µs - 入力電圧ノイズ:2.3nV/√Hz - 1% セトリング・タイム:0.7ns - 入力インピーダンス:50GΩ || 2.4pF - 50Ω 負荷を駆動可能 - 消費電力と性能をトレードオフする調整可能な静止電 - オーバードライブから素早く回復する入力および出力 クランプを内蔵 - 電源電圧:±4.5V~±6.5V # 2 アプリケーション - オシロスコープのフロント・エンド - 高周波データ・アクイジション - 高入力インピーダンスおよび高スルーレート T&M シス - オシロスコープのエンコーダとフロント・エンドのアドオ ン・カード - アクティブ・プローブ - 非破壊検査 (NDT) ### + 6V IN 50 Ω OUT \bigcirc **BUF802** >1 GΩ Impedance 50 Ω - 6V 使用したインピーダンス変換回路 BUF802 # 3 説明 BUF802 デバイスは、データ・アクイジション・システム (DAQ) フロント・エンド向けの低ノイズ、高インピーダンス・ バッファリングを行う JFET 入力段を備えたオープン・ルー プのユニティ・ゲイン・バッファです。BUF802 は DC~ 3.1GHz の帯域幅をサポートし、この周波数範囲全体にわ たって非常に優れた歪みおよびノイズ性能を実現します。 BUF802 は、比較的高い精度の性能が必要なアプリケー ションで、高精度アンプを備えた複合ループに使用できま す。BUF802 は、革新的なアーキテクチャを使用して、高 精度で広帯域幅の複合ループの設計を簡素化します。 BUF802 は、調整可能な静止電流ピンを備えているた め、帯域幅および歪みと静止電流とのトレードオフを調整 できます。そのため本デバイスは、広い周波数範囲に適し ています。BUF802 は、入力および出力クランプを内蔵し ており、本デバイスとそれに続く信号チェーンをオーバー ドライブ電圧から保護します。 # デバイス情報(1) | 部品番号 | パッケージ | 本体サイズ (公称) | |--------|-----------|-----------------| | BUF802 | VQFN (16) | 3.00mm × 3.00mm | 利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。 過渡応答 # **Table of Contents** | 1 特長 | 1 | 8.3 Feature Description | 16 | |---|---|--|------| | 2 アプリケーション | | 8.4 Device Functional Modes | | | 3 説明 | | 9 Application and Implementation | 22 | | 4 Revision History | | 9.1 Application Information | | | 5 Pin Configuration and Functions | | 9.2 Typical Application | | | 6 Specifications | | 10 Power Supply Recommendations | 27 | | 6.1 Absolute Maximum Ratings | | 11 Layout | 27 | | 6.2 ESD Ratings | | 11.1 Layout Guidelines | . 27 | | 6.3 Recommended Operating Conditions | | 11.2 Layout Example | . 28 | | 6.4 Thermal Information | | 12 Device and Documentation Support | 30 | | 6.5 Electrical Characteristics: Wide Bandwidth Mode | | 12.1 Documentation Support | 30 | | 6.6 Electrical Characteristics: Low Quiescent | | 12.2 Receiving Notification of Documentation Updates | 30 | | Current Mode | 7 | 12.3 サポート・リソース | . 30 | | 6.7 Typical Characteristics | | 12.4 Trademarks | 30 | | 7 Parameter Measurement Information | | 12.5 Electrostatic Discharge Caution | 30 | | 8 Detailed Description | | 12.6 Glossary | 30 | | 8.1 Overview | | 13 Mechanical, Packaging, and Orderable | | | 8.2 Functional Block Diagram | | Information | 30 | | | | | | | | | | | | | | | | | 1 Pavision History | | | | 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision B (February 2022) to Revision C (March 2022) | Page | |---|------| | Relaxed DC Gain specifications | 5 | | Relaxed DC Gain specifications | | | Changes from Revision A (December 2021) to Revision B (February 2022) | Page | | Updated the Application and Implementation section | 24 | | Changes from Revision * (June 2021) to Revision A (December 2021) | Page | | • データシートのステータスを事前情報から <i>量産データに変更</i> | 1 | # **5 Pin Configuration and Functions** 図 5-1. RGT Package, 16-Pin VQFN (Top View and Bottom View) 表 5-1. Pin Functions | F | PIN Operating | | Operating | DESCRIPTION | |----------------------|---------------|---|-------------------------|---| | NAME | NO. | ITPE | Mode ⁽¹⁾ (2) | | | Aux_Bias | 6 | Р | CL | Connect to V _{S-} to enable control of OUT through the In_Aux. | | CLH | 15 | Į | BF, CL | Input pin for setting positive clamp voltage | | CLL | 14 | I | BF, CL | Input pin for setting negative clamp voltage | | IN | 2 | I | BF, CL | Signal input | | In_Aux | 4 | I | CL | Auxiliary input for controlling OUT through an external amplifier. | | In_Bias | 3 | I | CL | JFET biasing pin | | NC | 16, 13, 9 | _ | _ | Do not connect. | | OUT | 11 | 0 | BF, CL | Signal output | | R_Bias | 7 | I | BF, CL | Output stage bias current setting pin | | V _{S+} | 1 | Р | BF, CL | Positive power supply connection for Input Stage. | | V _{S-} | 5, 8 | Р | BF, CL | Negative power supply connection for Input Stage. Pin 5 and Pin 8 are internally shorted. | | V _{SO+} (3) | 12 | Р | BF, CL | Positive power supply connection for Output Stage. | | V _{SO-} (3) | 10 | Р | BF, CL | Negative power supply connection for Output Stage. | | | | The thermal pad is electrically isolated from the die and pins. Connect the thermal pad to any potential. | | | - (1) See セクション 8.4 for more information on *Buffer Mode (BF)* and *Composite Loop Mode (CL)* functional modes. - (2) Pins specified as CL should only be used when operating in Composite Loop Mode and left floating when operating in Buffer Mode. - (3) V_{SO} and V_S should be tied to the same potential since they are internally connected to each other through back-to-back diodes. - (4) I = input, O= output, P= power, NC = no connect. # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |----------------------------------|---|---------------------------------------|-----------------|------| | $V_{S} = (V_{S+}) - (V_{S-})$ | Supply voltage ⁽²⁾ | | 14 | V | | $V_{SO} = (V_{SO+}) - (V_{SO-})$ | Supply Voltage | | 14 | V | | | Maximum dV _S /dT for supply turn-on and turn-off | | 0.1 | V/µs | | IN | Input | (V _{S+}) to (V _S | _) – 0.5 | V | | CLH | Positive Clamp | Mid-supply | V _{S+} | | | CLL | Negative Clamp | V _{S-} | Mid-supply | V | | | Input Clamp Diode | | 100 | mA | | TJ | Junction temperature | | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime. (2) V_{SO} and V_{S} should be tied to the same potential. V_{SO} and V_{S} are internally connected to each other through back to back diodes. ### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±1000 | V | | V _(ESD) | Electrostatic discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±500 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. # **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |-----------------------------------|-----------------------|------|-----|------|------| | V = 0/ \ 0/ \(\sigma(1)\) | Dual Supply voltage | ±4.5 | ±5 | ±6.5 | V | | $V_S = (V_{S+}) - (V_{S-})^{(1)}$ | Single Supply voltage | 9 | 10 | 13 | V | | T _A | Ambient temperature | -40 | 25 | 85 | °C | (1) BUF802 can be used with any possible combination of V_{S+} and V_{S-} , provided the recommended operating condition is not exceeded ### 6.4 Thermal Information | | | BUF802 | | |-----------------------|--|------------|------| | | THERMAL METRIC ⁽¹⁾ | RGT (VQFN) | UNIT | | | | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 53 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 61 | °C/W | | R _{θJB} | Junction-to-board thermal resistance | 27 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 2.7 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 27 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | 13 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # 6.5 Electrical Characteristics: Wide Bandwidth Mode at T_A = 25°C, V_S = \pm 6V, R_L = 100 Ω || 400 fF, R_S = 25 Ω , V_{OCM} = 0V (mid-supply), CLH and CLL tied to V_{S+} and V_{S-} respectively, Wide Bandwidth Mode unless otherwise specified (R_Bias = 17.8 k Ω) | PARAMETER | | Test Condition | | MIN | TYP | MAX | UNIT | |----------------------|-------------------------------|--|----------------------------------|------|---------|-------|---------------| | AC PERFO | DRMANCE | | | | | | | | SSBW | Small-Signal Bandwidth | V _{OUT} = 100 mV _{PP} | | | 3.1 | | | | | | V _{OUT} = 1 V _{PP} | | | 3.1 | | | | LSBW | Large-Signal Bandwidth | V _{OUT} = 2 V _{PP} | | | 1.6 | | | | | Bandwidth for 0.1 dB flatness | | | 0.6 | | | GHz | | | Bandwidth for -1 dB flatness | V _{OUT} = 1 V _{PP} | | | 1.8 | | | | | Bandwidth for -2 dB flatness | _ | R _L = 50 Ω | | 2.4 | | | | SR | Slew rate | V _{OUT} = 1.2-V step, V _{IN} -SR = | 13000 V/µs | | 7000 | | V/µs | | | D: 16 H.C | V _{OUT} = 1.2-V step (10% to 9 | 0%) | | 0.16 | | | | | Rise and fall time | V _{OUT} = 0.25-V step (10% to | 90%) | | 0.15 | | ns | | | Settling time to 0.1% | | 40000.44 | | 1.3 | | | | | Settling time to 1% | V_{OUT} = 1.2-V step, V_{IN} -SR = | 13000 V/µs | | 0.7 | | ns | | | | 1/f corner | | 18 | | kHz | | | e _n | Voltage noise | f = 100 MHz in <i>BF Mode</i> and <i>CL Mode</i> | | | 2.3 | | nV/√Hz | | i _n | Current noise | f = 10 kHz | | | 1.5 | | pA/√Hz | | | Harmonic distortion | V _{OUT} = 2 V _{PP} | f = 500 MHz | | -68/-58 | | | | | | | f = 1 GHz | | -55/-59 | | dBc | | HD2/HD3 | | V _{OUT} = 1 V _{PP} | f = 2 GHz | - | -45/-49 | | | | | | | f = 2 GHz, R _L = 50 Ω | , | -43/-41 | | | | DC PERFO | DRMANCE | | 1 | , | | | | | | l | V _{OUT} – V _{IN} | | | -600 | -800 | | | V _{OS} | Input offset voltage | T _A = -40°C to 85°C | | | | -900 | mV | | dV _{OS} /dT | Input offset voltage drift | $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$ | | | ±700 | ±1330 | μV/°C | | 1 | Input bigg gurrant | T _A = -40°C to 85°C | | | 3 | 25 | n 1 | | I _B | Input bias current | | | 220 | | - pA | | | | Auviliant Input bigg gurrant | | | | 44 | 140 | | | I _{AB} | Auxiliary Input bias current | T _A = -40°C to 85°C | | | | 200 | μA | | | | | R _L = 200 Ω | 0.97 | 0.978 | 0.99 | 3
7
V/V | | | | V _{OUT} = ± 0.5 V | R _L = 100 Ω | 0.96 | 0.971 | 0.98 | | | G | DC Gain | | R _L = 50 Ω | 0.95 | 0.961 | 0.97 | | | G | DG Gaill | ., | R _L = 200 Ω | 0.97 | | 0.99 | | | | | $V_{OUT} = \pm 0.5 \text{ V }, T_A = -40^{\circ}\text{C}$
to 85°C | R _L = 100 Ω | 0.96 | | 0.98 | | | | | | R _L = 50 Ω | 0.94 | | 0.97 | | # 6.5 Electrical Characteristics: Wide Bandwidth Mode (continued) at T_A = 25°C, V_S = ±6V, R_L = 100 Ω || 400 fF, R_S = 25 Ω , V_{OCM} = 0V (mid-supply), CLH and CLL tied to V_{S+} and V_{S-} respectively, Wide Bandwidth Mode unless otherwise specified (R_B ias = 17.8 $k\Omega$) | PARAMETER | | Test Condition | | MIN | TYP | MAX | UNIT | |------------------|---------------------------------------|------------------------------------------------------------------|-----------------------------------|-----------------------|---------------------|-----------------------|-----------------| | INPUT | | | | | | | | | Z _{IN} | Input impedance | f = 100 MHz | | | 50 2.4 | | GΩ pF | | | Input Clamp current rating | Continous Current Rating | | | 100 | | mA | | | V _{CLH} range ⁽¹⁾ | | | 0 | | V _{S+} | V | | | V _{CLL} range ⁽¹⁾ | | | V _{S-} | | 0 | V | | | CLH Clamping Time | Time taken to clamp V _{OUT} to | V _{CLH} during overdrive | | 0.2 | | 2000 | | | CLL Clamping Time | Time taken to clamp V _{OUT} to | V _{CLL} during overdrive | | 0.2 | | nsec | | | | | f = 500 MHz | | 4.5 | | | | | Input Voltage Range | THD = - 40 dBc | f = 1 GHz | | 2.1 | | V _{PP} | | | | | f = 2 GHz | | 1.2 | | | | OUTPUT | · · | | | | | | | | | | T 25°C | | V _{S+} – 1.9 | | | | | | Output Swing | $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ | | | | V _{S-} + 3.4 | V | | | Output Swing | | | V _{S+} – 2.0 | | | | | | | 1 _A = -40 C to 65 C | | | | V _{S-} + 3.4 | | | Z _O | Output impedance | f = 100 MHz | | | 1.2 | | Ω | | AUXILIA | RY INPUT | | | | | | | | G | V _{OUT} to In_Aux Gain | | | 0.18 | 0.26 | | V/V | | G _{AUX} | VOUT TO III_AUX Gaill | | $T_A = -40$ °C to 85°C | | 0.23 | | V/V | | | Default voltage at In_Aux | | | V _{S-} + 2.3 | V _{S-} + 3 | V _{S-} + 3.8 | V | | | In_Aux Input Voltage Range | | | V _{S-} + 1.0 | | V _{S-} + 5.0 | V | | | V _{OUT} to In_Aux Bandwidth | | | | 800 | | MHz | | | RHF | Resistance between In_Bias | to JFET source | | 100 | | kΩ | | POWER | SUPPLY | | | | | | | | Vs | Operating voltage range | | | ±4.5 | | ±6.5 | V | | | | | | | 34 | 37 | | | IQ | Quiescent current | $I_{OUT} = 0 (R_bias = 17.8 k\Omega)$ | $T_A = -40$ °C to 85°C | | 35.5 | | mA | | | | CL M | CL Mode enabled | | 36 | 40 | | | PSRR | Power-supply rejection ratio | PSRR at 100 kHz on V _{S+} | | | 49 | | dB | | JUNIX | ower-supply rejection ratio | PSRR at 100 kHz on V _S _ | | 38 | | | uВ | ⁽¹⁾ The 0-V limits are for bipolar and balanced power supplies. For other supply configurations mid-supply will set the minimum limit for V_{CLH} and maximum limit for V_{CLL} Submit Document Feedback # 6.6 Electrical Characteristics: Low Quiescent Current Mode at T_A = 25°C, V_S = ± 6 V, R_L = 100 Ω || 400 fF. R_S = 25 Ω , V_{OCM} = 0 V (mid-supply), CLH and CLL tied to V_{S+} and V_{S-} respectively, Low Quiescent Current Mode unless otherwise specified (R_Bias = 35.7 k Ω) | PARAMETER | | Test Condition | | MIN | TYP | MAX | UNIT | |----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|------|---------|------|--------| | AC PERFO | DRMANCE | | | | | | | | SSBW | Small-Signal Bandwidth | V _{OUT} = 100 mV _{PP} | | | 2.6 | | | | LODIA | Lawrence Oleman I Daniel Andrew | V _{OUT} = 1 V _{PP} | | | 2 | | | | LSBW | Large-Signal Bandwidth | V _{OUT} = 2 V _{PP} | | | 0.7 | | GHz | | | Bandwidth for 0.1 dB flatness | | | | 0.45 | | | | | Bandwidth for -1 dB flatness | $V_{OUT} = 1 V_{PP}$ | | | 1.4 | | | | SR | Slew rate | V _{OUT} = 1.2-V step, V _{IN} -SR = | 13000 V/µs | | 5500 | | V/µs | | | D: 16 H.C | V _{OUT} = 1.2-V step (10% to 9 | 90%) | | 0.3 | | | | | Rise and fall time | V _{OUT} = 0.25-V step (10% to | 90%) | | 0.16 | | ns | | | Settling time to 0.1% | | 4000014 | | 1.4 | | | | | Settling time to 1% V _{OUT} = 1.2-V step, V _{IN} -SR = 13000 V/µs | | = 13000 V/μs - | | 0.8 | | ns | | | | 1/f corner | | | 10 | | kHz | | e _n | Voltage noise | f = 100 MHz | | | 2.2 | | nV/√Hz | | i _n | Current noise | f = 10 kHz | | | 1.5 | | pA/√Hz | | | O3 Harmonic distortion | V _{OUT} = 2 V _{PP} | f = 500 MHz | | -35/-32 | | | | HD2/HD3 | | V _{OUT} = 1 V _{PP} | f = 100 MHz | | -80/-77 | | dBc | | | | | f = 500 MHz | | -56/-54 | | | | DC PERFO | DRMANCE | | | | | | | | | | V _{OUT} = ± 0.5 V | R _L = 200 Ω | 0.96 | 0.975 | 0.99 | V/V | | • | | | R _L = 100 Ω | 0.95 | 0.963 | 0.98 | | | G | DC Gain | $V_{OUT} = \pm 0.5 \text{ V }, T_A = -40^{\circ}\text{C}$ | R _L = 200 Ω | 0.96 | | 0.99 | | | | | to 85°C | R _L = 100 Ω | 0.95 | | 0.98 | | | INPUT | | | | | | | | | | CLH Clamping Time | Time taken to clamp V _{OUT} to | V _{CLH} during overdrive | | 0.3 | | | | | CLL Clamping Time | Time taken to clamp V _{OUT} to | V _{CLL} during overdrive | | 0.7 | | nsec | | OUTPUT | | | | | | | | | Z _O | Output impedance | f = 100 MHz | | | 1.2 | | Ω | | POWER S | UPPLY | | | | | | 1 | | Vs | Operating voltage range | | | ±4.5 | | ±6.5 | V | | | 0 | 0 (0 1:00 05 71 0) | | | 21 | 24 | | | IQ | Quiescent current | $I_{OUT} = 0 (R_bias = 35.7 k\Omega)$ | T _A = -40°C to 85°C | | 22 | | mA | | | | | | | | | | # **6.7 Typical Characteristics** ## 7 Parameter Measurement Information ☑ 7-1 through ☑ 7-3 show the various test setup configurations for the BUF802. 図 7-1. Main Path Electrical Characteristics Measurement 図 7-2. Main Path and Auxiliary Path 図 7-3. Auxiliary Path Electrical Characteristics Measurement 図 7-2 shows the two inputs for BUF802 (IN and In_Aux) which control the output. The IN pin controls the output of BUF802 through the Main Path, whereas the In_Aux pin controls the output through the Auxiliary Path. Either the Main Path or the Auxiliary Path, can be used to steer the output. The electrical characteristics of the Main Path and the Auxiliary Path is specified in セクション 6.7. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # **8 Detailed Description** ### 8.1 Overview The BUF802 device is a high input-impedance, open-loop buffer that can be used in signal acquisition front-end applications. The BUF802 can be used as a standalone buffer, *Buffer Mode (BF Mode)*, or in a composite loop with a precision amplifier, *Composite Loop Mode (CL Mode)*, to achieve DC precision and a wide, large-signal bandwidth. The low output impedance and high output current drive strength enables the BUF802 to drive loads as high as $50~\Omega$. The BUF802 comes with adjustable quiescent current to customize system level power and performance trade-off. ### 8.2 Functional Block Diagram 図 8-1. Functional Block Diagram ☑ 8-1 shows an overview of the internal structure of the BUF802. The internal schematic of the BUF802 can be divided into the following 3 parts: - **Input Stage**, which consists of a low noise JFET and its biasing circuitry. The Input Stage can be configured in two modes, *BF Mode* and *CL Mode*. Choosing one of the two modes affects the circuit operation of the Input Stage. The Clamp and Output Stage operation are unaffected by the mode selection. セクション 8.4 describes the two modes in greater detail. - Clamp Stage, which provides the following functions: - 1. Protects the input of the BUF802 against large input signal transients through diode clamps to V_{S-} and CLH respectively. - 2. Ensures the output voltage of the BUF802 does not exceed the voltage at the CLH and CLL. - Output Stage, which tracks the JFET source voltage and is optimized to drive a 50 Ω and 100 Ω load while maintaining signal fidelity. ## 8.3 Feature Description ### 8.3.1 Input and Output Over-Voltage Clamp 図 8-2. Internal Input and Output Over-Voltage Clamp The BUF802 device integrates an input and output clamp circuit. The input clamp protects the BUF802 from large input transients and the output clamp protects the subsequent stages from being overdriven. ### Input Clamp Circuit: - ☒ 8-2 shows the input of the BUF802 tied to pins CLH and V_{S-} through two internal clamp diodes, D1 and D2. The diodes are rated for 100 mA of continuous current but can withstand much higher transient currents. If the JFET input voltage exceeds the voltage at CLH or V_{S-}, the diodes get forward biased, clamping the JFET to CLH and V_{S-}. A 1 µF capacitor connected in parallel to the zener diode, helps in transient absorption travelling through the D1 diode. - \boxtimes 8-3 shows how the external clamping diodes can be used in cases where the 100 mA current rating of D1 and D2 is insufficient. When using external clamping, disable the internal protection of the BUF802 by connecting CLH and CLL to V_{S+} and V_{S-} . 図 8-3. External Input Clamp Circuit #### Output Clamp Circuit: - The output protection circuit prevents the stages following the BUF802 from being overdriven and also ensures that the BUF802 recovers rapidly from a saturated state resulting from an input or output overdrive condition. In a typical data-acquisition system, the BUF802 would be followed by a variable gain amplifier (VGA). High-speed VGAs are typically designed on 5 V processes making it susceptible to potential damage from the 12 V BUF802. The voltage applied to the CLH and CLL pins dictate the maximum output swing of the BUF802. - As shown in \boxtimes 8-3, the internal clamps can be disabled by connecting CLH and CLL to V_{S+} and V_{S-} respectively. When the clamps are disabled, the maximum output swing is limited by the output swing specification described in $\forall \cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}$ 6.5. The response time and accuracy of the output clamp is shown in $\forall \cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}\cancel{0}$ 6.7. - The output THD of the BUF802 degrades when V_{CLH} and V_{CLL} are set close to the expected V_{OUT} peak value. To prevent signal degradation, maintain at least a 1.5 V difference between the expected peak output voltage and the clamp voltage applied at the CLH and CLL pins. ☒ 8-4 shows the relation between the absolute clamp voltage value and THD for a 1 V_{PP} output. \boxtimes 8-4. THD vs V_{CLH} / V_{CLL} for $V_{OUT} = 1 V_{PP}$ **図 8-5. Transient Clamp Response** #### 8.3.2 Adjustable Quiescent Current The BUF802 includes an adjustable quiescent current feature to allow the system designer to trade-off the current consumed versus the distortion performance obtained. As shown in \boxtimes 8-1, connect a resistor between R_Bias and V_S- to set the bias point operating current of the output stages. \boxtimes 8-6 shows the quiescent current variation as a function of R_Bias value. 図 8-6. Quiescent Current vs R_Bias 図 8-7. THD and Bandwidth vs R_Bias 図 8-7 shows that changing the resistor between R_Bias and V_{S-} primarily affects the THD of the output signal. セクション 6.5 and セクション 6.6 specify the AC and DC parameters of the BUF802 at two different R_Bias values. The DC parameters are independent of the quiescent current setting. #### 8.3.3 ESD Structure 図 8-8. Internal ESD Structure #### 8.4 Device Functional Modes 図 8-9. Main Path and Auxiliary Path The BUF802 has been designed to operate in two modes, *Buffer Mode (BF Mode)* and *Composite Loop Mode (CL Mode)*: In *BF Mode*, the BUF802 uses the JFET, output driver and bipolar transistors in the Main Path to reproduce the signal, applied on IN, at the output of the BUF802. \boxtimes 8-9 shows the Main Path and the Auxiliary Path of the BUF802. The BUF802 can operate from DC to high-frequency and can therefore be used as a standalone buffer. While being used in *BF Mode*, only the Main Path of the BUF802 is used. In *CL Mode*, the BUF802 utilizes the Auxiliary signal path and the Main Path to control the output voltage. As the name suggests in the *Composite Loop Mode*, the BUF802 is used in a composite loop with a precision amplifier to achieve DC precision and a wide, large-signal bandwidth simultaneously. The composite loop splits the applied signal to low-frequency and high-frequency components and passes them over to different circuits with suitable transfer function. The low-frequency and high-frequency signal components then recombine inside the BUF802 and are repoduced at the OUT pin. #### 8.4.1 Buffer Mode (BF Mode) 図 8-10. Internal Schematic - BF Mode The wide large-signal bandwidth and fast slew rate of the BUF802 coupled with Hi-Z input are useful in a variety of high-frequency signal chain applications. As shown in \boxtimes 8-10 the BUF802 uses the Main Path and operates the JFET and transistors as source follower and emitter followers to reproduce signal applied on IN, at the output of BUF802. The pins associated with only *CL Mode* (Pin No. 6, 4, and 3) are left floating while operating in *BF Mode*. 図 8-11. Composite Loop Using BF Mode ⊠ 8-11 shows how the BUF802 can also be used in a composite loop while being operated in *BF Mode*. The operation of BUF802 in ⊠ 8-11 would still be called *BF Mode* since the signal is being transferred through the Main Path only. The Auxiliary path and the pins associated with the Auxiliary path and *CL Mode* are kept disabled. The low-frequency and high-frequency signal components are combined externally through the discrete components R1 and C1 prior to being applied at the IN pin. #### 8.4.2 Composite Loop Mode (CL Mode) 図 8-12. Internal Schematic - CL Mode 図 8-13. CL Mode Frequency Response The 330 pF input series capacitor shown in 🗵 8-12 splits the input signal into a low-frequency and high-frequency component. These signals are applied to In_Aux and IN respectively. The IN pin controls the output of BUF802 through the Main Path, whereas the In_Aux pin controls the output through the Auxiliary Path. The transfer function of the composite loop in *CL Mode* can be split into the following 3 frequency regions: - 1. **Low Frequency Region**: The gain of the composite loop in the low-frequency region is α/β (determined by α and β network). In the low-frequency region the 330 pF input capacitor presents a high-impedance in the Main Path, causing the signal to flow through the precision amplifier and the In_Aux pin. This region spans from DC to f_{LF} . f_{LF} is the pole resulting from the gain bandwidth of the precision amplifier, the Auxiliary Path bandwidth, and parasitic capacitance of the components along the path. - 2. High Frequency Region: In the high-frequency region, the precision amplifier and the Auxiliary Path run out of bandwidth. The net gain of the composite loop in this region is determined solely by the Main Path gain of the BUF802, which is denoted by G. This region spans from the pole created at f_{HF} till the LSBW of the BUF802. The f_{HF} is the pole resulting from the 330 pF series capacitor and the 10 MΩ resistor on the In_Bias pin. - 3. **Cross-over Frequency Region**: the Main Path and Auxiliary Path work in conjunction to determine the gain in the crossover region. To maintain a flat frequency response in this region, the following conditions have to be met: - a. $\alpha/\beta = G$ - b. High frequency response pole f_{HF}<< Low frequency pole f_{LF} A detailed analysis of discrete component selection to achieve a flat frequency response is discussed further in セクション 9.1. # 9 Application and Implementation #### Note 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 # 9.1 Application Information The BUF802 offers a wide large-signal bandwidth, high-slew rate along with high-input impedance making it ideal for data acquisition systems. In applications where DC precision is not needed or in cases where the input is AC coupled, the BUF802 can be used as a standalone input buffer in *BF Mode*. In case the precision required is higher than that offered by the BUF802, operate the BUF802 in *CL Mode* with a precision amplifier in a composite loop. # 9.2 Typical Application ### 9.2.1 Oscilloscope Front-End Amplifier Design 図 9-1. Oscilloscope Front-End Amplifier ### 9.2.1.1 Design Requirements The following table shows the target specification for a 1-GHz oscilloscope front-end and precision amplifier. | Specification | Value | | | |------------------------------------------|-----------------------------|--|--| | Input Impedance | 1 ΜΩ / 50 Ω | | | | S Parameters (f = 1 GHz) | S11 = -15 dB, S21 = -1.5 dB | | | | Offset Drift | 1 μV/°C maximum | | | | Noise at Highest Resolution (50 Ω Input) | 80 μV _{RMS} | | | #### 9.2.1.2 Detailed Design Procedure - Input Impedance: The JFET-input stage of the BUF802 offers giga ohm's of input impedance and therefore enables the front-end to be terminated with a 1 M Ω resistor without affecting performance. A 50 Ω resistance can also be switched in offering matched termination for high-frequency signals. The BUF802 therefore enables the designer to use both 1 M Ω and 50 Ω termination in the same signal chain. - **Noise**: The total noise of the front-end amplifier is the function of the voltage and current noise of the BUF802, OPA140, and the resistors thermal noise. The dominant noise source, however, is contributed by the voltage noise of the BUF802 due to its presence across the complete bandwidth. Thus, the total RMS noise of the front-end amplifier shall be approximately equal to the voltage noise of BUF802 over 1 GHz. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated The specified input referred voltage noise of the BUF802, as shown in セクション 6.5, is 2.3 nV/√Hz. The total input referred RMS noise in a bandwidth of 1 GHz is given by the following equation: $$En_{RMS} = 2.3 \text{ nV}/\sqrt{Hz} \times \sqrt{(1 \text{ GHz} \times 1.22)} = 80 \mu V_{RMS}.$$ (1) 1.22 = Brickwall correction factor. Detailed calculations can be found on TI Precision Labs – Op Amps: Noise Spectral Density. Total input referred spot noise as a function of frequency is shown in \boxtimes 9-3. Assuming the oscilloscope has 8 divisions on the screen and a highest resolution of 1 mV, the full-scale reading is 8 mV_{PP} or 2.82 mV_{RMS}. Thus, the SNR of the front-end amplifier stage at the highest-resolution setting is: $$20 \times \log (2.82 \text{ mV}_{RMS} / 80 \mu V_{RMS}) = 31 \text{ dB}.$$ (2) • S11 Optimzation: The front-end amplifier circuit should have a perfect 50 Ω termination to achieve the required S11 parameter of -15 dB across the frequency. While it is possible to mount an exact 50 Ω resistance at the input of the front-end composite loop circuit, the parasitic capacitance of the BUF802 appears in parallel to this 50 Ω resistance resulting in a net imperfect termination. The parasitic input capacitance of BUF802 (IN pin) is 2.4 pF. At 1 GHz this parasitic capacitance reduces down to an impedance of 66.3 Ω . Thus, the net input impedance as seen by the signal at the input is the following: $$66.3 \Omega \parallel 50 \Omega = 28.5 \Omega$$ (3) This results in an imperfect termination for the 50 Ω source resulting in poor S11. The addition of a 30 Ω resistance in series with the input trace and a 6.8 nH inductor in series with the onboard 50 Ω termination helps isolate the input parasitic capacitance as well as ensures the net input impedance is maintained at 50 Ω . The S11 response of this modified circuit is shown in \mathbb{Z} 9-4. 図 9-2. Net Input Impedance - Uniform Gain Across Frequency: The front-end amplifier circuit is designed with BUF802 and OPA140 connected in a composite loop. The loop splits the input signal into low- and high-frequency components, taking both components to the output through two different circuits (transfer functions) and recombining them to reproduce a net output signal. The end goal is to achieve a smooth transition between the two circuits and ensure a flat frequency response from DC till the frequency of interest. - *CL Mode* of BUF802 simplifies this design for achieving a flat frequency response from DC till the frequency of interest (1 GHz in this case). To achieve a flat response, the following two conditions have to be met: - 1. $\alpha/\beta = G$ - 2. High frequency response pole f_{HF}<< low frequency pole f_{LF} α is the input attenuation factor and β is the inverse of the non-inverting gain of the precision amplifier. G is the DC gain of the Main Path of the BUF802. Since G can vary from device-to-device, trimming either α or β is recommended to achieve a flat frequency response. In \boxtimes 9-1, β may be trimmed using the RPOT. Since G is ≈1 V/V and α is 1/5 (200 kΩ / (200 kΩ + 800 kΩ)), RPOT should be trimmed so that β ≈ 1/5. For the β network, it is recommended to use resistors which are an order of magnitude of resistance lower than the resistors used in the α network. Therefore β resistor values of 80 k Ω and \approx 20 k Ω have been chosen. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback f_{HF} is the pole resulting from the 330 pF series capacitor and the 10 M Ω resistor on the In_Bias pin. $$f_{HF} = 1/(2 \times pi \times R \times C) = 1/(2 \times 3.14 \times 10 \text{ M}\Omega \times 330 \text{ pF}) = 48 \text{ Hz}$$ (4) f_{LF} is the pole resulting from the gain bandwidth of the precision amplifier (OPA140), the Auxiliary Path bandwidth and other parasitic capacitance of the resistor network. $$f_{LF} = GBW \times G_{AUX} \times \beta = 440 \text{ kHz}$$ (5) Where GBW is the gain bandwidth product of the precision amplifier (OPA140) = 11 MHz. G_{AUX} is the gain from In_Aux to OUT = 0.2 V/V. 1/ β is the external non-inverting gain set for the precision amplifier = 5 V/V. Based on the above value of f_{HF} and f_{LF} , the required condition of $f_{HF} << f_{LF}$ is met. CF, connected across the precision amplifier, is required to compensate for the parasitic capacitance and to make the overall poles and zeros cancel each other. The value of CF can be found by using the following equation: $$CF = C_{INPA} \times ((G \times R_{G2} / R_{B2}) - 1)). \tag{6}$$ Where C_{INPA} is the common mode input capacitance of the precision amplifier, OPA140 in this case. Plugging in the value of these components arrives at CF = 56 pF. In the final system, based on the quality of the flat band response needed, CF may or may not be trimmed along with RPOT in the final production flow. #### 9.2.1.3 Application Curves # 9.2.2 Transforming a Wide-Bandwidth, 50 Ω Input Signal Chain to High-Input Impedance 図 9-6. BUF802 + TIDA-01022: Signal Chain ### 9.2.2.1 Detailed Design Results TIDA-01022 reference design primarily focuses on a multichannel high-speed analog front-end, which is typically used in end equipment like a digital storage oscilloscope (DSO), wireless communication test equipment (WCTE), and radars. A 50 Ω input data acquisition (DAQ) signal chain like that of TIDA-01022 can be converted into a high-input impedance DAQ system by inserting the BUF802 at the front. TIDA-01022 orginally features the following: - LMH5401 is a high-performance, differential amplifier with an usable bandwidth from DC to 2 GHz. It is used as single to differential conversion amplifier in this signal chain. The device offers excellent linearity performance at a fixed 12-dB gain. - LMH6401 is a wideband digitally controlled variable gain, differential in and differential out, amplifier. The noise and distortion performance are optimized to drive ultra-wideband ADCs. The device offers DC to 4.5-GHz bandwidth with a gain range from –6 dB to 26 dB in 1-dB steps. The gain can be controlled using a standard serial peripheral interface (SPI). - The ADC12DJ5200RF device is a 12 bit, giga-sample, analog-to-digital converter (ADC) that can directly sample input frequencies from DC to above 10 GHz. ADC12DJ5200RF can be configured as a dual-channel, 5.2 GSPS ADC or single-channel, 10.4 GSPS ADC. The BUF802 along with offering high-input impedance and low-noise for the front-end amplifier, holds capability of driving matched loads of 50 Ω , making it easy to retrofit with predesigned analog front-end signal chains. \boxtimes 9-7 to \boxtimes 9-9 shows the comparison of native performance of the TI design TIDA-01022 and performance achieved post addition of BUF802 at the front-end. Adding BUF802 at the input of TIDA-01022 translates the original 50 Ω input imepdance TI design to a high-input impedance DAQ signal chain. A simplified schematic of BUF802 + TIDA-01022 is shown in \boxtimes 9-6. # 9.2.2.2 Application Curves # 10 Power Supply Recommendations The BUF802 is intended to operate with supplies ranging from ±4.5 V to ±6.5 V. The BUF802 can operate on either single-sided supplies or split supplies. When using split supplies, the supplies may be symmetrically balanced around GND or asymmetric. For best AC performance, the input and output signal should be centered around the mid-supply. # 11 Layout # 11.1 Layout Guidelines Achieving optimum performance with the BUF802 requires careful attention to board layout, parasitics, and passive component selection. Consider the following: - Peaking in the S21 transfer function: keeping the trace length minimum is of prime importance to ensure no peaking occurs in the S21 transfer function of the BUF802. The trace inductance can form a resonant circuit with the input capacitance of the BUF802, causing peaking in the S21 response. Add a small resistor (R5 in ☑ 11-1) in series with the DC blocking capacitor to dampen the LC resonance created by the trace inductance and the input capacitance of the BUF802. Choose series capacitors (C7 in ☑ 11-1) with low equivalent series inductance (ESL) to minimize total inductance. - Power-supply bypass capacitors: mount the power-supply bypass capacitors as close to the supply pins as possible and on the same side of the PCB as the BUF802. As shown in ☑ 11-1, choose low-inductance LICC capacitors (C5, C6, C13, and C10) to minimize high frequency impedance between the BUF802 and the bypass capacitors. Use multiple vias between the bypass capacitor and GND to reduce series inductance. As shown in ☑ 11-1, also use multiple vias to GND on the 50 Ω input termination resistor (R3). Connect the bypass and termination vias to a solid GND plane. - **High precision signal path**, consisting of the precision op amp along with discrete components, can be adjusted and moved around to give precedence to the above two points. In the ☑ 11-3, the precision components were placed on the opposite side of the PCB as the BUF802. - Thermal pad of the BUF802 is thermally conductive but electrically insulated to the die. This gives the circuit designer flexibility in connecting the thermal pad to any voltage. Choose a power or GND plane with the highest thermal mass for effective heat dissipation. Copyright © 2022 Texas Instruments Incorporated # 11.2 Layout Example 図 11-1. Layout Example: Schematic for Layout Reference 図 11-2. Layout Example: Top Layer 図 11-3. Layout Example: Bottom Layer # 12 Device and Documentation Support ## **12.1 Documentation Support** #### 12.1.1 Related Documentation For related documentation, see the following: Texas Instruments, Flexible 3.2-GSPS multi-channel AFE reference design for DSOs, radar and 5G wireless test systems reference designs # 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 12.3 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。 #### 12.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 12.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com 17-May-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | | | | | | | | (6) | | | | | | BUF802IRGTR | ACTIVE | VQFN | RGT | 16 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | BUF802 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 # TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | U | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | BUF802IRGTR | VQFN | RGT | 16 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 3-Jun-2022 ### *All dimensions are nominal | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |---|-------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | ı | BUF802IRGTR | VQFN | RGT | 16 | 3000 | 367.0 | 367.0 | 35.0 | | Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. # 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated