

INA351A JAJSQA8 - JUNE 2023

INA351A - 低消費電力、1.8V~5.5V小型サイズ計測アンプ、構成可能なリファ レンス・アンプ付き

1 特長

Texas

INSTRUMENTS

- 10V/V の固定ゲインの計測アンプで、構成可能なリフ ァレンス・アンプを搭載
- 10 ビット~14 ビットのシステムに対応する INA の性能
 - CMRR:95dB (標準値)
 - ゲイン誤差:0.015% (標準値)
 - 帯域幅:100kHz(標準値)
- リファレンス・アンプは以下の用途に使用できます。 - サーボ・ループによる外部 DC 誤差のキャリブレー ション
 - 外部回路のバッファ電圧を提供
 - リファレンス電圧のフィルタリングまたは調整
- 超小型パッケージのオプション (2mm × 2mm)
- 10% 未満のオーバーシュートで 1nF を駆動 (標準値)
- 最適化された静止電流:110µA (標準値)
- 電源電圧範囲:1.8V (±0.9V)~5.5V (±2.75V)
- 仕様温度範囲:-40℃~125℃

2 アプリケーション

- 心電計 (ECG) •
- 圧力トランスミッタ
- 重量計
- 流量トランスミッタ
- ウェアラブル・フィットネスおよびアクティビティ・モニタ •
- 血糖値測定器
- RTD による温度センス

3 概要

INA351Aは、小型パッケージに構成可能なリファレンス・ アンプを備えた 10 の固定ゲインの計測アンプです。この 計測アンプ (INA) は、高精度に整合された抵抗を使用し て構築されており、小型で低コストのフォーム・ファクタで、 優れた CMRR とゲイン誤差性能を実現しています。この ため、INA351A はディスクリート INA 実装に代わる優れた ソリューションとなり、部品表 (BOM) コストへの影響を最小 限に抑えながら、より高性能でよりコンパクトな設計を実現 します。

内蔵された構成可能なリファレンス・アンプは、外部使用 のバッファとして、または閉ループ較正回路の一部として 使用して、より優れた DC 精度を実現できます。 閉ループ 校正は、アプリケーションに応じて、INA 入力信号が DC よりもわずかに高い周波数にある場合、INA 出力でセンサ からの DC 誤差 (オフセット、オフセット・ドリフトなど)を校 正するサーボ・ループ・アンプを実装することで実現できま す。

INA351A は、最小 CMRR 86dB、最大ゲイン誤差 0.1% の正確さを達成し、室温で最大 135µA の静止電流しか 消費しません。 INA は、サブ 1kHz、10 ビット~14 ビットの デルタ・シグマ A/D コンバータ (ADC) を、ADC ドライバな しで直接駆動できるため、心電図やウェアラブル・ヘルス・ モニタなどのポータブルなバッテリ駆動の医療アプリケー ションに最適です。

パッケージ情報

部品番号 ⁽³⁾	パッケージ ⁽¹⁾	パッケージ・サイズ ⁽²⁾
INA351A	DSG (WSON、8)	2mm × 2mm

(1) 利用可能なパッケージについては、データシートの末尾にあるパ ッケージ・オプションについての付録を参照してください

パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合は (2) ピンも含まれます。

デバイス比較表を参照してください。 (3)

英語版の TI 製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、 🐼 www.ti.com で閲覧でき、その内容が常に優先されます。 TI では翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、必ず 最新版の英語版をご参照くださいますようお願いいたします。

Table of Contents

1	特長1	
2	アプリケーション1	
3	概要1	
4	Revision History2	
5	Device Comparison Table	
6	Pin Configuration and Functions3	
7	Specifications4	
	7.1 Absolute Maximum Ratings4	
	7.2 ESD Ratings 4	
	7.3 Recommended Operating Conditions4	
	7.4 Thermal Information4	
	7.5 Electrical Characteristics5	
	7.6 Typical Characteristics7	
8	Detailed Description16	
	8.1 Overview	
	8.2 Functional Block Diagram16	
	8.3 Feature Description17	

8.4 Device Functional Modes	20
9 Application and Implementation	<mark>21</mark>
9.1 Application Information	<mark>21</mark>
9.2 Typical Applications	
9.3 Power Supply Recommendations	26
9.4 Layout	27
10 Device and Documentation Support	29
10.1 Device Support	
10.2 Documentation Support	<mark>29</mark>
10.3ドキュメントの更新通知を受け取る方法	
10.4 サポート・リソース	
10.5 Trademarks	29
10.6 静電気放電に関する注意事項	
10.7 用語集	
11 Mechanical, Packaging, and Orderable	
Information	29

4 Revision History

DATE REVISION		NOTES		
June 2023	*	Initial Release		

5 Device Comparison Table

	NO OF	PACKAGE LEADS			
DEVICE	CHANNELS	WSON DSG			
INA351A	1	8			

6 Pin Configuration and Functions

Note: Connect Thermal Pad to (V-)

図 6-1. DSG Package, 8-Pin WSON With Exposed Thermal Pad (Top View)

表 6-1. Pin Functions

PIN			DESCRIPTION		
NAME	NO.		DESCRIPTION		
IN–	2	I	Instrumentation amplifier negative (inverting) input		
IN+	3	I	Instrumentation amplifier positive (non-inverting) input		
OUT	6	0	strumentation amplifier output		
A_IN+	5	I	Reference amplifier positive (non-inverting) input. This pin usually connects to a reference voltage externally.		
A_OUT	1	0	Reference amplifier output. This is connected internally to the 60 k Ω resistor of the INA which is also called as REF node.		
A_IN-	8	I	Reference amplifier negative (inverting) input.		
V–	4	—	Negative supply		
V+	7	_	Positive supply		

(1) I = input, O = output

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage, $V_S = (V+) - (V-)$		0	6	V
Signal input pins	Common mode voltage ⁽²⁾	(V–) – 0.5	(V+) + 0.5	V
	Differential voltage ⁽³⁾		V _S + 0.2	V
	Current ⁽²⁾	-10	10	mA
Output short-circuit ⁽⁴⁾		Continuou	s	
Operating Temperature, T _A		-55	150	
Junction Temperature, T _J			150	°C
Storage Temperature, T _{stg}		-65	150	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less

(3) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage above the maximum specification of this parameter. The magnitude of this effect increases as the ambient operating temperature rises.

(4) Short-circuit to $V_S / 2$.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT	
Supply voltage $V_{1} = (V_{1})$	Single-supply	1.8	5.5	V	
	Dual-supply	±0.9	±2.75		
Input Voltage Range		(V–)	(V+)	V	
Specified temperature	Specified temperature	-40	125	°C	

7.4 Thermal Information

		INA351A	
	THERMAL METRIC ⁽¹⁾	DSG (WSON)	UNIT
		8 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	80.3	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	100.4	°C/W
R _{θJB}	Junction-to-board thermal resistance	46.4	°C/W
ΨJT	Junction-to-top characterization parameter	5.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	46.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	21.9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

For $V_S = (V_+) - (V_-) = 1.8 \text{ V}$ to 5.5 V (±0.9 V to ±2.75 V) at $T_A = 25^{\circ}$ C, $V_{CM} = [(V_{IN+}) + (V_{IN-})] / 2 = V_S / 2$, $V_{IN} = (V_{IN+}) - (V_{IN-}) = 0 \text{ V}$, $V_{A_IN+} = V_S / 2$, $V_{A_IN-} = V_{A_OUT}$, G = 10, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise noted)

	PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
INPUT							
	Offset Voltage, RTI ⁽¹⁾	V _S = 5.5 V	T _A = 25°C		±0.2	±1.3	mV
V _{OSI}	Offset Voltage over T, RTI ⁽¹⁾	V _S = 5.5 V	$T_A = -40^{\circ}C$ to $125^{\circ}C$			±1.4	mV
	Offset temp drift, RTI ⁽²⁾	V _S = 5.5 V	$T_A = -40^{\circ}C$ to $125^{\circ}C$		±0.60		μV/°C
PSRR	Power-supply rejection ratio		T _A = 25°C		20	75	μV/V
Z _{IN-DM}	Differential Impedance		1		100 5		GΩ∥pF
Z _{IN-CM}	Common Mode Impedance				100 9		GΩ∥pF
V _{CM}	Input Stage Common Mode Range ⁽³⁾			(V–)		(V+)	V
		V _{CM} = (V–) + 0.1 V to (V+) – 1 V, High CMRR Region	V _S = 5.5 V	86	103		
CMRR DC	Common-mode rejection ratio, RTI	V _{CM} = (V–) + 0.1 V to (V+) – 1 V, High CMRR Region	V _S = 3.3 V		94		dB
		V_{CM} = (V–) + 0.1 V to (V+) – 0.1 V	V _S = 5.5 V	62	75		
BIAS CU	RRENT			•			
IB	Input bias current	$V_{CM} = V_S / 2$			±0.75		pА
l _{os}	Input offset current	$V_{CM} = V_S / 2$			±0.40		pА
NOISE V	OLTAGE						
	Input referred voltage	f = 1 kHz			36		n\//\/
e _{NI}	noise density ⁽⁵⁾	f = 10 kHz			35		- nv/vHz
E _{NI}	Input referred voltage noise ⁽⁵⁾	f _B = 0.1 Hz to 10 Hz			3.0		μV _{PP}
i _n	Input current noise	f = 1 kHz			22		fA/√Hz
GAIN				1			
GE	Gain error ⁽⁴⁾	$V_{REF} = V_S/2$	$V_{O} = (V_{-}) + 0.1 V$ to (V+) - 0.1V		±0.02	±0.10	%
OUTPUT		1		1		1	
V _{OH}	Positive rail headroom	R_L = 10 k Ω to V _S /2			15	30	mV
V _{OL}	Negative rail headroom	$R_L = 10 \text{ k}\Omega \text{ to } V_S/2$			15	30	mV
C _L Drive	Load capacitance drive	V _O = 100 mV step, Overshoot < 20%	5		500		pF
Zo	Closed-loop output impedance	f = 10 kHz			51		Ω
I _{SC}	Short-circuit current	V _S = 5.5 V			±20		mA
FREQUE	NCY RESPONSE			1			
BW	Bandwidth, –3 dB	V _{IN} = 10 mV _{pk-pk}			100		kHz
THD + N	Total harmonic distortion + noise	V_{S} = 5.5 V, V_{CM} = 2.75 V, V_{O} = 1 V_{RM} f = 1 kHz, 80-kHz measurement BW	_{MS} , R _L = 100 kΩ		0.035		%
EMIRR	Electro-magnetic interference rejection ratio	f = 1 GHz, V _{IN_EMIRR} = 100 mV			96		dB
SR	Slew rate	$V_S = 5 V$, $V_O = 2 V$ step			0.20		V/µs
	O attilizer time a	To 0.1%, V_{S} = 5.5 V, V_{STEP} = 2 V, C_{L} = 10 pF			14		
ts	Settling time	To 0.01%, V_S = 5.5 V, V_{STEP} = 2 V, C_L = 10 pF			24		μs
	Overload recovery	V _{IN} = 1 V			8		μs
REFERE	NCE AMPLIFIER						
REF - V _{OS}	Ref. input offset voltage	$V_{\rm S} = 5.5 V^{(4)}$			±0.6	±2.25	mV
REF - V _{OS}	Ref. input offset voltage drift	V _S = 5.5 V			±0.8		µV/℃

7.5 Electrical Characteristics (continued)

For $V_S = (V_+) - (V_-) = 1.8 \text{ V}$ to 5.5 V (±0.9 V to ±2.75 V) at $T_A = 25^{\circ}\text{C}$, $V_{CM} = [(V_{IN+}) + (V_{IN-})] / 2 = V_S / 2$, $V_{IN} = (V_{IN+}) - (V_{IN-}) = 0 \text{ V}$, $V_{A_IN+} = V_S / 2$, $V_{A_IN-} = V_{A_OUT}$, G = 10, $R_L = 10 \text{ k}\Omega$ connected to $V_S / 2$, and $V_{OUT} = V_S / 2$ (unless otherwise the two sets of two set noted)

	PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT
REF - I _B	Ref. input bias current	V _S = 5.5 V	V _S = 5.5 V		±1		pА
REF - Z _{INCM}	Ref. common mode input impedance				100 0.5		GΩ∥pF
REF - E _N	Ref. input voltage noise	f = 0.1 to 10 Hz			8.7		μV _{PP}
REF - e _N	Ref. input voltage noise density	f = 10 kHz			64		nV/√Hz
REF - V _{IN}	Ref. input voltage range	V _S = 5.5 V		(V–)		(V+)	V
REF - A _{OL}	Ref. open loop voltage gain	$(V-) + 0.1 V < V_0 < (V+) - 0.1 V$	V _S = 5.5 V		120		dB
REF - GBW	Ref. gain-bandwidth product	V _S = 5.5 V	V _S = 5.5 V		360		kHz
REF - t _S	Ref. settling time	To 0.1%, $V_S = 5.5 V$, $V_{STEP} = 2 V$, $G = 1$, $C_L = 10 pF$			25		μs
REF - PM	Ref. phase margin	V _S = 5.5 V, G = 1, C _L = 10 pF	V _S = 5.5 V, G = 1, C _L = 10 pF		65		٥
REF - V _O	Ref. voltage output swing from rail	V _S = 5.5 V, G = 1	V _S = 5.5 V, G = 1			175	mV
REF - I _{SC}	Ref. short circuit current	V _S = 5.5 V, G = 1	V _S = 5.5 V, G = 1				mA
POWER SUPPLY							
Va	Power-supply voltage	Single-supply		1.8		5.5	V
•5	Tower-supply voltage	Dual-supply		±0.85		±2.75	v
	Quiescent current	V _{IN} = 0 V			110	135	μА
		$T_{A} = -40^{\circ}C$ to 125°C	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			147	μ, ,

(1)

Total offset, referred-to-input (RTI): $V_{OS} = (V_{OSI}) + (V_{OSO} / G)$. Offset drifts are uncorrelated. Input-referred offset drift is calculated using: $\Delta V_{OS(RTI)} = \sqrt{[\Delta V_{OSI}]^2 + (\Delta V_{OSO} / G)^2]}$ (2)

Input common mode voltage range of the just the input stage of the instrumentation amplifier. The entire INA351 input range depends (3) on the combination input common-mode voltage, differential voltage, gain, A_OUT voltage and power supply voltage. Typical Characteristic curves will be added with more information.

Min and Max values are specified by characterization. (4)

(5) Total RTI voltage noise is equal to: $e_{N(RTI)} = \sqrt{[e_{NI}^2 + (e_{NO} / G)^2]}$

7.6 Typical Characteristics

8 Detailed Description

8.1 Overview

INA351A is a G = 10 instrumentation amplifier with configurable reference amplifier designed to provide an integrated, small size, cost-effective solution for applications employing discrete implementation of INA using commodity amplifiers and resistors. This integrated instrumentation amplifier is built using four operational amplifiers and seven precision matched integrated resistors. With 86dB minimum CMRR and 0.1% maximum gain error, INA351A is suitable to be used directly in sub 10-bit systems without any external calibration. Additional calibration of offset and gain error at a system level can further improve system resolution and accuracy, enabling use in 12-bit to 14-bit precision applications.

INA351A has a configurable reference amplifier with external input and output pins. This reference amplifier's output is connected to the $60-k\Omega$ internal resistor so that any reference voltage on the amplifier input that sets the output common mode of the INA could be buffered. This buffered output voltage is available externally and could be used to bias subsequent amplifier stages.

More importantly, the reference amplifier enables DC error calibration when configured in a servo loop. When the INA input signal is at a slightly higher frequency than DC, the servo amplifier can enable external calibration of total DC errors (offset, drift etc.) at the INA output leading to a overall better DC precision. The INA351A in calibration loop is well suited for medical applications where the low-frequency signals like ECG, EEG, EMG are to be amplified with relatively lower noise and lesser DC errors. It is also suitable for use in industrial applications in higher frequency pressure transducers and lock in amplifier designs.

One of the key features of INA351A is that the device does not need any external resistors to set the gain. Often these external resistors require tighter tolerance and careful routing, which adds to system complexity and cost. The device is highly suitable for voltage sensing in space-constrained applications such as patient monitoring, sleep diagnostics, electronic hospital beds, and blood glucose monitoring. INA351A can enable these systems to reduce their overall size and cost while providing optimal performance.

8.2 Functional Block Diagram

2 8-1. Simplified Internal Schematic

8.3 Feature Description

8.3.1 Gain-Setting

8.3.1.1 Gain Error and Drift

Gain error in INA351A is limited by the mismatch of the integrated precision resistors and is specified based on characterization results. Gain error of maximum 0.1% can be expected for this INA. Gain drift in INA351A is limited by the slight mismatch of the temperature coefficient of the integrated resistors. Since these integrated resistors are precision matched with low temperature coefficient resistors to begin with, the overall gain drift is much better in comparison to discrete implementation of the instrumentation amplifiers built using external resistors.

8.3.2 Input Common-Mode Voltage Range

INA351A has two gain stages, the first stage has a common-mode gain of 1 and a differential gain of 10. The second stage is configured in a difference-amplifier configuration with differential gain of 1 and ideally rejects all of the input common mode completely. The second stage also provides a gain of 1 from voltage at A_OUT to set the output common-mode voltage.

The linear input voltage range of the INA351A, even for a rail-to-rail first stage, is dictated by both the signal swing at output of the first stage as well as the input common-mode voltage range output swing of the second stage. In order to maximize performance, it is critical to keep the INA351A within its linear range for a given combination of reference amp's output voltage (A_OUT connects to REF), and input common-mode voltage for a particular input differential. Input common-mode voltage (V_{CM}) vs output voltage graphs (V_{OUT}) in this section show a particular A_OUT voltage and gain configuration to outline the linear performance region of INA351A. A good common-mode rejection can be expected when operating with in the limits of the V_{CM} vs V_{OUT} graph. Note that the INA351A linear input voltage cannot be close to or extend beyond the supply rails, as the output of the first stage will be driven into saturation.

The common-mode range for the most common operating conditions is outlined in the following figures. \boxtimes 8-2 shows the region of operation where a minimum of 86 dB can be achieved. \boxtimes 8-3 has much wider region of operation with a lower minimum CMRR of 62 dB, because the input signal crosses over the transition region of the input pairs to achieve rail-to-rail operation. The common-mode range for other operating conditions is best calculated with the INA V_{CM} vs V_{OUT} tool located under the *Amplifiers and Comparators* section of the Analog Engineer's Calculator on ti.com. INA351-HCM model can be specifically used for applications requiring high CMRR and corresponds to performance shown in \boxtimes 8-2. INA351xxS model can be used for applications where the input common mode can be expected to vary rail-to-rail and the model corresponds to performance shown in \boxtimes 8-3, where CMRR drops to 62-dB minimum.

8.3.3 EMI Rejection

The INA351A uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the INA351A benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. \boxtimes 8-4 shows the results of this testing on the INA351A. \ddagger 8-1 provides the EMIRR IN+ values for the INA351A at particular frequencies commonly encountered in real-world applications. The *EMI Rejection Ratio of Operational Amplifiers* application report contains detailed information on the topic of EMIRR performance relating to op amps and is available for download from www.ti.com.

表 8-1. INA351A EMIRR IN+ for Frequencies of Interest

FREQUENCY	APPLICATION OR ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications	88 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications	99 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	97 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth [®] , mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	98 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	97 dB
5 GHz	802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)	99 dB

8.3.4 Typical Specifications and Distributions

Designers often have questions about a typical specification of an amplifier to design a more robust circuit. Due to natural variation in process technology and manufacturing procedures, every specification of an amplifier exhibits some amount of deviation from the ideal value, like an amplifier's input offset voltage. These deviations often follow *Gaussian (bell curve)*, or *normal* distributions, and circuit designers can leverage this information to guard band their system, even when there is not a minimum or maximum specification in the *Electrical Characteristics* table.

🛛 8-5. Ideal Gaussian Distribution

⊠ 8-5 shows an example distribution, where μ , or mu, is the mean of the distribution, and where σ , or *sigma*, is the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the mean (from $\mu - \sigma$ to $\mu + \sigma$).

Depending on the specification, values listed in the *typical* column of the *Electrical Characteristics* table are represented in different ways. As a general rule, if a specification naturally has a nonzero mean (for example, like gain bandwidth), then the typical value is equal to the mean (μ). However, if a specification naturally has a mean near zero (like input offset voltage), then the typical value is equal to the mean plus one standard deviation ($\mu + \sigma$) to most accurately represent the typical value.

Designers can use this chart to calculate approximate probability of a specification in a unit; for example, the INA351A typical input referred voltage offset is 200 μ V, so 68.2% of all INA351A devices are expected to have an offset from –200 μ V to +200 μ V. At 4 σ (±800 μ V), 99.9937% of the distribution has an offset voltage less than ±800 μ V, which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873 units.

Specifications with a value in the minimum or maximum column are verified by TI, and units outside these limits are removed from production material. For example, the INA351A family has a maximum offset voltage of 1.3 mV at 25°C, and even though this corresponds to 6 σ (≈1 in 500 million units), which is extremely unlikely, TI verifies that any unit with larger offset than 1.3 mV are removed from production material.

For specifications with no value in the minimum or maximum column, consider selecting a sigma value of sufficient guard band for the designers application, and design worst-case conditions using this value. As stated earlier, the 6- σ value corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and can be an option as a wide guard band to design a system around. In this case, the INA351A family does not have a maximum or minimum for offset voltage drift, but based on \boxtimes 7-2 and the typical value of 0.65 μ V/°C in the *Electrical Characteristics* table, the 6- σ value for offset voltage drift can be calculated to 3.9 μ V/°C. When designing for worst-case system conditions, this value can be used to estimate the worst possible offset drift without having an actual minimum or maximum value.

However, process variation and adjustments over time can shift typical means and standard deviations, and unless there is a value in the minimum or maximum specification column, TI cannot verify the performance of a device. This information must be used only to estimate the performance of a device.

8.3.5 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. \boxtimes 8-6 shows the ESD circuits contained in the INA351A devices. The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power supply lines, where these diodes meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

図 8-6. Equivalent Internal ESD Circuitry

8.4 Device Functional Modes

INA351A has only one functional mode. The device can be powered in single supply or dual supply configurations as long as the device is supplied with $V_S = (V+) - (V-) = 1.8$ V to 5.5 V as specified in the recommended operating conditions.

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Reference Amplifier

The output voltage of the INA351A is developed with respect to the voltage on the pin A_OUT. The voltage on the A_OUT pin sets the common-mode voltage of the instrumentation amplifier OUT pin. In single-supply operation with a bipolar input, setting the output common-mode to a precise mid-supply level is useful and required (for example, 2.75-V in a 5.5-V supply environment) to allow the output signal to swing negative and positive in equal proportions. Traditionally, this is accomplished using a resistive divider from supply and an external reference buffer.

In INA351A, the reference amplifier is integrated on-chip and it is sufficient to only have the resistive divider from supply. With that, the reference amplifier can be connected in G = 1 as shown in \boxtimes 9-1 to provide buffered reference voltage internally to the INA as well as to additional circuits for external use.

Moreover, INA351A has a provision to include servo loop based calibration for external DC offset, drift from the sensor as well as the internal INA offset, drift. This is accomplished using the internal reference amplifier and the three external passive components (R_1 , R_2 , and C_2) as shown in \boxtimes 9-2. The ratio of resistors R_2 with respect to R_1 sets the gain in the calibration loop to attenuate the DC errors at lower frequencies around DC. At higher frequencies, the capacitor, C_2 shorts R_2 to put the reference buffer in G = 1. This enables the instrumentation amplifier's input differential voltage to influence the INA output at higher frequencies while the reference amplifier in servo loop influences the INA output at lower frequencies around DC. Care should be taken to limit the gain in servo loop so as to maintain sufficient stability. Also, the value of C_2 , R_2 should be chosen based on the frequency of input signal at the INA input. Now, the resulting residual DC error after calibration would be that of the reference amplifier itself which is minor in comparison to higher DC offset from the instrumentation amplifier, sensor.

9-1. INA351A in Reference Buffer Configuration

9-2. INA351A in Servo-Loop Calibration Configuration

9.1.2 Input Bias Current Return Path

The input impedance of the INA351A is extremely high, but a path must be provided for the input bias current of both inputs. This input bias current is typically a few pico amps but at high temperature this can be a few nano amps. High input impedance means that the input bias current changes little with varying input voltage.

For proper operation, input circuitry must provide a path for this input bias current. \boxtimes 9-3 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA351A, and the input amplifiers saturate. If the differential source resistance is low, the bias current return path connects to one input (as shown in the thermocouple example in \boxtimes 9-3). With a higher source impedance, use two equal resistors to provide a balanced input, with the possible advantages of a lower input offset voltage as a result of bias current, and better high-frequency common-mode rejection.

Copyright © 2017, Texas Instruments Incorporated

図 9-3. Providing an Input Common-Mode Current Path

9.2 Typical Applications

9.2.1 Resistive-Bridge Pressure Sensor

The INA351A is an integrated instrumentation amplifier that measures small differential voltages while simultaneously rejecting larger common-mode voltages. The device offers a low power consumption of 110 μ A (typical) and has a smaller form factor.

The device is designed for portable applications where sensors measure physical parameters, such as changes in fluid, pressure, temperature, or humidity. An example of a pressure sensor used in the medical sector is in portable infusion pumps or dialysis machines.

The pressure sensor is made of a piezo-resistive element that can be derived as a classical 4-resistor Wheatstone bridge.

Occlusion (infusion of fluids, medication, or nutrients) happens only in one direction, and therefore can only cause the resistive element (R) to expand. This expansion causes a change in voltage on one leg of the Wheatstone bridge, which induces a differential voltage V_{DIFF} .

⊠ 9-4 shows an example circuit for an occlusion pressure sensor application, as required in infusion pumps. When blockage (occlusion) occurs against a set-point value, the tubing depresses, thus causing the piezo-resistive element to expand. The signal chain connected to the bridge downstream processes the pressure change and can trigger an alarm.

9-4. Resistive-Bridge Pressure Sensor

Low-tolerance bridge resistors must be used to minimize the offset and gain errors.

Given that there is only a positive differential voltage applied, this circuit is laid out in single-ended supply mode. The excitation voltage, V_{EXT} , to the bridge must be precise and stable; otherwise, measurement errors can be introduced.

9.2.1.1 Design Requirements

For this application, the design requirements are provided in $\frac{1}{5}$ 9-1.

DESCRIPTION	VALUE						
Single supply voltage	V _S = 5.0 V						
Excitation voltage	V _{EXT} = 5.0 V						
Occlusion pressure range	P = 1 psi to 12 psi, increments of P = 0.5 psi						
Occlusion pressure sensitivity	S = 2 ±0.5 (25%) mV/V/psi						
Occlusion pressure impedance (R)	R = 4.99 kΩ ±50 Ω (0.1%)						
Total pressure sampling rate	Sr = 20 Hz						
ADC supply voltage	V _{ADC(fs)} = 5.0 V						
Full-scale range of ADC	V _{OUT} = 0.25 V to 4.75 V to avoid saturation						

表 9-1	Design	Requirements
- 1X J-I.	Design	Neguiremento

9.2.1.2 Detailed Design Procedure

This section provides basic calculations to lay out the instrumentation amplifier with respect to the given design requirements.

One of the key considerations in resistive-bridge sensors is the common-mode voltage, V_{CM} . If the bridge is balanced (no pressure, thus no voltage change), $V_{CM(zero)}$ is half of the bridge excitation (V_{EXT}). In this example V_{CM} (zero) is 2.5 V. For the maximum pressure of 12 psi, the bridge common-mode voltage, $V_{CM(MAX)}$, is calculated by:

$$V_{CM(MAX)} = \frac{V_{DIFF}}{2} + V_{CM(zero)}$$
(1)

where

$$V_{DIFF} = S_{MAX} \times V_{EXT} \times P_{MAX} = 2.5 \frac{mV}{V \times psi} \times 5V \times 12 \, psi = 150 \, mV \tag{2}$$

Thus, the maximum common-mode voltage applied results in:

$$V_{CM(MAX)} = \frac{150 \, mV}{2} + 2.5 \, V = 2.575 \, V \tag{3}$$

Similarly, the minimum common-mode voltage can be calculated as,

$$V_{CM(MIN)} = \frac{-150 \, mV}{2} + 2.5 \, V = 2.425 \, V \tag{4}$$

The next step is to calculate the gain required for the given maximum sensor output voltage span, V_{DIFF} , in respect to the required V_{OUT} swing of maximum 4.75V to avoid saturating the amplifier and the ADC running at 5V supply.

The following equation calculates the gain value using the maximum input voltage and the required output voltage:

$$G = \frac{V_{OUT}}{V_{DIFF(MAX)}} = \frac{2.25 V}{150 mV} = 15 V/V$$
(5)

Considering, INA351A is an INA in G = 10, an additional gain stage in G = 1.5 is added.

Next, let us make sure that the INA351A can operate within this range checking the *Input Common-Mode Voltage vs Output Voltage* curves in the *Typical Characteristics* section. The relevant figure is also in this section

for convenience. Looking at \boxtimes 9-5, we can confirm that a output signal swing of 3 V is supported for the input signal swing between 2.425 V and 2.575 V, thus making sure of the linear operation.

図 9-5. Input Common-Mode Voltage vs Output Voltage (High CMRR Region)

An additional series resistor in the Wheatstone bridge string (R1) may or may not be required, and can be decided based on the intended output voltage swing for a particular combination of supply voltage, reference voltage and the selected gain for an input common mode voltage range. R1 helps adjust the input common-mode voltage range, and thus can help accommodate the intended output voltage swing. In this particular example, it is not required and can be shorted out.

9.2.1.3 Application Curves

The following typical characteristic curve is for the circuit in \boxtimes 9-4.

図 9-6. Input Differential Voltage, Output Voltage vs Bridge Resistance

9.3 Power Supply Recommendations

The nominal performance of the INA351A is specified with a supply voltage of ± 2.75 V. The device also operates using power supplies from ± 0.9 V (1.8 V) to ± 2.75 V (5.5 V) with excellent performance. Parameters can vary significantly with operating voltage.

9.4 Layout

9.4.1 Layout Guidelines

Attention to good layout practices is always recommended. For best operational performance of the device, use the following PCB layout practices:

- Make sure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals.
- Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Route the input traces as far away from the supply and output traces as possible to reduce parasitic coupling. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than crossing in parallel with the noisy trace.
- Place the external components as close to the device as possible.
- Keep the traces as short as possible.

9.4.2 Layout Example

図 9-7. Example Schematic and Associated PCB Layout

10 Device and Documentation Support

10.1 Device Support

10.1.1 Development Support

- SPICE-based analog simulation program TINA-TI software folder
- Analog Engineers Calculator

10.1.1.1 PSpice[®] for TI

PSpice[®] for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create subsystem designs and prototype solutions before committing to layout and fabrication, reducing development cost and time to market.

10.2 Documentation Support

10.2.1 Related Documentation

For related documentation see the following:

· Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report

10.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

10.4 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接 得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得るこ とができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

10.5 Trademarks

TI E2E[™] is a trademark of Texas Instruments. Bluetooth[®] is a registered trademark of Bluetooth SIG, Inc. PSpice[®] is a registered trademark of Cadence Design Systems, Inc. すべての商標は、それぞれの所有者に帰属します。

10.6 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずか に変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

10.7 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
INA351AIDSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2TSH	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DSG 8

2 x 2, 0.5 mm pitch

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

DSG0008A

PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

DSG0008A

EXAMPLE BOARD LAYOUT

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

DSG0008A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TIは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや 設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供してお り、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的に かかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプ リケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載す ることは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを 自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供され ています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありま せん。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated