LM2591HV JAJS699E - MAY 2001 - REVISED MAY 2016 # LM2591HV SIMPLE SWITCHER[®]電力コンバータ 150kHz、1A降圧型電 圧レギュレータ ## 1 特長 - 3.3V、5V、および可変出力電圧バージョン - 可変タイプの出力電圧範囲は1.2V~57V、入力と 負荷の全条件で±4%の許容誤差 - 1Aの出力負荷電流を保証 - 5ピンのパッケージで提供 - 60Vまでの入力電圧範囲 - 150kHz固定周波数の自己発振器を内蔵 - オン/オフ制御 - 低消費電力のスタンバイ・モード、I_Qの標準値 90μA - 高効率 - サーマル・シャットダウンおよび電流制限保護回 路内蔵 ## 2 アプリケーション - シンプルな高効率降圧型(バック)レギュレータ - リニア・レギュレータ用の効率的なプリレギュレータ - オンボードのスイッチング・レギュレータ - 正負反転コンバータ ## 3 概要 LM2591HVシリーズのレギュレータは、モノリシックな集積 回路で、降圧型(バック)スイッチング・レギュレータのすべ てのアクティブ機能を提供し、優れたラインおよび負荷レ ギュレーションで1Aの負荷を駆動できます。これらのデバイスは、3.3V、5Vの固定出力電圧と、可変出力電圧バー ジョンで利用可能です。 このシリーズのスイッチング・レギュレータはLM2590HV と似ていますが、一部の監視および制御機能が省略され ています。 これらのレギュレータは、必要な外部部品の数が最小限で済み、簡単に使用でき、内部周波数補償、改善されたラインおよび負荷仕様、固定周波数発振器を備えています。 LM2591HVシリーズは150kHzのスイッチング周波数で動作するため、低周波数で動作するスイッチング・レギュレータに比べて、サイズの小さなフィルタ部品を使用できます。標準的な5ピンのパッケージで、いくつかの異なるリード曲げオプションで提供されるほか、5ピンの表面実装パッケージでも提供されます。 #### 製品情報⁽¹⁾ | 型番 | パッケージ | 本体サイズ(公称) | |----------|------------------|------------------| | LM2591HV | DDPAK/TO-263 (5) | 10.18mm×8.41mm | | | TO-220 (5) | 14.986mm×10.16mm | (1) 提供されているすべてのパッケージについては、巻末の注文情報を参照してください。 #### 代表的なアプリケーション Copyright © 2016, Texas Instruments Incorporated (固定出力電圧のバージョン) | _ | • | |---|--------------------| | ы | .T | | п | <i>1</i> Λ | | 1 | 特長1 | 9 | Detailed Description | 4. | |---|---|----|--------------------------------|----------------| | - | アプリケーション | 9 | 9.1 Overview | | | 2 | 概要 | | 9.2 Functional Block Diagram | | | 4 | 改訂履歴 | | 9.3 Feature Description | | | 5 | 概要(続き) | | 9.4 Device Functional Modes | | | 6 | Na (M 会 (M 会) | 10 | Application and Implementation | 14 | | 7 | Specifications4 | | 10.1 Application Information | 14 | | • | 7.1 Absolute Maximum Ratings | | 10.2 Typical Application | 18 | | | <u> </u> | 11 | Power Supply Recommendations | <u>2</u> ′ | | | 7.2 ESD Ratings | 12 | Layout | | | | 7.4 Thermal Information | | 12.1 Layout Guidelines | 2 [,] | | | 7.5 Electrical Characteristics LM2591HV-3.3 | | 12.2 Layout Examples | | | | 7.6 Electrical Characteristics LM2591HV-5.0 | 13 | デバイスおよびドキュメントのサポート | | | | 7.7 Electrical Characteristics LM2591HV-ADJ | | 13.1 コミュニティ・リソース | 2 | | | 7.8 Electrical Characteristics All Output Voltage | | 13.2 商標 | 2 | | | Versions | | 13.3 静電気放電に関する注意事項 | 24 | | | 7.9 Typical Characteristics | | 13.4 Glossary | 2 | | 8 | Parameter Measurement Information 10 | 14 | メカニカル、パッケージ、および注文情報 | 24 | | | 8.1 Test Circuits | | | | ## 4 改訂履歴 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 ## Revision D (April 2013) から Revision E に変更 **Page** ## Revision C (April 2013) から Revision D に変更 Page 0.4 # 5 概要 (続き) 他の特長として、入力電圧と出力負荷のあらゆる条件において、許容誤差が出力電圧について±4%、発振器の周波数について±15%であることが挙げられます。外部シャットダウン機能を備えており、スタンバイ電流は標準値で90µAです。自己保護機能として、出力スイッチには2段の電流制限回路が搭載されており、異常条件では過熱シャットダウンにより完全な保護が行われます。 ## 6 Pin Configuration and Functions ## **Pin Functions** | PIN I/O NO. NAME | | 1/0 | DECODINE | |------------------|------------------|-----|---| | | | 1/0 | DESCRIPTION | | 1 | +V _{IN} | I | This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator. | | 2 | Output | 0 | Internal switch. The voltage at this pin switches between approximately (+ V_{IN} – V_{SAT}) and approximately –0.5 V, with a duty cycle of V_{OUT}/V_{IN} . | | 3 | Ground | I | Circuit ground. | | 4 | Feedback | I | Senses the regulated output voltage to complete the feedback loop. This pin is directly connected to the Output for the fixed voltage versions, but is set to 1.23 V by means of a resistive divider from the output for the Adjustable version. If a feedforward capacitor is used (Adjustable version), then a negative voltage spike is generated on this pin whenever the output is shorted. This happens because the feedforward capacitor cannot discharge fast enough, and because one end of it is dragged to Ground, the other end goes momentarily negative. To prevent the energy rating of this pin from being exceeded, a small-signal Schottky diode to Ground is recommended for DC input voltages above 40 V whenever a feedforward capacitor is present (See <i>Test Circuits</i>). Feedforward capacitor values larger than 0.1 μF are not recommended for the same reason, whatever be the DC input voltage. | | 5 | ŌN/OFF | I | The regulator is in shutdown mode, drawing about 90 μ A, when this pin is driven to a high level (\geq 2 V), and is in normal operation when this Pin is left floating or driven to a low level (\leq 0.6 V). The typical value of the threshold is 1.3 V and the voltage on this pin must not exceed 25 V. | # 7 Specifications # 7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾ | | | | MIN | MAX | UNIT | |---------------------------------------|---------------------------------|-----------------------|------------|--------------------|------| | Maximum supply voltage (\ | | 63 | V | | | | ON/OFF pin voltage | | | -0.3 | 25 | V | | Feedback pin voltage | | | -0.3 | 25 | V | | Output voltage to ground | oltage to ground (Steady-state) | | | -1 | V | | Power dissipation | | | Internally | Internally limited | | | | KTT package | Vapor phase (60 sec.) | | 215 | | | Lead temperature | | Infrared (10 sec.) | | 245 | °C | | | NDH package (Sold | ering, 10 sec.) | | 260 | | | Maximum junction temperature | | | | 150 | °C | | Storage temperature, T _{stg} | | -65 | 150 | °C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications. ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V _(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)(2) | ±2000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions | | MIN | MAX | UNIT | |----------------|-----|-----|------| | Temperature | -40 | 125 | °C | | Supply voltage | 4.5 | 60 | V | #### 7.4 Thermal Information | | | | LM2591HV | | | |-------------------------------|---|---------------------------|----------|------|------| | THERMAL METRIC ⁽¹⁾ | | KTT (DDPAK/TO-263) NDH (1 | | UNIT | | | | | 5 PINS | 5 PINS | | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | See (2)(3) | 50 | 50 | °C/W | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | | 2 | 2 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. ⁽²⁾ The human body model is a 100-pF capacitor discharged through a 1.5-k Ω resistor into each pin. ⁽²⁾ The package thermal impedance is calculated in accordance to JESD 51-7 ⁽³⁾ Thermal Resistances were simulated on a 4-layer, JEDEC board #### 7.5 Electrical Characteristics LM2591HV-3.3 Specifications are for $T_1 = 25^{\circ}$ C unless otherwise noted. | | PARAMETER | TEST CO | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | | | |---------------------------------|--|---|--------------------|--------------------|--------------------|-------|--|--| | SYSTE | SYSTEM PARAMETERS – See Test Circuits ⁽³⁾ | | | | | | | | | V _{OUT} Output Voltage | Output Valtage | 4.75 V ≤ V _{IN} ≤ 60 V, | | 3.168 | 3.3 | 3.432 | | | | | | $T_A = -40$ °C to 125°C | 3.135 | | 3.465 | V | | | | η | Efficiency | V _{IN} = 12 V, I _{LOAD} = 1 A | | | 77% | | | | ⁽¹⁾ All limits ensured at room temperature (T_J = 25°C) unless otherwise noted. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL). #### 7.6 Electrical Characteristics LM2591HV-5.0 Specifications are for T₁ = 25°C unless otherwise noted. | | PARAMETER | TEST CONDITIONS | | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | |--|----------------|---|-------------------------|--------------------|--------------------|--------------------|------| | SYSTEM PARAMETERS – See Test Circuits ⁽³⁾ | | | | | | | | | V | V 0V. | 7 V ≤ V _{IN} ≤ 60 V, 0.2 A ≤ I _{LOAD} ≤ 1 A | | 4.8 | 5 | 5.2 | | | V _{OUT} | Output Voltage | | $T_A = -40$ °C to 125°C | 4.75 | | 5.25 | V | | η | Efficiency | V _{IN} =
12 V, I _{LOAD} = 1 A | | | 82% | | | ⁽¹⁾ All limits ensured at room temperature (T_J = 25°C) unless otherwise noted. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL). ## 7.7 Electrical Characteristics LM2591HV-ADJ Specifications are for T₁ = 25°C unless otherwise noted | openion are in if the armost a | | | | | | | | | |--|------------------|---|-------------------------|--------------------|--------------------|--------------------|------|--| | | PARAMETER | TEST CONDITIONS | | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | | | SYSTEM PARAMETERS – See Test Circuits ⁽³⁾ | | | | | | | | | | | | $4.5 \text{ V} \le \text{V}_{\text{IN}} \le 60 \text{ V}, \ 0.2 \text{ A} \le \text{I}_{\text{LOAD}} \le 1 \text{ A}$ V_{OUT} programmed for 3 V. Circuit of Test Circuits. | | 1.193 | 1.23 | 1.267 | | | | V _{FB} | Feedback Voltage | | $T_A = -40$ °C to 125°C | 1.18 | | 1.28 | V | | | η | Efficiency | V _{IN} = 12 V, V _{OUT} = 3 V, I _{LOAD} = 1 A | | | 76% | | | | ⁽¹⁾ All limits ensured at room temperature (T_J = 25°C) unless otherwise noted. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL). ⁽²⁾ Typical numbers are at 25°C and represent the most likely norm. ⁽³⁾ External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2591HV is used as shown in Test Circuits test circuit, system performance will be as shown in Electrical Characteristics. ⁽²⁾ Typical numbers are at 25°C and represent the most likely norm. ⁽³⁾ External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2591HV is used as shown in *Test Circuits* test circuit, system performance will be as shown in *Electrical Characteristics*. ⁽²⁾ Typical numbers are at 25°C and represent the most likely norm. ⁽³⁾ External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2591HV is used as shown in *Test Circuits* test circuit, system performance will be as shown in *Electrical Characteristics*. ## 7.8 Electrical Characteristics All Output Voltage Versions Specifications are for $T_J = 25$ °C, $I_{LOAD} = 500$ mA, and $V_{IN} = 12$ V for the 3.3-V, 5-V, and adjustable versions, unless otherwise noted. | | PARAMETER | TEST CONDIT | IONS | MIN ⁽¹⁾ | TYP ⁽²⁾ | MAX ⁽¹⁾ | UNIT | |-------------------|--------------------------------|--|---|--------------------|--------------------|--------------------|------| | DEVICE | PARAMETERS | | | | | | | | | Feedback Bias Current | Adjustable Versian Only V 4.2.V | | | 10 | 50 | - A | | I _b | Feedback Blas Current | Adjustable Version Only, V _{FB} = 1.3 V | $T_A = -40$ °C to 125°C | | | 100 | nA | | | Ossillator Fraguesey | See (3) | | 127 | 150 | 173 | kHz | | f _O | Oscillator Frequency | See (F) | $T_A = -40$ °C to 125°C | 110 | | 173 | KHZ | | V | Coturation Valtage | I _{OUT} = 1 A ⁽⁴⁾⁽⁵⁾ | | | 0.95 | 1.2 | V | | V_{SAT} | Saturation Voltage | IOUT = I A () | $T_A = -40$ °C to 125°C | | | 1.3 | V | | DC | Max Duty Cycle (ON) | See (5)(6) | | | 100% | | | | DC | Min Duty Cycle (OFF) | See | | | 0% | | | | | Switch current Limit | Peak Current ⁽⁴⁾⁽⁵⁾ $T_A = -40^{\circ}\text{C to } 125$ | | 1.3 | 1.9 | 2.8 | Α | | I _{CLIM} | Switch current Limit | | $T_A = -40$ °C to 125°C | 1.2 | | 3.0 | ^ | | | Output Leakage Current | Output = 0 V | | | 5 | 50 | μΑ | | IL | Output Leakage Current | Output = $-1 \text{ V}^{(4)(6)(7)}$ | | | 5 | 30 | mA | | IQ | Operating Quiescent
Current | SD/SS Pin Open ⁽⁶⁾ | | | 5 | 10 | mA | | | Standby Quiescent | SD/SS pin = 0 V (7) | | | 90 | 200 | ^ | | I _{STBY} | Current | SD/SS pin = 0 V V | $T_A = -40$ °C to 125°C | | | 250 | μА | | ON/OFF | CONTROL - See Test Circuit | ts | | | | | | | V _{IH} | ON/OFF Pin Logic Input | Low (Regulator ON) | | | 1.3 | | V | | V _{IL} | Threshold Voltage | High (Regulator OFF) | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | 2.0 | | 0.6 | V | | I _H | ON/OFF Pin Input | V _{LOGIC} = 2.5 V (Regulator OFF) | | | 5 | 15 | μΑ | | IL | Current | V _{LOGIC} = 0.5 V (Regulator ON) | | | 0.02 | 5 | μΑ | ⁽¹⁾ All limits ensured at room temperature (T_J = 25°C) unless otherwise noted. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL). - (2) Typical numbers are at 25°C and represent the most likely norm. - (3) The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload. - (4) No diode, inductor or capacitor connected to output pin. - (5) Feedback pin removed from output and connected to 0 V to force the output transistor switch ON. - (6) Feedback pin removed from output and connected to 12 V for the 3.3-V, 5-V, and the ADJ. version to force the output transistor switch OFF. - (7) $V_{IN} = 60 \text{ V}.$ # 7.9 Typical Characteristics (Circuit of Test Circuits) # TEXAS INSTRUMENTS # **Typical Characteristics (continued)** (Circuit of Test Circuits) ## **Typical Characteristics (continued)** (Circuit of Test Circuits) Figure 13. ON/OFF Pin Current (Sinking) Figure 14. Internal Gain-Phase Characteristics Continuous Mode Switching Waveforms V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 1A L = 52 μ H, C_{OUT} = 100 μ F, C_{OUT} ESR = 100 m Ω Output Pin Voltage, 10V/div. Inductor Current 0.5A/div. Output Ripple Voltage, 50 mV/div. Discontinuous Mode Switching Waveforms V_{IN} = 20V, V_{OUT} = 5V, I_{LOAD} = 250 mA L = 15 μ H, C_{OUT} = 150 μ F, C_{OUT} ESR = 90 m Ω Output Pin Voltage, 10V/div. Inductor Current 0.25A/div. Output Ripple Voltage, 100 mV/div. Figure 15. Horizontal Time Base: 2 μs/div Load Transient Response for Continuous Mode V $_{IN}$ = 20V, V $_{OUT}$ = 5V, I $_{LOAD}$ = 250 mA to 1A L = 52 μ H, C $_{OUT}$ = 100 μ F, C $_{OUT}$ ESR = 100 m Ω Output Voltage, 100 mV/div. (AC) 250 mA to 1A Load Pulse Figure 17. Horizontal Time Base: 50 μs/div Figure 16. Horizontal Time Base: 2 μs/div Load Transient Response for Discontinuous Mode V $_{IN}$ = 20V, V $_{OUT}$ = 5V, I $_{LOAD}$ = 250 mA to 1A L = 15 $\mu H,~C_{OUT}$ = 150 $\mu F,~C_{OUT}$ ESR = 90 m Ω Output Voltage, 100 mV/div. (AC) 250 mA to 1A Load Pulse Figure 18. Horizontal Time Base: 200 μs/div #### 8 Parameter Measurement Information #### 8.1 Test Circuits Component Values shown are for $V_{IN} = 15V$, $V_{OUT} = 5V$, $I_{LOAD} = 1A$. C_{IN} — 470 μF, 50V, Aluminum Electrolytic Nichicon "PM Series" C_{OUT} — 220 μ F, 25V Aluminum Electrolytic, Nichicon "PM Series" D1 — 2A, 60V Schottky Rectifier, 21DQ06 (International Rectifier) L1 — 68 H, See *Inductor Selection Procedure* Figure 19. Fixed Output Voltage Versions Select R_1 to be approximately 1 k Ω , use a 1% resistor for best stability. Component Values shown are for $V_{IN} = 20V$, $V_{OUT} = 10V$, $I_{LOAD} = 1A$. C_{IN}: — 470 μF, 35V, Aluminum Electrolytic Nichicon "PM Series" C_{OUT}: — 220 μF, 35V Aluminum Electrolytic, Nichicon "PM
Series" D1 — 2A, 60V Schottky Rectifier, 21DQ06 (International Rectifier) See Inductor Selection Procedure L1 — 100 μH, $R_1 - 1 kΩ, 1%$ R₂ — 7.15k, 1% C_{FF} — 3.3 nF Typical Values C_{SS}—0.1 μF C_{DELAY} —0.1 μF $R_{PULL\ UP}$ — 4.7k (use 22k if V_{OUT} is \geq 45V) † Small signal Schottky diode to prevent damage to feedback pin by negative spike when output is shorted. Required if $V_{IN} > 40V$ Figure 20. Adjustable Output Voltage Versions ## 9 Detailed Description #### 9.1 Overview The LM2591HV SIMPLE SWITCHER® regulator is an easy-to-use, nonsynchronous, step-down DC-DC converter with a wide input voltage range up to 60 V. The regulator is capable of delivering up to 1-A DC load current with excellent line and load regulation. These devices are available in fixed output voltages of 3.3 V, 5 V, and an adjustable output version. The family requires few external components, and the pin arrangement was designed for simple, optimum PCB layout. #### 9.2 Functional Block Diagram ## 9.3 Feature Description ## 9.3.1 Delayed Start-Up The circuit in Figure 21 uses the \overline{ON}/OFF pin to provide a time delay between the time the input voltage is applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start-up is shown). As the input voltage rises, the charging of capacitor C1 pulls the \overline{ON}/OFF pin high, keeping the regulator off. When the input voltage reaches its final value and the capacitor stops charging, the resistor R_2 pulls the \overline{ON}/OFF pin low, thus allowing the circuit to start switching. Resistor R_1 is included to limit the maximum voltage applied to the \overline{ON}/OFF pin (maximum of 25 V), reduces power supply noise sensitivity, and also limits the capacitor, C1, discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the \overline{ON}/OFF pin and cause problems. This delayed start-up feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages. ## **Feature Description (continued)** Figure 21. Delayed Start-Up ## 9.3.2 Undervoltage Lockout Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. An undervoltage lockout feature applied to a buck regulator is shown in Figure 22, while Figure 23 and Figure 24 applies the same feature to an inverting circuit. The circuit in Figure 23 features a constant threshold voltage for turnon and turnoff (Zener voltage plus approximately one volt). If hysteresis is needed, the circuit in Figure 24 has a turnon voltage which is different than the turnoff voltage. The amount of hysteresis is approximately equal to the value of the output voltage. If Zener voltages greater than 25 V are used, an additional 47-k Ω resistor is needed from the $\overline{\text{ON}/\text{OFF}}$ pin to the ground pin to stay within the 25-V maximum limit of the $\overline{\text{ON}/\text{OFF}}$ pin. Figure 22. Undervoltage Lockout for Buck Regulator This circuit has an ON/OFF threshold of approximately 13 V. Figure 23. Undervoltage Lockout for Inverting Regulator ## 9.4 Device Functional Modes ## 9.4.1 Shutdown Mode The $\overline{\text{ON}}/\text{OFF}$ pin provides electrical ON and OFF control for the LM2591HV. When the voltage of this pin is higher than 2 V, the device is shutdown mode. The typical standby current in this mode is 90 μA . ## 9.4.2 Active Mode When the \overline{ON}/OFF pin is left floating or pull below 0.6 V, the device starts switching and the output voltage rises until it reaches a normal regulation voltage. # 10 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 10.1 Application Information ## 10.1.1 Feedforward Capacitor C_{FF} – A feedforward capacitor, shown across R2 in *Test Circuits*, is used when the output voltage is greater than 10 V or when C_{OUT} has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability. If the output voltage ripple is large (>5% of the nominal output voltage), this ripple can be coupled to the feedback pin through the feedforward capacitor and cause the error comparator to trigger the error flag. In this situation, adding a resistor, R_{FF} , in series with the feedforward capacitor, approximately 3 times R1, will attenuate the ripple voltage at the feedback pin. ## 10.1.2 Input Capacitor C_{IN} – A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be placed near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on. The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating. The voltage rating of the capacitor and its RMS ripple current capability must never be exceeded. #### 10.1.3 Output Capacitor C_{OUT} – An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are the 100-kHz Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR must generally not be less than 100 m Ω or there will be loop instability. If the ESR is too large, efficiency and output voltage ripple are effected, so ESR must be chosen carefully. #### 10.1.4 Catch Diode Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be placed close to the LM2591HV using short leads and short printed-circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5 V and lower). Ultra-fast recovery, or high-efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. The diode must be chosen for its average/RMS current rating and maximum voltage rating. The voltage rating of the diode must be greater than the DC input voltage (not the output voltage). #### 10.1.5 Inverting Regulator The circuit in Figure 25 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator's ground pin to the negative output voltage, then grounding the feedback pin. The regulator senses and regulates the inverted output voltage. ## **Application Information (continued)** This example uses the LM2591HV-5.0 to generate a -5-V output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Because this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. To determine how much load current is possible before the internal device current limit is reached (and power limiting occurs), the system must be evaluated as a buck-boost configuration rather than as a buck. The peak switch current in amperes, for such a configuration is given as Equation 1: $$I_{PEAK} = I_{LOAD} \times \left(\frac{V_{IN} + V_{OUT}}{V_{IN}} \right) + \frac{V_{IN} \times V_{OUT} \times 10^6}{2 \times L \times f \times \left(V_{IN} + V_{OUT} \right)}$$ where - L is in μH - and f is in Hz - The maximum possible load current I_{LOAD} is limited by the requirement that $I_{PEAK} \le I_{CLIM}$ (1) While checking for this, take I_{CLIM} to be the lowest possible current limit value (minimum across tolerance and temperature is 1.2 A for the LM2591HV). Also to account for inductor tolerances, take the minimum value of inductance for L in Equation 1 (typically 20% less than the nominal value). Further, Equation 1 disregards the drop across the switch and the diode. This is equivalent to assuming 100% efficiency, which is never so. Therefore expect I_{PEAK} to be an additional 10% to 20% higher than calculated from Equation 1. See Application Note AN-1157 (SNVA022) for examples based on positive to negative configuration. The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 60 V. For example, when converting +20 V to −12 V, the regulator would see 32 V between the input pin and ground pin. The LM2591HV has a maximum input voltage spec of 60 V. Additional diodes are required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the C_{IN} capacitor to the output, under light or no load conditions. Also, this diode isolation
changes the topology to closely resemble a buck configuration thus providing good closed loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a fast recovery diode could be used. Without diode D3, when the input voltage is first applied, the charging current of C_{IN} can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage. This circuit has hysteresis Regulator starts switching at V_{IN}= 13 V Regulator stops switching at V_{IN}= 8 V Figure 24. Undervoltage Lockout With Hysteresis for Inverting Regulator ## **Application Information (continued)** C_{IN} —68- μ F, 25-V Tant. Sprague 595D 470 μ F/50V Elec. Panasonic HFQ C_{OUT} —47- μ F, 20-V Tant. Sprague 595D 220- μ F, 25-V Elec. Panasonic HFQ Figure 25. Inverting -5-V Regulator With Delayed Start-Up Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a $33-\mu H$, 3-A inductor is the best choice. Capacitor selection can also be narrowed down to just a few values. This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2591HV current limit (approx 4 A) are needed for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current-limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high start-up currents required by the inverting topology, the delayed start-up feature (C1, R_1 , and R_2) shown in Figure 25 is recommended. By delaying the regulator start-up, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current needed for start-up is now supplied by the input capacitor (C_{IN}). For severe start-up conditions, the input capacitor can be made much larger than normal. ## **Application Information (continued)** ## 10.1.6 Inverting Regulator Shutdown Methods Using the $\overline{\text{ON}}/\text{OFF}$ pin in a standard buck configuration is simple. To turn the regulator ON, pull the $\overline{\text{ON}}/\text{OFF}$ pin below 1.3 V (at 25°C, referenced to ground). To turn regulator OFF, pull the $\overline{\text{ON}}/\text{OFF}$ pin above 1.3 V. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figure 26 and Figure 27. Figure 26. Inverting Regulator Ground Referenced Shutdown Figure 27. Inverting Regulator Ground Referenced Shutdown Using Opto Device #### 10.2 Typical Application Copyright © 2016, Texas Instruments Incorporated Figure 28. Typical Application #### 10.2.1 Design Requirements Table 1 lists the parameters for this design example. **Table 1. Example Parameters** | PARAMETER | EXAMPLE VALUE | |---|----------------------------| | Regulated output voltage, V _{OUT} | 20 V | | Maximum input voltage, V _{IN} (max) | 24 V | | Maximum load current, I _{LOAD} (max) | 1 A | | Switching frequency, F | Fixed at a nominal 150 kHz | #### 10.2.2 Detailed Design Procedure #### 10.2.2.1 Inductor Selection Procedure See Application Note AN-1197 (SNVA038) for detailed information on selecting inductors for buck converters. For a quick-start, the designer may refer to the nomographs provided in Figure 29 to Figure 31. To give designers more options of available inductors, the nomographs provide the required inductance and also the energy in the core expressed in microjoules (μJ), as an alternative to just prescribing custom parts. The following points must be highlighted: 1. The energy values shown on the nomographs apply to steady operation at the corresponding x-coordinate (rated maximum load current). However, under start-up, without soft start, or a short circuit on the output, the current in the inductor will momentarily or repetitively hit the current limit I_{CLIM} of the device, and this current could be much higher than the rated load, I_{LOAD}. This represents an overload situation, and can cause the inductor to saturate (if it has been designed only to handle the energy of steady operation). However, most types of core structures used for such applications have a large inherent air gap (for example, powdered iron types or ferrite rod inductors), so the inductance does not fall off too sharply under an overload. The device is usually able to protect itself by preventing the current from exceeding I_{CLIM}. However, if the DC input voltage to the regulator is over 40 V, the current can slew up so fast under core saturation that the device may not be able to act fast enough to restrict the current. The current can then rise without limit until the device is destroyed. #### **NOTE** To ensure reliability, TI recommends that, if the DC Input Voltage exceeds 40 V, the inductor must be sized to handle an instantaneous current equal to I_{CLIM} without saturating, irrespective of the type of core structure or material 2. The energy under steady operation is given in Equation 2: $$e = \frac{1}{2} \times L \times I_{PEAK}^2 \mu J$$ where - L is in µH - I_{PEAK} is the peak of the inductor current waveform with the regulator delivering I_{LOAD}. These are the energy values shown in the nomographs. See Example 1. 3. The energy under overload is given in Equation 3: $$e_{\text{CLIM}} = \frac{1}{2} \times L \times I_{\text{CLIM}}^2 \mu J \tag{3}$$ If $V_{\text{IN}} > 40 \text{ V}$, the inductor must be sized to handle e_{CLIM} instead of the steady energy values. The worst case I_{CLIM} for the LM2591HV is 3 A. The energy rating depends on the inductance. See Example 2. - 4. The nomographs were generated by allowing a greater amount of percentage current ripple in the inductor as the maximum rated load decreases (see Figure 32). This was done to allow smaller inductors to be used at light loads. However, Figure 32 shows only the *median* value of the current ripple. In reality there may be a great spread around this because the nomographs approximate the exact calculated inductance to standard available values. It is a good idea to refer to AN-1197 (SNVA038) for detailed calculations if a certain maximum inductor current ripple is required for various possible reasons. Also consider the rather wide tolerance on the nominal inductance of commercial inductors. - 5. Figure 31 shows the inductor selection curves for the Adjustable version. The y-axis is 'Et', in V_{μ} secs. It is the applied volts across the inductor during the ON time of the switch ($V_{IN} V_{SAT} V_{OUT}$) multiplied by the time for which the switch is on in μ s. See Example 3. ## **Example 1:** $(V_{IN} \le 40 \text{ V}) \text{ LM2591HV-5.0}, V_{IN} = 24 \text{ V}, \text{ Output 5 V at 0.8 A}$ - 1. A first pass inductor selection is based upon *inductance and rated max load current*. Choose an inductor with the inductance value indicated by the nomograph (see Figure 30) and a current rating equal to the maximum load current. Therefore, quick-select a $100-\mu H$, 0.8-A inductor (designed for 150-kHz operation) for this application. - 2. Confirm that it is rated to handle 50 μ J (see Figure 30) by either estimating the peak current or by a detailed calculation as shown in AN-1197 (SNVA038). Also, confirm that the losses are acceptable. ## **Example 2:** $(V_{IN} > 40 \text{ V}) \text{ LM2591HV-5.0}, V_{IN} = 48 \text{ V}, \text{ Output 5 V at 1 A}$ - 1. A first pass inductor selection is based upon *inductance and the switch currrent limit*. We choose an inductor with the inductance value indicated by the nomograph (Figure 30) and a current rating equal to I_{CLIM}. Therefore, quick-select a 100-μH, 3-A inductor (designed for 150-kHz operation) for this application. - Confirm that it is rated to handle e_{CLIM} by the procedure shown in AN-1197 (SNVA038) and that the losses are acceptable. Here e_{CLIM} is calculated using Equation 4: $$e_{CLIM} = \frac{1}{2} \times 100 \times 3^2 = 450 \,\mu J$$ (4) ## **Example 3:** $(V_{IN} \le 40 \text{ V})$ LM2591HV-ADJ, $V_{IN} = 20 \text{ V}$, Output 10 V at 1 A 1. Because input voltage is less than 40 V, a first pass inductor selection is based upon inductance and rated maximum load current. We choose an inductor with the inductance value indicated by the nomograph Figure 31 and a current rating equal to the maximum load. First, calculate Et for the given application. The duty cycle is calculated with Equation 5: $$D = \frac{V_{OUT} + V_{D}}{V_{IN} - V_{SAT} + V_{D}}$$ where - V_D is the drop across the catch diode (≈ 0.5 V for a Schottky) - V_{SAT} the drop across the switch (≊ 1.5 V) (5) (8) Substituting in the values gives Equation 6: $$D = \frac{10 + 0.5}{20 - 1.5 + 0.5} = 0.55 \tag{6}$$ And the switch ON time is calculated with Equation 7: $$t_{ON} = \frac{D}{f} x 10^6 \mu s$$ where • f is the switching frequency in Hz (7) So Et = $$(V_{IN} - V_{SAT} - V_{OUT}) \times t_{ON}$$ = $(20 - 1.5 - 10) \times \frac{0.55}{150000} \times 10^6 \text{ V}\mu\text{secs}$ = $31.3 \text{ V}\mu\text{secs}$ Therefore, looking at Figure 29, quick-select a $100-\mu H$, 1-A inductor (designed for 150-kHz operation) for this application. 2. Confirm that the inductor is rated to handle 100 μJ (see Figure 31) by the procedure shown in AN-1197 (SNVA038) and that the losses are acceptable. (If the DC input voltage is greater than 40 V, consider e_{CLIM} as shown
in Example 2). #### **NOTE** Take V_{SAT} as 1.5 V which includes an estimated resistive drop across the inductor. This completes the simplified inductor selection procedure. See AN-1197 (SNVA038), for more general applications and better optimization. #### 10.2.3 Application Curves (For Continuous Mode Operation) ## 11 Power Supply Recommendations The LM2591HV is designed to operate from an input voltage supply up to 60 V. This input supply must be well regulated, able to withstand maximum input current, and maintain a stable voltage. ## 12 Layout ## 12.1 Layout Guidelines As in any switching regulator, layout is very important. Rapid switching currents associated with wiring inductance can generate voltage transients, which can cause problems. For minimal inductance and ground loops (see *Test Circuits*), the wires indicated by heavy lines must be wide printed-circuit traces and must be kept as short as possible. For best results, external components must be placed as close to the switcher IC as possible using ground plane construction or single-point grounding. If open core inductors are used, take special care as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath, and C_{OUT} wiring can cause problems. When using the adjustable version, take special care as to the location of the feedback resistors and the associated wiring. Physically place both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. ## 12.2 Layout Examples Bottom Side Top Side (Component Side) C_{IN} = 470- μ F, 50-V, aluminum electrolytic Panasonic *HFQ Series* C_{OUT} = 330- μ F, 35-V, aluminum electrolytic Panasonic *HFQ Series* D1 = 5-A, 40-V Schottky rectifier, 1N5825 $L1 = 47-\mu H$, L39, Renco through hole $R_{PULL\ UP} = 10k$ $C_{DELAY} = 0.1 \,\mu\text{F}$ $C_{SD/SS} = 0.1 \,\mu\text{F}$ Thermalloy heat sink #7020 Figure 33. Typical Through-Hole PCB Layout, Fixed Output (1x Size), Double-Sided # **Layout Examples (continued)** Bottom Side Top Side (Component Side) C_{IN} = 470- μ F, 50-V, aluminum electrolytic Panasonic, *HFQ Series* C_{OUT} = 220- μ F, 35-V, aluminum electrolytic Panasonic, *HFQ Series* D1 = 5-A, 40-V Schottky Rectifier, 1N5825 $L1 = 47-\mu H$, L39, Renco, through-hole $R_1 = 1 \text{ k}\Omega, 1\%$ R₂ = Use formula in *Detailed Design Procedure* R_{FF} = See *Feedforward Capacitor* $R_{PULL\ UP} = 10k$ $C_{DELAY} = 0.1 \ \mu F$ $C_{SD/SS}^{-}=0.1 \mu F$ Thermalloy heat sink #7020 Figure 34. Typical Through-Hole PCB Layout, Adjustable Output (1x Size), Double-Sided ## 13 デバイスおよびドキュメントのサポート ## 13.1 コミュニティ・リソース The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. **Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 13.2 商標 E2E is a trademark of Texas Instruments. SIMPLE SWITCHER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners. ## 13.3 静電気放電に関する注意事項 これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。 ## 13.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. # 14 メカニカル、パッケージ、および注文情報 以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。 www.ti.com 14-Sep-2023 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |---------------------|------------|------------------|--------------------|------|----------------|------------------------|-------------------------------|---------------------|--------------|-------------------------|---------| | LM2591HVS-3.3/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 45 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-3.3 P+ | Samples | | LM2591HVS-5.0/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 45 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-5.0 P+ | Samples | | LM2591HVS-ADJ | LIFEBUY | DDPAK/
TO-263 | KTT | 5 | 45 | Non-RoHS
& Green | Call TI | Level-3-235C-168 HR | -40 to 125 | LM2591HVS
-ADJ P+ | | | LM2591HVS-ADJ/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 45 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-ADJ P+ | Samples | | LM2591HVSX-3.3/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-3.3 P+ | Samples | | LM2591HVSX-5.0/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-5.0 P+ | Samples | | LM2591HVSX-ADJ/NOPB | ACTIVE | DDPAK/
TO-263 | KTT | 5 | 500 | RoHS-Exempt
& Green | SN | Level-3-245C-168 HR | -40 to 125 | LM2591HVS
-ADJ P+ | Samples | | LM2591HVT-3.3/NOPB | ACTIVE | TO-220 | NDH | 5 | 45 | RoHS & Green | SN | Level-1-NA-UNLIM | -40 to 125 | LM2591HVT
-3.3 P+ | Samples | | LM2591HVT-5.0/NOPB | ACTIVE | TO-220 | NDH | 5 | 45 | RoHS & Green | SN | Level-1-NA-UNLIM | -40 to 125 | LM2591HVT
-5.0 P+ | Samples | | LM2591HVT-ADJ/NOPB | ACTIVE | TO-220 | NDH | 5 | 45 | RoHS & Green | SN | Level-1-NA-UNLIM | -40 to 125 | LM2591HVT
-ADJ P+ | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽²⁾ **RoHS**: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". # PACKAGE OPTION ADDENDUM www.ti.com 14-Sep-2023 - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. www.ti.com 11-May-2024 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------------|------------------|--------------------|---|-----|--------------------------
--------------------------|------------|------------|------------|------------|-----------|------------------| | LM2591HVSX-3.3/NOPB | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 | | LM2591HVSX-5.0/NOPB | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 | | LM2591HVSX-ADJ/NOPB | DDPAK/
TO-263 | KTT | 5 | 500 | 330.0 | 24.4 | 10.75 | 14.85 | 5.0 | 16.0 | 24.0 | Q2 | www.ti.com 11-May-2024 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------------|--------------|-----------------|------|-----|-------------|------------|-------------| | LM2591HVSX-3.3/NOPB | DDPAK/TO-263 | ктт | 5 | 500 | 356.0 | 356.0 | 45.0 | | LM2591HVSX-5.0/NOPB | DDPAK/TO-263 | ктт | 5 | 500 | 356.0 | 356.0 | 45.0 | | LM2591HVSX-ADJ/NOPB | DDPAK/TO-263 | KTT | 5 | 500 | 356.0 | 356.0 | 45.0 | www.ti.com 11-May-2024 ## **TUBE** *All dimensions are nominal | All difficultions are norminal | | | | | | | | | |--------------------------------|--------------|--------------|------|-----|--------|--------|---------|--------| | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | | LM2591HVS-3.3/NOPB | KTT | TO-263 | 5 | 45 | 502 | 25 | 8204.2 | 9.19 | | LM2591HVS-5.0/NOPB | KTT | TO-263 | 5 | 45 | 502 | 25 | 8204.2 | 9.19 | | LM2591HVS-ADJ | KTT | TO-263 | 5 | 45 | 502 | 25 | 8204.2 | 9.19 | | LM2591HVS-ADJ | KTT | TO-263 | 5 | 45 | 502 | 25 | 8204.2 | 9.19 | | LM2591HVS-ADJ/NOPB | KTT | TO-263 | 5 | 45 | 502 | 25 | 8204.2 | 9.19 | | LM2591HVT-3.3/NOPB | NDH | TO-220 | 5 | 45 | 502 | 30 | 30048.2 | 10.74 | | LM2591HVT-5.0/NOPB | NDH | TO-220 | 5 | 45 | 502 | 30 | 30048.2 | 10.74 | | LM2591HVT-ADJ/NOPB | NDH | TO-220 | 5 | 45 | 502 | 30 | 30048.2 | 10.74 | ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated