documentation LP5864 JAJSMR3 - DECEMBER 2021 # LP5866 4 × 18 LED マトリクス・ドライバ、8 ビット・アナログおよび 8/16 ビ ット PWM 調光付き ### 1 特長 - LED マトリクスのトポロジ: - 72 の LED ドットのための 4 のスキャン・スイッチを 備えた 18 の定電流シンク - 1~4 に構成できるスキャン・スイッチ - 動作電圧範囲 - V_{CC}/V_{LED} 範囲:2.7V~5.5V - 1.8V、3.3V、5V 互換のロジック・ピン - 18 の高精度定電流シンク - 電流シンクあたり 0.1mA~50mA (V_{CC} ≥ 3.3V) - デバイス間誤差:±5% - チャネル間誤差:±5% - 位相シフトによる過渡電力の平衡化 - 超低消費電力: - シャットダウン・モード: I_{CC} ≤ 2μA (EN = LOW) - スタンバイ・モード: I_{CC} ≤ 10μA (EN = HIGH およ び CHIP EN = 0 (データ保持)) - アクティブ・モード: Icc = 3mA (標準値、チャネル 電流 = 5mA) - フレキシブルな調光オプション: - 各 LED ドットを個別にオン / オフ制御 - アナログ調光 (電流ゲイン制御) - すべての LED ドットに対するグローバル 3 ビッ 卜最大電流 (MC) 設定 - 3 グループの 7 ビット・カラー電流 (CC) 設定 (赤、緑、青) - 各 LED ドットに対する個別の 8 ビット・ドット電 流 (DC) 設定 - 可聴ノイズが発生しない周波数を使った PWM 調 - すべての LED ドットに対するグローバル 8 ビッ トPWM 調光 - LED ドットを任意に割り当てるための3つのプ ログラマブルな 8 ビット PWM 調光グループ - 各 LED ドットに対する個別の 8 ビットまたは 16 ビット PWM 調光 - データ通信量を最小限に抑えるための完全にアドレス 指定可能な SRAM - 個別の LED ドット開放 / 短絡検出 - ゴースト除去および低輝度補償機能 - インターフェイス・オプション: - 1MHz (最大値) の I²C インターフェイス (IFS = LOW) - 12MHz (最大値) の SPI インターフェイス (IFS = HIGH) ### 2 アプリケーション - LED アニメーションおよび表示: - キーボード、マウス、ゲーム用アクセサリ - 大型およびスマート家電 - スマート・スピーカ、有線/無線スピーカ - オーディオ・ミキサ、DJ 機器、放送 - アクセス機器、スイッチ、サーバー - 光学モジュールの定電流シンク ### 3 概要 電子機器がますます小型化するにつれて、アニメーション と表示のためにより多くの LED を使う必要性が高まってお り、小さなソリューション・サイズでユーザー体験を向上さ せる高性能 LED マトリクス・ドライバが求められています。 LP586x デバイスは高性能 LED マトリクス・ドライバのファ ミリです。本デバイスは $N \times 18$ の LED ドットまたは $N \times 6$ の RGB LED をサポートするための N 個 (N = 1/2/4/6/8/11) のスイッチング MOSFET を備えた 18 の定 電流シンクを内蔵しています。LP5864 は、最大 72 の LED ドットまたは 24 の RGB LED のための 4 つの MOSFET を内蔵しています。 LP5864 はアナログ調光法と PWM 調光法の両方をサポ ートしています。アナログ調光の場合、各 LED ドットを 256 ステップで調整できます。 PWM 調光の場合、内蔵の 8 ビットまたは 16 ビット構成可能 PWM ジェネレータが滑 らかで可聴ノイズが発生しない調光制御を実現します。各 LED ドットを 8 ビット・グループ PWM に任意に割り当てる ことで、調光制御を同時に実現することもできます。 LP5864 デバイスは、データ通信量を最小限に抑えるた めに、完全にアドレス指定可能な SRAM を実装していま す。上側と下側のゴーストを除去するため、ゴースト・キャ ンセル回路を内蔵しています。LP5864 は LED 開放 / 短 絡検出機能もサポートしています。LP5864 では、1MHz (最大値) の I^2C と 12MHz (最大値) の SPI が使用できま #### 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | |--------|----------------------|------------| | LP5864 | VQFN (32) | 4mm × 4mm | 利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。 ### **Table of Contents** | 1 特長 | 1 | 8.4 Device Functional Modes | 23 | |--------------------------------------|---|--|-----------------------| | 2 アプリケーション | | 8.5 Programming | 24 | | 3 概要 | | 8.6 Register Maps | | | 4 Revision History | | 9 Application and Implementation | | | 5 Device Comparison | | 9.1 Application Information | 35 | | 6 Pin Configuration and Functions | | 9.2 Typical Application | 35 | | 7 Specifications | | 10 Power Supply Recommendations | 39 | | 7.1 Absolute Maximum Ratings | | 11 Layout | 40 | | 7.2 ESD Ratings | | 11.1 Layout Guidelines | 40 | | 7.3 Recommended Operating Conditions | | 11.2 Layout Example | 40 | | 7.4 Thermal Information | | 12 Device and Documentation Support | 41 | | 7.5 Electrical Characteristics | | 12.1 Receiving Notification of Documentation Upd | lates <mark>41</mark> | | 7.6 Timing Requirements | | 12.2 サポート・リソース | 41 | | 7.7 Typical Characteristics | | 12.3 Trademarks | 41 | | 8 Detailed Description | | 12.4 Electrostatic Discharge Caution | 41 | | 8.1 Overview | | 12.5 Glossary | | | 8.2 Functional Block Diagram | | 13 Mechanical, Packaging, and Orderable | | | 8.3 Feature Description | | Information | 42 | | 1 | | | | 4 Revision History 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | DATE | REVISON | NOTES | |---------------|---------|-----------------| | December 2021 | * | Initial release | ### **5 Device Comparison** | PART NUMBER | MATERIAL | LED DOT NUMBER | PACKAGE ⁽²⁾ | SOFTWARE
COMPATIBLE | |-------------|----------------------------|-----------------|------------------------|------------------------| | LP5861 | LP5861RSMR | 18 × 1 = 18 | VQFN-32 | | | LP5862 | LP5862RSMR | - 18 × 2 = 36 | VQFN-32 | | | LF3602 | LP5862DBTR | 10 ^ 2 - 30 | TSSOP-38 | | | LP5864 | LP5864RSMR | 18 × 4 = 72 | VQFN-32 | | | LP3004 | LP5864MRSMR ⁽¹⁾ | 10 × 4 = 72 | 4 – 72 VQFN-32 | | | | LP5866RKPR | | VQFN-40 | Yes | | LP5866 | LP5866DBTR | 18 × 6 = 108 | | | | | LP5866MDBTR ⁽¹⁾ | | TSSOP-38 | | | LP5868 | LP5868RKPR | 18 × 8 = 144 | VQFN-40 | | | LP5860 | LP5864RKPR | - 18 × 11 = 198 | VQFN-40 | | | LF 3000 | LP5864MRKPR ⁽¹⁾ | 10 ^ 11 - 190 | VQI 1N-40 | | Extended Temperature devices, supporting –55°C to approximately 125°C operating ambient temperature. ⁽²⁾ The same packages are hardware compatible. # **6 Pin Configuration and Functions** 図 6-1. LP5864 RSM Package 32-Pin VQFN With Exposed Thermal Pad Top View 表 6-1. Pin Functions | F | PIN | 1/0 | DESCRIPTION | | |-----|------|-------|---|--| | NO. | NAME | - I/O | DESCRIPTION | | | 1 | VCC | Power | Power supply for device. A 1-µF capacitor must be connected between this pin with GND and be placed as close to the device as possible. | | | 2 | CS0 | 0 | Current sink 0. If not used, this pin must be left floating. | | | 3 | CS1 | 0 | Current sink 1. If not used, this pin must be left floating. | | | 4 | CS2 | 0 | Current sink 2. If not used, this pin must be left floating. | | | 5 | CS3 | 0 | Current sink 3. If not used, this pin must be left floating. | | | 6 | CS4 | 0 | Current sink 4. If not used, this pin must be left floating. | | | 7 | CS5 | 0 | Current sink 5. If not used, this pin must be left floating. | | | 8 | CS6 | 0 | Current sink 6. If not used, this pin must be left floating. | | | 9 | CS7 | 0 | Current sink 7. If not used, this pin must be left floating. | | | 10 | CS8 | 0 | Current sink 8. If not used, this pin must be left floating. | | | 11 | SW0 | 0 | High-side PMOS switch output 0. If not used, this pin must be left floating. | | | 12 | SW1 | 0 | High-side PMOS switch output 1. If not used, this pin must be left floating. | | | 13 | SW2 | 0 | High-side PMOS switch output 2. If not used, this pin must be left floating. | | | 14 | SW3 | 0 | High-side PMOS switch output 3. If not used, this pin must be left floating. | | | 15 | VLED | Power | Power input for high-side switches | | | 16 | CS9 | 0 | Current sink 9. If not used, this pin must be left floating. | | | 17 | CS10 | 0 | Current sink 10. If not used, this pin must be left floating. | | | 18 | CS11 | 0 | Current sink 11. If not used, this pin must be left floating. | | ## 表 6-1. Pin Functions (continued) | P | IN | I/O | DESCRIPTION | | |------------------------|------------|---------|---|--| | NO. | NAME | 1/0 | DESCRIPTION | | | 19 | CS12 | 0 | Current sink 12. If not used, this pin must be left floating. | | | 20 | CS13 | 0 | Current sink 13. If not used, this pin must be left floating. | | | 21 | CS14 | 0 | Current sink 14. If not used, this pin must be left floating. | | | 22 | CS15 | 0 | Current sink 15. If not used, this pin must be left floating. | | | 23 | CS16 | 0 | Current sink 16. If not used, this pin must be left floating. | | | 24 | CS17 | 0 | Current sink 17. If not used, this pin must be left floating. | | | 25 | VCAP | 0 | Internal LDO output. An 1-µF capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible. | | | 26 | IFS | I | Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin. | | | 27 | VSYNC | I | External synchronize signal for display mode 2 and mode 3 | | | 28 | SCL_SCLK | I | I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C. | | | 29 | SDA_MOSI | I/O | I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C. | | | 30 | ADDR0_MISO | I/O | I ² C address select 0 or SPI leader input follower output | | | 31 | ADDR1_SS | I | I ² C address select 1 or SPI follower select | | | 32 | VIO_EN | Power,I | Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible. | | | Exposed
Thermal Pad | GND | Ground | Common ground plane | | ### 7 Specifications ### 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |--|----------------------|------|-----|------| | Voltage on V _{CC} / V _{LED} / VIO / EN / CS / SW / SDA / SCL / SCLK / MOSI / MISO / SS / ADDR0 / ADDR1 / VSYNC / IFS | | -0.3 | 6 | V | | Voltage on VCAP | | -0.3 | 2 | V | | TJ | Junction temperature | -55 | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ### 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, all pins ⁽¹⁾ | ±3000 | V | | V _(ESD) | Liectiostatic discharge | Charged device model (CDM), per ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | ±1000 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V
CDM allows safe manufacturing with a standard ESD control process. ### 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |---|--|------|---------|------| | Input voltage on V _{CC} | Supply voltage | 2.7 | 5.5 | V | | Input voltage on V _{LED} | LED supply voltage | 2.7 | 5.5 | V | | Input voltage on VIO_EN | | 1.65 | 5.5 | V | | Voltage on SDA / SCL / SCLK / MOSI /
MISO / SS / ADDRx / VSYNC / IFS | | | VIO | V | | T _A | Operating ambient temperature | -40 | 85 | °C | | T _A | Operating ambient temperature -
LP5860MRKPR, LP5864MRSMR,
and LP5866MDBTR only | -55 | 125 | °C | #### 7.4 Thermal Information | | | LP5864, LP5862, LP5861 | | |-----------------------|--|------------------------|------| | | THERMAL METRIC ⁽¹⁾ | RSM (VQFN) | UNIT | | | | 32 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 32.9 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 29.2 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 12.3 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 0.4 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 12.3 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | 3.7 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ### 7.5 Electrical Characteristics V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--|--|------|------|-----|------| | Power su | upplies | | | | | | | V _{CC} | Device supply voltage | | 2.7 | | 5.5 | V | | V _{UVR} | Undervoltage restart | V _{CC} rising, Test mode | | | 2.5 | V | | V _{UVF} | Undervoltage shutdown | V _{CC} falling, Test mode | 1.9 | | | V | | V _{UV_HYS} | Undervoltage shutdown hysteresis | | | 0.3 | | V | | V _{CAP} | Internal LDO output | V _{CC} = 2.7 V to 5.5 V | | 1.78 | | V | | | Shutdown supply current I _{SHUTDOWN} | V_{EN} = 0 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} | | 0.1 | 1 | μA | | I _{CC} | Standby supply current I _{STANDBY} | V_{EN} = 3.3 V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED} | | 5.5 | 10 | μΑ | | | Active mode supply current I _{NORMAL} | V_{EN} = 3.3 V, CHIP_EN = 1 (bit), all channels I_{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V_{CC} | | 4.3 | 6 | mA | | V _{LED} | LED supply voltage | | 2.7 | | 5.5 | V | | V _{VIO} | VIO supply voltage | | 1.65 | | 5.5 | V | | I _{VIO} | VIO supply current | Interface idle | | , | 5 | μA | | Output S | tages | | | | | | | | Constant current sink output range (CS0 | 2.7 V <= V _{CC} < 3.3 V, PWM = 100% | 0.1 | | 40 | mA | | I _{CS} | - CS17) | V _{CC} >= 3.3 V PWM = 100% | 0.1 | | 50 | mA | | I _{LKG} | Leakage current (CS0 – CS17) | channels off, up_deghost = 0, V _{CS} = 5 V | | 0.1 | 1 | μA | | | Device to device current error, I _{ERR_DD} = (I _{AVE} - I _{SET}) / I _{SET} ×100% | All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100% | -7 | | 7 | % | | | | All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100% | -5 | | 5 | % | | I _{ERR_DD} | | All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100% | -3 | | 3 | % | | | | All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100% | -5.5 | | 5.5 | % | | | | All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100% | -5 | | 5 | % | | I _{ERR_CC} | Channel to channel current error, I _{ERR_CC} = (I _{OUTX} – I _{AVE}) / I _{AVE} ×100% | All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100% | -4 | | 4 | % | | | | All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100% | -3.5 | | 3.5 | % | | | | All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100% | -3 | | 3 | % | | £ | LED DWM fraguency | PWM_Fre = 1, PWM = 100% | | 62.5 | | KHz | | f _{PWM} | LED PWM frequency | PWM_Fre = 0, PWM = 100% | | 125 | | KHz | ### 7.5 Electrical Characteristics (continued) V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|---|--|-----------|----------------------|---------|------| | | | I _{OUT} = 50 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.45 | V | | V_{SAT} | Output saturation voltage | I _{OUT} = 30 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.4 | V | | | | I _{OUT} = 10 mA, decreasing output voltage, when the LED current has dropped 5% | | | 0.35 | V | | | | V _{LED} = 2.7 V, I _{SW} = 200 mA | | 450 | 550 | mΩ | | | | V _{LED} = 2.7 V, I _{SW} = 200 mA,
LP5860MRKPR and LP5864MRSMR | | 450 | 570 | mΩ | | | | V _{LED} = 3.8 V, I _{SW} = 200 mA | | 380 | 500 | mΩ | | R_{SW} | High-side PMOS ON resistance | V _{LED} = 3.8 V, I _{SW} = 200 mA,
LP5860MRKPR and LP5864MRSMR | | 380 | 520 | mΩ | | | | V _{LED} = 5 V, I _{SW} = 200 mA | | 310 | 450 | mΩ | | | | V _{LED} = 5 V, I _{SW} = 200 mA,
LP5860MRKPR and LP5864MRSMR | | 310 | 490 | mΩ | | Logic Inte | erfaces | | | | | | | V _{LOGIC_IL} | Low-level input voltage, SDA, SCL,
SCLK, MOSI, SS, ADDRx, VSYNC, IFS | | | 0. | 3 × VIO | V | | V _{LOGIC_IH} | High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS | | 0.7 × VIO | | | V | | V _{EN_IL} | Low-level input voltage of EN | | | - | 0.4 | V | | V _{EN_IH} | High-level input voltage of EN | When V _{CAP} powered up | 1.4 | | | V | | I _{LOGIC_I} | Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx | | -1 | | 1 | μΑ | | V _{LOGIC_O}
L | Low-level output voltage, SDA, MISO | I _{PULLUP} = 3 mA | | | 0.4 | V | | V _{LOGIC_O}
H | High-level output voltage, MISO | I _{PULLUP} = –3 mA | 0.7 × VIO | | | V | | Protectio | n Circuits | | | | | | | V _{LOD_TH} | Threshold for channel open detection | | | 0.25 | | V | | V _{LSD_TH} | Threshold for channel short detection | | | √ _{LED} – 1 | | V | | T _{TSD} | Thermal-shutdown junction temperature | | | 150 | | °C | | T _{HYS} | Thermal shutdown temperature hysteresis | | | 15 | | °C | ### 7.6 Timing Requirements | | | MIN | NOM | MAX | UNIT | |----------------------|---|----------|------|-----|------| | MISC. Timi | ng Requirements | <u>'</u> | | | | | f _{OSC} | Internal oscillator frequency | | 31.2 | | MHz | | f _{OSC_ERR} | Device to device oscillator frequency error | -3% | | 3% | | | t _{POR_H} | Wait time from UVLO disactive to device NORMAL | | | 500 | μs | | t _{CHIP_EN} | Wait time from setting Chip_EN (Register) =1 to device NORMAL | | | 100 | μs | | t _{RISE} | LED output rise time | | 10 | | ns | | t _{FALL} | LED output fall time | | 15 | | ns | | t _{VSYNC_H} | The minimum high-level pulse width of VSYNC | 200 | | | μs | | SPI timing | requirements | • | | | | | f _{SCLK} | SPI Clock frequency | | | 12 | MHz | | 1 | Cycle time | 83.3 | | | ns | ### 7.6 Timing Requirements (continued) | | Timig requirements (continues) | MIN | NOM MAX | UNIT | |-------------------------|--|------|---------|------| | 2 | SS active lead-time | 50 | | ns | | 3 | SS active leg time | 50 | | ns | | 4 | SS inactive time | 50 | | ns | | 5 | SCLK low time | 36 | | ns | | 6 | SCLK high time | 36 | | ns | | 7 | MOSI set-up time | 20 | | ns | | 8 | MOSI hold time | 20 | | ns | | 9 | MISO disable time | | 30 | ns | | 10 | MISO data valid time | | 35 | ns | | C _b | Bus capacitance | 5 | 40 | pF | | I ² C fast n | node timing requirements | , | | | | f _{SCL} | I ² C clock frequency | 0 | 400 | KHz | | 1 | Hold time (repeated) START condition | 600 | | ns | | 2 | Clock low time | 1300 | | ns | | 3 | Clock high time | 600 | | ns | | 4 | Set-up time for a repeated START condition | 600 | | ns | | 5 | Data hold time | 0 | | ns | | 6 | Data set-up time | 100 | | ns | | 7 | Rise time of SDA and SCL | | 300 | ns | | 8 | Fall time of SDA and SCL | | 300 | ns | | 9 | Set-up time for STOP condition | 600 | | ns | | 10 | Bus free time between a STOP and a START condition | 1.3 | | μs | | I ² C fast n | node plus timing requirements | | | | | f _{SCL} | I ² C clock frequency | 0 | 400 | KHz | | 1 | Hold time (repeated) START condition | 600 | | ns | | 2 | Clock low time | 1300 | | ns | | 3 | Clock high time | 600 | | ns | | 4 | Setup time for a repeated START condition | 600 | | ns | | 5 | Data hold time | 0 | | ns | | 6 | Data setup time | 100 | | ns | | 7 | Rise time of SDA and SCL | | 300 | ns | | 8 | Fall time of SDA and SCL | | 300 | ns | | 9 | Set-up time for STOP condition | 600 | | ns | | 10 | Bus free time between a STOP and a
START condition | 1.3 | | μs | 図 7-1. SPI Timing Parameters 図 7-2. I²C Timing Parameters ### 7.7 Typical Characteristics Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), $V_{CC} = 3.3$ V, $V_{IO} = 3.3$ V, $V_{LED} = 5$ V, $I_{LED\ Peak} = 50$ mA, $C_{VLED} = 1$ μ F, $C_{VCC} = 1$ μ F. ### 7.7 Typical Characteristics (continued) Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_{A} < +125^{\circ}C$ for LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR while $-40^{\circ}C < T_{A} < +85^{\circ}C$ for the other devices), V_{CC} = 3.3 V, V_{IO} = 3.3 V, V_{LED} = 5 V, I_{LED_Peak} = 50 mA, C_{VLED} = 1 μ F, C_{VCC} = 1 μ F. ### 8 Detailed Description #### 8.1 Overview The LP5864 is an 4 × 18 LED matrix driver. The device integrates 4 switching FETs with 18 constant current sinks. One LP5864 device can drive up to 72 LED dots or 24 RGB pixels by using time-multiplexing matrix scheme. The LP5864 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20-KHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic. The LP5864 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5864 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5864 also uses low brightness compensation technology to support high density LED pixels. Both 1-MHz (maximum) I²C and 12-MHz (max.) SPI interfaces are available in the LP5864. ### 8.2 Functional Block Diagram ### 8.3 Feature Description ### 8.3.1 Time-Multiplexing Matrix The LP5864 device uses time-multiplexing matrix scheme to support up to 72 LED dots with a single chip. The device integrates 18 current sinks with 4 scan lines to drive $18 \times 4 = 72$ LED dots or $6 \times 4 = 24$ RGB pixels. In matrix control scheme, the device scans from Line 0 to Line 3 sequentially as shown in \boxtimes 8-1. Current gain and PWM duty registers are programmable for each LED dot to support individual analog and PWM dimming. 図 8-1. Scan Line Control Scheme There are 4 high-side p-channel MOSFETs (PMOS) integrated in LP5864 device. Users can flexibly set the active scan numbers from 1 to 4 by configuring the 'Max_Line_Num' in Dev_initial register. The time-multiplexing matrix timing sequence follows the \boxtimes 8-2. 図 8-2. Time-Multiplexing Matrix Timing Sequence One cycle time of the line switching can be calculated as below: $$t_{line\ switch} = t_{PWM} + t_{SW\ BLK} + 2 \times t_{phase\ shift}$$ (1) - t_{PWM} is the current sink active time, which equals to 8 us (PWM frequency set at 125 kHz) or 16 us (PWM frequency set at 62.5 kHz) by configuring 'PWM_Fre' in Dev_initial register. - t_{SW_BLK} is the switch blank time, which equals to 1 us or 0.5 us by configuring 'SW_BLK' in Dev_config1 register. - t_{phase_shift} is the PWM phase shift time, which equal to 0 or 125 ns by configuring 'PWM_Phase_Shift' in Dev_config1 register. Total display time for one complete sub-period is t_{sub_period} and it can be calculated by the following equation: $$t_{\text{sub period}} = t_{\text{line switch}} \times \text{Scan_line}\#$$ (2) · Scan line# is the scan line number determined by 'Max Line Num' in Dev initial register. The time-multiplexing matrix scheme time diagram is shown in 🗵 8-3. The t_{CS_ON_Shift} is the current sink turning on shift by configuring 'CS_ON_Shift' bit in Dev_config1 register. Copyright © 2022 Texas Instruments Incorporated 図 8-3. Time-Multiplexing Matrix Timing Diagram The LP5864 device implements deghosting and low brightness compensation to remove the side effects of matrix topology: - **Deghosting**: both upside deghosting and downside deghosting are implemented to eliminate the LED's unexpected weak turn-on. - Upside_deghosting: discharge each scan line during its off state. By configuring the 'Up_Deghost' in Dev config3 register, the LP5864 discharges and clamps the scan line switch to a certain voltage. - Downside_deghosting: pre-charge each current sink voltage during its off state. The deghosting capability can be adjusted through the 'Down Deghost' in Dev config3 register. - Low Brightness Compensation: Three groups compensation are implemented to overcome the color-shift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp Group1', 'Comp Group2', and 'Comp Group3' in Dev config2 register. - Compensation_group 1: CS0, CS3, CS6, CS9, CS12, CS15 - Compensation_group 2: CS1, CS4, CS7, CS10, CS13, CS16 - Compensation group 3: CS2, CS5, CS8, CS11, CS14, CS17 #### 8.3.2 Analog Dimming (Current Gain Control) Analog dimming of LP5864 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED. - · Global 3-bits Maximum Current (MC) setting without external resistor - 3 Groups of 7-bits Color Current (CC) setting - · Individual 8-bit Dot Current (DC) setting #### Global 3-Bits Maximum Current (MC) Setting The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3-bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA. For data refresh Mode 1, MC data is effective immediately after new data updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only updated when the 'Chip_EN' bit in Chip_en register is set to 0, and after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC. 表 8-1. Maximum Current (MC) Register Setting | 3-BITS MAXIMUM_CI | URRENT REGISTER | I _{OUT_MAX} | |-------------------|-----------------|----------------------| | Binary | Decimal | mA | | 000 | 0 | 3 | | 001 | 1 | 5 | | 010 | 2 | 10 | | 011 (default) | 3 (default) | 15 (default) | | 100 | 4 | 20 | | 101 | 5 | 30 | | 110 | 6 | 40 | | 111 | 7 | 50 | ### 3 Groups of 7-Bits Color Current (CC) Setting The LP5864 device is able to adjust the output current of three color groups separately. For each color, it has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT_MAX}. The 18 current sinks have fixed mapping to the three color groups: - CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15 - CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16 - CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17 表 8-2. 3 Groups of 7-bits Color Current (CC) Setting | 7-BITS CC_GROUP1/CC_GRO | OUP2/CC_GROUP3 REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} | | | |-------------------------|-------------------------|---|--|--| | Binary | Decimal | % | | | | 000 0000 | 0 | 0 | | | | 000 0001 | 1 | 0.79 | | | | 000 0010 | 2 | 1.57 | | | | | | | | | | 100 0000 (default) | 64 (default) | 50.4 (default) | | | | | | | | | | 111 1101 | 125 | 98.4 | | | | 111 1110 | 126 | 99.2 | | | | 111 1111 | 127 | 100 | | | #### Individual 8-bit Dot Current (DC) Setting The LP5864 can individually adjust the output current of each LED by using dot current function through DC setting. This function allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with a 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of ($I_{OUT\ MAX} \times CC/127$). 表 8-3. Individual 8-bit Dot Current (DC) Setting | 8-BIT DC I | REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127 | | | | | |---------------------|---------------|--|--|--|--|--| | Binary | Decimal | % | | | | | | 0000 0000 | 0 | 0 | | | | | | 0000 0001 | 1 | 0.39 | | | | | | 0000 0010 | 2 | 0.78 | | | | | | | | | | | | | | 1000 0000 (default) | 128 (default) | 50.2 (default) | | | | | ### 表 8-3. Individual 8-bit Dot Current (DC) Setting (continued) | 8-BIT DC I | REGISTER | RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127 | | | | | |------------|----------|--|--|--|--|--| | Binary | Decimal | % | | | | | | | | | | | | | | 1111 1101 | 253 | 99.2 | | | | | | 1111 1110 | 254 | 99.6 | | | | | | 1111 1111 | 255 | 100 | | | | | In summary, the current gain of each current sink can be calculated as below: $$I_{OUT}$$ (mA) = $I_{OUT MAX} \times (CC/127) \times (DC/255)$ (3) For time-multiplexing scan scheme, if the scan number is N, each LED dot's average current I_{AVG} is shown as below: $$I_{AVG}$$ (mA) = I_{OUT} / N = $I_{OUT\ MAX} \times (CC/127) \times (DC/255)$ /N (4) #### 8.3.3 PWM Dimming There are several methods to control the PWM duty cycle of each LED dot. #### Individual 8-bit / 16-bit PWM for Each LED Dot Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5864 uses an enhanced spectrum PWM (ES-PWM) algoithm to achieve 16-bit depth with high refresh rate and this can avoid flicker under high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications. #### 3 Programmable Groups of
8-bit PWM Dimming The group PWM Control is used to select LEDs into 1 to 3 groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers (x = 0, 1, ..., 19) to select whether it belongs to one of the three groups or not: - 00: not a member of any group - 01: member of group 1 - 10: member of group 2 - 11: member of group 3 #### 8-bit PWM for Global Dimming The Global PWM Control function affects all LEDs simultaneously. The final PWM duty cycle can be calculated as below: $$PWM_Final(8 bit) = PWM_Individual(8 bit) \times PWM_Group(8 bit) \times PWM_Global(8 bit)$$ (5) The LP5864 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 32-MHz oscillator is used for generating PWM outputs. The oscillator's high accuracy design ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5864 devices are connected together. A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in Dev_config1 register, which is default off, the LP5864 supports $t_{phase_shift} = 125$ -ns shifting time shown in \boxtimes 8-4. Phase 1: CS0, CS3, CS6, CS9, CS12, CS15 - Phase 2: CS1, CS4, CS7, CS10, CS13, CS16 - Phase 3: CS2, CS5, CS8, CS11, CS14, CS17 図 8-4. Phase Shift To avoid high current sinks output ripple during line switching, current sinks can be configured to turn on with 1 clock delay (62.5 ns or 31.25 ns according to the PWM frequency) after lines turn on, as shown in ⊠ 8-3. This function can be configured by 'CS ON Shift' in Dev config1 register. The LP5864 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, using the linear scale with software correction is recommended. The LP5864 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. \boxtimes 8-5 is an example of 8-bit PWM depth. 図 8-5. Linear and Exponential Dimming Curves In summary, the PWM control method is illustrated as **8-6**: 図 8-6. PWM Control Scheme #### 8.3.4 ON and OFF Control The LP5864 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot_onoffx (x = 0, 1, ..., 11) register. #### 8.3.5 Data Refresh Mode The LP5864 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev_initial register. **Mode 1**: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dots' data only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in ☑ 8-7, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame. 図 8-7. On Demand Data Refresh - Mode 1 **Mode 2**: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command. **Mode 3**: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command. Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC}. Usually, 24 Hz, 50 Hz, 60 Hz, 120 Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in \boxtimes 8-8, a new frame is updated after receiving the VSYNC command. 図 8-8. Whole SRAM Data Refresh Submit Document Feedback Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5864 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame. \boxtimes 8-9 shows the VSYNC connections and \boxtimes 8-10 shows the timing requirements. 図 8-9. Multiple Devices Sync 図 8-10. VSYNC Timing Table 8-4 is the summary of the three data refresh modes. 表 8-4. Data Refresh Mode | MODE TYPE | PWM RESOLUTION | PWM OUTPUT | EXTERNAL VSYNC | |-----------|----------------|-----------------------|----------------| | Mode 1 | 8 bits | Data update instantly | No | | Mode 2 | 8 bits | Data update by frame | Yes | | Mode 3 | 16 bits | Data update by frame | 165 | #### 8.3.6 Full Addressable SRAM SRAM is implemented inside the LP5864 device to support data writing and reading at the same time. Although data refresh mechanisms are not the same for Mode 1 and Mode 2 and 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5864 supports auto-increment function to minimize data traffic and increase data transfer efficiency. Please be noted that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses. #### 8.3.7 Protections and Diagnostics #### **LED Open Detection** The LP5864 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25-V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 subperiods. \boxtimes 8-11 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also monitored in register Dot_lodx (x = 0, 1, ..., 11). All open fault indicator bits can be cleared by setting LOD_clear = 0Fh after the open condition is removed. LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included. 図 8-11. LOD Circuits #### **LED Short Detection** The LP5864 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 subperiods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5 mA. ✓ 8-12 shows the detection circuit of LSD function. When short fault is detected, 'Global_LSD bit' in Fault_state register is set to 1 and detailed fault state for every channel is also monitored in register Dot_lsdx (x = 0, 1, ..., 11). All short fault indicator bits can be cleared by setting LSD_clear = 0Fh after the short condition is removed. LSD removal function can be enabled by setting 'LSD_removal' bit in Dev_config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included. 図 8-12. LSD Circuit Submit Document Feedback #### Thermal Shutdown The LP5864 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical) and above, the device switches into shutdown mode. The LP5864 exits thermal shutdown when the junction temperature of the device drops to 145°C (typical) and below. ### **UVLO (Undervoltage Lock Out)** The LP5864 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF} , reset is active and the LP5864 enters INITIALIZATION state. #### 8.4 Device Functional Modes 図 8-13. Device Functional Modes - · Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low. - Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO=H from all states. - Software reset: The device enters into software resest mode when VCC rise higher than V_{UVR} with the time t t_{POR_H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low. - Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device enters into low power mode, but the I²C/SPI are still available for Chip_EN only and the registers' data are retained. - Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time t > t_{CHIP_EN}. - Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode. #### 8.5 Programming #### Interface Selection The LP5864 supports two communication interfaces: I²C and SPI. If IFS is high, the device enters into SPI mode. If IFS is low, the device enters into I²C mode. 表 8-5. Interface Selection | INTERFACE TYPE | ENTRY CONDITION | | | | |------------------|-----------------|--|--|--| | l ² C | IFS = Low | | | | | SPI | IFS = High | | | | #### I²C Interface The LP5864 is compatible with I²C standard specification. The device supports both fast mode (400-KHz maximum) and fast plus mode (1-MHz maximum). #### I²C Data Transactions The data on SDA line must be stable during the HIGH
period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received. There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down. #### I²C Data Format The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read/write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started. 表 8-6. I²C Data Format | Address Byte1 | | (| Chip Address | Register | R/W | | | | | |----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--| | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | Independent | 1 | 0 | 0 | ADDR1 | ADDR0 | 9 th bit | 8 th bit | R: 1 W: 0 | | | Broadcast | 1 | 0 | 1 | 0 | 1 | 9 DIL | O DIL | IX. I W. U | | | | Register Address | | | | | | | | | | Address Byte 2 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | 7 th bit | 6 th bit | 5 th bit | 4 th bit | 3 th bit | 2 th bit | 1 th bit | 0 th bit | | Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ### 図 8-14. I²C Write Timming 図 8-15. I²C Read Timing #### **Multiple Devices Connection** The LP5864 enters into I^2C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I^2C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7 K Ω for 400 KHz, 2 K Ω for 1 MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. Up to four LP5864 follower devices can share the same I^2C bus by the different ADDR configurations. 図 8-16. I²C Multiple Devices Connection #### **SPI Interface** The LP5864 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5864 is 12 MHz. #### SPI Data Transactions MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK. #### SPI Data Format The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started with 2 lower bits of the register address and 1 read/write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started. 表 8-7. SPI Data Format | Address
Byte 1 | Register Address | | | | | | | | | | |-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--| | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | 9 th bit | 8 th bit | 7 th bit | 6 th bit | 5 th bit | 4 th bit | 3 th bit | 2 th bit | | | | Address
Byte 2 | Register Address | | | | | | | | | | | | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | | | 1 th bit | 0 th bit | R: 0 W: 1 | Do not care | | | | | | | 図 8-17. SPI Write Timing 図 8-18. SPI Read Timing #### **Multiple Devices Connection** The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor (4.7K Ω recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 図 8-19. SPI Multiple Devices Connection ### 8.6 Register Maps This section provides a summary of the register maps. For detailed register functions and descriptions, please refer to *LP5860 11x18 LED Matrix Driver Register Maps*. 表 8-8. Register Section/Block Access Type Codes | Access Type | Code | Description | |------------------------|------|--| | Read Type | | | | R | R | Read | | RC | R | Read | | | С | to Clear | | R-0 | R | Read | | | -0 | Returns 0s | | Write Type | , | | | W | W | Write | | W0CP | W | W | | | 0C | 0 to clear | | | Р | Requires privileged access | | Reset or Default Value | · | · | | -n | | Value after reset or the default value | | Register
Acronym | Address | Туре | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Default | |---------------------|---------|------|----------|----------------------------------|----------|----------|----------|--------------------|---------------------|---------------------------|---------| | Chip_en | 000h | R/W | Reserved | | | 1 | | | | Chip_EN | 00h | | Dev_initial | 001h | R/W | Reserved | erved Max_Line_Num Data_Ref_Mode | | | | | PWM_Fre | 5Eh | | | Dev_config1 | 002h | R/W | Reserved | Reserved | Reserved | Reserved | SW_BLK | PWM_Sc
ale_Mode | PWM_Ph
ase_Shift | CS_ON_
Shift | 00h | | Dev_config2 | 003h | R/W | Comp_Gro | up3 | Comp_Gro | oup2 | Comp_Gro | oup1 | LOD_rem oval | LSD_rem
oval | 00h | | Dev_config3 | 004h | R/W | Down_Deg | jhost | Up_Degho | st | Maximum_ | Current | | Up_Degh
ost_enabl
e | 47h | | Global_bri | 005h | R/W | PWM_Glob | oal | | | | | | | FFh | | |---------------|------|-----|--|--|--------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|-----|--| | Group0_bri | 006h | R/W | PWM_Gro | PWM_Group1 | | | | | | FFh | | | | Group1_bri | 007h | R/W | PWM_Gro | PWM_Group2 | | | | | | | FFh | | | Group2_bri | 008h | R/W | PWM_Gro | PWM_Group3 | | | | | | FFh | | | | R_current_set | 009h | R/W | Reserved | CC_Group | 1 | | | | | | 40h | | | G_current_set | 00Ah | R/W | Reserved | CC_Group | 2 | | | | | 40h | | | | B_current_set | 00Bh | R/W | Reserved | CC_Group | 3 | | | | | | | | | Dot_grp_sel0 | 00Ch | R/W | Dot L0-CS | 3 group | Dot L0-CS | 2 group | Dot L0-CS1 group Dot L0-CS0 group | | | 00h | | | | Dot_grp_sel1 | 00Dh | R/W | Dot L0-CS | 7 group | Dot L0-CS | 6 group | Dot L0-CS | 5 group | Dot L0-CS4 group | | 00h | | | Dot_grp_sel2 | 00Eh | R/W | Dot L0-CS | 11 group | Dot L0-CS | 10 group | Dot L0-CS | 9 group | Dot L0-CS8 group | | 00h | | | Dot_grp_sel3 | 00Fh | R/W | Dot L0-CS | 15 group | Dot L0-CS | 14 group | Dot L0-CS | 13 group | Dot L0-CS | 12 group | 00h | | | Dot_grp_sel4 | 010h | R/W | Reserved | | | | Dot L0-CS | 17 group | Dot L0-CS | 16 group | 00h | | | Dot_grp_sel5 | 011h | R/W | Dot L1-CS | 3 group | Dot L1-CS | 2 group | Dot L1-CS | 1 group | Dot L1-CS | 0 group | 00h | | | Dot_grp_sel6 | 012h | R/W | Dot L1-CS | 7 group | Dot L1-CS | 6 group | Dot L1-CS | 5 group | Dot L1-CS | 4 group | 00h | | | Dot_grp_sel7 | 013h | R/W | Dot L1-CS | 11 group | Dot L1-CS | 10 group | Dot L1-CS | 9 group | Dot L1-CS | 8 group | 00h | | | Dot_grp_sel8 | 014h | R/W | Dot L1-CS | 15 group | Dot L1-CS | 14 group | Dot L1-CS | 13 group | Dot L1-CS | 12 group | 00h | | | Dot_grp_sel9 | 015h | R/W | Reserved | | • | Dot L1-CS17 group | | 17 group | Dot L1-CS16 group | | 00h | | | Dot_grp_sel10 | 016h | R/W | Dot L2-CS | 3 group | Dot L2-CS | 2 group | Dot L2-CS | 1 group | Dot L2-CS | 0 group | 00h | | | Dot_grp_sel11 | 017h | R/W | Dot L2-CS7 group Dot L2-CS5 group Dot L2-CS5 group | | | | 5 group | Dot L2-CS4 group | | 00h | | | | Dot_grp_sel12 | 018h | R/W | Dot L2-CS11 group Dot L2-CS10 group Dot L2-CS9 group | | | | 9 group | Dot L2-CS8 group | | 00h | | | | Dot_grp_sel13 | 019h | R/W | Dot L2-CS15 group Dot L2-CS14 group Dot L2-CS15 | | | 13 group | Dot L2-CS12 group | | 00h | | | | | Dot_grp_sel14 | 01Ah | R/W | Reserved Dot L2-CS17 group Do | | | | Dot L2-CS | Dot L2-CS16 group | | | | | | Dot_grp_sel15 | 01Bh | R/W | Dot
L3-CS | 3 group | Dot L3-CS | 2 group | Dot L3-CS1 group | | Dot L3-CS | 0 group | 00h | | | Dot_grp_sel16 | 01Ch | R/W | Dot L3-CS | 7 group | Dot L3-CS | 6 group | Dot L3-CS5 group | | Dot L3-CS | 4 group | 00h | | | Dot_grp_sel17 | 01Dh | R/W | Dot L3-CS | 11 group | Dot L3-CS | 10 group | Dot L3-CS9 group | | Dot L3-CS | 8 group | 00h | | | Dot_grp_sel18 | 01Eh | R/W | Dot L3-CS | 15 group | Dot L3-CS | 14 group | Dot L3-CS13 group | | Dot L3-CS | 12 group | 00h | | | Dot_grp_sel19 | 01Fh | R/W | Reserved | | | | | | Dot L3-CS | 16 group | 00h | | | Dot_onoff0 | 043h | R/W | Dot L0-
CS7 onoff | Dot L0-
CS6 onoff | Dot L0-
CS5 onoff | Dot L0-
CS4 onoff | Dot L0-
CS3 onoff | Dot L0-
CS2 onoff | Dot L0-
CS1 onoff | Dot L0-
CS0 onoff | FFh | | | Dot_onoff1 | 044h | R/W | Dot L0-
CS15onof
f | Dot L0-
CS14
onoff | Dot L0-
CS13
onoff | Dot L0-
CS12
onoff | Dot L0-
CS11
onoff | Dot L0-
CS10
onoff | Dot L0-
CS9 onoff | Dot L0-
CS8 onoff | FFh | | | Dot_onoff2 | 045h | R/W | Reserved | Reserved Dot L0- CS17 CS16 onoff onoff | | | | CS16 | 03h | | | | | Dot_onoff3 | 046h | R/W | Dot L1-
CS7 onoff | Dot L1-
CS6 onoff | Dot L1-
CS5 onoff | Dot L1-
CS4 onoff | Dot L1-
CS3 onoff | Dot L1-
CS2 onoff | Dot L1-
CS1 onoff | Dot L1-
CS0 onoff | FFh | | | Dot_onoff4 | 047h | R/W | Dot L1-
CS15
onoff | Dot L1-
CS14
onoff | Dot L1-
CS13
onoff | Dot L1-
CS12
onoff | Dot L1-
CS11
onoff | Dot L1-
CS10
onoff | Dot L1-
CS9 onoff | Dot L1-
CS8 onoff | FFh | | | Dot_onoff5 | 048h | R/W | Reserved Dot L1- CS17 CS1 | | | | Dot L1-
CS16
onoff | 03h | | | | | | Dot_onoff6 | 049h | R/W | Dot L2-
CS7 onoff | Dot L2-
CS6 onoff | Dot L2-
CS5 onoff | Dot L2-
CS4 onoff | Dot L2-
CS3 onoff | Dot L2-
CS2 onoff | Dot L2-
CS1 onoff | Dot L2-
CS0 onoff | FFh | | | Dot_onoff7 | 04Ah | R/W | Dot L2-
CS15
onoff | Dot L2-
CS14
onoff | Dot L2-
CS13
onoff | Dot L2-
CS12
onoff | Dot L2-
CS11
onoff | Dot L2-
CS10
onoff | Dot L2-
CS9 onoff | Dot L2-
CS8 onoff | FFh | | | Dot_onoff8 | 04Bh | R/W | Reserved | 1 | 1 | 1 | 1 | 1 | Dot L2-
CS17
onoff | Dot L2-
CS16
onoff | 03h | | Dot L3-Dot L3-04Ch R/W Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-FFh Dot_onoff9 CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 04Dh R/W Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-FFh Dot_onoff10 CS15 CS14 CS13 CS12 CS10 CS9 onoff CS8 onoff CS11 onoff onoff onoff onoff onoff onoff 04Eh R/W Dot L3-03h Dot_onoff11 Reserved Dot L3-CS16 CS17 onoff onoff Dot L4-Dot_onoff12 04Fh R/W Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-FFh CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 064h R 00h Fault_state Reserved Global L Global L SD Dot L0-Dot L0-065h R Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-00h Dot_lod0 CS7 LOD CS6 LOD CS5 LOD CS4 LOD CS3 LOD CS2 LOD CS1 LOD CS0 LOD Dot_lod1 066h R Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-00h CS15 CS14 CS13 CS12 CS11 CS10 CS9 LOD CS8 LOD LOD LOD LOD LOD LOD LOD Dot lod2 067h R Reserved Dot L0-Dot L0-00h CS17 CS16 LOD LOD 068h R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-00h Dot_lod3 Dot I 1-Dot I 1-CS7 LOD CS6 LOD CS5 LOD CS4 LOD CS3 LOD CS2 LOD CS1 LOD CS0 LOD Dot_lod4 069h R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot I 1-Dot L1-00h CS15 **CS14** CS13 CS12 CS10 CS8 LOD CS11 CS9 LOD LOD LOD LOD LOD LOD LOD 06Ah R Dot L1-Dot L1-00h Dot lod5 Reserved CS16 CS17 LOD LOD 06Bh R Dot I 2-Dot I 2-Dot L2-Dot I 2-Dot L2-Dot L2-Dot L2-Dot L2-00h Dot_lod6 CS7 LOD CS6 LOD CS5 LOD CS4 LOD CS3 LOD CS2 LOD CS1 LOD CS0 LOD Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-06Ch R 00h Dot_lod7 CS15 CS14 CS13 CS12 CS11 CS10 CS9 LOD CS8 LOD LOD LOD LOD LOD LOD LOD 06Dh R Reserved Dot L2-Dot L2-00h Dot_lod8 CS16 CS17 LOD LOD R Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-00h Dot_lod9 06Eh Dot L3-CS6 LOD CS4 LOD CS2 LOD CS7 LOD CS5 LOD CS3 LOD CS1 LOD CS0 LOD 06Fh R Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-00h Dot lod10 Dot I 3-CS15 CS14 CS13 CS12 CS10 CS9 LOD CS8 LOD CS11 LOD LOD LOD LOD LOD LOD 070h Dot L3-Dot L3-00h Dot lod11 R Reserved CS16 CS17 LOD LOD Dot L0-Dot L0-Dot L0-Dot L0-Dot_lsd0 086h R Dot L0-Dot L0-Dot L0-Dot L0-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot I 0-Dot I 0-Dot_lsd1 087h R Dot I 0-Dot L0-Dot I 0-Dot L0-Dot L0-Dot L0-00h CS8 LSD CS15 CS14 CS13 CS12 CS11 CS10 CS9 LSD LSD LSD LSD LSD LSD LSD Dot Isd2 088h R Reserved Dot L0-Dot L0-00h CS16 CS17 LSD LSD 089h R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-00h Dot_lsd3 CS0 LSD CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD R Dot L1-Dot L1-00h 08Ah Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot_lsd4 CS15 CS14 CS13 CS12 CS11 CS10 CS9 LSD CS8 LSD LSD LSD LSD LSD LSD LSD | Dot_lsd5 | 08Bh | R | Reserved | | | | | | 00h | | | |-----------|------|-----|---|---|------------------------|------------------------|------------------------|------------------------|--------------------|--------------------|-----| | Dot_lsd6 | 08Ch | R | Dot L2-
CS7 LSD | Dot L2-
CS6 LSD | Dot L2-
CS5 LSD | Dot L2-
CS4 LSD | Dot L2-
CS3 LSD | Dot L2-
CS2 LSD | Dot L2-
CS1 LSD | Dot L2-
CS0 LSD | 00h | | Dot_lsd7 | 08Dh | R | Dot L2-
CS15
LSD | Dot L2-
CS14
LSD | Dot L2-
CS13
LSD | Dot L2-
CS12
LSD | Dot L2-
CS11
LSD | Dot L2-
CS10
LSD | Dot L2-
CS9 LSD | Dot L2-
CS8 LSD | 00h | | Dot_lsd8 | 08Eh | R | Reserved | Reserved Dot L2- CS17 CS16 LSD LSD | | | | | | | 00h | | Dot_lsd9 | 08Fh | R | Dot L3-
CS7 LSD | Dot L3-
CS6 LSD | Dot L3-
CS5 LSD | Dot L3-
CS4 LSD | Dot L3-
CS3 LSD | Dot L3-
CS2 LSD | Dot L3-
CS1 LSD | Dot L3-
CS0 LSD | 00h | | Dot_lsd10 | 090h | R | Dot L3-
CS15
LSD | Dot L3-
CS14
LSD | Dot L3-
CS13
LSD | Dot L3-
CS12
LSD | Dot L3-
CS11
LSD | Dot L3-
CS10
LSD | Dot L3-
CS9 LSD | Dot L3-
CS8 LSD | 00h | | Dot_lsd11 | 091h | R | Reserved | | | | | | | 00h | | | LOD_clear | 0A7h | W | Reserved | | | | LOD_Clea | r | | | 00h | | LSD_clear | 0A8h | W | Reserved | | | | LSD_Clea | r | | | 00h | | Reset | 0A9h | W | Reset | | | | | | | | 00h | | DC0 | 100h | R/W | LED dot cu | LED dot current setting for Dot L0-CS0 | | | | | | 80h | | | DC1 | 101h | R/W | LED dot cu | LED dot current setting for Dot L0-CS1 | | | | | | 80h | | | DC2 | 102h | R/W | LED dot cu | LED dot current setting for Dot L0-CS2 | | | | | | | 80h | | DC3 | 103h | R/W | LED dot current setting for Dot L0-CS3 | | | | | | | 80h | | | DC4 | 104h | R/W | LED dot current setting for Dot L0-CS4 | | | | | | | 80h | | | DC5 | 105h | R/W | LED dot current setting for Dot L0-CS5 | | | | | | | 80h | | | DC6 | 106h | R/W | LED dot current setting for Dot L0-CS6 | | | | | | | 80h | | | DC7 | 107h | R/W | LED dot current setting for Dot L0-CS7 | | | | | | | 80h | | | DC8 | 108h | R/W | LED dot current setting for Dot L0-CS8 | | | | | | 80h | | | | DC9 | 109h | R/W | LED dot current setting for Dot L0-CS9 | | | | | | | 80h | | | DC10 | 10Ah | R/W | LED dot current setting for Dot L0-CS10 | | | | | | 80h | | | | DC11 | 10Bh | R/W | LED dot current setting for Dot L0-CS11 | | | | | | 80h | | | | DC12 | 10Ch | R/W | LED dot current setting for Dot L0-CS12 | | | | | | 80h | | | | DC13 | 10Dh | R/W | LED dot current setting for Dot L0-CS13 | | | | | | 80h | | | | DC14 | 10Eh | R/W | LED dot cu | LED dot current setting for Dot L0-CS14 | | | | | | 80h | | | DC15 | 10Fh | R/W | LED dot cu | LED dot current setting for Dot L0-CS15 | | | | | | 80h | | | DC16 | 110h | R/W | LED dot cu | LED dot current setting for Dot L0-CS16 | | | | | | 80h | | | DC17 | 111h | R/W | LED dot cu | LED dot current setting for Dot L0-CS17 | | | | | | 80h | | | DC18 | 112h | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS0 | | | | | 80h | | DC19 | 113h | R/W | LED dot cu | urrent setting | g for Dot L1 | -CS1 | | | | | 80h | | DC20 | 114h | R/W | LED dot cu | LED dot current setting for Dot L1-CS2 | | | | | | 80h | | | DC21 | 115h | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS3 | | | | | 80h | | DC22 | 116h | R/W | LED dot cu | LED dot current setting for Dot L1-CS4 | | | | | | 80h | | | DC23 | 117h | R/W | LED dot cu | urrent setting | g for Dot L1 | -CS5 | | | | | 80h | | DC24 | 118h | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS6 | | | | | 80h | | DC25 | 119h | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS7 | | | | | 80h | | DC26 | 11Ah | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS8 | | | | | 80h | | DC27 | 11Bh | R/W | LED dot cu | ırrent settin | g for Dot L1 | -CS9 | | | | | 80h | | DC28 | 11Ch | R/W | LED dot cu | LED dot current setting for Dot L1-CS10 | | | | | | 80h | | | ттт.пј.со.јр | | | o de la companya l | DECEMBER 202 | |--------------|------|-----
--|--------------| | DC29 | 11Dh | R/W | LED dot current setting for Dot L1-CS11 | 80h | | DC30 | 11Eh | R/W | LED dot current setting for Dot L1-CS12 | 80h | | DC31 | 11Fh | R/W | LED dot current setting for Dot L1-CS13 | 80h | | DC32 | 120h | R/W | LED dot current setting for Dot L1-CS14 | 80h | | DC33 | 121h | R/W | LED dot current setting for Dot L1-CS15 | 80h | | DC34 | 122h | R/W | LED dot current setting for Dot L1-CS16 | 80h | | DC35 | 123h | R/W | LED dot current setting for Dot L1-CS17 | 80h | | DC36 | 124h | R/W | LED dot current setting for Dot L2-CS0 | 80h | | DC37 | 125h | R/W | LED dot current setting for Dot L2-CS1 | 80h | | DC38 | 126h | R/W | LED dot current setting for Dot L2-CS2 | 80h | | DC39 | 127h | R/W | LED dot current setting for Dot L2-CS3 | 80h | | DC40 | 128h | R/W | LED dot current setting for Dot L2-CS4 | 80h | | DC41 | 129h | R/W | LED dot current setting for Dot L2-CS5 | 80h | | DC42 | 12Ah | R/W | LED dot current setting for Dot L2-CS6 | 80h | | DC43 | 12Bh | R/W | LED dot current setting for Dot L2-CS7 | 80h | | DC44 | 12Ch | R/W | LED dot current setting for Dot L2-CS8 | 80h | | DC45 | 12Dh | R/W | LED dot current setting for Dot L2-CS9 | 80h | | DC46 | 12Eh | R/W | LED dot current setting for Dot L2-CS10 | 80h | | DC47 | 12Fh | R/W | LED dot current setting for Dot L2-CS11 | 80h | | DC48 | 130h | R/W | LED dot current setting for Dot L2-CS12 | 80h | | DC49 | 131h | R/W | LED dot current setting for Dot L2-CS13 | 80h | | DC50 | 132h | R/W | LED dot current setting for Dot L2-CS14 | 80h | | DC51 | 133h | R/W | LED dot current setting for Dot L2-CS15 | 80h | | DC52 | 134h | R/W | LED dot current setting for Dot L2-CS16 | 80h | | DC53 | 135h | R/W | LED dot current setting for Dot L2-CS17 | 80h | | DC54 | 136h | R/W | LED dot current setting for Dot L3-CS0 | 80h | | DC55 | 137h | R/W | LED dot current setting for Dot L3-CS1 | 80h | | DC56 | 138h | R/W | LED dot current setting for Dot L3-CS2 | 80h | | DC57 | 139h | R/W | LED dot current setting for Dot L3-CS3 | 80h | | DC58 | 13Ah | R/W | LED dot current setting for Dot L3-CS4 | 80h | | DC59 | 13Bh | R/W | LED dot current setting for Dot L3-CS5 | 80h | | DC60 | 13Ch | R/W | LED dot current setting for Dot L3-CS6 | 80h | | DC61 | 13Dh | R/W | LED dot current setting for Dot L3-CS7 | 80h | | DC62 | 13Eh | R/W | LED dot current setting for Dot L3-CS8 | 80h | | DC63 | 13Fh | R/W | LED dot current setting for Dot L3-CS9 | 80h | | DC64 | 140h | R/W | LED dot current setting for Dot L3-CS10 | 80h | | DC65 | 141h | R/W | LED dot current setting for Dot L3-CS11 | 80h | | DC66 | 142h | R/W | LED dot current setting for Dot L3-CS12 | 80h | | DC67 | 143h | R/W | LED dot current setting for Dot L3-CS13 | 80h | | DC68 | 144h | R/W | LED dot current setting for Dot L3-CS14 | 80h | | DC69 | 145h | R/W | LED dot current setting for Dot L3-CS15 | 80h | | DC70 | 146h | R/W | LED dot current setting for Dot L3-CS16 | 80h | | DC71 | 147h | R/W | LED dot current setting for Dot L3-CS17 | 80h | | pwm_bri0 | 200h | R/W | 8-bits PWM for Dot L0-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS0 | 00h | | pwm_bri1 | 201h | R/W | 8-bits PWM for Dot L0-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS0 | 00h | | pwm_bri2 | 202h | R/W | 8-bits PWM for Dot L0-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS1 | 00h | | pwm_bri3 | 203h | R/W | 8-bits PWM for Dot L0-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS1 | 00h | | pwm bri4 | 204h | R/W | 8-bits PWM for Dot L0-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS2 | 00h | |-----------|------|-----|--|-----| | pwm_bri5 | 205h | R/W | 8-bits PWM for Dot L0-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS2 | 00h | | pwm_bri6 | 206h | R/W | 8-bits PWM for Dot L0-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS3 | 00h | | pwm_bri7 | 207h | R/W | 8-bits PWM for Dot L0-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS3 | 00h | | pwm_bri8 | 208h | R/W | 8-bits PWM for Dot L0-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS4 | 00h | | pwm_bri9 | 209h | R/W | 8-bits PWM for Dot L0-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS4 | 00h | | pwm_bri10 | 20Ah | R/W | 8-bits PWM for Dot L0-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS5 | 00h | | pwm_bri11 | 20Bh | R/W | 8-bits PWM for Dot L0-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS5 | 00h | | pwm_bri12 | 20Ch | R/W | 8-bits PWM for Dot L0-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS6 | 00h | | pwm_bri13 | 20Dh | R/W | 8-bits PWM for Dot L0-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS6 | 00h | | pwm_bri14 | 20Eh | R/W | 8-bits PWM for Dot L0-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS7 | 00h | | pwm_bri15 | 20Fh | R/W | 8-bits PWM for Dot L0-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS7 | 00h | | pwm_bri16 | 210h | R/W | 8-bits PWM for Dot L0-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS8 | 00h | | pwm_bri17 | 211h | R/W | 8-bits PWM for Dot L0-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS8 | 00h | | pwm_bri18 | 212h | R/W | 8-bits PWM for Dot L1-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS9 | 00h | | pwm_bri19 | 213h | R/W | 8-bits PWM for Dot L1-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS9 | 00h | | pwm_bri20 | 214h | R/W | 8-bits PWM for Dot L1-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS10 | 00h | | pwm_bri21 | 215h | R/W | 8-bits PWM for Dot L1-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS10 | 00h | | pwm_bri22 | 216h | R/W | 8-bits PWM for Dot L1-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS11 | 00h | | pwm_bri23 | 217h | R/W | 8-bits PWM for Dot L1-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS11 | 00h | | pwm_bri24 | 218h | R/W | 8-bits PWM for Dot L1-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS12 | 00h | | pwm_bri25 | 219h | R/W | 8-bits PWM for Dot L1-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS12 | 00h | | pwm_bri26 | 21Ah | R/W | 8-bits PWM for Dot L1-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS13 | 00h | | pwm_bri27 | 21Bh | R/W | 8-bits PWM for Dot L1-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS13 | 00h | | pwm_bri28 | 21Ch | R/W | 8-bits PWM for Dot L1-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS14 | 00h | | pwm_bri29 | 21Dh | R/W | 8-bits PWM for Dot L1-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS14 | 00h | | pwm_bri30 | 21Eh | R/W | 8-bits PWM for Dot L1-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS15 | 00h | | pwm_bri31 | 21Fh | R/W | 8-bits PWM for Dot L1-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS15 | 00h | | pwm_bri32 | 220h | R/W | 8-bits PWM for Dot L1-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS16 | 00h | | pwm_bri33 | 221h | R/W | 8-bits PWM for Dot L1-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS16 | 00h | | pwm_bri34 | 222h | R/W | 8-bits PWM for Dot L1-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS17 | 00h | | pwm_bri35 | 223h | R/W | 8-bits PWM for Dot L1-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS17 | 00h | | pwm_bri36 | 224h | R/W | 8-bits PWM for Dot L2-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS0 | 00h | | pwm_bri37 | 225h | R/W | 8-bits PWM for Dot L2-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS0 | 00h | | pwm_bri38 | 226h | R/W | 8-bits PWM for Dot L2-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS1 | 00h | | pwm_bri39 | 227h | R/W | 8-bits PWM for Dot L2-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS1 | 00h | | pwm_bri40 | 228h | R/W | 8-bits PWM for Dot L2-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS2 | 00h | | pwm_bri41 | 229h | R/W | 8-bits PWM for Dot L2-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS2 | 00h | | pwm_bri42 | 22Ah | R/W | 8-bits PWM for Dot L2-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS3 | 00h | | pwm_bri43 | 22Bh | R/W | 8-bits
PWM for Dot L2-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS3 | 00h | | pwm_bri44 | 22Ch | R/W | 8-bits PWM for Dot L2-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS4 | 00h | | pwm_bri45 | 22Dh | R/W | 8-bits PWM for Dot L2-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS4 | 00h | | pwm_bri46 | 22Eh | R/W | 8-bits PWM for Dot L2-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS5 | 00h | | pwm_bri47 | 22Fh | R/W | 8-bits PWM for Dot L2-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS5 | 00h | | pwm_bri48 | 230h | R/W | 8-bits PWM for Dot L2-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS6 | 00h | | pwm_bri49 | 231h | R/W | 8-bits PWM for Dot L2-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS6 | 00h | | pwm_bri50 | 232h | R/W | 8-bits PWM for Dot L2-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS7 | 00h | pwm_bri51 233h R/W 8-bits PWM for Dot L2-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS7 00h pwm_bri52 234h R/W 8-bits PWM for Dot L2-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS8 00h 235h R/W 00h pwm bri53 8-bits PWM for Dot L2-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS8 pwm_bri54 236h R/W 8-bits PWM for Dot L3-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS9 00h R/W pwm bri55 237h 8-bits PWM for Dot L3-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS9 00h pwm bri56 238h R/W 8-bits PWM for Dot L3-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10 00h 239h R/W 8-bits PWM for Dot L3-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS10 00h pwm_bri57 pwm_bri58 23Ah R/W 8-bits PWM for Dot L3-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS11 00hR/W pwm bri59 23Bh 8-bits PWM for Dot L3-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS11 00h 23Ch R/W 8-bits PWM for Dot L3-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS12 00h pwm bri60 23Dh R/W 8-bits PWM for Dot L3-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS12 pwm bri61 00h pwm_bri62 23Eh R/W 8-bits PWM for Dot L3-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS13 00h pwm bri63 23Fh R/W 8-bits PWM for Dot L3-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS13 00h pwm_bri64 240h R/W 8-bits PWM for Dot L3-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS14 00h pwm_bri65 241h R/W 8-bits PWM for Dot L3-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS14 00h R/W pwm bri66 242h 8-bits PWM for Dot L3-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS15 00h pwm bri67 243h R/W 8-bits PWM for Dot L3-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS15 00h 244h R/W 00h pwm bri68 8-bits PWM for Dot L3-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS16 R/W pwm_bri69 245h 8-bits PWM for Dot L3-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS16 00h pwm bri70 246h R/W 8-bits PWM for Dot L3-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS17 00h 247h R/W 8-bits PWM for Dot L3-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS17 00h pwm_bri71 248h R/W 00h pwm_bri72 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0 R/W 00h pwm bri73 249h 16-bits PWM higher 8 bits [15:8] for Dot L2-CS0 R/W 00h pwm bri74 24Ah 16-bits PWM lower 8 bits [7:0] for Dot L2-CS1 pwm_bri75 24Bh R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS1 00h pwm bri76 24Ch R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS2 00h pwm_bri77 24Dh R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS2 00h pwm bri78 24Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS3 00h 24Fh R/W 00h pwm_bri79 16-bits PWM higher 8 bits [15:8] for Dot L2-CS3 pwm bri80 250h R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS4 00h251h R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS4 00h pwm bri81 252h R/W pwm_bri82 16-bits PWM lower 8 bits [7:0] for Dot L2-CS5 00h pwm bri83 253h R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS5 00h pwm_bri84 254h R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS6 00h R/W pwm bri85 255h 16-bits PWM higher 8 bits [15:8] for Dot L2-CS6 00h 256h R/W 00h pwm_bri86 16-bits PWM lower 8 bits [7:0] for Dot L2-CS7 pwm bri87 257h R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS7 00h 258h R/W 00h pwm_bri88 16-bits PWM lower 8 bits [7:0] for Dot L2-CS8 pwm_bri89 259h R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS8 00h pwm_bri90 25Ah R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS9 00h pwm bri91 25Bh R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS9 00h pwm_bri92 25Ch R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS10 00h R/W pwm_bri93 25Dh 16-bits PWM higher 8 bits [15:8] for Dot L2-CS10 00h pwm_bri94 25Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L2-CS11 00h pwm bri95 25Fh R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS11 00h 00h 260h R/W pwm bri96 16-bits PWM lower 8 bits [7:0] for Dot L2-CS12 pwm_bri97 261h R/W 16-bits PWM higher 8 bits [15:8] for Dot L2-CS12 00h | pwm_bri98 | 262h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L2-CS13 | 00h | |------------|------|-----|--|-----| | pwm_bri99 | 263h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L2-CS13 | 00h | | pwm_bri100 | 264h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L2-CS14 | 00h | | pwm_bri101 | 265h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L2-CS14 | 00h | | pwm_bri102 | 266h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L2-CS15 | 00h | | pwm_bri103 | 267h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L2-CS15 | 00h | | pwm_bri104 | 268h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L2-CS16 | 00h | | pwm_bri105 | 269h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L2-CS16 | 00h | | pwm_bri106 | 26Ah | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L2-CS17 | 00h | | pwm_bri107 | 26Bh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L2-CS17 | 00h | | pwm_bri108 | 26Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS0 | 00h | | pwm_bri109 | 26Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS0 | 00h | | pwm_bri110 | 26Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS1 | 00h | | pwm_bri111 | 26Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS1 | 00h | | pwm_bri112 | 270h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS2 | 00h | | pwm_bri113 | 271h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS2 | 00h | | pwm_bri114 | 272h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS3 | 00h | | pwm_bri115 | 273h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS3 | 00h | | pwm_bri116 | 274h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS4 | 00h | | pwm_bri117 | 275h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS4 | 00h | | pwm_bri118 | 276h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS5 | 00h | | pwm_bri119 | 277h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS5 | 00h | | pwm_bri120 | 278h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS6 | 00h | | pwm_bri121 | 279h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS6 | 00h | | pwm_bri122 | 27Ah | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS7 | 00h | | pwm_bri123 | 27Bh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS7 | 00h | | pwm_bri124 | 27Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS8 | 00h | | pwm_bri125 | 27Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS8 | 00h | | pwm_bri126 | 27Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS9 | 00h | | pwm_bri127 | 27Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS9 | 00h | | pwm_bri128 | 280h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS10 | 00h | | pwm_bri129 | 281h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS10 | 00h | | pwm_bri130 | 282h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS11 | 00h | | pwm_bri131 | 283h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS11 | 00h | | pwm_bri132 | 284h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS12 | 00h | | pwm_bri133 | 285h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS12 | 00h | | pwm_bri134 | 286h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS13 | 00h | | pwm_bri135 | 287h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS13 | 00h | | pwm_bri136 | 288h | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS14 | 00h | | pwm_bri137 | 289h | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS14 | 00h | | pwm_bri138 | 28Ah | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS15 | 00h | | pwm_bri139 | 28Bh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS15 | 00h | | pwm_bri140 | 28Ch | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS16 | 00h | | pwm_bri141 | 28Dh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS16 | 00h | | pwm_bri142 | 28Eh | R/W | 16-bits PWM lower 8 bits [7:0] for Dot L3-CS17 | 00h | | pwm_bri143 | 28Fh | R/W | 16-bits PWM higher 8 bits [15:8] for Dot L3-CS17 | 00h | ### 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 9.1 Application Information The LP5864 integrates 18 constant current sinks with 4 switching FETs and one LP5864 can drive up to 72 LED dots or 24 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with small amount of components. ### 9.2 Typical Application #### 9.2.1 Application ☑ 9-1 shows an example of typical application, which uses one LP5864 to drive 24 common-anode RGB LEDs through I²C communication. 図 9-1. Typical Application - LP5864 Driving 24 RGB LEDs (72 LED Dots) ### 9.2.2 Design Requirements 表 9-1. Design Parameters | PARAMETER | VALUE | |--|--------------------| | VCC / VIO | 3.3 V | | VLED | 5 V | | RGB LED count | 24 | | Scan number | 4 | | Interface | I ² C | | LED maximum average current
(red, green, blue) | 4 mA, 3 mA, 2 mA | | LED maximum peak current (red, green, blue) | 16 mA, 12 mA, 8 mA | Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback #### 9.2.3 Detailed Design Procedure LP5864 requires an external capacitor C_{VCAP} , whose value is 1 μ F connected from V_{CAP} to GND for proper operation of internal LDO. Th external capacitor must be placed as close to the device as possible. TI recommends 1-µF capacitors to be placed between VCC / VLED with GND, and 1-nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible. Pullup resistors $R_{pull-up}$ are a requirement for SCL and SDA when using I^2C as communication method. In typical applications, TI recommends 1.8-k Ω to 4.7-k Ω resistors. To decrease thermal dissipation from device to ambient, resistors R_{CS} can optionally be placed in serial with the LED. Voltage drop on these resistors must leave enough margins for VSAT to ensure the device works normally. #### 9.2.4 Program Procedure When selecting data refresh Mode 1, outputs are refreshed instantly after data is received. When selecting data refresh Mode 2 and 3, VSYNC signal is required for synchronized display. Programming flow is showed as \boxtimes 9-2. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all Dots t_{frame} . Common selection like 60 Hz, 90 Hz, 120 Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width. 図 9-2. Program Procedure ### 9.2.5 Application Performance Plots The following figures show the application performance plots. 図 9-3. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1 図 9-4. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1 PWM frequency = 125 kHz 図 9-6. Scan Lines Switching Waveforms of SW0, 図 9-7. Scan Lines Switching Waveforms of SW0, SW1, SW2 **SW1, SW2** PWM_Phase_Shift = 0h 図 9-8. PWM Phase Shift Disabled # 10 Power Supply Recommendations ### **VDD Input Supply Recommendations** LP5864 is designed to operate from a 2.7-V to 5.5-V VDD voltage supply. This input supply must be well regulated and be able to provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5864 VDD supply voltage to drop below the maximum POR voltage. #### **VLED Input Supply Recommendations** LP5864 is designed to operate with a 2.7-V to 5.5-V VLED voltage supply. The VLED supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage. #### **VIO Input Supply Recommendations** LP5864 is designed to operate with a 1.65-V to 5.5-V VIO_EN voltage supply. The VIO_EN supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change. ### 11 Layout ### 11.1 Layout Guidelines The below guidelines for layout design can help to get a better on-board performance. - The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized the impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to chip as possible. GND plane connections to C_{VLED} and GND pins must be on TOP layer copper with multiple vias connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to chip as possible. - The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability. This action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground. - The major heat flow path from the package to the ambient is through copper on the PCB. Several methods can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal conductivity of the board. - Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED – SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy. ### 11.2 Layout Example 図 11-1. LP5864 Layout Example ### 12 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ### 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. # 12.2 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 12.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ### 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 12.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 7-Apr-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | LP5864MRSMR | ACTIVE | VQFN | RSM | 32 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | LP5864M | Samples | | LP5864RSMR | ACTIVE | VQFN | RSM | 32 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LP5864 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and
makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE OPTION ADDENDUM** www.ti.com 7-Apr-2023 4 x 4, 0.4 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD ### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated