

SN54SC2T74-SEP

JAJSS54 - NOVEMBER 2023

SN54SC2T74-SEP 耐放射線特性、デュアル D タイプ フリップ フロップ、統合 変換機能付き

1 特長

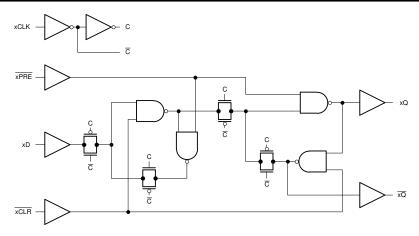
- VID (Vendor Item Drawing) V62/23632-01XE が利
- 吸収線量 (TID) 耐性 = 30krad(Si)
 - すべてのウェハー ロットについての 30krad(Si) ま での吸収線量耐性放射線ロット受け入れテスト (TID RLAT)
- シングル・イベント効果 (SEE) 特性:
 - シングル・イベント・ラッチアップ (SEL) 耐性:線エ ネルギー付与 (LET) = 43MeV-cm2/mg
 - シングル・イベント過渡 (SET) 特性:43MeVcm2/mg
- 広い動作範囲:1.2V~5.5V
- 5/3.3/2.5/1.8/1.2V V_{CC} の単電源変換ゲート
 - TTL 互換入力:
 - 昇圧変換:
 - 1.8V 1.2V からの入力
 - 2.5V 1.8V からの入力
 - 3.3V 1.8V、2.5V からの入力
 - 5.0V 2.5V、3.3V からの入力
 - 降圧変換:
 - 1.2V 1.8V、2.5V、3.3V、5.0V からの入力
 - 1.8V 2.5V、3.3V、5.0V からの入力
 - 2.5V 3.3V、5.0V からの入力
 - 3.3V 5.0V からの入力
- 5.5V 耐圧入力ピン
- 5V で最大 25mA の出力駆動能力
- JESD 17 準拠で 250mA 超のラッチアップ性能
- 宇宙向け強化プラスチック (SEP)
 - 管理されたベースライン
 - 金ボンド・ワイヤ
 - NiPdAuリード仕上げ
 - 単一のアセンブリ/テスト施設
 - 単一の製造施設
 - 軍用温度範囲:-55℃~125℃
 - 長い製品ライフ・サイクル
 - 製品のトレーサビリティ
 - NASA ASTM E595 アウトガス仕様に適合

2 アプリケーション

- デジタル信号のイネーブルまたはディセーブル
- インジケータ LED の制御
- 通信モジュールとシステム・コントローラの間のレベル 変換

3 概要

SN54SC2T74-SEP には、2 つの独立した D タイプ正エ ッジ・トリガのフリップ・フロップが含まれています。 プリセッ ト(PRE) 入力が Low レベルのとき、出力は High になりま す。クリア (CLR) 入力が Low レベルのとき、出力は Low にリセットされます。プリセット機能とクリア機能は非同期で あり、他方の入力レベルとは無関係です。 PRE と CLR が 非アクティブ (High) の場合、セットアップ時間の要件を満 たすデータ (D) 入力のデータは、クロック (CLK) パルスの 正方向エッジで出力 (Q, \overline{Q}) に転送されます。 クロックのト リガは電圧レベルで発生し、入力クロック (CLK) 信号の立 ち上がり時間とは直接関係しません。ホールド時間が経過 した後、データ (D) 入力のデータは、出力 (Q、 \overline{Q}) のレベ ルに影響を及ぼさずに変化させることができます。出力レ ベルは電源電圧 (V_{CC}) を基準としており、1.8V、2.5V、 3.3V、5Vの CMOS レベルをサポートしています。


入力は低スレッショルド回路を使用して設計され、低電圧 CMOS 入力の昇圧変換 (例:1.2V 入力から 1.8V 出力、 1.8V 入力から 3.3V 出力) をサポートします。 また、5V 許 容入力ピンにより、降圧変換 (例:3.3V から 2.5V 出力) が可能です。

パッケージ情報

		~ 113 194	
部品番号	パッケージ(1)	パッケージ・サイズ ⁽²⁾	本体サイズ (公称)(3)
SN54SC2T74-SEP	PW (TSSOP, 14)	5.00mm × 6.40mm	5.00mm × 4.40mm

- 詳細については、セクション 11 を参照してください。 (1)
- パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。
- 本体サイズ (長さ×幅) は公称値であり、ピンは含まれません。

概略ロジック図

目次

1 特長	1	7.2 機能ブロック図	15
2 アプリケーション		7.3 機能説明	
3 概要		7.4 デバイスの機能モード	17
4 ピン構成および機能	4	8 アプリケーションと実装	19
5 仕様		8.1 アプリケーション情報	
5.1 絶対最大定格	<u>5</u>	8.2 代表的なアプリケーション	19
5.2 ESD 定格	<u>5</u>	8.3 電源に関する推奨事項	21
5.3 推奨動作条件	<u>5</u>	8.4 レイアウト	22
5.4 熱に関する情報	6	9 デバイスおよびドキュメントのサポート	<mark>2</mark> 3
5.5 電気的特性	6	9.1ドキュメントのサポート	23
5.6 スイッチング特性	7	9.2ドキュメントの更新通知を受け取る方法	23
5.7 タイミング特性	8	9.3 サポート・リソース	23
5.8 ノイズ特性	10	9.4 商標	23
5.9 代表的特性	11	9.5 静電気放電に関する注意事項	23
6 パラメータ測定情報	14	9.6 用語集	23
7 詳細説明		10 改訂履歴	23
7.1 概要	15	11 メカニカル、パッケージ、および注文情報	23

4 ピン構成および機能

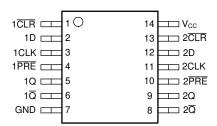


図 4-1. PW パッケージ、14 ピン TSSOP (上面図)

表 4-1. ピンの機能

٢	ン	タイプ	説明		
名称 番号		217	K)Ta (**)		
1CLR	1	入力	チャネル 1 のクリア、アクティブ Low		
1D	2	入力	チャネル 1 のデータ		
1CLK	3	入力	・ネル 1 のクロック、立ち上がりエッジがトリガされる		
1PRE	4	入力	ャネル1のプリセット、アクティブ Low		
1Q	5	出力	チャネル 1 の出力		
1Q	6	出力	チャネル 1 の反転出力		
GND	7	_	グランド		
2Q	8	出力	チャネル2の反転出力		
2Q	9	出力	チャネル 2 の出力		
2PRE	10	入力	チャネル2のプリセット、アクティブ Low		
2CLK	11	入力	チャネル 2 のクロック、立ち上がりエッジがトリガされる		
2D	12	入力	チャネル 2 のデータ		
2CLR	13	入力	チャネル 2 のクリア、アクティブ Low		
V _{CC}	14	_	正電源		

5 仕様

5.1 絶対最大定格

自由気流での動作温度範囲内 (特に記述のない限り)(1)

			最小値	最大値	単位
V _{CC}	電源電圧範囲		-0.5	7	V
V_{I}	入力電圧範囲 (2)	力電圧範囲 ⁽²⁾		7	V
Vo	高インピーダンスまたは電源オフ状態で出力	」に印加される電圧範囲 ⁽²⁾	-0.5	7	V
Vo	出力電圧範囲 ⁽²⁾	出力電圧範囲 (2)		V _{CC} + 0.5	V
I _{IK}	入力クランプ電流	V _I < -0.5V		-20	mA
I _{OK}	出カクランプ電流	$V_{O} < -0.5V$ または $V_{O} > V_{CC} + 0.5V$		±20	mA
Io	連続出力電流	$V_O = 0 \sim V_{CC}$		±25	mA
	V _{CC} または GND を通過する連続出力電流			±50	mA
T _{stg}	保管温度		-65	150	°C

- (1) 「絶対最大定格」の範囲外の動作は、デバイスの永続的な損傷の原因となる可能性があります。「絶対最大定格」は、これらの条件において、または「推奨動作条件」に示された値を超える他のいかなる条件でも、本製品が正しく動作することを暗に示すものではありません。「絶対最大定格」の範囲内で、一時的に「推奨動作条件」の範囲を超えた動作をさせる場合、必ずしもデバイスが損傷を受けるものではありませんが、完全には機能しない可能性があります。この方法でデバイスを動作させると、デバイスの信頼性、機能性、性能に影響を及ぼし、デバイスの寿命を短縮する可能性があります。
- (2) 入力と出力の電流定格を順守しても、入力と出力の電圧定格を超えることがあります。

5.2 ESD 定格

			値	単位
V	松 碌₩碌	人体モデル (HBM)、ANSI/ESDA/JEDEC JS-001 準拠 ⁽¹⁾	±2000	\/
V _(ESD)	静電放電	デバイス帯電モデル (CDM)、ANSI/ESDA/JEDEC JS-002 準拠 ⁽²⁾	±1000	v

- (1) JEDEC のドキュメント JEP155 には、500V HBM であれば標準的な ESD 管理プロセスにより安全な製造が可能であると記載されています。
- (2) JEDEC のドキュメント JEP157 には、250V CDM であれば標準的な ESD 管理プロセスにより安全な製造が可能であると記載されています。

5.3 推奨動作条件

自由気流での動作温度範囲内 (特に記述のない限り)

			最小值	最大値	単位
V _{CC}	電源電圧		1.2	5.5	V
VI	入力電圧		0	5.5	V
Vo	出力電圧			V _{CC}	V
V _{IH}	High レベル入力電圧	V _{CC} = 1.2V∼1.3V	0.78		V
		V _{CC} = 1.65V∼2V	1.1		
	High レベル入力電圧	V _{CC} = 2.25V∼2.75V	1.28		V
V _{IH}		V _{CC} = 3V~3.6V	1.45		V
		$V_{CC} = 4.5V \sim 5.5V$	2		
V _{IL}	Low レベル入力電圧	V _{CC} = 1.2V~1.3V		0.18	V
		V _{CC} = 1.65V∼2V		0.5	
\	1 1	V _{CC} = 2.25V~2.75V		0.65	V
V _{IL}	Low レベル入力電圧	V _{CC} = 3V∼3.6V		0.75	V
		V _{CC} = 4.5V∼5.5V		0.85	

5.3 推奨動作条件 (続き)

自由気流での動作温度範囲内 (特に記述のない限り)

			最小値	最大値	単位
		V _{CC} = 1.6V∼2V		±3	
Io	出力電流	V _{CC} = 2.25V~2.75V		±7 mA	
		V _{CC} = 3.3V∼5.0V		±15	
Io	出力電流	V _{CC} = 4.5V∼5.5V		±25	mA
Δt/Δν	入力遷移の立ち上がりまたは立ち 下がりレート	V _{CC} = 1.6V~5.0V		20	ns/V
T _A	自由空気での動作温度		-55	125	°C

5.4 熱に関する情報

		SN54SC2T74-SEP	
	熱評価基準 ⁽¹⁾	PW (TSSOP)	
		14 ピン	
$R_{\theta JA}$	接合部から周囲への熱抵抗	147.7	°C/W
R ₀ JC(top)	接合部からケース (上面) への熱抵抗	77.4	°C/W
$R_{\theta JB}$	接合部から基板への熱抵抗	90.9	°C/W
Ψ_{JT}	接合部から上面への特性パラメータ	27.2	°C/W
Y_{JB}	接合部から基板への特性パラメータ	90.2	°C/W
$R_{\theta JC(bot)}$	接合部からケース (底面) への熱抵抗	該当なし	°C/W

⁽¹⁾ 従来および最新の熱評価基準の詳細については、『半導体および IC パッケージの熱評価基準』アプリケーション・レポートを参照してください。

5.5 電気的特性

自由空気での動作温度範囲内、TA = 25℃で測定した代表値定格 (特に記述のない限り)。

パラメータ	テスト条件	V _{CC}	最小値	標準値	最大値	単位
	I _{OH} = -50μA	1.2V~5.5V	V _{CC} -0.2			
V _{ОН}	I _{OH} = -50μA	1.65V~5.5V	V _{CC} -0.1			
	I _{OH} = -1mA	1.2V	0.8			
lv.	$I_{OH} = -2mA$	1.65V∼2V	1.21	1.7 ⁽¹⁾	1.7 ⁽¹⁾ 2.4 ⁽¹⁾ 3.08 ⁽¹⁾	V
VOH	I _{OH} = -3mA	2.25V~2.75V	1.93	2.4 ⁽¹⁾		V
	I _{OH} = -5.5mA	3V∼3.6V	2.49	3.08 ⁽¹⁾		
	I _{OH} = -8mA	4.5V~5.5V	3.95	4.65 ⁽¹⁾		
	I _{OH} = -24mA	4.5V~5.5V	3.15		0.1 0.1 0.2 0.25 0.2 0.25 0.35 0.75 ±1	
	I _{OL} = 50μA	1.2V~5.5V			0.1	
	I _{OL} = 50μA	1.65V~5.5V			0.1	
	I _{OL} = 1mA	1.2V			0.2	
lv.	I _{OL} = 2mA	1.65V~2V		0.1 ⁽¹⁾	0.25	V
V _{OL}	I _{OL} = 3mA	2.25V~2.75V		0.1 ⁽¹⁾	0.1 0.1 0.2 0.25 0.2 0.25 0.35 0.75 ±1	V
	I _{OL} = 5.5mA	3V∼3.6V		0.2(1)	0.25	
	I _{OL} = 8mA	4.5V∼5.5V		0.3 ⁽¹⁾	0.35	
	I _{OL} = 24mA	4.5V~5.5V			0.75	
I _I	V _I = 0V または V _{CC}	0V∼5.5V		±0.1	±1	μA
I _{CC}	$V_I = V_{CC}$ または GND, $I_O = 0$	1.2V~5.5V		2	93	μΑ

資料に関するフィードバック(ご意見やお問い合わせ)を送信

Copyright © 2024 Texas Instruments Incorporated

۵

Product Folder Links: SN54SC2T74-SEP

自由空気での動作温度範囲内、TA = 25℃で測定した代表値定格 (特に記述のない限り)。

パラメータ	テスト条件	V _{CC}	最小値	標準値	最大値	単位
Δl _{CC}	1 つの入力は 0.3V または 3.4V、その他の入力は 0 または V _{CC} 、I _O = 0	5.5V		1.35	1.5	mA
DICC	1 つの入力は 0.3V または 1.1V、その他の入力は 0 または V _{CC} 、I _O = 0	1.8V			68	μΑ
Cı	V _I = V _{CC} または GND	5V		3	5	pF
Co	V _O = V _{CC} または GND	5V		5	8	pF
C _{PD} (2) (3)	C _L = 50pF, F = 10MHz	1.2V~5.5V		11	25	pF

- (1) 最も近い公称電圧 (1.8V、2.5V、3.3V、5V) での代表値
- (2) C_{PD} を使用して、チャネルごとの動的な消費電力を決定します。
- (3) $P_D = V_{CC}^2 \times F_I \times (C_{PD} + C_L)$ 、 $F_I =$ 入力周波数、 $C_L =$ 出力負荷容量、 $V_{CC} =$ 電源電圧。

5.6 スイッチング特性

自由空気での動作温度範囲内、T_A = 25℃で測定した代表値定格 (特に記述のない限り)。

パラメータ	始点 (入力)	終点 (出力)	負荷容量	V _{cc}	最小値	標準値	最大値	単位
F _{MAX}			C _L = 15pF	1.2V	5.6	18.8		MHz
F _{MAX}			C _L = 50pF	1.2V	5.6	15.0		MHz
t _{PLH}	PRE または CLR	Q または Q	C _L = 15pF	1.2V		75.4	138.1	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 15pF	1.2V		102.2	158.9	nS
t _{PLH}	CLK	Q または Q	C _L = 15pF	1.2V		65.5	104.7	nS
t _{PHL}	CLK	Q または Q	C _L = 15pF	1.2V		79.4	126.6	nS
t _{PLH}	PRE または CLR	Q または Q	C _L = 50pF	1.2V		56.0	148.9	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 50pF	1.2V		67.8	170.7	nS
t _{PLH}	CLK	Q または Q	C _L = 50pF	1.2V		44.7	115.5	nS
t _{PHL}	CLK	Q または Q	C _L = 50pF	1.2V		51.1	138.3	nS
F _{MAX}			C _L = 15pF	1.8V	17.6	38.1		MHz
F _{MAX}			C _L = 50pF	1.8V	17.6	38.1		MHz
t _{PLH}	PRE または CLR	Q または Q	C _L = 15pF	1.8V		20.9	46.6	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 15pF	1.8V		25.3	47.2	nS
t _{PLH}	CLK	Q または Q	C _L = 15pF	1.8V		15.3	33.2	nS
t _{PHL}	CLK	Q または Q	C _L = 15pF	1.8V		16.6	32.3	nS
t _{PLH}	PRE または CLR	Q または Q	C _L = 50pF	1.8V		23.2	50.2	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 50pF	1.8V		27.7	50.6	nS
t _{PLH}	CLK	Q または Q	C _L = 50pF	1.8V		17.5	37.0	nS
t _{PHL}	CLK	Q または Q	C _L = 50pF	1.8V		18.6	35.7	nS
F _{MAX}			C _L = 15pF	2.5V	23.2	50.5		MHz
F _{MAX}			C _L = 50pF	2.5V	23.2	50.5		MHz
t _{PLH}	PRE または CLR	Q または Q	C _L = 15pF	2.5V		13.3	27.1	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 15pF	2.5V		13.9	27.3	nS
t _{PLH}	CLK	Q または Q	C _L = 15pF	2.5V		8.4	20.1	nS
t _{PHL}	CLK	Q または Q	C _L = 15pF	2.5V		9.3	17.9	nS
t _{PLH}	PRE または CLR	Q または Q	C _L = 50pF	2.5V		14.8	29.3	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 50pF	2.5V		15.3	29.3	nS

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

1

5.6 スイッチング特性 (続き)

自由空気での動作温度範囲内、T_A = 25℃で測定した代表値定格 (特に記述のない限り)。

パラメータ	始点 (入力)	終点 (出力)	負荷容量	V _{cc}	最小値	標準値	最大値	単位
t _{PLH}	CLK	Q または Q	C _L = 50pF	2.5V		9.9	22.5	nS
t _{PHL}	CLK	Q または Q	C _L = 50pF	2.5V		10.4	19.9	nS
F _{MAX}			C _L = 15pF	3.3V	34.3	56.7		MHz
F _{MAX}			C _L = 50pF	3.3V	34.3	56.7		MHz
t _{PLH}	PRE または CLR	Q または Q	C _L = 15pF	3.3V		9.8	19.2	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 15pF	3.3V		10.1	19.2	nS
t _{PLH}	CLK	Q または Q	C _L = 15pF	3.3V		6.1	14.5	nS
t _{PHL}	CLK	Q または Q	C _L = 15pF	3.3V		6.8	12.4	nS
t _{PLH}	PRE または CLR	Q または Q	C _L = 50pF	3.3V		10.9	20.8	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 50pF	3.3V		11.1	20.7	nS
t _{PLH}	CLK	Q または Q	C _L = 50pF	3.3V		7.2	16.4	nS
t _{PHL}	CLK	Q または Q	C _L = 50pF	3.3V		7.6	14.0	nS
F _{MAX}			C _L = 15pF	5V	42.8	66.2		MHz
F _{MAX}			C _L = 50pF	5V	42.8	59.4		MHz
t _{PLH}	PRE または CLR	Q または Q	C _L = 15pF	5V		7.0	12.8	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 15pF	5V		6.9	12.7	nS
t _{PLH}	CLK	Q または Q	C _L = 15pF	5V		5.0	9.8	nS
t _{PHL}	CLK	Q または Q	C _L = 15pF	5V		5.3	9.1	nS
t _{PLH}	PRE または CLR	Q または Q	C _L = 50pF	5V		7.8	14.0	nS
t _{PHL}	PRE または CLR	Q または Q	C _L = 50pF	5V		7.8	13.7	nS
t _{PLH}	CLK	Q または Q	C _L = 50pF	5V		5.7	11.2	nS
t _{PHL}	CLK	Q または Q	C _L = 50pF	5V		5.9	10.0	nS

5.7 タイミング特性

自由空気での動作温度範囲内、TA = 25℃で測定した代表的な定格 (特に記述のない限り)。

パラメータ	概要	条件	V _{cc}	最小値 最	大値	単位
t _w	パルス幅	PRE または CLR Low	1.2V	15		nS
t _w	パルス幅	CLK が High または Low	1.2V	15		nS
t _{su}	CLK↑前のセットアップ時間	データ	1.2V	33		nS
t _{su}	CLK↑前のセットアップ時間	PRE または CLR が非アクティブ	1.2V	12		nS
t _h	ホールド時間	CLK↑後のデータ	1.2V	0.5		nS
t _w	パルス幅	PRE または CLR Low	1.8V	12.9		nS
t _w	パルス幅	CLK が High または Low	1.8V	12.1		nS
t _{su}	CLK↑前のセットアップ時間	データ	1.8V	22.1		nS
t _{su}	CLK↑前のセットアップ時間	PRE または CLR が非アクティブ	1.8V	10.7		nS
t _h	ホールド時間	CLK↑後のデータ	1.8V	0.5		nS
t _w	パルス幅	PRE または CLR Low	2.5V	8.3		nS
t _w	パルス幅	CLK が High または Low	2.5V	7.9		nS
t _{su}	CLK↑前のセットアップ時間	データ	2.5V	15.4		nS

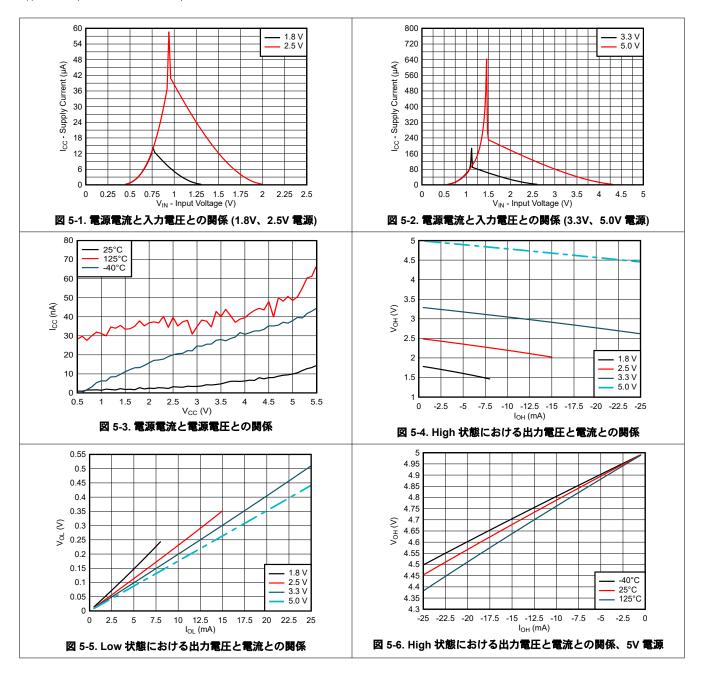
Copyright © 2024 Texas Instruments Incorporated

自由空気での動作温度範囲内、T_A = 25℃ で測定した代表的な定格 (特に記述のない限り)。

パラメータ	概要	条件	V _{cc}	最小値 最大	大値 単位
t _{su}	CLK↑前のセットアップ時間	PRE または CLR が非アクティブ	2.5V	7.2	nS
t _h	ホールド時間	CLK↑後のデータ	2.5V	0.5	nS
t _w	パルス幅	PRE または CLR Low	3.3V	7.1	nS
t _w	パルス幅	CLK が High または Low	3.3V	7	nS
t _{su}	CLK↑前のセットアップ時間	データ	3.3V	12.4	nS
t _{su}	CLK↑前のセットアップ時間	PRE または CLR が非アクティブ	3.3V	6	nS
t _h	ホールド時間	CLK↑後のデータ	3.3V	0.5	nS
t _w	パルス幅	PRE または CLR Low	5.0V	6.6	nS
t _w	パルス幅	CLK が High または Low	5.0V	6.4	nS
t _{su}	CLK↑前のセットアップ時間	データ	5.0V	9.5	nS
t _{su}	CLK↑前のセットアップ時間	PRE または CLR が非アクティブ	5.0V	6.3	nS
t _h	ホールド時間	CLK↑後のデータ	5.0V	0.5	nS

9

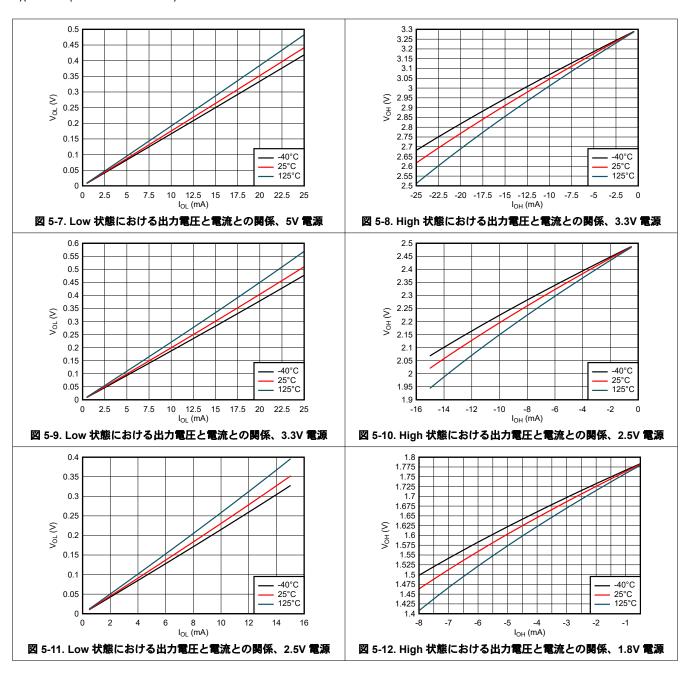
Product Folder Links: SN54SC2T74-SEP


5.8 ノイズ特性

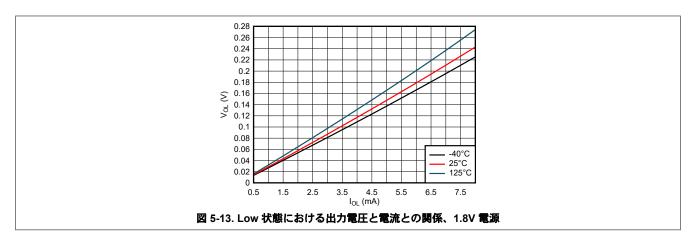
VCC = 5V, CL = 50pF, TA = 25°C

パラメータ	概要	最小値	標準値	最大値	単位
V _{OL(P)}	低ノイズ出力、最大動的電圧 VoL		1	1.2	V
V _{OL(V)}	低ノイズ出力、最小動的電圧 VoL	-0.8	-0.3		V
V _{OH(V)}	低ノイズ出力、最小動的電圧 V _{OH}	4.4	5		V
$V_{IH(D)}$	High レベル動的入力電圧	2.1			V
$V_{IL(D)}$	Low レベル動的入力電圧			0.5	V

5.9 代表的特性


T_A = 25℃ (特に記述のない限り)

5.9 代表的特性 (続き)

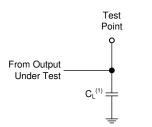

T_A = 25℃ (特に記述のない限り)

5.9 代表的特性 (続き)

T_A = 25℃ (特に記述のない限り)

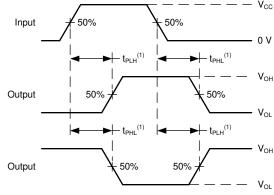
13

Product Folder Links: SN54SC2T74-SEP



6パラメータ測定情報

波形間の位相関係は、任意に選択されています。 すべての入力パルスは、以下の特性を持つジェネレータによって供給されます。 PRR \leq 1MHz、 Z_O = 50 Ω 、 t_t < 2.5ns。


クロック入力の fmax は、入力デューティ・サイクルが 50% のときの測定値です。

出力は一度に1つずつ測定され、測定ごとに入力が1回遷移します。

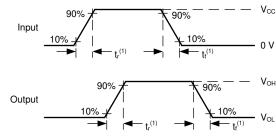

(1) CL にはプローブとテスト装置の容量が含まれます。

図 6-1. プッシュプル出力の負荷回路

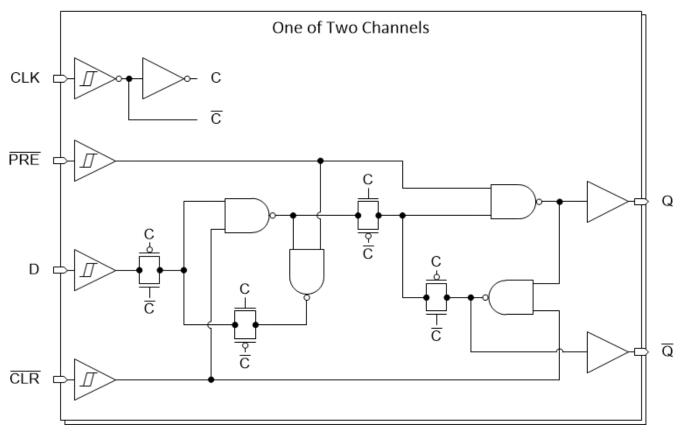
(1) t_{PLH} と t_{PHL} の大きい方が t_{pd} に相当します。

図 6-2. 電圧波形の伝搬遅延

(1) $t_r \, \mathcal{E} \, t_f \, \mathcal{O}$ 大きい方が $t_t \, \mathcal{E}$ に相当します。

図 6-3. 電圧波形、入力および出力の遷移時間

資料に関するフィードバック(ご意見やお問い合わせ)を送信


Copyright © 2024 Texas Instruments Incorporated

7 詳細説明

7.1 概要

SN54SC2T74-SEP には、拡張電圧動作機能を備えたシングル バッファが搭載されており、レベル変換を可能にします。このバッファはブール関数 Y = A を正論理で実行します。出力レベルは電源電圧 (V_{CC}) を基準としており、1.8V、2.5V、3.3V、5V の CMOS レベルをサポートしています。

7.2 機能ブロック図

7.3 機能説明

7.3.1 平衡化された CMOS プッシュプル出力

このデバイスには、平衡化された CMOS プッシュプル出力が内蔵されています。「平衡化」という用語は、デバイスが同様の電流をシンクおよびソースできることを示します。このデバイスの駆動能力により、軽負荷に高速エッジが生成されるため、リンギングを防ぐために配線と負荷の条件を考慮する必要があります。さらに、このデバイスの出力は、デバイスを損傷することなく維持できる以上に大きな電流を駆動できます。過電流による損傷を防止するため、デバイスの出力電力を制限することが重要です。「絶対最大定格」で定義されている電気的および熱的制限を常に順守してください。

未使用のプッシュプル CMOS 出力は、未接続のままにする必要があります。

7.3.2 クランプ・ダイオード構造

図 7-1 に示すように、このデバイスへの出力には正と負の両方のクランプ・ダイオードがあり、このデバイスへの入力には 負のクランプ・ダイオードのみがあります。

注意

「絶対最大定格」表に規定されている値を超える電圧は、デバイスに損傷を与える可能性があります。入力と出力のクランプ電流の定格を順守しても、入力と出力の電圧定格を超えることがあります。

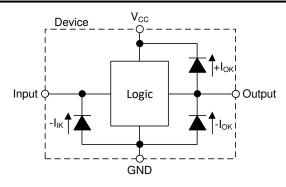


図 7-1. 各入力と出力に対するクランプ ダイオードの電気的配置

7.3.3 SCxT 拡張入力電圧

SN54SC2T74-SEP は、テキサス・インスツルメンツの電圧レベル変換機能内蔵 SCxT 論理デバイス ファミリの製品です。このデバイス・ファミリは、昇圧変換に対応するための小さい入力電圧スレッショルドと、降圧変換に対応するための最大 5.5V レベルの信号に耐える入力を持つように設計されています。出力電圧は、「電気的特性」表に記載されているように、常に電源電圧 (V_{CC}) を基準とします。 正常に機能させるには、High 入力状態では規定の $V_{IH(MIN)}$ レベル以下、Low 入力状態では規定の $V_{IL(MAX)}$ 以下に入力信号を保持する必要があります。図 7-2 に、SCxT デバイス ファミリの V_{IH} および V_{II} レベル (代表値) と標準的な CMOS デバイスの電圧レベルを比較のために示します。

入力は高インピーダンスであり、通常は「電気的特性」に示されている入力容量と並列の抵抗としてモデル化されます。ワーストケースの抵抗は「絶対最大定格」に示されている最大入力電圧と、「電気的特性」に示されている最大入力リーケージ電流からオームの法則 (R = V ÷ I) を使用して計算します。

入力に関しては、「推奨動作条件」表の入力遷移時間またはレートで定義されているように、有効なロジック状態の間を入力信号が素早く遷移する必要があります。この仕様を満たさないと、消費電力が過剰になり、発振の原因となる可能性があります。詳細については、『低速またはフローティング CMOS 入力の影響』アプリケーション・レポートを参照してください。

動作中は片時も、入力をフローティングにすることはできません。未使用の入力は、 V_{CC} または GND に終端させる必要があります。システムが常に入力をアクティブに駆動していない場合は、プルアップまたはプルダウン抵抗を追加して、これらの時間中に有効な入力電圧を供給できます。抵抗値は複数の要因に依存しますが、 $10k\Omega$ の抵抗を推奨し、通常はすべての要件を満たします。

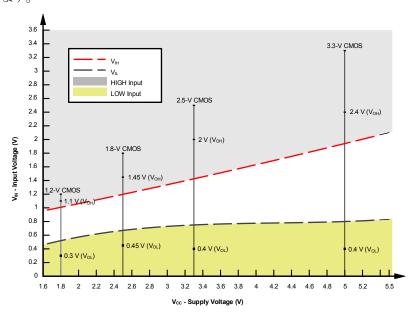


図 7-2. SCxT の入力電圧レベル

Copyright © 2024 Texas Instruments Incorporated

7.3.3.1 降圧変換

SN54SC2T74-SEP を使うことで、信号を降圧変換できます。 V_{CC} の印加電圧によって、出力電圧と入力スレッショルドが決まります (「推奨動作条件」と「電気的特性」の表を参照)。

高インピーダンスの入力に接続した場合、出力電圧は、High 状態ではほぼ V_{CC} 、Low 状態では 0V になります。図 7-2 に示すように、High 状態の入力信号は $V_{IH(MIN)}$ と 5.5V の間、Low 状態の入力信号は $V_{IL(MAX)}$ 未満になるようにします。

たとえば、5.0V、3.3V、2.5V で動作するデバイスの一般的な CMOS 入力は、1.8V の V_{CC} で動作する 1.8V CMOS 信号にマッチさせて降圧変換することができます。 2 7-3 を参照してください。

降圧変換の組み合わせは次のとおりです。

- 1.8V V_{CC} 2.5V、3.3V、5.0V からの入力
- 2.5V V_{CC} 3.3V、5.0V からの入力
- 3.3V V_{CC} 5.0V からの入力

7.3.3.2 昇圧変換

SN54SC2T74-SEP を使うことで、入力信号を昇圧変換できます。 V_{CC} の印加電圧によって、出力電圧と入力スレッショルドが決まります (「推奨動作条件」と「電気的特性」の表を参照)。 高インピーダンスの入力に接続した場合、出力電圧は、High 状態ではほぼ V_{CC} 、Low 状態では 0V になります。

入力のスレッショルドが低いため、一般的な値よりもはるかに低い入力 High 状態レベルにも対応できます。たとえば、5V 電源で動作するデバイスの代表的な CMOS 入力の $V_{\text{IH(MIN)}}$ は 3.5V です。SN54SC2T74-SEP の場合、5V 電源での $V_{\text{IH(MIN)}}$ が 2V と低いため、2.5V (代表値) 信号から 5V (代表値) 信号への昇圧レベル変換が可能です。

図 7-3 に示すように、High 状態の入力信号は V_{IH(MIN)} を上回り、Low 状態の入力信号は V_{IL(MAX)} を下回るようにします。

昇圧変換の組み合わせは次のとおりです。

- 1.8V V_{CC} 1.2V からの入力
- 2.5V V_{CC} 1.8V からの入力
- 3.3V V_{CC} 1.8V および 2.5V からの入力
- 5.0V V_{CC} 2.5V および 3.3V からの入力

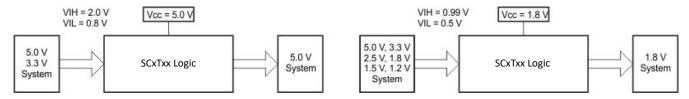


図 7-3. SCxT の昇圧および降圧変換の例

7.4 デバイスの機能モード

表 7-1 は SN54SC2T74-SEP の機能表です。

表 7-1. 機能表

	入力 ⁽	出力			
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
Н	L	Х	X	L	н
L	L	X	X	H ⁽¹⁾	H ⁽¹⁾
Н	Н	↑	Н	н	L
Н	Н	↑	L	L	н

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

17

表 7-1. 機能表 (続き)

	入力 ⁽	出力	J		
PRE	CLR	CLK	D	Q	Q
Н	Н	L	Х	Q_0	ℚ 0

(1) H = High 電圧レベル、L = Low 電圧レベル、X = ドントケア、Z = 高インピーダンス

8 アプリケーションと実装

注

以下のアプリケーション情報は、テキサス・インスツルメンツの製品仕様に含まれるものではなく、テキサス・インスツルメンツはその正確性も完全性も保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

8.1 アプリケーション情報

図 8-1 に、SN54SC2T74-SEP を使用して 1.8V 信号を 3.3V に昇圧変換し、このアプリケーションの LED を駆動する 方法を示します。SN54SC2T74-SEP は出力電流を制限しないため、追加の出力抵抗を使用して適切な電流制限を行います。抵抗の値 (R) は、LED の順方向電圧 (V_D) と LED を流れる目的の順方向電流 (I_D) から次の式を使用して求める必要があります。 R = (V_{CC} - V_D)/ I_D 。

8.2 代表的なアプリケーション

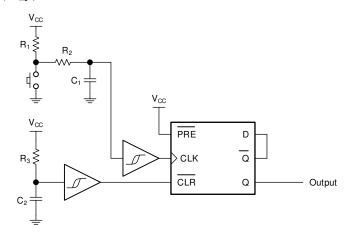


図 8-1. 代表的なアプリケーションのブロック図

8.2.1 設計要件

8.2.1.1 電源に関する考慮事項

目的の電源電圧が、「推奨動作条件」に規定された範囲に入っていることを確認します。「電気的特性」セクションに記載されているように、電源電圧はデバイスの電気的特性を設定します。

正電圧の電源は、SN54SC2T74-SEP のすべての出力によってソースされる総電流、「電気的特性」に記載された静的消費電流 (I_{CC}) の最大値、スイッチングに必要な任意の過渡電流の合計に等しい電流を供給できる必要があります。 論理デバイスは、正の電源から供給されるのと同じ電流のみをソースできます。「絶対最大定格」に記載された V_{CC} 総電流の最大値を超えないようにしてください。

グランドは、SN54SC2T74-SEP のすべての出力によってシンクされる総電流、「電気的特性」に記載された最大消費電流 (I_{CC})、スイッチングに必要な任意の過渡電流の合計に等しい電流をシンクできる必要があります。 論理デバイスは、グランド接続にシンク可能な電流量分のみをシンクできます。 「絶対最大定格」に記載された GND 総電流の最大値を超えないようにしてください。

SN54SC2T74-SEP は、データシートの仕様をすべて満たしつつ、合計容量 50pF 以下の負荷を駆動できます。これより大きな容量性負荷を印加することもできますが、50pF を超えることは推奨しません。

19

Product Folder Links: SN54SC2T74-SEP

SN54SC2T74-SEP は、「電気的特性」表に定義されている出力電圧および電流 (V_{OH} および V_{OL}) で、 $R_L \ge V_O / I_O$ で 記述される合計抵抗の負荷を駆動できます。 High 状態で出力する場合、この式の出力電圧は、測定した出力電圧と V_{CC} ピンの電源電圧の差として定義されます。

総消費電力は、『CMOS の消費電力と Cpd の計算』に記載されている情報を使用して計算できます。

熱上昇は、『標準リニアおよびロジック (SLL) パッケージおよびデバイスの熱特性』に記載されている情報を使用して計算できます。

注意

「絶対最大定格」に記載された最大接合部温度 (T_{J(max)}) は、本デバイスの損傷を防止するための追加の制限値です。「絶対最大定格」に記載されたすべての制限値を必ず満たすようにしてください。これらの制限値は、デバイスへの損傷を防ぐために規定されています。

8.2.1.2 入力に関する考慮事項

入力信号は、 $V_{IL(max)}$ を超えるとロジック Low と見なされ、 $V_{IH(min)}$ を超えるとロジック High と見なされます。「絶対最大定格」に記載された最大入力電圧範囲を超えないようにしてください。

未使用の入力は、 V_{CC} またはグランドに終端させる必要があります。入力がまったく使われていない場合は、未使用の入力を直接終端させることができます。入力が常時ではなく、時々使用される場合は、プルアップ抵抗かプルダウン抵抗と接続することも可能です。デフォルト状態が High の場合にはプルアップ抵抗、デフォルト状態が Low の場合にはプルダウン抵抗を使用します。コントローラの駆動電流、SN54SC2T74-SEP へのリーク電流 (「電気的特性」で規定)、および必要な入力遷移レートによって抵抗のサイズが制限されます。こうした要因により $10k\Omega$ の抵抗値がしばしば使用されます。

SN54SC2T74-SEP は CMOS 入力を備えているため、正しく動作するには、「推奨動作条件」表で定義されているように、入力が素早く遷移する必要があります。入力遷移が遅いと発振が発生し、消費電力の増大やデバイスの信頼性の低下を招くことがあります。

このデバイスの入力の詳細については、「機能説明」セクションを参照してください。

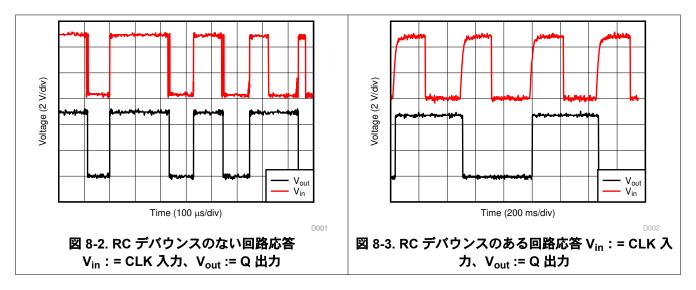
8.2.1.3 出力に関する考慮事項

正の電源電圧を使用して、出力 High 電圧を生成します。出力から電流を引き出すと、「電気的特性」の V_{OH} 仕様で規定されたように出力電圧が低下します。グランド電圧を使用して、出力 Low 電圧を生成します。出力に電流をシンクすると、「電気的特性」の V_{OI} 仕様で規定されたように出力電圧が上昇します。

非常に短い期間であっても、逆の状態になる可能性があるプッシュプル出力は、互いに直接接続しないでください。これは、過電流やデバイスへの損傷を引き起こす可能性があります。

同じ入力信号を持つ同一デバイス内の 2 つのチャネルを並列に接続することにより、出力駆動の強度を高めることができます。

未使用の出力はフローティングのままにできます。出力を V_{CC} またはグランドに直接接続しないようにしてください。


本デバイスの出力の詳細については、「機能説明」セクションを参照してください。

8.2.2 詳細な設計手順

- 1. V_{CC} から GND の間にデカップリング・コンデンサを追加します。このコンデンサは、物理的にデバイスの近く、かつ V_{CC} ピンと GND ピンの両方に電気的に近づけて配置する必要があります。レイアウト例を「レイアウト」セクションに示します。
- 2. 出力の容量性負荷は、必ず 50pF 以下になるようにします。これは厳密な制限ではありませんが、性能が最適化されます。これは、SN54SC2T74-SEP から 1 つ以上の受信デバイスへのトレースを短い適切なサイズにすることで実現できます。
- 3. 出力の抵抗性負荷を $(V_{CC}/I_{O(max)})$ Ω より大きくします。これを行っても、「絶対最大定格」の最大出力電流に違反することにはなりません。ほとんどの CMOS 入力は、 $M\Omega$ 単位で測定される抵抗性負荷を備えています。これは、上記で計算される最小値よりはるかに大きい値です。
- 4. 熱の問題がロジック・ゲートで懸念されることはほとんどありませんが、消費電力と温度上昇は、アプリケーション・レポート『CMOS 消費電力と Cpd の計算』に記載された手順を使って計算できます。

8.2.3 アプリケーション曲線

図 8-2 に、ボタンを 1 回押すとバウンスし、出力が複数回トグルする例を示します。これにより、目的のアプリケーションで問題が発生します。図 8-3 では、デバウンス回路を追加しボタンを 4 回押しています。これにより、不要なトグルが修正され、適切なトグル・スイッチ動作が可能になります。

8.3 電源に関する推奨事項

電源には、「推奨動作条件」に記載された電源電圧定格の最小値と最大値の間の任意の電圧を使用できます。電力障害を防止するため、各 V_{CC} 端子に適切なバイパス・コンデンサを配置する必要があります。このデバイスには 0.1μ Fのコンデンサを推奨します。複数のバイパス・コンデンサを並列に配置して、異なる周波数のノイズを除去することが可能です。一般的に、 0.1μ Fと 1μ Fのコンデンサは並列に使用されます。以下のレイアウト例に示すように、バイパス・コンデンサを電源端子のできるだけ近くに配置すると最適な結果が得られます。

21

Product Folder Links: SN54SC2T74-SEP

8.4 レイアウト

8.4.1 レイアウトのガイドライン

マルチ入力およびマルチチャネルの論理デバイスを使用する場合、入力をフローティングのままにしてはいけません。多くの場合、デジタル論理デバイスの機能または機能の一部は使用されません (たとえば、トリプル入力 AND ゲートの 2 つの入力のみを使用する場合や 4 つのバッファ・ゲートのうちの 3 つのみを使用する場合)。このような未使用の入力ピンを未接続のままにしないでください。外部接続の電圧が未確定の場合、動作状態が不定になるためです。デジタル論理デバイスの未使用入力はすべて、フローティングにならないよう、入力電圧の仕様で定義されているようにロジック High かロジック Low の電圧に接続する必要があります。特定の未使用の入力に対して適用が必要となるロジック・レベルは、デバイスの機能により異なります。一般に入力は、GND または V_{CC} のうち、ロジックの機能にとってより適切であるかより利便性の高い方に接続されます。

8.4.2 レイアウト例

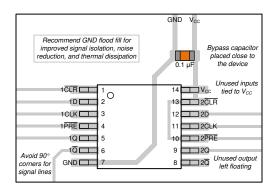


図 8-4. レイアウト例: SN54SC2T74-SEP

9 デバイスおよびドキュメントのサポート

9.1 ドキュメントのサポート

9.1.1 関連資料

関連資料については、以下を参照してください。

• テキサス・インスツルメンツ、『低速またはフローティング CMOS 入力の影響』アプリケーション・レポート

9.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、www.tij.co.jp のデバイス製品フォルダを開いてください。[通知] をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取ることができます。 変更の詳細については、改訂されたドキュメントに含まれている改訂履歴をご覧ください。

9.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。

9.4 商標

テキサス・インスツルメンツ E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。

9.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

9.6 用語集

テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。

10 改訂履歴

日付	改訂	注
2023 年 11 月	*	初版

11 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、指定のデバイスに使用できる最新のデータです。このデータは、予告なく、このドキュメントを改訂せずに変更される場合があります。本データシートのブラウザ版を使用している場合は、画面左側のナビゲーションをご覧ください。

Product Folder Links: SN54SC2T74-SEP

Copyright © 2024 Texas Instruments Incorporated

資料に関するフィードバック(ご意見やお問い合わせ)を送信

23

www.ti.com 17-Apr-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN54SC2T74MPWTSEP	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	SC74SEP	Samples
V62/23632-01XE	ACTIVE	TSSOP	PW	14	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM		SC74SEP	Samples
V62/23632-01XE	ACTIVE	TSSOP	PW	14	250	TBD	Call TI	Call TI			Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

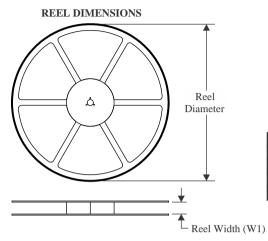
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

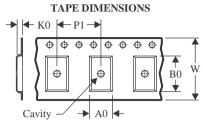
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


www.ti.com 17-Apr-2024

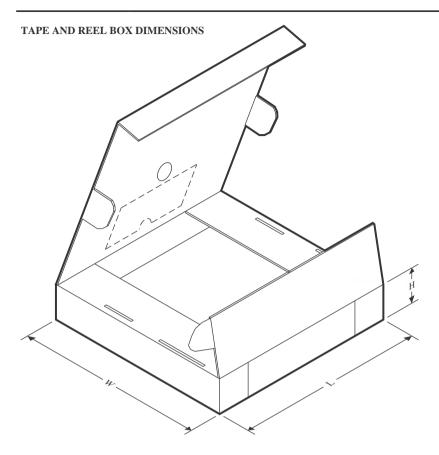

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Nov-2023

TAPE AND REEL INFORMATION

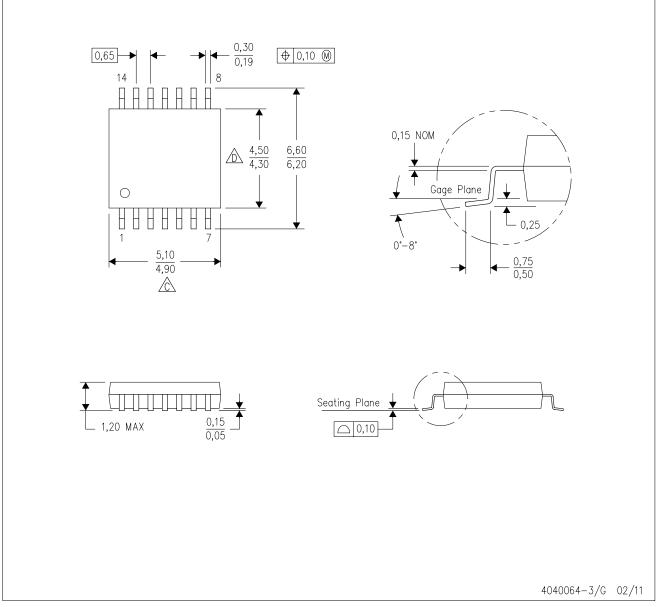
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN54SC2T74MPWTSEP	TSSOP	PW	14	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 30-Nov-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN54SC2T74MPWTSEP	TSSOP	PW	14	250	356.0	356.0	35.0	

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated