ISO1540, ISO1541 JAJSH67F - JULY 2012 - REVISED DECEMBER 2022 # ISO154x 低消費電力の双方向 I²C アイソレータ ## 1 特長 - 絶縁型双方向、I2C 互換、通信 - 最高 1MHz での動作に対応 - 電源電圧範囲:3V~5.5V - オープン・ドレイン出力、サイド 1 で 3.5mA、サイド 2 で 35mA のシンク電流能力 - -40°C~+125°Cの動作温度範囲 - ±50kV/µs の過渡耐性 (標準値) - HBM ESD 保護: すべてのピンで 4kV、 バスのピンで 8kV - 安全関連の認証: - DIN EN IEC 60747-17 (VDE 0884-17) に準拠し た絶縁耐圧:4242V_{PK} - UL 1577 に準拠した絶縁耐圧: 2500V_{RMS} (1分 - IEC 62368-1 最終機器標準準拠の CSA 認定 - GB4943.1-2011 に準拠した CQC 基本絶縁 ## 2 アプリケーション - 絶縁 I²C バス - SMBus および PMBus インターフェイス - オープン・ドレイン・ネットワーク - モータ制御システム - バッテリ管理 - **I²C** のレベル・シフト ## 3 概要 ISO1540 および ISO1541 デバイスは、低消費電力の双 方向アイソレータで、I2C インターフェイスと互換性がありま す。これらのデバイスにはロジック入力および出力バッファ があり、二酸化ケイ素 (SiO2) バリアを使用したテキサス・イ ンスツルメンツの容量性絶縁テクノロジによって分離されて います。これらのデバイスは、絶縁型電源と組み合わせて 使用することで、高電圧を遮断し、グランドを絶縁し、ノイ ズ電流がローカル・グランドに入り込んでノイズに敏感な回 路に干渉したり損傷を与えたりすることを防止します。 この絶縁テクノロジにより、フォトカプラと比較して機能、性 能、サイズ、消費電力が優れています。ISO1540 および ISO1541 デバイスにより、小さなフォーム・ファクタ内に、 完全に絶縁された I²C インターフェイスを実装できます。 ISO1540 にはクロックおよびデータ・ライン用の 2 つの絶 縁された双方向チャネルがあり、ISO1541 には双方向の データ・チャネルと単方向のクロック・チャネルがあります。 ISO1541 は 1 つのコントローラを持つアプリケーション に、ISO1540 は複数のコントローラを持つアプリケーショ ンに適しています。ターゲットによるクロックのストレッチが 可能なアプリケーションでは、ISO1540 デバイスを使用す る必要があります。 絶縁された双方向通信は、これらのデバイス内で、サイド 1の Low レベル出力電圧を、サイド 1の High レベル入 力電圧より高い値にオフセットすることによって行われるた め、標準のデジタル・アイソレータで発生するような内部的 なロジック・ラッチを防止できます。 #### 製品情報 | 部品番号 | パッケージ | 本体サイズ (公称) | |--------------------|----------|-----------------| | ISO1540
ISO1541 | SOIC (8) | 4.90mm × 3.91mm | 概略回路図 # **Table of Contents** | 1 特長 | 1 | 7.1 Overview | 19 | |--|----|---|-------------------| | 2 アプリケーション | | 7.2 Functional Block Diagrams | 19 | | 3 概要 | | 7.3 Feature Description | 20 | | 4 Revision History | | 7.4 Isolator Functional Principle | 20 | | 5 Pin Configuration and Functions | | 7.5 Device Functional Modes | 21 | | 6 Specifications | | 8 Application and Implementation | 22 | | 6.1 Absolute Maximum Ratings | | 8.1 Application Information | 22 | | 6.2 ESD Ratings | | 8.2 Typical Application | 24 | | 6.3 Recommended Operating Conditions | | 9 Power Supply Recommendations | 25 | | 6.4 Thermal Information | | 10 Layout | 27 | | 6.5 Power Ratings | | 10.1 Layout Guidelines | <mark>27</mark> | | 6.6 Insulation Specifications | | 10.2 Layout Example | 27 | | 6.7 Safety-Related Certifications | | 11 Device and Documentation Support | 28 | | 6.8 Safety Limiting Values | | 11.1 Documentation Support | 28 | | 6.9 Electrical Characteristics | | 11.2 Related Links | 28 | | 6.10 Supply Current Characteristics | 11 | 11.3 Receiving Notification of Documentation Update | s <mark>28</mark> | | 6.11 Timing Requirements | | 11.4 Community Resources | 28 | | 6.12 Switching Characteristics | | 11.5 Trademarks | 28 | | 6.13 Insulation Characteristics Curves | | 12 Mechanical, Packaging, and Orderable | | | 6.14 Typical Characteristics | | Information | 28 | | 7 Detailed Description | | | | | | | | | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | С | hanges from Revision E (March 2019) to Revision F (December 2022) Page | |---|---| | • | I ² C に言及している場合、すべての旧式の用語をコントローラおよびターゲットに変更1 | | • | ドキュメント全体を通して編集上および体裁上の変更1 | | • | Updated electrical and switching parameters6 | | • | Updated 'DIN VDE V 0884-11:2017-01' to 'DIN EN IEC 60747-17 (VDE 0884-17)' and removed references to | | | 'CSA/IEC 60950-1'9 | | С | hanges from Revision D (December 2016) to Revision E (March 2019) Page | | • | VDE 標準名を次のように変更:「DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12」から「DIN VDE V | | | 0884-11:2017-01」(「セクション 1」) | | • | セクション 1 の項目を次のように変更:「CSA Component Acceptance Notice 5A、IEC 60950-1 および IEC | | | 61010-1 最終機器標準」から「IEC 60950-1 および IEC 62368-1 最終機器標準準拠の CSA 認定」 | | • | Updated certifications approval status, numbers, standard names, and details according to the latest agency | | | certificates in セクション 6.7 table | | • | Changed both bypass capacitors From: 10 μF To: 0.1 μF in . Even though larger capacitors can be used, 0.1 | | | μF is the minimum recommended bypass capacitor size24 | | • | Changed both bypass capacitors From: 10 μF To: 0.1 μF in . Even though larger capacitors can be used, 0.1 | | | μF is the minimum recommended bypass capacitor size24 | | С | hanges from Revision C (June 2015) to Revision D (December 2016) Page | | • | Deleted the Device Comparison Table; see the Features List table for device comparison4 | | • | Changed the status of CQC certification from planned to certified9 | | • | Changed the Regulatory Information table to Safety-Related Certifications and updated content9 | | • | Changed formatting of supply current parameters to combine device and sides. Moved parameters to | | | separate table | | • | Added the Receiving Notification of Documentation Updates section | Changes from Revision B (May 2013) to Revision C (June 2015) Page | • | 「ピン構成および機能」セクション、「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「 | アプ | |---|---|------| | | リケーションと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキ | ーユメ | | | ントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加 | 1 | | • | VDE 標準を「DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12」に変更 | 1 | | • | | | | | tracking (creepage) parameter, L(I02), to external creepage | 8 | | • | Changed values and test conditions in the Insulation Specifications table | | | | Changed the descriptions of VDE and CSA information | | | C | hanges from Revision A (October 2012) to Revision B (May 2013) | Page | | • | 安全機能を次のように変更:「(VDE 0884 Part 2) (出願中)」から「(VDE 0884 Part 2) (認定済み)」 | 1 | | • | Changed, VDE column From: File number: 40016131 (pending) To: File number: 40016131 | 9 | | C | hanges from Revision * (July 2012) to Revision A (October 2012) | Page | | • | 次のように変更:「CSA Component Acceptance Notice 5A (出願中)」から「CSA Component Acceptance No | tice | | | 5A (認定済み)」 | 1 | | • | 次のように変更: 「IEC 60950-1 および IEC 61010-1 最終機器標準 (出願中)」から「IEC 60950-1 および IEC | | | | 61010-1 最終機器標準 (認定済み)」 | 1 | | • | Changed セクション 6.7, CSA column From: File number: 220991 (pending) To: File number: 220991 | 9 | # **5 Pin Configuration and Functions** 図 5-1. ISO1540 D Package 8-Pin SOIC Top View 表 5-1. Pin Functions—ISO1540 | PIN | | 1/0 | DESCRIPTION | | |------|-----|--------------|-------------------------------------|--| | NAME | NO. | " " | DESCRIPTION | | | GND1 | 4 | _ | Ground, side 1 | | | GND2 | 5 | _ | Ground, side 2 | | | SCL1 | 3 | I/O | Serial clock input / output, side 1 | | | SCL2 | 6 | I/O | Serial clock input / output, side 2 | | | SDA1 | 2 | I/O | Serial data input / output, side 1 | | | SDA2 | 7 | I/O | Serial data input / output, side 2 | | | VCC1 | 1 | _ | Supply voltage, side 1 | | | VCC2 | 8 | <u> </u> | Supply voltage, side 2 | | 図 5-2. ISO1541 D Package 8-Pin SOIC Top View 表 5-2. Pin Functions—ISO1541 | Р | PIN | | DESCRIPTION | | |------|-----|-----|------------------------------------|--| | NAME | NO. | I/O | DESCRIPTION | | | GND1 | 4 | _ | Ground, side 1 | | | GND2 | 5 | _ | Ground, side 2 | | | SCL1 | 3 | I | ll clock input, side 1 | | | SCL2 | 6 | 0 | ial clock output, side 2 | | | SDA1 | 2 | I/O | Serial data input / output, side 1 | | | SDA2 | 7 | I/O | Serial data input / output, side 2 | | | VCC1 | 1 | _ | pply voltage, side 1 | | | VCC2 | 8 | _ | Supply voltage, side 2 | | ## **6 Specifications** ## **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) (2) | | | | MIN | MAX | UNIT | | |---------------------|----------------------|------------|------|---------------------------|------|--| | | Voltage | VCC1, VCC2 | -0.5 | 6 | | | | | | SDA1, SCL1 | -0.5 | VCC1 + 0.5 ⁽³⁾ | V | | | | | SDA2, SCL2 | -0.5 | VCC2 + 0.5 ⁽³⁾ | | | | | Output current | SDA1, SCL1 | 0 | 20 | mA | | | Io | | SDA2, SCL2 | 0 | 100 | IIIA | | | T _{J(MAX)} | Maximum junction tem | perature | | 150 | °C | | | T _{stg} | Storage temperature | | -65 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 6.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|-------------------------|---|------------|-------|----------| | | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC | Bus pins | ±8000 | | | V _(ESD) | | JS-001 ⁽¹⁾ | All pins | ±4000 | V | | (ESD) | | Charged-device model (CDM), per JEDEC specification C101 ⁽²⁾ | on JESD22- | ±1500 | v | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 6.3 Recommended Operating Conditions | | | MIN | MAX | UNIT | |---------------------------------------|--|------------|------------|------| | VCC1, VCC2 | Supply voltage | 3 | 5.5 | V | | V _{SDA1} , V _{SCL1} | Input and output signal voltages, side 1 | 0 | VCC1 | V | | V _{SDA2} , V _{SCL2} | Input and output signal voltages, side 2 | 0 | VCC2 | V | | V _{IL1} | Low-level input voltage, side 1 | 0 | 0.5 | V | | V _{IH1} | High-level input voltage, side 1 | 0.7 × VCC1 | VCC1 | V | | V _{IL2} | Low-level input voltage, side 2 | 0 | 0.3 × VCC2 | V | | V _{IH2} | High-level input voltage, side 2 | 0.7 × VCC2 | VCC2 | V | | I _{OL1} | Output current, side 1 | 0.5 | 3.5 | mA | | I _{OL2} | Output current, side 2 | 0.5 | 35 | mA | | C1 | Capacitive load, side 1 | | 40 | pF | | C2 | Capacitive load, side 2 | | 400 | pF | | f _{MAX} | Operating frequency ⁽¹⁾ | | 1 | MHz | | T _A | Ambient
temperature | -40 | 125 | °C | | TJ | Junction temperature | -40 | 136 | °C | | T _{SD} | Thermal shutdown | 139 | 197 | °C | ⁽¹⁾ This represents the maximum frequency with the maximum bus load (C) and the maximum current sink (I_O). If the system has less bus capacitance, then higher frequencies can be achieved. ⁽²⁾ All voltage values here within are with respect to the local ground pin (GND1 or GND2) and are peak voltage values. ⁽³⁾ Maximum voltage must not exceed 6 V. ²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## **6.4 Thermal Information** | | | ISO154x | | |------------------------|--|----------|------| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | UNIT | | | | 8 PINS | | | R _{0JA} | Junction-to-ambient thermal resistance | 114.6 | °C/W | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 69.6 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 55.3 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 27.2 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 54.7 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953). # **6.5 Power Ratings** | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|--|---|-----|-----|-----|------| | P _D | Maximum power dissipation (both sides) | VCC1 = VCC2 = 5.5 V, T _J = 150 °C, C1 = | | | 105 | mW | | P _{D1} | Maximum power dissipation (side-1) | 20 pF, C2 = 400 pF; R1 = 1.4 kΩ, R2 = 94
Ω; Input a 1-MHz 50% duty cycle clock | | | 37 | mW | | P _{D2} | Maximum power dissipation (side-2) | signal | | | 68 | mW | ## 6.6 Insulation Specifications | | PARAMETER | TEST CONDITIONS | VALUE | UNIT | |-------------------|--|--|-------------------|------------------| | GENERA | AL . | | | | | CLR | External clearance ⁽¹⁾ | Shortest terminal-to-terminal distance through air | >4 | mm | | CPG | External creepage ⁽¹⁾ | Shortest terminal-to-terminal distance across the package surface | >4 | mm | | DTI | Distance through the insulation | Minimum internal gap (internal clearance) | 0.014 | mm | | СТІ | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112 | >400 | V | | | Material group | | II | | | | Over well-man and many | Rated mains voltage ≤ 150 V _{RMS} | I–IV | | | | Overvoltage category | Rated mains voltage ≤ 300 V _{RMS} | I–III | | | DIN EN I | EC 60747-17 (VDE 0884-17) ⁽²⁾ | | | | | V _{IORM} | Maximum repetitive peak isolation voltage | AC voltage (bipolar) | 566 | V _{PK} | | V _{IOTM} | Maximum transient isolation voltage | V _{TEST} = V _{IOTM}
t = 60 s (qualification)
t = 1 s (100% production) | 4242 | V _{PK} | | | Apparent charge ⁽³⁾ | Method a: After I/O safety test subgroup 2/3, V_{ini} = V_{IOTM} , t_{ini} = 60 s; $V_{pd(m)}$ = 1.2 × V_{IORM} = 680 V_{PK} , t_m = 10 s | <5 | | | q_{pd} | | Method a: After environmental tests subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.6 \times V_{IORM} = 906$ V_{PK} , $t_m = 10$ s | <5 | pC | | | | Method b1: At routine test (100% production) and preconditioning (type test) $V_{ini} = V_{IOTM}$, $t_{ini} = 1$ s; $V_{pd(m)} = 1.875 \times V_{IORM} = 1062 V_{PK}$, $t_m = 1$ s | <5 | | | C _{IO} | Barrier capacitance, input to output ⁽⁴⁾ | V _{IO} = 0.4 sin (2πft), f = 1 MHz | ~1 | pF | | | | V _{IO} = 500 V, T _A = 25°C | >10 ¹² | | | R _{IO} | Isolation resistance, input to output ⁽⁴⁾ | V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C | >10 ¹¹ | Ω | | | | V _{IO} = 500 V at T _S = 150°C | >10 ⁹ | | | | Pollution degree | | 2 | | | | Climatic category | | 40/125/21 | | | UL 1577 | | | | | | V _{ISO} | Withstand isolation voltage | $ \begin{vmatrix} V_{TEST} = V_{ISO} = 2500 \ V_{RMS}, \ t = 60 \ s \ (qualification); \\ V_{TEST} = 1.2 \times V_{ISO} = 3000 \ V_{RMS}, \ t = 1 \ s \ (100\% \\ production) $ | 2500 | V _{RMS} | ⁽¹⁾ Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. ⁽²⁾ This coupler is suitable for *basic electrical insulation* only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. ⁽³⁾ Apparent charge is electrical discharge caused by a partial discharge (pd). ⁽⁴⁾ All pins on each side of the barrier tied together creating a two-terminal device ## 6.7 Safety-Related Certifications | VDE | CSA | UL | CQC | |---|--|--|---| | Certified according to DIN EN IEC 60747-17 (VDE 0884-17) and DIN EN 61010-1 (VDE 0411-1) | Certified according to CSA/IEC 62368-1 | Recognized under UL 1577
Component Recognition
Program | Certified according to
GB4943.1-2011 | | Basic Insulation Maximum Transient Overvoltage, 4242 V _{PK} ; Maximum Repetitive Peak Voltage, 566 V _{PK} | 2.5-kV _{RMS} Insulation Rating;
300 V _{RMS} Basic Insulation
working voltage per CSA
62368-1-14 and IEC
62368-1:2014 | Single protection, 2500 V _{RMS} | Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 V _{RMS} maximum working voltage | | Certificate number: 40047657 | Master contract number: 220991 | File number: E181974 | Certificate number:
CQC14001109540 | ### 6.8 Safety Limiting Values Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|---------------------------------|--|-----|-----|-----|------| | Is | Safety input, output, or supply | $R_{\theta JA}$ = 114.6°C/W, V_I = 5.5 V, T_J = 150°C, T_A = 25°C, see \boxtimes 6-1 | | | 198 | mA | | | current | $R_{\theta JA}$ = 114.6°C/W, V_I = 3.6 V, T_J = 150°C, T_A = 25°C, see \boxtimes 6-1 | | 30 | | ША | | T _S | Safety temperature | | | | 150 | °C | The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the $\cancel{\text{topse}}$ 6.4 table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. ## **6.9 Electrical Characteristics** over recommended operating conditions, unless otherwise noted | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|--|---|-------------|------|------------|-------| | SIDE 1 | (ONLY) | | • | | | | | V _{ILT1} | Voltage input threshold low, SDA1 and SCL1 | | 480 | 550 | 660 | mV | | V _{IHT1} | Voltage input threshold high, SDA1 and SCL1 | | 520 | 610 | 700 | mV | | V _{HYST1} | Voltage input hysteresis | V _{IHT1} –V _{ILT1} | 40 | 60 | | mV | | V _{OL1} | Low-level output voltage, SDA1 and SCL1 ⁽¹⁾ | 0.5 mA ≤ (I _{SDA1} and I _{SCL1}) ≤ 3.5 mA | 570 | | 800 | mV | | ΔV _{OIT1} | Low-level output voltage to high-
level input voltage threshold
difference, SDA1 and SCL1 ⁽¹⁾ (2) | 0.5 mA ≤ (I _{SDA1} and I _{SCL1}) ≤ 3.5 mA | 50 | | | mV | | SIDE 2 | (ONLY) | | | | | | | V _{ILT2} | Voltage input threshold low, SDA2 and SCL2 | | 0.3 × VCC2 | | 0.4 × VCC2 | V | | V _{IHT2} | Voltage input threshold high, SDA2 and SCL2 | | 0.4 × VCC2 | | 0.5 × VCC2 | V | | V _{HYST2} | Voltage input hysteresis | V _{IHT2} – V _{ILT2} | 0.05 × VCC2 | | | V | | V _{OL2} | Low-level output voltage, SDA2 and SCL2 | 0.5 mA ≤ (I _{SDA2} and I _{SCL2}) ≤ 35 mA | | | 0.4 | V | | вотн | BIDES | | | | | | | 1 ₁ | Input leakage currents, SDA1,
SCL1, SDA2, and SCL2 | V _{SDA1} , V _{SCL1} = VCC1;
V _{SDA2} , V _{SCL2} = VCC2 | | 0.01 | 10 | μΑ | | Cı | Input capacitance to local ground,
SDA1, SCL1, SDA2, and SCL2 | V _I = 0.4 × sin(2E6πt) + 2.5 V | | 7 | | pF | | CMTI | Common-mode transient immunity | See ☑ 7-3 | 25 | 50 | | kV/μs | | V _{CCUV} | VCC undervoltage lockout threshold ⁽³⁾ | | 1.7 | 2.5 |
2.9 | V | ⁽¹⁾ This parameter does not apply to the ISO1541 SCL1 line as it is unidirectional. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ⁽²⁾ ΔV_{OIT1} = V_{OL1} – V_{IHT1}. This represents the minimum difference between a Low-Level Output Voltage and a High-Level Input Voltage Threshold to prevent a permanent latch condition that would otherwise exist with bidirectional communication. ⁽³⁾ Any VCC voltages, on either side, less than the minimum will ensure device lockout. Both VCC voltages greater than the maximum will prevent device lockout. # **6.10 Supply Current Characteristics** over recommended operating conditions, unless otherwise noted. For more information, see 🗵 7-1. | PARAMETER | | R | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | | | | | |------------------|----------------------------|---|---|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------|---|--|-----|---| | 3 V ≤ | VCC1, VCC2 ≤ 3.6 V | | | | | | | | | | | | | | | | | ISO1540 | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1, R2 = Open; C1, C2 = Open | | 2.4 | 7.1 | | | | | | | | | | | Cumply current aids 1 | 1301340 | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 2.5 | 4 | mA | | | | | | | | | I _{CC1} | Supply current, side 1 | 1901541 | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1, R2 = Open; C1, C2 = Open | | 2.1 6.1 | | MA | | | | | | | | | | | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 2.3 | 3.6 | | | | | | | | | | | | Cumply current aids 2 | ISO1540 and | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1, R2 = Open; C1, C2 = Open | | 1.7 | 6.7 | mA | | | | | | | | | I _{CC2} | Supply current, side 2 | ISO1541 | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 1.9 3.5 | | | | | | | | | | | 4.5 V | ≤ VCC1, VCC2 ≤ 5.5 V | | | • | | ' | | | | | | | | | | | | ISO1540 | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1,R2 = Open; C1,C2 = Open | | 3.1 | 7.2 | | | | | | | | | | ı | Supply current, side 1 | 1301340 | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 3.1 | 4.7 | mΛ | | | | | | | | | I _{CC1} | Supply current, side 1 | ISO1541 | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1, R2 = Open; C1, C2 = Open | 2.8 6.2 | | 6.2 | mA | | | | | | | | | | | 1301341 | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 4.5 | | | | | | | | | | | | CC2 Supply current, side 2 | ISO1540 and | V _{SDA1} , V _{SCL1} = GND1; V _{SDA2} , V _{SCL2} = GND2;
R1, R2 = Open; C1, C2 = Open | | 2.3 | 6.8 | A | | | | | | | | | ICC2 | | Supply current, side 2 | Supply current, side 2 | Supply current, side 2 | Supply current side 2 | Supply current side 2 | Supply current side 2 | Sunnly current side 2 | Sunnly current side 2 | ISO1541 | V _{SDA1} , V _{SCL1} = VCC1; V _{SDA2} , V _{SCL2} = VCC2;
R1, R2 = Open; C1, C2 = Open | | 2.5 | 4 | # **6.11 Timing Requirements** | | | | MIN | NOM | MAX | UNIT | |-------------------|---------------------------|---------------------------|-----|-----|-----|------| | t _{UVLO} | Time to recover from UVLO | 2.7 V to 0.9 V; See 🗵 7-4 | 30 | 50 | 151 | μs | # **6.12 Switching Characteristics** over recommended operating conditions, unless otherwise noted | | PARAMETER | TEST | CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------------------|--|--|--------------------------|-----|-----|-----|------| | 3 V ≤ VCC1 | , VCC2 ≤ 3.6 V | | | | | | | | | Output Signal Fall Time | See 🗵 7-1 | 0.7 × VCC1 to 0.3 × VCC1 | 8 | 17 | 29 | | | t _{f1} | (SDA1, SCL1) | R1 = 953 Ω,
C1 = 40 pF | 0.9 × VCC1 to 900 mV | 16 | 29 | 48 | ns | | | Output Signal Fall Time | See 図 7-1 | 0.7 × VCC2 to 0.3 × VCC2 | 14 | 23 | 47 | | | t _{f2} | (SDA2, SCL2) | R2 = 95.3 Ω,
C2 = 400 pF | 0.9 × VCC2 to 400 mV | 35 | 50 | 100 | ns | | t _{pLH1-2} | Low-to-High Propagation
Delay, Side 1 to Side 2 | | 0.55 V to 0.7 × VCC2 | | 33 | 65 | ns | | t _{PHL1-2} | High-to-Low Propagation
Delay, Side 1 to Side 2 | | 0.7 V to 0.4 V | | 90 | 181 | ns | | PWD ₁₋₂ | Pulse Width Distortion
 t _{pHL1-2} - t _{pLH1-2} | See 🗵 7-1
R1 = 953 Ω, | | | 55 | 123 | ns | | t _{PLH2-1} (1) | Low-to-High Propagation
Delay, Side 2 to Side 1 | R2 = 95.3 Ω,
C1, C2 = 10 pF | 0.4 × VCC2 to 0.7 × VCC1 | | 47 | 68 | ns | | t _{PHL2-1} ⁽¹⁾ | High-to-Low Propagation
Delay, Side 2 to Side 1 | | 0.4 × VCC2 to 0.9 V | | 67 | 109 | ns | | PWD ₂₋₁ ⁽¹⁾ | Pulse Width Distortion
 t _{pHL2-1} - t _{pLH2-1} | | | | 20 | 49 | ns | | t _{LOOP1} (1) | Round-trip propagation delay on Side 1 | See \boxtimes 7-2;
R1 = 953 Ω , C1 = 40 pF
R2 = 95.3 Ω , C2 = 400 pF | 0.4 V to 0.3 × VCC1 | | 100 | 165 | ns | | 4.5 V ≤ VC0 | C1, VCC2 ≤ 5.5 V | | | | | | | | | Output Signal Fall Time | See 🗵 7-1 | 0.7 × VCC1 to 0.3 × VCC1 | 6 | 11 | 22 | | | t _{f1} | (SDA1, SCL1) | R1 = 1430 Ω,
C1 = 40 pF | 0.9 × VCC1 to 900 mV | 13 | 21 | 48 | ns | | | Output Signal Fall Time | See 図 7-1 | 0.7 × VCC2 to 0.3 × VCC2 | 10 | 18 | 35 | | | t _{f2} | (SDA2, SCL2) | R2 = 143 Ω,
C2 = 400 pF | 0.9 × VCC2 to 400 mV | 28 | 41 | 76 | ns | | t _{pLH1-2} | Low-to-High Propagation
Delay, Side 1 to Side 2 | | 0.55 V to 0.7 × VCC2 | | 31 | 62 | ns | | t _{PHL1-2} | High-to-Low Propagation
Delay, Side 1 to Side 2 | | 0.7 V to 0.4 V | | 70 | 139 | ns | | PWD ₁₋₂ | Pulse Width Distortion
 t _{pHL1-2} - t _{pLH1-2} | See 🗵 7-1
R1 = 1430 Ω, | | | 38 | 80 | ns | | t _{PLH2-1} ⁽¹⁾ | Low-to-high propagation delay, side 2 to side 1 | R2 = 143 Ω,
C1,2 = 10 pF | 0.4 × VCC2 to 0.7 × VCC1 | | 55 | 80 | ns | | t _{PHL2-1} (1) | High-to-low propagation delay, Side 2 to side 1 | | 0.4 × VCC2 to 0.9 V | | 47 | 85 | ns | | PWD ₂₋₁ (1) | Pulse Width Distortion
 t _{pHL2-1} - t _{pLH2-1} | | | | 8 | 34 | ns | | t _{LOOP1} (1) | Round-trip propagation delay on side 1 | See \boxtimes 7-2;
R1 = 1430 Ω, C1 = 40 pF
R2 = 143 Ω, C2 = 400 pF | 0.4 V to 0.3 × VCC1 | | 110 | 180 | ns | ⁽¹⁾ This parameter does not apply to the ISO1541 SCL1 line as it is unidirectional. ## **6.13 Insulation Characteristics Curves** 図 6-1. Thermal Derating Curve for Limiting Current per VDE ## **6.14 Typical Characteristics** # www.tij.co.jp 図 6-12. t_{PLH2-1} Propagation Delay vs Free-Air **Temperature** 図 6-13. t_{PHL2-1} Propagation Delay vs Free-Air **Temperature** ## **Parameter Measurement Information** Copyright © 2016, Texas Instruments Incorporated ## 図 7-1. Test Diagram Copyright © 2016, Texas Instruments Incorporated # 図 7-2. t_{Loop1} Setup and Timing Diagram 図 7-3. Common-Mode Transient Immunity Test Circuit 図 7-4. t_{UVLO} Test Circuit and Timing Diagrams # 7 Detailed Description #### 7.1 Overview The I²C bus is used in a wide range of applications because it is simple to use. The bus consists of a two-wire communication bus that supports bidirectional data transfer between a controller device and several target devices. The controller, or processor, controls the bus, specifically the serial clock (SCL) line. Data is transferred between the controller and target through a serial data (SDA) line. This data can be transferred in four speeds: standard mode (0 to 100 kbps), fast mode (0 to 400 kbps), fast-mode plus (0 to 1 Mbps), and high-speed mode (0 to 3.4 Mbps). The most common speeds are the standard and fast modes. The I^2C bus operates in bidirectional, half-duplex mode, while standard digital isolators are unidirectional devices. To make efficient use of one technology supporting the other, external circuitry is required that separates the bidirectional bus into two unidirectional signal paths without introducing significant propagation delay. These devices have their logic input and output buffers separated by Tl's capacitive isolation technology using a silicon dioxide (SiO_2) barrier. When used in conjunction with isolated power supplies, these devices block high voltages, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry. ### 7.2 Functional Block Diagrams 図 7-1. ISO1540 Block Diagram 図 7-2. ISO1541 Block Diagram ## 7.3 Feature Description The device enables a complete isolated I^2C interface to be implemented within a small form factor having the features listed in $\frac{1}{2}$ 7-1. | 24 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | | | | | | | | | |---|---|--------------------------------|-------------------|--|--|--|--|--|--|--| | PART NUMBER | CHANNEL DIRECTION | RATED ISOLATION ⁽¹⁾ | MAXIMUM FREQUENCY | | | | | | | | | ISO1540 | Bidirectional (SCL)
Bidirectional (SDA) | 2500 V _{RMS} | 1 MHz | | | | | | | | | ISO1541 | Unidirectional (SCL)
Bidirectional (SDA) | 4242 V _{PK} | 1 IVIT IZ | | | | | | | | 表 7-1. Features List (1) See セクション 6.7 for detailed Isolation specifications. #### 7.4 Isolator Functional Principle To isolate a bidirectional signal path (SDA or SCL), the ISO1540 internally splits a bidirectional line into two unidirectional signal lines, each of which is isolated through a single-channel
digital isolator. Each channel output is made open-drain to comply with the open-drain technology of I^2C . Side 1 of the ISO1540 connects to a low-capacitance I^2C node, while side 2 is designed for connecting to a fully loaded I^2C bus with up to 400 pF of capacitance. 図 7-3. SDA Channel Design and Voltage Levels at SDA1 At first sight, the arrangement of the internal buffers suggests a closed signal loop that is prone to latch-up. However, this loop is broken by implementing an output buffer (B) whose output low-level is raised by a diode drop to approximately 0.75 V, and the input buffer (C) that consists of a comparator with defined hysteresis. The comparator's upper and lower input thresholds then distinguish between the proper low-potential of 0.4 V (maximum) driven directly by SDA1 and the buffered output low-level of B. ☑ 7-4 demonstrate the switching behavior of the I²C isolator, ISO1540, between a controller node at SDA1 and a heavy loaded bus at SDA2. ☑ 7-4. SDA Channel Timing in Receive and Transmit Directions #### 7.4.1 Receive Direction (Left Diagram of) When the I^2C bus drives SDA2 low, SDA1 follows after a certain delay in the receive path. The output low is the buffered output of V_{OL1} = 0.75 V, which is sufficiently low to be detected by Schmitt-trigger inputs with a minimum input-low voltage of V_{IL} = 0.9 V at 3 V supply levels. When SDA2 is released, its voltage potential increases towards VCC2 following the time-constant formed by R_{PU2} and C_{bus} . After the receive delay, SDA1 is released and also rises towards VCC1, following the time-constant $R_{PU1} \times C_{node}$. Because of the significant lower time-constant, SDA1 may reach VCC1 before SDA2 reaches VCC2 potential. #### 7.4.2 Transmit Direction (Right Diagram of) When a controller drives SDA1 low, SDA2 follows after a certain delay in the transmit direction. When SDA2 turns low it also causes the output of buffer B to turn low but at a higher 0.75 V level. This level cannot be observed immediately as it is overwritten by the lower low-level of the controller. However, when the controller releases SDA1, the voltage potential increases and first must pass the upper input threshold of the comparator, V_{IHT1} , to release SDA2. SDA1 then increases further until it reaches the buffered output level of V_{OL1} = 0.75 V, maintained by the receive path. When comparator C turns high, SDA2 is released after the delay in transmit direction. It takes another receive delay until B's output turns high and fully releases SDA1 to move toward VCC1 potential. #### 7.5 Device Functional Modes 表 7-2 lists the ISO154x functional modes. 表 7-2. Function Table | POWER STATE | INPUT | OUTPUT | |-----------------------|------------------|--------| | VCC1 or VCC2 < 2.1 V | X | Z | | VCC1 and VCC2 > 2.8 V | L | L | | VCC1 and VCC2 > 2.8 V | Н | Z | | VCC1 and VCC2 > 2.8 V | Z ⁽¹⁾ | ? | (1) Invalid input condition as an I²C system requires that a pullup resistor to VCC is connected. ## 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 8.1 Application Information #### 8.1.1 I²C Bus Overview The inter-integrated circuit (I^2C) bus is a single-ended, multi-controller, 2-wire bus for efficient inter-IC communication in half-duplex mode. I²C uses open-drain technology, requiring two lines, serial data (SDA) and serial clock (SCL), to be connected to VDD by resistors (see ⋈ 8-1). Pulling the line to ground is considered a logic zero while letting the line float is a logic one. This logic is used as a channel access method. Transitions of logic states must occur while the SCL pin is low. Transitions while the SCL pin is high indicate START and STOP conditions. Typical supply voltages are 3.3 V and 5 V, although systems with higher or lower voltages are allowed. 図 8-1. I²C Bus I²C communication uses a 7-bit address space with 16 reserved addresses, so a theoretical maximum of 112 nodes can communicate on the same bus. In praxis, however, the number of nodes is limited by the specified, total bus capacitance of 400 pF, which restricts communication distances to a few meters. The specified signaling rates for the ISO1540 and ISO1541 devices are 100 kbps (standard mode), 400 kbps (fast mode), 1 Mbps (fast mode plus). The bus has two roles for nodes: controller and target. A controller node issues the clock and target addresses, and also initiates and ends data transactions. A target node receives the clock and addresses and responds to requests from the controller. \boxtimes 8-2 shows a typical data transfer between controller and target. ACK / 7-bit 8-bit 8-bit R/W ACK SDA ACK ADDRESS DATA DATA **NACK** SCI START STOP Condition condition 図 8-2. Timing Diagram of a Complete Data Transfer The controller initiates a transaction by creating a START condition, following by the 7-bit address of the target it wishes to communicate with. This is followed by a single read and write (R/W) bit, representing whether the controller wishes to write to 0, or to read from 1 the target. The controller then releases the SDA line to allow the target to acknowledge the receipt of data. The target responds with an acknowledge bit (ACK) by pulling the SDA pin low during the entire high time of the 9th clock pulse on the SCL signal, after which the controller continues in either transmit or receive mode (according to the R/W bit sent), while the target continues in the complementary mode (receive or transmit, respectively). The address and the 8-bit data bytes are sent most significant bit (MSB) first. The START bit is indicated by a high-to-low transition of SDA while SCL is high. The STOP condition is created by a low-to-high transition of SDA while SCL is high. If the controller writes to a target, it repeatedly sends a byte with the target sending an ACK bit. In this case, the controller is in controller-transmit mode and the target is in target-receive mode. If the controller reads from a target, it repeatedly receives a byte from the target, while acknowledging (ACK) the receipt of every byte but the last one (see 🗵 8-3). In this situation, the controller is in controller-receive mode and the target is in target-transmit mode. The controller ends the transmission with a STOP bit, or may send another START bit to maintain bus control for further transfers. 図 8-3. Transmit or Receive Mode Changes During a Data Transfer When writing to a target, a controller mainly operates in transmit-mode and only changes to receive-mode when receiving acknowledgment from the target. When reading from a target, the controller starts in transmit-mode and then changes to receive-mode after sending a READ request (R/W bit = 1) to the target. The target continues in the complementary mode until the end of a transaction. 注 The controller ends a reading sequence by not acknowledging (NACK) the last byte received. This procedure resets the target state machine and allows the controller to send the STOP command. #### 8.2 Typical Application In \boxtimes 8-4, the ultra low-power microcontroller, MSP430G2132, controls the I²C data traffic of configuration data and conversion results for the analog inputs and outputs. Low-power data converters build the analog interface to sensors and actuators. The ISO1541 device provides the required isolation between different ground potentials of the system controller, remote sensor, and actuator circuitry to prevent ground loop currents that otherwise may falsify the acquired data. The entire circuit operates from a single 3.3-V supply. A low-power push-pull converter, SN6501, drives a center-tapped transformer with an output that is rectified and linearly regulated to provide a stable 5-V supply for the data converter. Copyright © 2016, Texas Instruments Incorporated 図 8-4. Isolated I²C Data Acquisition System #### 8.2.1 Design Requirements The recommended power supply voltages (VCC1 and VCC2) must be from 3 V to 5.5 V. A recommended decoupling capacitor with a value of $0.1~\mu F$ is required between both the VCC1 and GND1 pins, and the VCC2 and GND2 pins to support of power supply voltages transient and to ensure reliable operation at all data rates. #### 8.2.2 Detailed Design Procedure The power-supply capacitor with a value of 0.1-µF must be placed as close to the power supply pins as possible. The recommended placement of the capacitors must be 2-mm maximum from input and output power supply pins (VCC1 and VCC2). The maximum load permissible on the input lines, SDA1 and SCL1, is \leq 40 pF and on the output lines, SDA2 and SCL2, is \leq 400 pF. The minimum pullup resistors on the input lines, SDA1 and SCL1 to VCC1 must be selected in such a way that input current drawn is ≤ 3.5 mA. The minimum pullup resistors on the input lines, SDA2 and SCL2, to VCC2 must be selected in such a way that output current drawn is ≤ 3.5 mA. The maximum pullup resistors on the input lines (SDA1 and SCL1) to VCC1 and on output lines (SDA1 and SCL1) to VCC2, depends on the load and rise time requirements on the respective lines. 図 8-5. Typical ISO1540 Circuit Hookup 図 8-6. Typical ISO1541 Circuit Hookup #### 8.2.3 Application Curve 図 8-7. Side 1: Low-to-High Transition ## 9 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, TI recommends connecting a 0.1-µF bypass capacitor at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback supply pins as possible. If only a single, primary-side power supply is available in an application, isolated power can be
generated for the secondary-side with the help of a transformer driver such as Tl's SN6501 device. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies. (SLLSEA0). ## 10 Layout ### 10.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see 🗵 10-1). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. - Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. - Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. - Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in². - Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the highfrequency bypass capacitance significantly. For detailed layout recommendations, see the Digital Isolator Design Guide (SLLA284) #### 10.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. #### 10.2 Layout Example 図 10-1. Recommended Layer Stack # 11 Device and Documentation Support ## 11.1 Documentation Support 注 TI is transitioning to use more inclusive terminology. Some language may be different than what you would expect to see for certain technology areas. #### 11.1.1 Related Documentation For related documentation see the following: - Digital Isolator Design Guide (SLLA284) - ISO154xEVM Low-Power Bidirectional I²C Isolators Evaluation Module (SLLU166) - TI Isolation Glossary (SLLA353) - SN6501 Transformer Driver for Isolated Power Supplies. (SLLSEA0) #### 11.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. #### 表 11-1. Related Links | PARTS | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS &
SOFTWARE | SUPPORT & COMMUNITY | |---------|--------------------|--------------|---------------------|---------------------|---------------------| | ISO1540 | Click here | | ISO1541 | ISO1541 Click here | | Click here | Click here | Click here | # 11.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 11.4 Community Resources #### 11.5 Trademarks すべての商標は、それぞれの所有者に帰属します。 ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | Dell meterial Deal reflect | | | Op temp (°C) | Part marking | |-----------------------|--------|---------------|----------------|-----------------------|----------------------------|---------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow (5) | | (6) | | ISO1540DR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1540DR.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1540DR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1540DRG4 | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1540DRG4.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1540DRG4.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1540 | | ISO1541DR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | | ISO1541DR.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | | ISO1541DR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | | ISO1541DRG4 | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | | ISO1541DRG4.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | | ISO1541DRG4.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | IS1541 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # PACKAGE OPTION ADDENDUM www.ti.com 17-Jun-2025 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF ISO1540, ISO1541: Automotive: ISO1540-Q1, ISO1541-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|---|------
--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ISO1540DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO1540DRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO1541DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO1541DRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | www.ti.com 18-Jun-2025 #### *All dimensions are nominal | _ | 7 III GIII GII GII GII GII GII GII GII G | | | | | | | | | |---|--|--------------|-----------------|------|------|-------------|------------|-------------|--| | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | | | ISO1540DR | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | | | ISO1540DRG4 | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | | | ISO1541DR | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | | I | ISO1541DRG4 | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | SMALL OUTLINE INTEGRATED CIRCUIT ### NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。 テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated