

TLC6984 JAJSNK8D - NOVEMBER 2021 - REVISED JULY 2022

TLC6984 48 電流源、64 スキャン、共通カソード・マトリクス LED ディスプ レイ・ドライバ

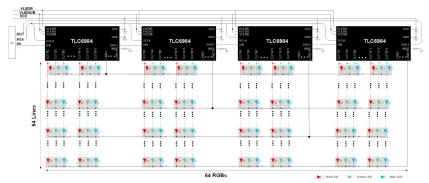
1 特長

- 独立した V_{CC} および V_{R/G/B} 電源
 - V_{CC} 電圧範囲:2.5V~5.5V
 - V_{R/G/B} の電圧範囲:2.5V~5.5V
- 48 個の 0.2mA~20mA 電流源チャネル
 - チャネル間精度:±0.5% (標準値)、±2% (最大値)、 デバイス間精度:±0.5% (標準値)、±2% (最大値)
 - 低い二一電圧: 0.26V (最大値) (I_{OUT} = 5mA 時)
 - 3 ビット (8 ステップ) のグローバル輝度制御
 - 8 ビット (256 ステップ) の色輝度制御
 - 最大 16 ビット (65536 ステップ) の PWM グレイス ケール制御
- $R_{DS(ON)}$ = 190m Ω の 16 個のスキャン・ライン・スイッ
- 非常に低い消費電力
 - 独立した最小 2.5V の V_{CC}
 - 最小 3.6mA の小さい I_{CC} (GCLK = 50MHz)
 - Icc を最小 0.9mA に低減したインテリジェント省電 カモード
- 1~64 のマルチプレクシングをサポートする内蔵 SRAM
 - 1 つのデバイス:16 マルチプレクシングにより 48 × 16 の LED または 16 × 16 の RGB ピクセルをサ
 - 2 つのデバイスのスタック接続:32 マルチプレクシ ングにより 96 × 32 の LED または 32 × 32 の RGBピクセルをサポート
 - 3 つのデバイスのスタック接続:48 マルチプレクシ ングにより 144 × 48 の LED または 48 × 48 の RGBピクセルをサポート
 - 4 つのデバイスのスタック接続:64 マルチプレクシ ングにより 192 × 64 の LED または 64 × 64 の RGB ピクセルをサポート

- 高速および低 EMI の連続クロック・シリーズ・インター フェイス (CCSI)
 - わずか3本の信号線:SCLK/SIN/SOUT
 - デュアル・エッジ伝送機能を備えた外部 25MHz (最大值) SCLK (内部 50MHz)
 - 高い GCLK 周波数をサポートするための内部周波 数逓倍器
- 最適化されたディスプレイ性能
 - プログラム可能なスキャン・ライン・シーケンス
 - 上側と下側のゴーストの除去
 - 低グレイスケール強調
 - LED の開放、短絡、弱短絡の検出と除去

2 アプリケーション

- 狭ピクセル・ピッチ (NPP) LED ディスプレイ
- 小型および超小型 LED 製品


3 概要

ピクセル・ピッチが狭い LED ディスプレイや小型およびマ イクロ LED 製品などでピクセル密度がより高くなり、これら の製品における課題について、LEDドライバの緊急な対 応が求められています。この課題としては、厳しい基板面 積制限に対応する超高集積化、システム・レベルでの消 費電力最小化を可能にする超低消費電力、高いデータ・ リフレッシュ・レートと EMI の影響低減を実現する新しいイ ンターフェイス、高いディスプレイ品質のニーズの増大に 対応する優れたディスプレイ性能などが挙げられます。

製品情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
TLC6984	VQFN (76)	9.00mm × 9.00mm
	BGA (96)	6.00mm × 6.00mm

利用可能なパッケージについては、このデータシートの末尾にあ る注文情報を参照してください。

4 デバイス・スタック接続の TLC6984

Table of Contents

1 特長	1	8.5 Continuous Clock Series Interface	27
2 アプリケーション		8.6 PWM Grayscale Control	33
3 概要		8.7 Register Maps	
4 Revision History		9 Application and Implementation	
5 概要 (続き)		9.1 Application Information	52
6 Pin Configuration and Functions		9.2 Typical Application	52
7 Specifications		10 Power Supply Recommendations	60
7.1 Absolute Maximum Ratings		11 Layout	61
7.2 ESD Ratings		11.1 Layout Guidelines	61
7.3 Recommended Operating Conditions		11.2 Layout Example	61
7.4 Thermal Information		12 Device and Documentation Support	65
7.5 Electrical Characteristics		12.1 Documentation Support	65
7.6 Timing Requirements		12.2 Receiving Notification of Documentation Up	odates65
7.7 Switching Characteristics		12.3 サポート・リソース	65
7.8 Typical Characteristics		12.4 Trademarks	65
8 Detailed Description		12.5 Electrostatic Discharge Caution	65
8.1 Overview		12.6 Glossary	65
8.2 Functional Block Diagram		13 Mechanical, Packaging, and Orderable	
8.3 Feature Description		Information	66
8.4 Device Functional Modes			

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision C (March 2022) to Revision D (July 2022)	Page
ドキュメント全体を通して BGA パッケージの情報を更新	1
Changed the description of FREQ_MOD	
Changed the name of register field	
Changes from Revision B (March 2022) to Revision C (March 2022)	Page
• 「特長」および「概要 (続き)」セクションの GCLK の説明を更新	1
Changes from Revision A (December 2021) to Revision B (March 2022)	Page
データシートのステータスを「事前情報」から「量産データ」に変更	1
Changes from Revision * (November 2021) to Revision A (December 2021)	Page
• データシートの最初の公開リリース	1

5 概要 (続き)

TLC6984 は、48 個の定電流源と 16 個のスキャン FET を備えた高集積の共通カソード・マトリクス LED ディスプレイ・ドライバです。 TLC6983 のように 16×16 および 32×32 の RGB LED ピクセルを駆動するだけでなく、3 つの TLC6984 をスタック接続すると 48×48 の RGB LED ピクセルを駆動でき、4 つの TLC6984 をスタック接続すると 64×64 の RGB LED ピクセルを駆動できます。 低消費電力を実現するため、共通カソード構造によって、赤、緑、青の LED に独立した電源をサポートしています。 さらに、非常に低い動作電圧範囲 (最小 2.5V の Vcc) と非常に低い動作電流 (最小 3.6mA) により、 TLC6984 の動作電力は大幅に低減されています。

TLC6984 は、多数のデバイスによるデイジーチェーン接続と高いリフレッシュ・レートをサポートすると同時に、電磁干渉 (EMI) を最小化するため、高速デュアル・エッジ伝送インターフェイスを実装しています。このデバイスは、最高 25MHz の SCLK (外部) および 40MHz~160MHz の GCLK (内部、標準値) を、各種の GCLK 乗算器モードおよび周波数で サポートします。また、本デバイスは拡張回路とインテリジェント・アルゴリズムを内蔵しており、狭ピクセル・ピッチ (NPP) LED ディスプレイ・アプリケーションと小型および超小型 LED 製品における表示に関する各種課題を解決しています。その課題としては、最初のスキャン・ラインの輝度低下、上側および下側ゴースト、低グレイスケールでの不均一性、カップリング、LED の開放または短絡に起因するキャタピラーなどがあります。TLC6984 は、このようなアプリケーションでの理想的な選択肢です。

TLC6984 は LED の開放、弱短絡、短絡検出および動作中の取り外しにも対応しており、接続されているデジタル・プロセッサにこの情報を報告することもできます。

6 Pin Configuration and Functions

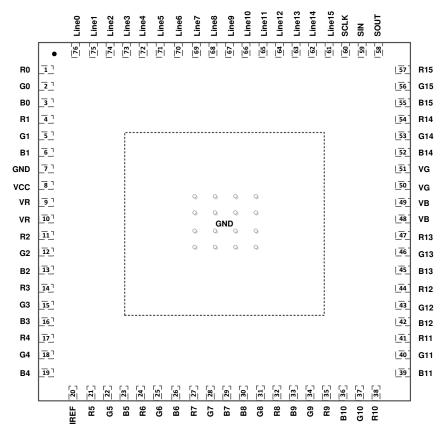


図 6-1. TLC6984 RRF Package 76-Pin VQFN With Exposed Thermal Pad Top View

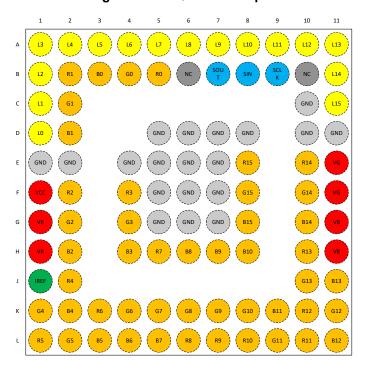


図 6-2. TLC6984 ZXL Package 96-Pin BGA Top View

Submit Document Feedback

表 6-1. Pin Functions

	PIN			
NAME	RRF NO.	ZXL NO.	I/O	DESCRIPTION
IREF	20	J1	I	Pin for setting the maximum constant-current value. Connecting an external resistor between IREF and GND sets the maximum current for each constant-current output channel. When this pin is connected directly to GND, all outputs are forced off. The external resistor must be placed close to the device.
VCC	8	F1	I	Device power supply
VR	9, 10	G1, H1	I	Red LED power supply
VG	51, 50	E11, F11	I	Green LED power supply
VB	49, 48	G11, H11	I	Blue LED power supply
R0-R15	1, 4, 11, 14, 17, 21, 24, 27, 32, 35, 38, 41, 44, 47, 54, 57	B5, B2,F2, F4, J2, L1, K3, H5, L6, L7, L8, L10, K10, H10, E10, E8	0	Red LED constant-current output
G0-G15	2, 5, 12, 15, 18, 22, 25, 28, 31, 34, 37, 40, 43, 46, 53, 56	B4, C2, G2, G4, K1, L2, K4, K5, K6, K7, K8, L9, K11, J10, F10, F8	0	Green LED constant-current output
B0-B15	3, 6, 13, 16, 19, 23, 26, 29, 30, 33, 36, 39, 42, 45, 52, 55	B3, D2, H2, H4, K2, L3, L4, L5, H6, H7, H8, K9, L11, J11, G10, G8	0	Blue LED constant-current output
LINE0- LINE15	76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61	D1, C1, B1, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, B11, C11	0	Scan lines
SCLK	60	В9	I	Clock-signal input pin
SIN	59	B8	I	Serial-data input pin
SOUT	58	B7	0	Serial data output pin
GND	7	C10, E1, E2, D5, D6, D7, D8, D10, D11, E1,E2, E4, E5, E6,E7, F5, F6, F7,G5, G6, G7	_	Power-ground reference
Thermal pad	_	_	_	The thermal pad and the GND pin must be connected together on the board.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
	VCC	-0.3	6	V
	VR/G/B	-0.3	6	V
Voltage	IREF, SCLK, SIN, SOUT, VSYNC	-0.3	6	V
	RX/GX/BX	-0.3	6	V
	LINE0 to LINE15	-0.3	6	V
Operating junction temperature, T _J		-40	150	°C
Storage temperature, T _{stg}		- 55	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	Liectiostatic discharge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
VCC	Device supply voltage	2.5	5.5	V
VLEDR/G/B	LED supply voltage	2.5	5.5	V
V _{IH}	High level logic input voltage (SCLK, SIN, VSYNC)	0.7 × VCC		V
V _{IL}	Low level logic input voltage (SCLK, SIN, VSYNC)		0.3 × VCC	V
I _{OH}	High level logic output current (SOUT)		-2	mA
I _{OL}	Low level logic output current (SOUT)		2	mA
I _{CH}	Constant output source current	0.2	20	mA
I _{LINE}	Line scan switch load current	0	2	Α
T _A	Ambient operating temperature	-40	85	°C

7.4 Thermal Information

		TLC		
	THERMAL METRIC(1)	RRF (VQFN)	ZXL (BGA)	UNIT
		76 PINS	96 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	22.2	33.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	10.7	18.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	7.2	11.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.1	0.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	7.1	11.6	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.7		°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: TLC6984

7.5 Electrical Characteristics

At VCC = VR = 2.8 V, VG/B = 3.8 V and $T_A = -40^{\circ}\text{C}$ to +85°C; Typical values are at $T_A = 25^{\circ}\text{C}$ (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
VCC	Device supply voltage		2.5	5.5	V
V _{UVR}	Undervoltage restart	VCC rising		2.3	V
V _{UVF}	Undervoltage shutdown	VCC falling	2.0		V
V _{UV(HYS)}	Undervoltage shutdown hysteresis			0.1	V
ICC Device supply current		SCLK/SIN = 10 MHz, MPSM_EN = 1bit, Matrix PSM enable, internal GCLK off, GSn = 0000h, BC = 2h, CCR/G/B = 63h, PS_EN= 1h, VOUTn = floating, R _{IREF} = 7.8 kΩ (In intelligent power save mode)		0.9	mA
	SCLK/SIN = 10 MHz, Standby enable, internal GCLK off, GSn = 0000h, BC = 2h, CCR/G/B = 63h, PS_EN= 1h, VOUTn = floating, R_{IREF} = 7.8 k Ω (In intelligent power save mode)		0.9	mA	
	Device supply current	SCLK/SIN = 10 MHz, PSP_MOD = 1bit, internal GCLK=50MHz, GSn = 0000h, BC = 2h, CCR/G/B = 63h, PS_EN= 1h, VOUTn = floating, R _{IREF} = 7.8 kΩ (In power save mode)		3.6	mA
		SCLK = 10 MHz, internal GCLK = 50 MHz, GSn = 1FFFh, BC = 2h, CCR/G/B = 63h,VOUTn = floating, R_{IREF} = 7.8 k Ω , I_{CH} = 2 mA		3.6	mA
		SCLK = 10 MHz, internal GCLK = 100 MHz, GSn = 1FFFh, BC = 2h, CCR/G/B = 63h, VOUTn = floating, R_{IREF} = 7.8 k Ω , I_{CH} = 2 mA		4.9	mA
VR/G/B	LED supply voltage		2.5	5.5	V
V _{IH}	High level input voltage (SCLK, SIN)		0.7 × VCC		V
V _{IL}	Low level input voltage (SCLK, SIN)			0.3 × VCC	V
V _{OH}	High level output voltage (SOUT)	IOH = -2 mA at SOUT	VCC-0.4	VCC	V
V _{OL}	Low level output voltage (SOUT)	IOL = 2 mA at SOUT		0.4	V
I _{LOGIC}	Logic pin current (SCLK, SIN)	SCLK/SIN = VCC or GND	-1	1	uA
R _{DS(ON)}	Scan switches' on-state resistance (LINE0 to LINE15)	VCC = 2.8 V, T _A = 25°C		190	mΩ
V_{IREF}	Reference voltage	SCLK/SIN = GND, internal GCLK= 0MHz, GSn = 0000h, BC = 2h, CCR/G/B = 63h, VOUTn = floating, R_{IREF} = 7.8 k Ω		0.8	V

7.5 Electrical Characteristics (continued)

At VCC = VR = 2.8 V, VG/B = 3.8 V and $T_A = -40^{\circ}$ C to +85°C; Typical values are at $T_A = 25^{\circ}$ C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		VLEDR/G/B ≥ 2.8 V, all channel outputs on, output current at 1 mA			0.25	V
		VLEDR/G/B ≥ 2.8 V, all channel outputs on, output current at 5 mA			0.26	V
V_{KNEE}	Channel knee voltage (R0-R15 /	VLEDR/G/B ≥ 2.8 V, all channel outputs on, output current at 10 mA			0.3	V
RNLL	G0-G15 / B0-B15)	VLEDR/G/B ≥ 2.8 V, IMAX = 1b, all channel outputs on, output current at 15 mA			0.37	٧
		VLEDR/G/B ≥ 2.8 V, IMAX=1b, all channel outputs on, output current at 20 mA			0.41	V
CH(LKG)	Channel leakage current (R0- R15 / G0-G15 / B0-B15)	Channel voltage at 0 V			1	uA
Constant-current channel to channel deviation (R0-R15 / G0-G15 / B0-B15) ⁽¹⁾	All CHn = on, BC = 00h, CC = 31h, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 0.2-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±1	±2.5	%	
	All CHn = on, BC = 00h, CC = 7Dh, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 0.5-mA target), T_{A} = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±0.5	±1.5	%	
	Constant-current channel to	All CHn = on, BC = 00h, CC = FBh, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 1-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±0.5	±1.5	%
	All CHn = on, BC = 2h, CC = FBh, VOUTn = (VLED-1)V, R _{IREF} = $7.8 \text{ k}\Omega$ (I_{CH} = 5-mA target), T _A = 25° C, includes the V _{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±0.5	±2	%	
	All CHn = on, BC = 6h, CC = A7h, VOUTn = (VLED-1)V, R_{IREF} = 7.8 kΩ (I_{CH} = 10-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±0.5	±2	%	
	All CHn = on, BC = 7h, CC = FBh, IMAX=1b, VOUTn = (VLED-1)V, RIREF = 6.8 k Ω (I _{CH} = 20-mA target), T _A = 25°C, includes the V _{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±0.5	±2.5	%	

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

7.5 Electrical Characteristics (continued)

At VCC = VR = 2.8 V, VG/B = 3.8 V and $T_A = -40$ °C to +85°C; Typical values are at $T_A = 25$ °C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		All CHn = on, BC = 00h, CC = 31h, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 0.2-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±1	±2.5	%
		All CHn = on, BC = 00h, CC = 7Dh, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 0.5-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±0.5	±1.5	%
	Constant-current device to	All CHn = on, BC = 00h, CC = FBh, VOUTn = (VLED-1)V, R_{IREF} = 19.05 $k\Omega$ (I_{CH} = 1-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±0.5	±1	%
ΔI _{ERR(DD)}	device deviation (R0-R15 / G0-G15 / B0-B15) ⁽²⁾	All CHn = on, BC = 2h, CC = FBh, VOUTn = (VLED-1)V, R_{IREF} = 7.8 k Ω (I_{CH} = 5-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±0.5	±1.5	%
		All CHn = on, BC = 6h, CC = A7h, VOUTn = (VLED-1)V, R_{IREF} = 7.8 k Ω (I_{CH} = 10-mA target), T_A = 25°C, includes the V_{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±0.5	±2	%
		All CHn = on, BC = 7h, CC = FBh, IMAX=1b, VOUTn = (VLED-1)V, R _{IREF} = 6.8 k Ω (I _{CH} = 20-mA target), T _A = 25°C, includes the V _{IREF} tolerance, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15	±0.5	±2	%
$\Delta I_{REG(LINE)}$	Line regulation (R0-R15 / G0-G15 / B0-B15) ⁽³⁾	VLED = 2.5 to 5.5 V, All CHn = on, VOUTn = (VLED-1)V, at same color grouped outputs of R0-R15 / G0- G15 / B0-B15		±1	%/V
$\Delta I_{REG(LOAD)}$	Load regulation (R0-R15 / G0-G15 / B0-B15) ⁽⁴⁾	VOUTn = (VLED-1)V to (VLED-3)V, VR=VG/B=VLED = 3.8 V, All CHn = on, at same color grouped outputs of R0-R15 / G0-G15 / B0-B15		±1	%/V
T _{TSD}	Thermal shutdown threshold		170		°C
T _{HYS}	Thermal shutdown hysteresis		15		°C

(1) The deviation of each output in same color group (OUTR0-15 or OUTG0-15 or OUTB0-15) from the average of same color group

$$\Delta(\%) = \left[\frac{I_{Xn}}{\frac{I_{X0} + I_{X1} + \dots + I_{X14} + I_{X15}}{16}} - 1\right] \times 100$$
constant current. The deviation is calculated by the formula. (X = R or G or B, n = 0-15)

(2) The deviation of the average of constant-current in each color group from the ideal constant-current value. (X = R or G or B):

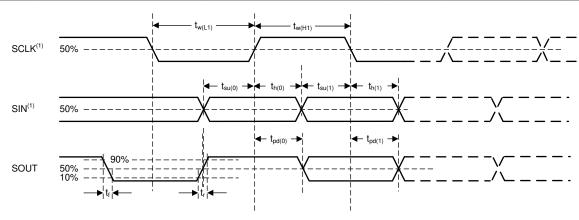
$$\Delta(\%) = \begin{bmatrix} \frac{I_{X0} + I_{X1} + \dots + I_{X14} + I_{X15}}{16} - \text{Ideal Output Current} \\ \hline Ideal Output Current} \\ \end{bmatrix} \times 100 \\ I_{IDEAL_R(or~G~or~B)} = \frac{V_{IREF}}{R_{IREF}} \times GAIN_{(BC)} \times \frac{1 + CC_R(or~CC_G~or~CC_B)}{256}$$

Line regulation is calculated by the following equation. (X = R or G or B, n = 0-15):

Line regulation is calculated by the following equation:
$$(X - R \text{ or } G \text{ or } B, R - G - 15)$$
:
$$\Delta (\%V) = \left[\frac{(I_{Xn} \text{ at } V_{LED} = 5.5 \text{ V}) - (I_{Xn} \text{ at } V_{LED} = 2.5 \text{ V})}{(I_{Xn} \text{ at } V_{LED} = 2.5 \text{ V})} \right] \times \frac{100}{5.5 \text{ V} - 2.5 \text{ V}}$$
Load regulation is calculated by the following equation. $(X = R \text{ or } G \text{ or } B, n = 0-15)$:
$$\Delta (\%V) = \left[\frac{(I_{Xn} \text{ at } V_{Xn} = 1 \text{ V}) - (I_{Xn} \text{ at } V_{Xn} = 3 \text{ V})}{(I_{Xn} \text{ at } V_{Xn} = 3 \text{ V})} \right] \times \frac{100}{3 \text{ V} - 1 \text{ V}}$$

$$\Delta (\%V) = \left[\frac{(I_{Xn} \text{ at } V_{Xn} = 1 \text{ } V) - (I_{Xn} \text{ at } V_{Xn} = 3 \text{ } V)}{(I_{Xn} \text{ at } V_{Xn} = 3 \text{ } V)} \right] \times \frac{100}{3 \text{ } V - 1 \text{ } V}$$

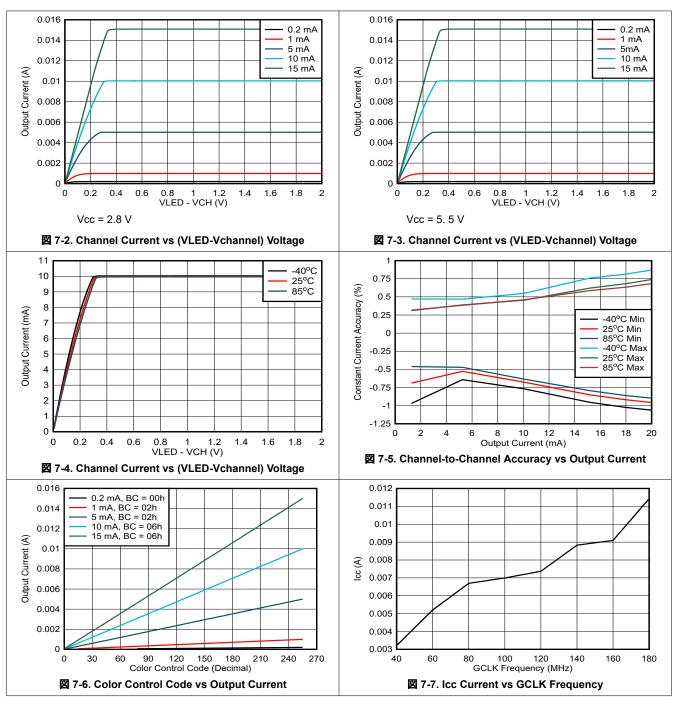
7.6 Timing Requirements


At VCC = VR = 2.8 V, VG/B = 3.8 V and $T_A = -40$ °C to +85°C; Typical values are at $T_A = 25$ °C (unless otherwise specified)

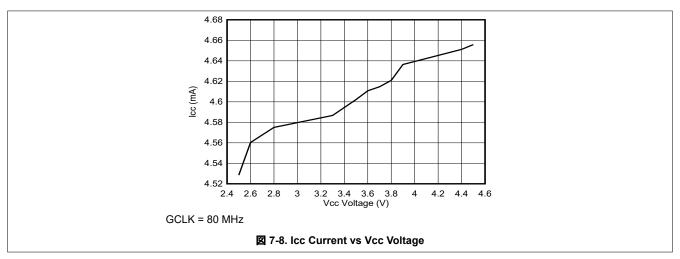
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SCLK}	Clock frequency (SCLK)				25	MHz
t _{w(H1)}	High level pulse duration (SCLK)		18			ns
t _{w(L1)}	Low level pulse duration (SCLK)		18			ns
t _{su(0)}	Setup time	SIN to SCLK ↑	10			ns
t _{su(1)}	Setup time	SIN to SCLK ↓	10			ns
t _{h(0)}	Hold time	SCLK↑ to SIN↑↓	2			ns
t _{h(1)}	Hold time	SCLK↓ to SIN↑↓	2			ns

7.7 Switching Characteristics

At VCC = VR = 2.8 V, VG/B = 3.8 V and $T_A = -40$ °C to +85°C; Typical values are at $T_A = 25$ °C (unless otherwise specified)


	*	7 71	/\	`		,
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _r	Rise time (SOUT)	VCC = 3.3 V, C _{SOUT} = 30 pF		2	10	ns
t _f	Fall time (SOUT)	VCC = 3.3 V, C _{SOUT} = 30 pF		2	10	ns
t _{pd(0)}	Propagation delay	SCLK \uparrow to SOUT \uparrow \downarrow , full temperature, C _{SOUT} = 30 pF	3.5		14.2	ns
t _{pd(1)}	Propagation delay	SCLK ↓ to SOUT ↑ ↓ , full temperature, C _{SOUT} = 30 pF	3.5		14.2	ns

(1). Input pulse rise and fall time is 2 ns typically.


図 7-1. Timing and Switching Diagram (Dual Edge)

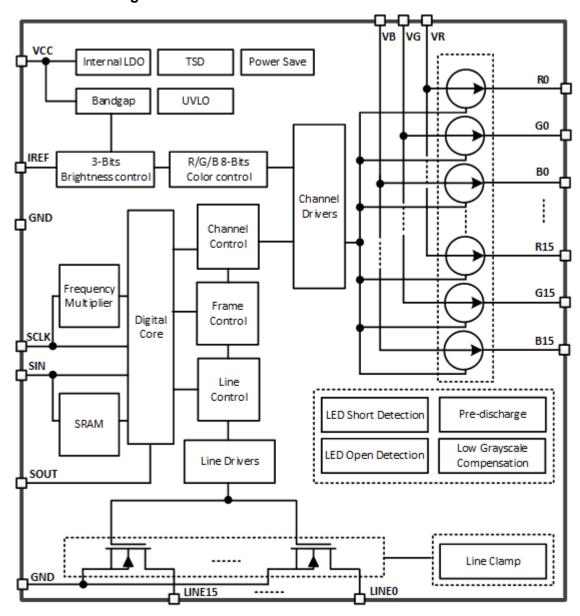
7.8 Typical Characteristics

7.8 Typical Characteristics (continued)

8 Detailed Description

8.1 Overview

The TLC6984 is a highly-integrated, common cathode LED-display driver with 48 constant current sources and 16 scanning FETs. A single TLC6984 is capable of driving 16 \times 16 RGB LED pixels while stacking four TLC6984s can drive 64 \times 64 RGB LED pixels. To achieve low-power consumption, the device supports separated power supplies for the red, green, and blue LEDs by its common cathode structure. Furthermore, the operation power of the TLC6984 is significantly reduced by ultra-low operation voltage range (V_{CC} down to 2.5 V) and ultra-low operation current (I_{CC} down to 3.6 mA).


The TLC6984 supports per channel current from 0.2 mA to 20 mA, with typical 0.5% channel-to-channel current deviation and typical 0.5% device-to-device current deviation. The DC current value of all 48 channels is set by an external IREF resistor and can be adjusted by the 8-step global brightness control (BC) and the 256-step percolor group brightness control (CC_R/CC_G/CC_B).

The TLC6984 implements a high-speed, dual-edge transmission interface to support high device count daisy-chained and high-refresh rate while minimizing electrical-magnetic interference (EMI). The TLC6984 supports up to 25-MHz SCLK (external) and up to 160-MHz GCLK (internal). Meanwhile, the device integrates enhanced circuits and intelligent algorithms to solve the various display challenges in Narrow Pixel Pitch (NPP) LED display applications and mini and micro-LED products: dim at the fist scan line, upper and downside ghosting, non-uniformity in low grayscale, coupling, caterpillar caused by open or short LEDs, which make the TLC6984 a perfect choice in such applications.

The TLC6984 also implements LED open, weak-short, short detections and removals during operations and can also report this information out to the accompanying digital processor.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Independent and Stackable Mode

The TLC6984 can operate in two different modes: independent or stackable. In independent mode, a single TLC6984 can drive a 16×16 RGB LED matrix, while in stackable mode, up to four TLC6984s can be stacked together, which means the line switches of one device can be shared to the others. Stacking three TLC6984s can drive a 48×48 RGB LED matrix while stacking four TLC6984s can drive a 64×64 RGB matrix. The mode can be configured by the MOD_SIZE (see FC2 for more details).

8.3.1.1 Independent Mode

⊠ 8-1 shows an implementation of a 16 × 32 RGB LED matrix using two TLC6984s in independent mode. Each device is responsible for its own 16 ×16 RGB LED matrix which means that all the data for section A is stored in device 1 and the data for section B is stored in device 2.

図 8-1. Two Devices in Independent Mode

The unused line must be assigned to the last several lines of the device. For example, if there are only 14 scanning lines, then the two unused lines must be assigned to 1 LS14 and 1 LS15.

8.3.1.2 Stackable Mode

表 8-1 shows operating the TLC6984 in stackable mode.

₹ 0-1. Stackable wode					
Mode	Matrix Size	Register Value	Scan Sequence		
Mode1	16 × 32	000b	D1, D2 independent		
Mode2	32 × 32	001b	D1->D2		
Mode3	48 × 48	010b	D1->D2->D3		
Mode4	48 × 48	011b	D1->D3->D2		
Mode5	48 × 64	100b	D1->D2->D3		
Mode6	48 × 64	101b	D1->D3->D2		
Mode7	64 × 64	110b	D1->D2->D3->D4		
Mode8	64 × 64	111b	D1->D4->D3		

表 8-1. Stackable Mode

 \boxtimes 8-2 shows that device 2 must be rotated 180° relative to device 1. This action allows the position of line switches to be near the center column of the LED matrix for better routing. For device 1, the lines are connected sequentially (line switch 0 connected to scan line 1). However on device 2, it is connected in reverse order, with the 16th scan line is connected to line switch 15 and the 32th scan line is connected to line switch 0.

№ 8-2 shows the connection between two TLC6984 devices in stackable mode driving a 32 × 32 RGB LED pixels. The MOD_SIZE must be configured to 001b. Device1 supplies 16 line switches for the first 16 scan line, and device 2 supplies 16 line switches for scan line 17-32. The data for matrix sections A and C are stored in device 1, while matrix sections B and D data are stored in device 2.

To make sure the scanning sequence is still from 1st line to 32nd line, the scan line switching order of the second device must be reversed, This configuration can be completed by the SCAN REV (see FC4 for more details).

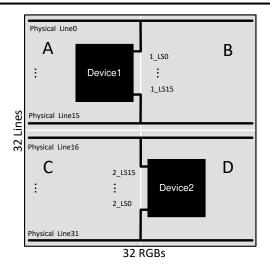
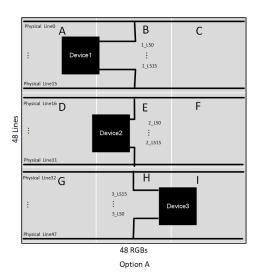



図 8-2. Mode2 Diagram

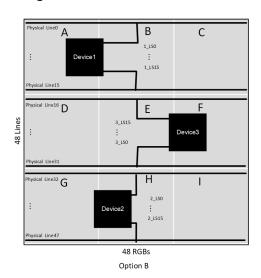
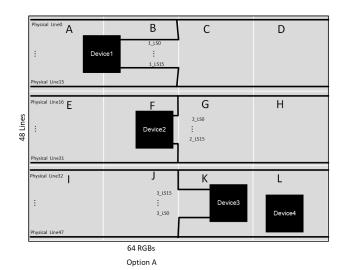



図 8-3. Mode3 and Mode4 Diagram

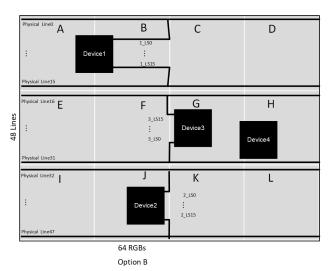
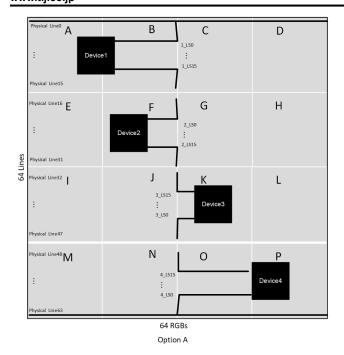



図 8-4. Mode5 and Mode6 Diagram

Submit Document Feedback

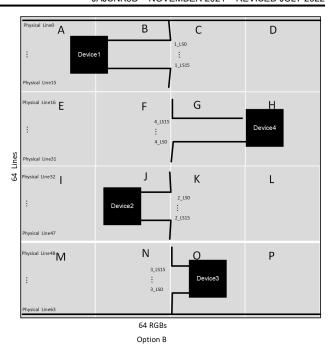


図 8-5. Mode7 and Mode8 Diagram

When two TLC6984 devices are used in stackable mode, if there are unused line switches, these unused line switches must be the last line switches of the first or the second device. For example, if there are only 30 scanning lines, and if,

SCAN REV = '0'b, the unused line switches can be either of below,

- 1 LS14, 1 LS15
- 2 LS14, 2 LS15

SCAN_REV = '1'b, the unused line switches can be either of below,

- 1 LS14, 1 LS15
- 2 LS1, 2 LS0

If the unused line switches are 1_LS14, 1_LS15, the FC6-FC13 registers must be configured. If the unused line switches are 2_LS14, 2_LS15 when SCAN_REV = '0' or 2_LS1, 2_LS0 when SCAN_REV = '1', there is no need to configure FC6-FC13 registers.

8.3.2 Current Setting

8.3.2.1 Brightness Control (BC) Function

The TLC6984 device is able to adjust the output current of all constant-current outputs simultaneously. This function is called global brightness control (BC). The global BC for all outputs is programmed with a 3-bit register, thus all output currents can be adjusted in 8 steps for a given current-programming resistor, R_{IREF} . When the 3-bit BC register changes, the gain of output current, $GAIN_{BC}$ changes as $\frac{1}{2}$ 8-2 below.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 8-2. Current Gain Versus BC Code

BC Register (BC)	Current Gain (GAIN _{BC})
000b	24.17
001b	30.57
010b	49.49
011b (default)	86.61
100b	103.94
101b	129.92
110b	148.48
111b	173.23

The maximum output current per channel, I_{OUTSET} , is determined by resistor R_{IREF} , and the GAIN_{BC}. The voltage on IREF is typically 0.8 V. Use $\gtrsim 1$ to calculate R_{IREF} . For noise immunity purpose, suggest $R_{IREF} < 40 \text{ k}\Omega$.

$$R_{IREF}(k\Omega) = \frac{V_{IREF}(V)}{I_{IREF}(mA)} = \frac{V_{IREF}(V)}{I_{OUTSET}(mA)} \times GAIN_{(BC)}$$
(1)

8.3.2.2 Color Brightness Control (CC) Function

The TLC6984 device is able to adjust the output current of each of the three color groups R0-R15, G0-G15, and B0-B15 separately. This function is called color brightness control (CC). For each color, it has 8-bit data register, CC_R, CC_G, or CC_B. Thus, all color group output currents can be adjusted in 256 steps from 0% to 100% of the maximum output current, I_{OUTSET}. Use $\gtrsim 2$ to calculate the output current of each color, I_{OUT R (or G or B)}.

$$I_{OUT_R(or\ G\ or\ B)} = I_{OUTSET} \times \frac{1 + CC_R(or\ CC_G\ or\ CC_B)}{256}$$
(2)

Table 表 8-3 shows the CC data versus the constant-current against I_{OUTSET}.

表 8-3. CC Data vs Current Ratio

CC Register (CC_R or CC_G or CC_B)	Ratio of I _{OUTSET}		
0000 0000Ь	1/256	0.39%	
0000 0001b	2/256	0.78%	
	:		
0111 1111b (default)	128/256	50%	
1111 1110b	255/256	99.61%	
1111 1111b	256/256	100%	

8.3.2.3 Choosing BC/CC for a Different Application

BC is mainly used for global brightness adjustment to adapt to ambient brightness, such as between day and night, indoor and outdoor.

- Suggested BC is 3h or 4h, which is in the middle of the range, allowing flexible changes in brightness up and down.
- If the current of one color group (usually R LEDs) is close to the output maximum current (10 mA or 20 mA), to prevent the constant output current from exceeding the upper limit in case a larger BC code is input accidentally, choose the maximum BC value, 7h.
- If the current of one color group (usually B LEDs) is close to the output minimum current (0.2 mA), to prevent the constant output current from exceeding the lower limit in case a lower BC code is input accidentally, choose the minimum BC code, 0h.

www.tij.co.jp

CC can be used to fine tune the brightness in 256 steps. This action is suitable for white balance adjustment between RGB color group. To get a pure white color, the general requirement for the luminous intensity ratio of R, G, B LED is 5:3:2. Depending on the characteristics of the LED (Electro-Optical conversion efficiency), the current ratio of R, G, B LED is much different from this ratio. Usually, the Red LED needs the largest current. Choose 255d (the maximum value) CC code for the color group that needs the largest initial current, then choose proper CC code for the other two color groups according to the current ratio requirement of the LED used.

8.3.3 Frequency Multiplier

The TLC6984 has an internal frequency multiplier to generate the GCLK by SCLK. The GCLK frequency can be configured by FREQ MOD (See FC0 for more details) and FREQ MUL (see FC0 for more details) from 40 MHz to 160 MHz. As 🗵 8-6 shows, if the GCLK frequency is not higher than 80 MHz, the GCLK MOD is set to 0 to disable the bypass switch (enable the ½ divider), while the GCLK frequency is higher than 80 MHz, the GCLK MOD is set to 1 to enable the bypass switch (disable the ½ divider).

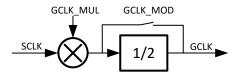


図 8-6. Frequency Multiplier Block Diagram

8.3.4 Line Transitioning Sequence

The TLC6984 defines a timing sequence of scan line transition, shown as 28-7. T SW is the total transitioning time. T SW is broken up into four intervals: T0 is the time interval between the end of PWM time in current segment and the beginning of channel pre-discharge, T1 is the time interval between the beginning of the channel pre-discharge and the beginning of current line OFF, T2 is the time interval that the beginning of current line OFF and the beginning of next line ON, T3 is the time interval of the beginning of next line ON and the beginning of PWM time in next segment.

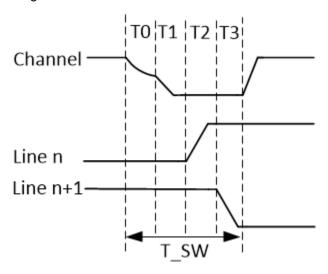


図 8-7. Line Transitioning Sequence

The line switch time T SW equals to T0 + T1 + T2 + T3. T SW can be configured by the LINE SWT (see FC1 register bit 40-37 in FC1).

表 8-4 is the relation between LINE SWT bits and the line switch time (GCLK numbers) with different internal GCLK frequency.

表 8-4. Line Switch Time

LINE_SW T	GCLK Numbers	T_SW (us, 40- MHZ GCLK)	T_SW (us, 60-MHZ GCLK)	T_SW (us, 100-MHZ GCLK)	T_SW (us, 120-MHZ GCLK)	T_SW (us, 160- MHZ GCLK)
0000b	45	1.125	0.7515	0.45	0.3735	0.2835
0001b	60	1.5	1.002	0.6	0.498	0.378
0010b	90	2.25	1.503	0.9	0.747	0.567
0011b	120	3	2.004	1.2	0.996	0.756
0100b	150	3.75	2.505	1.5	1.245	0.945
0101b	180	4.5	3.006	1.8	1.494	1.134
0110b	210	5.25	3.507	2.1	1.743	1.323
0111b	240	6	4.008	2.4	1.992	1.512
1000b	270	6.75	4.509	2.7	2.241	1.701
1001b	300	7.5	5.01	3	2.49	1.89
1010b	330	8.25	5.511	3.3	2.739	2.079
1011b	360	9	6.012	3.6	2.988	2.268
1100b	390	9.75	6.513	3.9	3.237	2.457
1101b	420	10.5	7.014	4.2	3.486	2.646
1110b	450	11.25	7.515	4.5	3.735	2.835
1111b	480	12	8.016	4.8	3.984	3.024

8.3.5 Protections and Diagnostics

8.3.5.1 Thermal Shutdown Protection

The thermal shutdown (TSD) function turns off all IC constant-current outputs when the junction temperature (T_J) exceeds 170°C (typical). The function resumes normal operation when T_J falls below 155°C (typical).

8.3.5.2 IREF Resistor Short Protection

The IREF resistor short protection (ISP) function prevents unwanted large currents from flowing through the constant-current output when the IREF resistor is shorted accidently. The TLC6984 device turns off all output channels when the IREF pin voltage is lower than 0.19 V (typical). When the IREF pin voltage goes higher than 0.325 V (typical), the TLC6984 device resumes normal operation.

8.3.5.3 LED Open Load Detection and Removal

8.3.5.3.1 LED Open Detection

The LED open detection (LOD) function detects faults caused by an open circuit in any LED, or a short from OUTn to VLED with low impedance. This function was realized by comparing the OUTn voltage to the LOD detection threshold voltage level set by LODVTH_R/LODVTH_G/LODVTH_B (See FC3 for more details). If the OUTn voltage is higher than the programmed voltage, the corresponding output LOD bit is set to 1 to indicate an open LED. Otherwise, the output of that LOD bit is 0. LOD data output by the detection circuit are valid only during the OUTn turning on period.

図 8-8 shows the equivalent circuit of LED open detection.

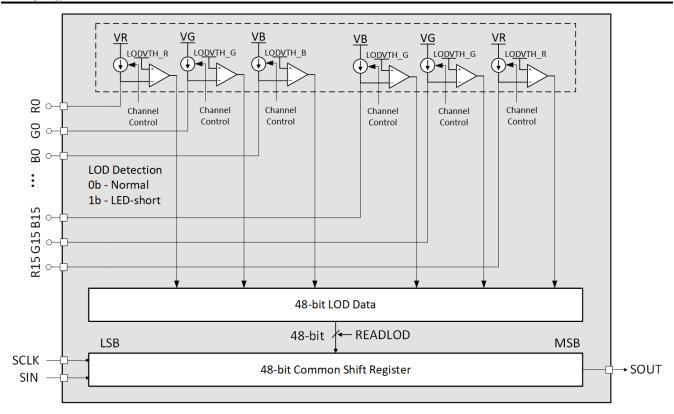


図 8-8. LED Open Detection Circuit

The LED open detection function records the position of the open LED, which contains the scan line number and relevant channel number. The scan line order is stored LOD_LINE_WARN register (see FC16, FC17 for more details), and the channel number is latched into the internal 48-bit LOD data register (see FC20 for more details) at the end of each segment. \boxtimes 8-9 shows the bit arrangement of the LOD data register.

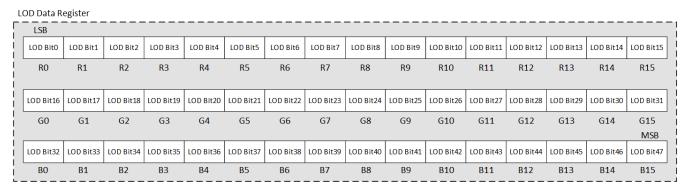


図 8-9. Bit Arrangement in LOD Data Register

8.3.5.3.2 Read LED Open Information

The LOD readback function must be enabled before read LED open information. This function is enabled by LOD_LSD_RB (see FC3 for more details).

⊠ 8-10 shows the steps to read LED open information. Wait at least one sub-period time between Step2 and Step3 command.

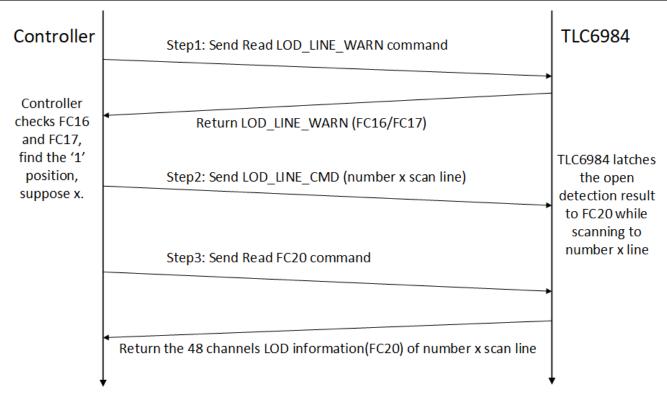


図 8-10. Steps to Read LED Open Information

8.3.5.3.3 LED Open Caterpillar Removal

⊠ 8-11 shows the caterpillar issue caused by open LED. Suppose the LED0-1 is an open LED. When line0 is chosen and the OUT1 is turned on, the OUT1 voltage is forced to approach to VLED because of the broken path of the current source. However, the voltage of the un-chosen lines are below the Vclamp which is much lower than VLED, causing all LEDs which connect to the channel OUT1, light unwanted.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

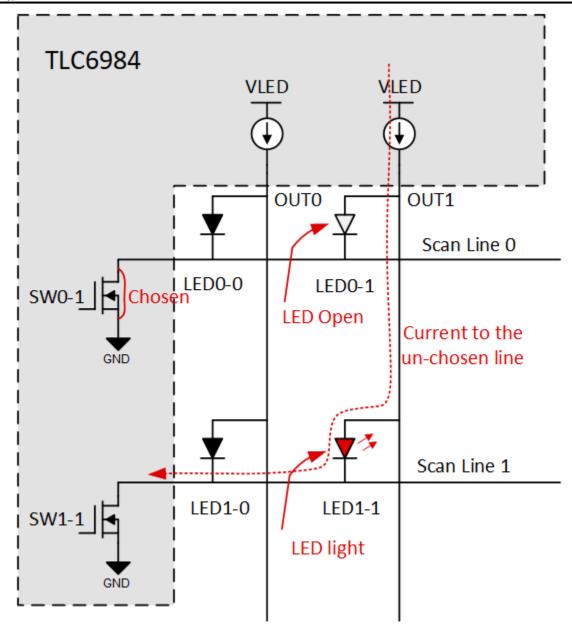


図 8-11. LED Open Caterpillar

The TLC6984 implements circuits that can eliminate the caterpillar issue caused by open LEDs. The LED open caterpillar removal function is configured by LOD_RM_EN (see FC0 for more details). When LOD_RM_EN is set to 1b, the caterpillar removal function is enabled. The corresponding channel OUTn is turned off when scanning to line with open LED, The caterpillar issue is eliminated until device resets or LOD_RM_EN is set to 0b.

The internal caterpillar elimination circuit can handle a maximum of three lines that have open LEDs fault condition. If there are open LEDs located in three or fewer lines, the TLC6984 is able to handle the open LEDs all in these lines. If there are open LEDs in more than three lines, the caterpillar issue is solved for the lines where the first three open LEDs were detected, but the open LEDs in the fourth and subsequent lines still cause the caterpillar issue.

8.3.5.4 LED Short and Weak Short Circuitry Detection and Removal

8.3.5.4.1 LED Short and Weak Short Detection

The LED short detection (LSD) function detects faults caused by a short circuit in any LED. This function was realized by comparing the OUTn voltage to the LSD threshold voltage. If the OUTn voltage is lower than the

threshold voltage, the corresponding output LSD bit is set to 1 to indicate an short LED, otherwise, the output of that LSD bit is 0. LSD data output by the detection circuit are valid only during the OUTn turning on period.

LSD weak short can be detected by adjusting threshold voltage, which level is set by LSDVTH_R/LSDVTH_G/LSDVTH_B (See FC3 for more details).

8-12 shows the equivalent circuit of LED short detection.

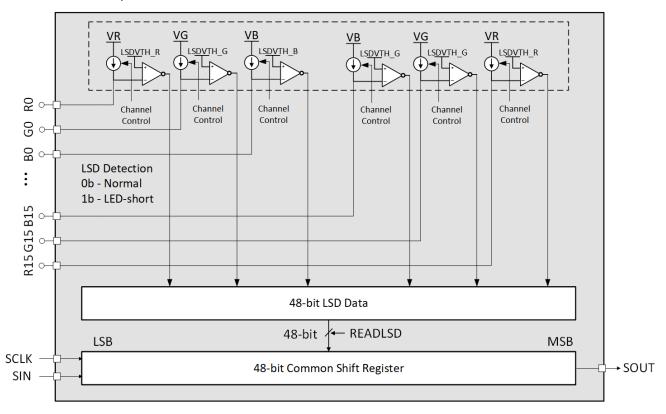


図 8-12. LED Short Detection Circuit

The LED short detection function records the position of the short LED, which contains the scan line order and relevant channel number. The scan line order is stored LSD_LINE_WARN register (see FC18 and FC19 for more details), and the channel number is latched into the internal 48-bit LSD data register (see FC21 for more details) at the end of each segment. \boxtimes 8-13 shows the bit arrangement of the LSD data register.

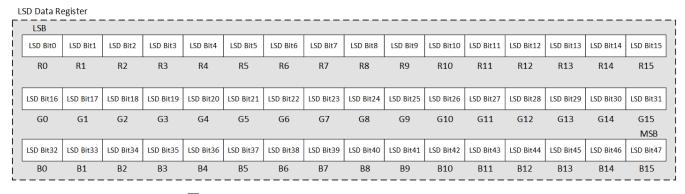


図 8-13. Bit Arrangement in the LSD Data Register

8.3.5.4.2 Read LED Short Information

The LSD readback function must be enabled before reading LED Short information. This function is enabled by LOD_LSD_RB (see FC3 for more details).

Submit Document Feedback

⊠ 8-14 shows the steps to read LED Short information. Wait at least one sub-period time between Step2 and Step3 command.

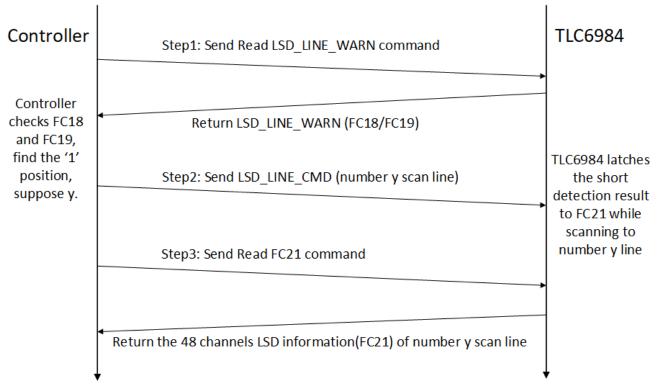


図 8-14. Steps to Read LED Short Information

8.3.5.4.3 LSD Caterpillar Removal

⊠ 8-15 shows the LSD caterpillar issue caused by short LED. Suppose the LED0-1 is a short LED. When it scans to the line1 and the OUT1 is turned off, the OUT1 voltage is the same with scan line0 voltage because of the short path of the LED0-1. At this time, there is a current path from the line0 to the GND through the LED1-1 and SW1-1, which causes LED1-1 light unwanted.

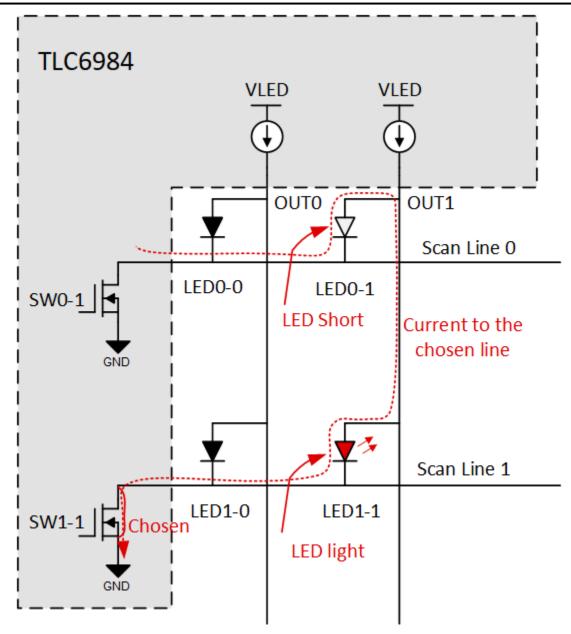


図 8-15. LED Short Caterpillar

The TLC6984 device implements internal circuits that can eliminate the caterpillar issue by short LEDs. As is shown in \boxtimes 8-15, the LED short caterpillar is caused by the voltage of the Vclamp on the line. So it can be solved by adjusting the LSD_RM_EN (see FC3 for more details) to let the voltage drop of the LED1-1 be smaller than LED forward voltage.

8.4 Device Functional Modes

The device functional modes are shown in **38-16**.

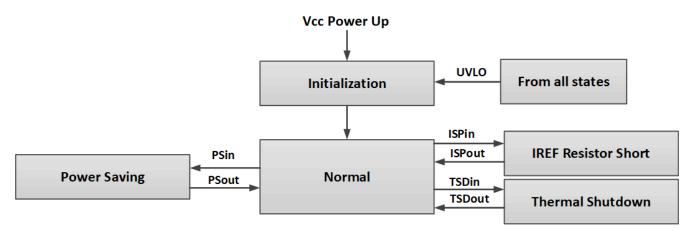


図 8-16. Functional Modes

- **Initialization:** the device enters into Initialization when Vcc goes down to UVLO voltage. In this mode, all the registers are reset. Entry can also be from any state.
- **Normal:** the device enters the normal mode when Vcc is higher than UVLO threshold. The display process is shown as below in normal mode.
- Power saving: the device automatically enters and gets out from the power save mode when it detects the
 condition PSin and PSout. In this mode, all channels turn off. PSin: after the device detects that the display
 data of the next frame all equal to zero, it enters to power save mode when the VSYNC comes. PSout: after
 the device detects that there is non-zero display data of the next frame, it gets out from power save mode
 immediately.
- IREF Resistor Short Protection: the device automatically enters and gets out from the IREF resistor short protection mode when it detects the condition ISPin and ISPout. In this mode, all channels turn off. ISPin: the device detects that the reference voltage is smaller than 0.195 V ISPout: the device detects that the reference voltage is larger than 0.325 V.
- Thermal Shutdown: the device automatically enters and gets out from the thermal shutdown mode when it
 detects the condition TSDin and TSDout. In this mode, all channels turn off. TSDin: the device detects that
 the junction temperature exceeds 170° C TSDout: the device detects that the junction temperature is below
 155° C.

8.5 Continuous Clock Series Interface

The continuous clock series interface (CCSI) provides access to the programmable functions and registers, SRAM data of the device. The interface contains two input digital pins. the pins are the serial data input (SIN) and serial clock (SCLK). Moreover, there is an another wire called serial data output (SOUT) as the output digital signal of the device. The SIN is set to HIGH when device is in idle status and the SCLK must be existent and continuous all the time considering as the clock source of internal Frequency Multiplier, the SOUT is used to transmit the data or read the data of internal registers.

This protocol can support up to 32 devices cascaded in a data chain. The devices receive the chip index command after power up. The chip index command configures addresses of the devices from 0x00 up to 0x1F according to the sequence that receives the command. Then the controller can communicate with all the devices through the broadcast way or particular device through non-broadcast way.

The broadcast is mainly used to transmit function control commands. All the devices in a data chain receive the same data in this way. The non-broadcast is mainly used to transmit function control commands or display data, and each device receives its own data in this way. These two ways are distinguished by the command identification.

Dual-edge is designed to support more devices cascaded in a data chain.


8.5.1 Data Validity

The data on DIN wire must be stable at rising and falling edges of the SCLK in dual-edge transmission.

8.5.2 CCSI Frame Format

☑ 8-17 defines the format of the command and data transimission. There are four states in one frame.

- IDLE: SCLK is always existent and continuous, and DIN is always HIGH.
- START: DIN changes from HIGH to LOW after the IDLE states.
- DATA:
 - Head_bytes: command identifier that contains one 16-bit data and one check bit. It can be WRITE
 COMMAND ID or READ COMMAND ID (see Register Maps for more details).
 - Data_bytes_N: The Nth data-bytes, contains 3 × 17-bit data, each 17-bit data contains one 16-bit data and one check bit. N is the number of devices cascaded in a data chain.
- END: the device recognizes continuous 18-bit HIGH on DIN, then returns to IDLE state.
- CHECK BIT: the check bit (17th bit) value is the **NOT** of 16th bit value, to avoid continuous 18-bit HIGH (to distinguish with END).

The IDLE state is not the necessary, that means the START state of next frame can connect to the END state of current frame.

8.5.3 Write Command

Take m devices cascaded in a data chain for example.

8.5.3.1 Chip Index Write Command

The chip index is used to set the identification of the device cascaded in a data chain. When the first device receives the chip index command Head_bytes1, it sets the current address to 00h and meanwhile change the chip index command Head_bytes2, then sends to the next device. When the device receives the Head_bytes2, it sets the address to 01h and meanwhile changes the chip index command Head_bytes3, then sends to the next device, likewise, all the cascaded devices get their unique identifications.

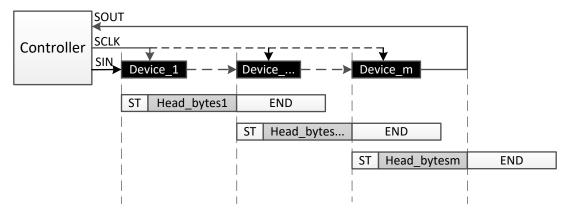


図 8-18. Chip Index Write Command

8.5.3.2 VSYNC Write Command

The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. The VSYNC is a write-only command. The devices receive VSYNC command one time from the controller in each frame, and the VSYNC command must be active for all devices at the same time.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.tij.co.jp

Because some devices receive the command earlier in the data chain, they must wait until the last device receives the command, then all the devices are active at that time. To realize such function, each device must know its delay time from receiving VSYNC command to enabling VSYNC. The device uses some register bits to restore the device number in a data chain. This number minuses the device identification, and the result is the delay time of the device.

Because the sync function has been done by the device, the controller must only send the VSYNC command to the first device in a data chain.

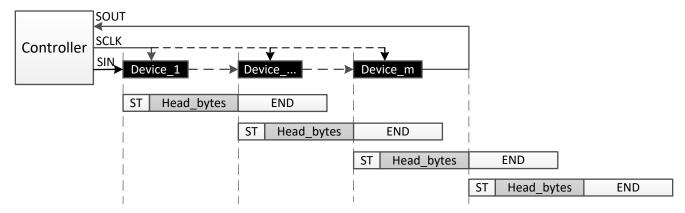


図 8-19. VSYNC Write Command

8.5.3.3 MPSM Write Command

The MPSM command is used to control the intelligent power save mode of devices in the same matrix. The device detects all zero data in a stackable module and receives MPSM command in current frame, then when VSYNC command comes, all devices in the same matrix turn off. After the device detects that there is non-zero display data of the next frame, it gets out from intelligent power save mode until MSPM command comes in current frame.

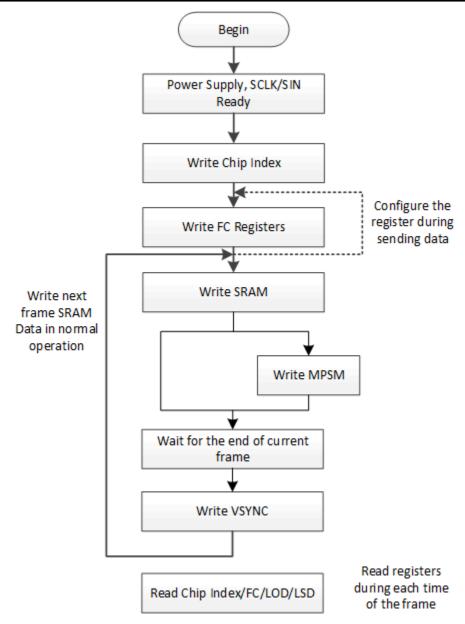


図 8-20. Design Procedure for MPSM Command

8.5.3.4 Standby Clear and Enable Command

Standby clear command and standby enable command are used to control intelligent power save mode of devices in the same daisy chain. When the device receives standby enable command, it enters to intelligent power save mode right away and does not have to wait for other devices in a module or daisy chain. After the device receives standby enable command, it exits from intelligent power save mode immediately and does not wait for other devices in a module or daisy chain.

8.5.3.5 Soft_Reset Command

The Soft_Reset Command is used to reset all the function registers to the default value, except for SRAM data. The format of this command is the same with VSYNC shown as VYSNC Write Command. The difference is the headbytes.

8.5.3.6 Data Write Command

The device can receive the function control with broadcast and non-broadcast way, which depends on the configuration of the devices. If the cascaded devices have the same configuration, broadcast is used, if the cascaded devices have the different configurations, non-broadcast is used. The MSB is always transmitted first and the LSB transmitted last. For 48-bits RGB data, the Blue data must be transmitted first, then the Green, and last the Red data.

For broadcast, the devices receive the same data. When devices recognize the broadcast command, they copy the data to the internal registers. Generally, broadcast is used for write FC0-FC13 command, LOD/LSD.

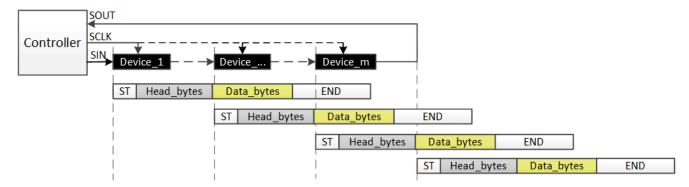


図 8-21. Data Write Command with Broadcast

図 8-22 shows the time diagram of the data write command with broadcast.

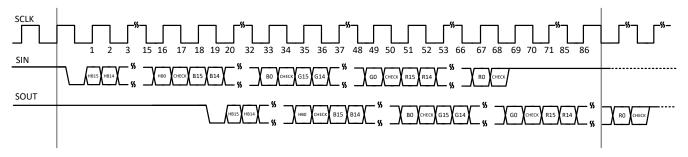


図 8-22. Data Write Command with Broadcast (Timing Diagram)

For non-broadcast, the devices receive the different data, the controller prepares the data as the figure shows. One pixel data is written to the corresponding device in each command. When the first device receives the END, it cuts off the last 51-bit (3 × 17 bit) data before the END, and the left are shifted out from SDO to the second device. Similarly, when the second device receives the END bytes from the former device, it cuts off the last 51-bit (3×17 bit) data before the END, and the left are shifted out to the next device. Generally, non-broadcast is used for write SRAM command (WRTGS), Details for how to write a frame data into memory bank can be found in *Write a Frame Data into Memory Book*.

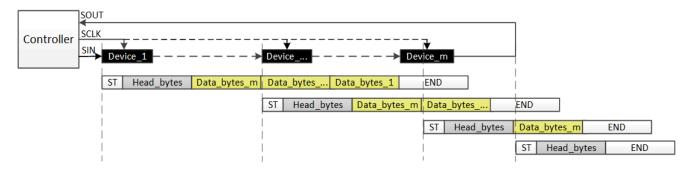


図 8-23. Data Write Command with Non-Broadcast

図 8-24 shows the time diagram of the data write command with non-broadcast.

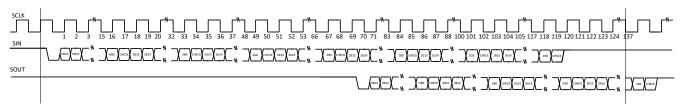


図 8-24. Data Write Command with Non-Broadcast (Timing Diagram)

8.5.4 Read Command

The controller sends the read command. When the first device receives this command, it inserts its 48-bit data before End_bytes, and meanwhile shifts out to the second device. When the second device receives this command, it inserts its 48-bit data before End_bytes and meanwhile shifts out to the third device. The data of all the device shifts out from the last device SOUT with this flow. It is always the MSB transmitted first and the LSB transmitted last.

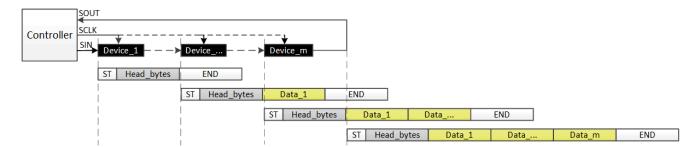


図 8-25. Data Read Command

8.6 PWM Grayscale Control

8.6.1 Grayscale Data Storage and Display

8.6.1.1 Memory Structure Overview

The TLC6984 implements a display memory unit to achieve high refresh rate and high contrast ratio in an LED display products. The internal display memory unit is divided into two BANKs: BANK A and BANK B. During the normal operation, one BANK is selected to display the data of current frame, another is used to restore the data of next frame. The BANK switcher is controlled by the BANK_SEL bit, which is an internal flag register bit.

After power on, BANK_SEL is initialized to 0, and BANK A is selected to restore the data of next frame. Meanwhile, the data in BANK B is read out for display. When one frame has elapsed, the controller sends the vertical synchronization (VSYNC) command to start the next frame, the BANK_SEL bit value is toggled and the selection of the two BANKs reverses. Repeat this operation until all the frame images are displayed.

With this method, the TLC6984 device can display the current frame image at a very high refresh rate. See 8-26 for more details about the BANK-selection exchange operation.

図 8-26. Bank Selection Exchange Operation

8.6.1.2 Details of Memory Bank

Each memory BANK contains the frame-image grayscale data of all the 64 lines. Each line comprises 16 48-bit-width memory units. Each memory unit contains the grayscale data of the corresponding R/G/B channels.

Depending on the number of scan lines set in SCAN_NUM (FC0 bit 21 to bit 16), the total number of memory units that must be written in one BANK is: 48×10^{-5} the number of scan lines. For example, if the number of scan lines is set to 64, then 3072 ($64 \times 48 = 3072$) memory units must be written during each frame period.

図 8-27 shows the detailed memory structure of the TLC6984 device.

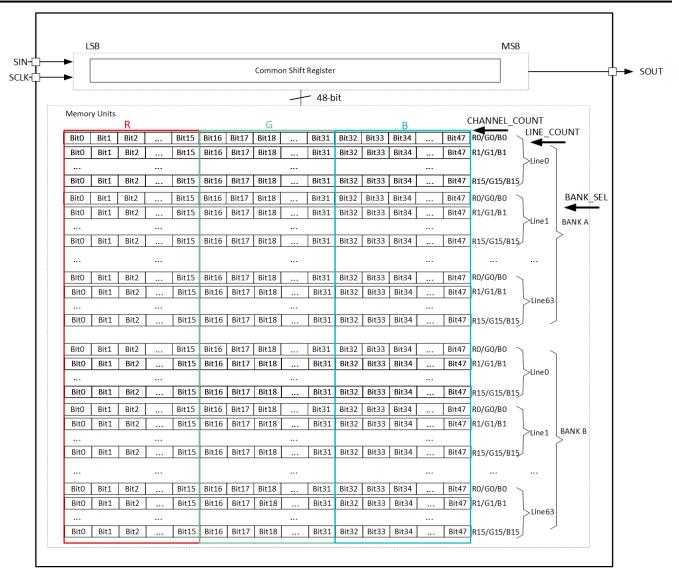


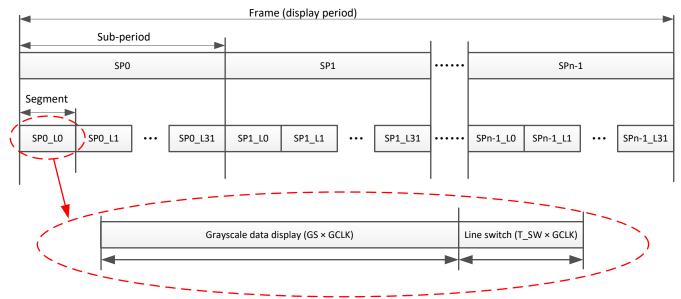
図 8-27. TLC6984 Memory-unit Structure

8.6.1.3 Write a Frame Data into Memory Bank

After power on, the TLC6984 internal flag BANK_SEL, and counters LINE_COUNT, CHANNEL_COUNT, are all initialized to 0. Thus, the memory unit of channel R0/G0/B0, locating in line 0 of BANK A, is selected to restore the data transimitted the first time after VSYNC command.

When the first WRTGS command is received, all the data in the common shift register is latched into the memory unit of channel R0/G0/B0, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and LINE_COUNT stays the same. Thus, the memory unit of channel R1/G1/B1, locating in line 0 of BANK A, is selected to restore the data transimitted the second time after VSYNC command.

When the second WRTGS command is received, all the data in the common shift register is latched into the memory unit of channel R1/G1/B1, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and LINE_COUNT stays the same. Thus, the memory unit of channel R2/G2/B2, locating in line 0 of BANK A, is selected to restore the data transimitted the third time after VSYNC command.


Repeat the grayscale-data-write operation until the 16th WRTGS command is received. Then CHANNEL_COUNT is reset to 0 and LINE_COUNT increases by 1. Thus, the memory unit of channel R0/G0/B0, locating in line 1 of BANK A, is selected to restore the data transimitted the 17th time after VSYNC command.

Repeat this operation for each line until the LINE_COUNT exceeds the number of scan lines set in the SCAN_NUM (See FC0 register bit21-16) and all scan lines have been updated with new GS data, which means one frame of GS data is restored into the memory BANK. Then the LINE COUNT is reset to 0.

8.6.2 PWM Control for Display

To increase the refresh rate in time-multiplexing display system, an DS-PWM (Dynamic Spectrum- Pulse Width Modulation) algorithm is proposed in this device. One frame is divided into many segments shown as below. Note that one frame is divided into n sub-periods, n is set by SUBP_NUM (FC0 register bit24-22), and each subperiod is divided into 32 segments for 32 scan lines. Each segment contains GS GCLKs time for grayscale data display and T_SW GCLKs time for switching lines. GS is configured by the SEG_LENGTH (FC1 register bit9-0 in 表 8-8), and T_SW is the line switch time, which is configured by the LINE_SWT (see FC1 register bit 40-37 in 表 8-8).

Note that, SPO: Sub-period 0, LO: Scan line 0

図 8-28. DS-PWM Algorithm with 32 Scan Lines

The DS-PWM can not only increase the refresh rate meanwhile keep the same frame rate, but also decrease the brightness loss in low grayscale, which can smoothly increase the sub-period number when the grayscale data increases.

To achieve ultra-low luminance, the LED driver must have the ability to output a very short current pulse (1 GCLK time). However, because of the parasitic capacitor of the LEDs, such pulse can not turn on the LEDs. And the larger GCLK frequency is, the harder to turn on LEDs.

The DS-PWM algorithm has a parameter called sub-period threshold, which is used to calculate when to change sub-period number according to the giving grayscale data. Sub-period threshold defines the LED minimum turn-on time, so as to conquer the current loss caused by LED parasitic capacitor. Sub-period threshold is configured by the SUBP TH R/G/B (FC1 register bit24-10 in 表 8-8).

With DS-PWM algorithm, the brightness has smoothly increased with the gradient grayscale data.

8.7 Register Maps

表 8-5. Register Maps

REGISTER NAME	TYPE	WRITE COMMAND ID	READ COMMAND ID	DESCRIPTION
FC0	R/W	AA00h	AA60h	Common configuration
FC1	R/ ₩	AA01h	AA61h	Common configuration
FC2	R/W	AA02h	AA62h	Common configuration
FC3	R/ ₩	AA03h	AA63h	Common configuration
FC4	R/W	AA04h	AA64h	Common configuration
FC14	R/W	AA0Eh	AA6Eh	Locate the line for LOD
FC15	R/W	AA0Fh	AA6Fh	Locate the line for LSD
FC16	R		AAA0h	Read the lines' warning of LOD from 64th ~ 49th line
FC17	R		AAA1h	Read the lines' warning of LOD from 48th~1st line
FC18	R		AAA2h	Read the lines' warning of LSD from 64th ~ 49th line
FC19	R		AAA3h	Read the lines' warning of LSD from 48th~1st line
FC20	R		AAA4h	Read the channel's warning of LOD

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

表 8-5. Register Maps (continued)

		2 (0 0	maps (commusus)					
REGISTER NAME	TYPE	WRITE COMMAND ID	READ COMMAND ID	DESCRIPTION				
FC21	R		AAA5h	Read the channel's warning of LSD				
Chip Index	R/W	AA10h	AA70h	Read/Write chip index				
VSYNC	W	AAF0h		Write VSYNC command				
MPSM	W	AA90h		Write matrix PSM command				
SBY_CLR	W	AAB0h		Write standby clear command				
SBY_EN	W	AAB1h		Write standby enable command				
Soft_Reset	W	AA80h		Reset the all the registers expect the SRAM				
SRAM	W	AA30h		Write or read the SRAM data				

表 8-6. Access Type Codes

2, 0 0.1.100000 1, po 00000								
Access Type	Code	Description						
Read Type								
R	R	Read						
Write Type								
W	W	Write						
Reset or Default Value								
-n		Value after reset or the default value						

8.7.1 FC0

FC0 is shown in 図 8-29 and described in 表 8-7.

図 8-29. FC0 Register

						A 0	-29. FC	o Kegi	Stei						
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
LSD_R M_EN	RESE	RVED	GI	RP_DLY_B G		GI	RP_DLY_	_G	GI	GRP_DLY_R RESER\			ESERVE	D	
R/ W-0b				R/W-0001	b	F	R/W-000b F			R/W-000l)	R/ W-0b	R/W-00b		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
FI	FREQ_MUL		FREQ_ MOD	RESERVED			SUBP_NUM					SCAN_NUM			
F	R/W-0111	b	R/ W-0b	R/W-000b			R/W-000b			R/W-000000b					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LODR M_EN			PS_EN	R	ESERVE	D	PDC_E N	R	ESERVE	D	CHIP_NUM				
R/ W-0b			R/ W-0b	R/ W-0b	R/ W-0b	R/ W-0b	R/ W-1b	R/ W-0b	R/ W-0b	R/ W-0b		R	/W-00111	lb	

表 8-7. FC0 Register Field Descriptions

Bit	Field	Туре	Reset	Description
4-0	CHIP_NUM	R/W		Set the device number 00000b: 1 device 01111b: 16 devices 11111b: 32 devices
7-5	RESERVED	R/W	000b	

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

表 8-7. FC0 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
8	PDC_EN	R/W	1b	Enable or disable pre-discharge function 0b: disable 1b: enable
11-9	RESERVED	R/W	000b	
12	PS_EN	R/W	0b	Enable or disable the power saving mode 0b: disable 1b: enable
14-13	PSP_MOD	R/W	00b	Set the powering saving plus mode 00b: disable 01b: enable, when GSn(including the extending) ≤ 1/4 segment_length, power saving during the off cycle. 10b: enable, when GSn(including the extending) ≤ 1/2 segment_length, power saving during the off cycle. 11b: enable, when GSn(including the extending) ≤ 7/8 segment_length, power saving during the off cycle.
15	LODRM_EN	R/W	0b	Enable or disable the LED open load removal function 0b: disable 1b: enable
21-16	SCAN_NUM	R/W	000000b	Set the scan line number 000000b: 1 line 001111b: 16 lines
				011111b: 32 lines
				 111111b: 64 lines
24-22	SUBP_NUM	R/W	000b	Set the subperiod number 000b: 16 001b: 32 010b: 48 011b: 64 100b: 80 101b: 96 110b: 112 111b: 128
27-25	RESERVED	R/W	000b	
28	FREQ_MOD	R/W	0b	Set the GCLK multiplier mode 0b: high frequency mode, 80MHz to 160MHz 1b:low frequency mode, 40MHz to 80MHz
32-29	FREQ_MUL	R/W	0111b	Set the GCLK multiplier frequency 0000b: 1 x SCLK frequency 0111b: 8 x SCLK frequency 1111b: 16 x SCLK frequency
35-33	LINE_CHRG	R/W	000b	
38-36	GRP_DLY_R	R/W	000Ь	Set the Red group delay, forward PWM mode only 000b: no delay 001b: 1 GCLK 010b: 2 GCLK 011b: 3 GCLK 100b: 4 GCLK 100b: 4 GCLK 101b: 5 GCLK 110b: 6 GCLK 110b: 7 GCLK 110b: 7 GCLK

表 8-7. FC0 Register Field Descriptions (continued)

	数 0-7. PCU Register Field Descriptions (Continued)								
Bit	Field	Туре	Reset	Description					
41-39	GRP_DLY_G	R/W	000Ь	Set the Green group delay, forward PWM mode only 000b: no delay 001b: 1 GCLK 010b: 2 GCLK 011b: 3 GCLK 100b: 4 GCLK 101b: 5 GCLK 101b: 5 GCLK 110b: 6 GCLK 110b: 7 GCLK					
44-42	GRP_DLY_B	R/W	000Ь	Set the Blue group delay, forward PWM mode only 000b: no delay 001b: 1 GCLK 010b: 2 GCLK 011b: 3 GCLK 100b: 4 GCLK 101b: 5 GCLK 110b: 6 GCLK 111b: 7 GCLK					
46-45	RESERVED	R/W	01b						
47	LSD_RM_EN	R/W	0b	Enable or disable short LED caterpillar 0b: disable 1b: enable					

8.7.2 FC1

FC1 is shown in 図 8-30 and described in 表 8-8.

図 8-30. FC1 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
RESE RVED		BLK_ADJ					LINE_SWT					LG_ENH_B			
R-0b	R/W-00000b							R/W-	0111b			R/W-	0000b		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
L	LG_ENH_G LG_ENH_R						LG_STEP_B LG_STEP							ΓΕΡ_G	
R	R/W-0000	b		R/W-	0000b		R/W-01001b R/W-01001b							1001b	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LG_ST EP_G							SEG_LENGTH								
	R/W-01001b						R/W-0'000'000'000b								

表 8-8. FC1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
9-0	SEG_LENGTH	R/W	0,000,000,0	Set the GCLK number in each segment 127d: 128 GCLK
				1023d: 1024 GCLK others: 128 GCLK
14-10	LG_ENH_B	R/W	01001b	Adjust the smooth of the brightness in low grayscale 00000b: level 1
				01111b: level 16
				11111b: level 32
19-15	LG_ENH_G	R/W	01001b	Adjust the smooth of the brightness in low grayscale 00000b: level 1
				01111b: level 16
				11111b: level 32
24-20	LG_ENH_B	R/W	01001b	Adjust the smooth of the brightness in low grayscale 00000b: level 1
				01111b: level 16
				11111b: level 32
28-25	LG_STEP_R	R/W	0000b	Adjust low grayscale enhancement of red channels 0000b: level 0
				0111b: level 7
				 1111b: level 15
32-29	LG_STEP_G	R/W	0000b	-
32-29	LG_STEP_G	IK/VV	00000	Adjust low grayscale enhancement of green channels 0000b: level 0
				0111b: level 7
				 1111b: level 15
36-33	LG_STEP_B	R/W	0000b	Adjust low grayscale enhancement of blue channels 0000b: level 0
				 0111b: level 7
				1111b: level 15

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

表 8-8. FC1 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
40-37	LINE_SWT	R/W	0111b	Set the scan line switch time. 0000b: 45 GCLK 0001b: 2x30 GCLK 0111b: 8x30 GCLK 1111b: 16x30 GCLK
46-41	BLK_ADJ	R/W	000000Ь	Set the black field adjustment 000000b: 0 GCLK 0111111b: 31 GCLK 111111b: 63 GCLK
47	RESERVED	R	0b	Reserved bit.

8.7.3 FC2

FC2 is shown in 図 8-31 and described in 表 8-9.

図 8-31. FC2 Register

	Д 000														
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
MPSM _EN	_			E	SUBP_ MAX_2 56	CH_B_ IMMU NITY	CH_G_ IMMU NITY	CH_R_ IMMU NITY	R	RESERVED LG_CC					
R/ W-0b	R/ W-0b		R/W-111k)	R/ W-0b	R/ W-1b	R/ W-1b	R/ W-1b	R/W-000b R/W-0000b						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LG_CO	LOR_G			LG_CO	LOR_R		DE_COUPLE1_B				DE_COUPLE1_G			
	R/W-0	0000b			R/W-0	0000b		R/W-0000b			R/W-0000b				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DE_COUPLE1_R					V_PDC_B			V_PDC_G			V_PDC_R			
	R/W-0	0000b			R/W-0	0110b		R/W-0110b			R/W-0110b				

表 8-9. FC2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
3-0	V_PDC_R	R/W	0110b	Set the Red pre_discharge voltage (typical), the voltage value must not be higher than (VR-1.3 V). 0000b: 0.1 V 0001b: 0.2 V 0010b: 0.3 V 0011b: 0.4 V 0100b: 0.5 V 0101b: 0.6 V 0110b: 0.7 V 0111b: 0.8 V 1000b: 0.9 V 1001b: 1.0 V 1011b: 1.3 V 1100b: 1.5 V 1111b: 1.3 V 1110b: 1.7 V 1111b: 1.9 V 1111b: 2.1 V

表 8-9. FC2 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description (continued)
7-4	V_PDC_G	R/W	0110b	Set the Green pre_discharge voltage (typical), the voltage value must not be higher than (VG-1.3V). 0000b: 0.1 V 0001b: 0.2 V 0010b: 0.3 V 0011b: 0.4 V 0100b: 0.5 V 0101b: 0.6 V 0110b: 0.7 V 0111b: 0.8 V 1000b: 0.9 V 1001b: 1.0 V 1011b: 1.3 V 1101b: 1.5 V 1101b: 1.7 V 1110b: 1.9 V 1111b: 2.1 V
11-8	V_PDC_B	R/W	0110b	Set the Blue pre_discharge voltage (typical), the voltage value must not be higher than (VB-1.3V). 0000b: 0.1V 0001b: 0.2 V 0010b: 0.3 V 0011b: 0.4 V 0100b: 0.5 V 0101b: 0.6 V 0110b: 0.7 V 0111b: 0.8 V 1000b: 0.9 V 1001b: 1.0 V 1011b: 1.3 V 1110b: 1.5 V 1110b: 1.7 V 1111b: 2.1 V
15-12	DE_COUPLE1_R	R/W	0000ь	Set the Red dummy rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)
19-16	DE_COUPLE1_G	R/W	0000b	Set the Green dummy rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)
23-20	DE_COUPLE1_B	R/W	0000b	Set the Blue dummy rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)
27-24	LG_COLOR_R	R/W	0000Ь	Set the Red rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)

表 8-9. FC2 Register Field Descriptions (continued)

Bit	Field		Reset	Descriptions (continued)
	1 1 1 1 1	Туре		Description
31-28	LG_COLOR_G	R/W	0000Ь	Set the Green rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)
35-32	LG_COLOR_B	R/W	0000ь	Set the Blue rising one-shot level 0000b: level 1 (lowest) 0111b: level 8 (middle) 1111b: level 16(highest)
38-36	RESERVED	R/W	000b	
39	CH_R_IMMUNITY	R/W	1b	Set the immunity of the Red channels group 0b: high immunity 1b: low immunity
40	CH_G_IMMUNITY	R/W	1b	Set the immunity of the Green channels group 0b: high immunity 1b: low immunity
41	CH_B_IMMUNITY	R/W	1b	Set the immunity of the Blue channels group 0b: high immunity 1b: low immunity
42	SUBP_MAX_256	R/W	0b	Set the maximum subperiod to 256. 0b: disable 1b: enable
45-43	MOD_SIZE	R/W	111b	Set the module size. 000b: 16x16 RGB pixels 001b:32x32 RGB pixels 010b:48x48 RGB pixels with D3 reverse, and scan sequence D1, D2, D3 48x48 RGB pixels with D3 reverse, and scan sequence D1, D3, D2 100b:48x64 RGB pixels with D3, D4 reverse, and scan sequence D1, D2, D3 101b:48x64 RGB pixels with D3,D4 reverse, and scan sequence D1, D3, D2 110b:64x64 RGB pixels with D3,D4 reverse, and scan sequence D1, D3, D2 110b:64x64 RGB pixels with D3, D4 reserve, and scan sequence D1, D2, D3, D4 111b:64x64 RGB pixels with D3, D4 reverse,and scan sequence D1, D4, D2, D3
46	RESERVED	R/W	0b	
47	MPSM_EN	R/W	0b	Enable or disable matrix power saving mode. 0b: disable 1b: enable

8.7.4 FC3

図 8-32. FC3 Register

		E 0 02.1 00 1 to glotter														
	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	LSDVTH_B LSDVTH_G LSD							SDVTH_	R LSD_RM BC							
R/W-000b R/W-000b R/W						R/W-000k)		R/W-	0111b		I	R/W-011k)		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•	CC	B		•				•	CC	_G			
R/W-0111 1111b R/W-0111 1111b																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

図 8-32. FC3 Register (continued)

CC_R	LOD_L SD_RB	RESE RVED	LODVTH_B	LODVTH_G	LODVTH_R	
R/W-0111 1111b	R/ W-0b	R/ W-0b	R/W-00b	R/W-00b	R/W-00b	

表 8-10. FC3 Register Field Descriptions

Bit	Field	Туре	Reset	Description
1-0	LODVTH_R	R/W	00ь	Set the Red LED open load detection threshold 00b: (V _{LEDR} -0.2) V 01b: (V _{LEDR} -0.5) V 10b: (V _{LEDR} -0.9) V 11b: (V _{LEDR} -1.2) V
3-2	LODVTH_G	R/W	00b	Set the Green LED open load detection threshold 00b: (V _{LEDG} -0.2) V 01b: (V _{LEDG} -0.5) V 10b: (V _{LEDG} -0.9) V 11b: (V _{LEDG} -1.2) V
5-4	LODVTH_B	R/W	00b	Set the Blue LED open load detection threshold 00b: (V _{LEDB} -0.2) V 01b: (V _{LEDB} -0.5) V 10b: (V _{LEDB} -0.9) V 11b: (V _{LEDB} -1.2) V
6	RESERVED	R/W	0b	
7	LOD_LSD_RB	R/W	0b	Enable or disable the LOD and LSD readback function 0b: disabled 01b: enabled
15-8	CC_R	R/W	0111 1111b	Set the Red color brightness level 0000 0000b: level 0 (lowest) 0111 1111b: level 127 (middle) 1111 1111b: level 255 (highest)
23-16	CC_G	R/W	0111 1111b	Set the Green color brightness level 0000 0000b: level 0 (lowest) 0111 1111b: level 127 (middle) 1111 1111b: level 255 (highest)
31-24	CC_B	R/W	0111 1111b	Set the Blue color brightness level 0000 0000b: level 0 (lowest) 0111 1111b: level 127 (middle) 1111 1111b: level 255 (highest)
34-32	ВС	R/W	011b	Set the global brightness level 000b: level 0 (lowest) 011b: level 3 (middle) 111b: level 7 (highest)

Product Folder Links: TLC6984

表 8-10. FC3 Register Field Descriptions (continued)

Bit	Field	Type	Reset	Description (continued)
38-35	LSD_RM	R/W	0111Ь	Set the LED short removal level 0000b: level 1 0001b: level 2 0010b: level 3 0011b: level 4 0100b: level 5 0101b: level 6 0110b: level 7 0111b: level 8 1000b: level 9 1001b: level 10 1010b: level 11 1011b: level 12 1100b: level 13 1101b: level 14 1110b: level 15 1111b: level 16
41-39	LSDVTH_R	R/W	000Ь	Set the Red LED short/weak short circuitry detection threshold (typical) 000b: 0.2 V 001b: 0.4 V 010b: 0.8 V 011b: 1.0 V 100b: 1.2 V 101b: 1.4 V 110b: 1.6 V 111b: 1.8 V
44-42	LSDVTH_G	R/W	000b	Set the Green LED short/weak short circuitry detection threshold (typical) 000b: 0.2 V 001b: 0.4 V 010b: 0.8 V 011b: 1.2 V 100b: 1.6 V 101b: 2 V 110b: 2.4 V 111b: 2.8 V
47-45	LSDVTH_B	R/W	000Ь	Set the Blue LED short/weak short circuitry detection threshold (typical) 000b: 0.2 V 001b: 0.4 V 010b: 0.8 V 011b: 1.2 V 100b: 1.6 V 101b: 2 V 110b: 2.4 V 111b: 2.8 V

8.7.5 FC4

FC4 is shown in 図 8-33 and described in 表 8-11.

図 8-33. FC4 Register

_	<u> </u>															
	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	R	ESERVE	D	DE_C OUPL E3_EN	- L						FIRST_L	INE_DIM	1	CAUR SE_B	CAUR SE_G	CAUR SE_R
		R-000b		R/ W-0b		R/W-1000b			R/ W-0b	R/W-0000b				R/ W-0b	R/ W-0b	R/ W-0b
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

図 8-33. FC4 Register (continued)

	RESE	RVED		SR_0	DN_B	SR_C	ON_G	SR_C	N_R	SR_OF F_B	SR_OF F_G	SR_OF F_R	FINE_ B	FINE_ G	FINE_ R
	R/W-0	0000b	W-0b W-0b W-0b W-0b										R/ W-0b	R/ W-0b	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESE RVED	SCAN_ REV						RESE	RVED						IMAX	LAST_ SOUT
R/ W-0b	R/ W-1b		R/W-0000 0000 1111b											R/ W-0b	R/ W-0b

表 8-11. FC4 Register Field Descriptions

Bit	Field		Reset	Description
		Туре	1 1 1 1	•
0	LAST_SOUT	R/W	0b	Enable or disable the last device's SOUT cut-off function 0b: disabled, last chip's SOUT shift out 1b: enabled, last chip's SOUT cut off, except for READ command
1	IMAX	R/W	0b	Set the maximum current of each channel 0b: 10mA maximum 01b: 20 mA maximum
13-2	RESERVED	R/W	0000 0000 1111b	
14	SCAN_REV	R/W	1b	When 2 device stackable or 3 devices stackable, the scan lines PCB layout is reversed. For the proper scan and SRAM read sequence, SCAN_REV register is provided. 0b: the PCB layout sequence is L0-L15, L16-L31. 1b: the PCB layout sequence is L0-L15, L31-L16.
15	RESERVED	R/W	0b	
16	FINE_R	R/W	0b	Enable the Red brightness compensation level fine range 0b: disable. 1b: enable.
17	FINE_G	R/W	0b	Enable the Green brightness compensation level fine range 0b: disable. 1b: enable.
18	FINE_B	R/W	0b	Enable the Blue brightness compensation level fine range 0b: disable. 1b: enable.
19	SR_OFF_R	R/W	0b	Slew rate control function when Red turns off operation 0b: slow slew rate. 1b: fast slew rate.
20	SR_OFF_G	R/W	0b	Slew rate control function when Green turns off operation 0b: slow slew rate. 1b: fast slew rate.
21	SR_OFF_B	R/W	0b	Slew rate control function when Blue turns off operation 0b: slow slew rate. 1b: fast slew rate.
23-22	SR_ON_R	R/W	01b	Slew rate control function when Red turns on operation 00b: the slower slew rate. 01b: slow slew rate. 10b: fast slew rate. 11b: the faster slew rate.
25-24	SR_ON_G	R/W	01b	Slew rate control function when Green turns on operation 00b: the slower slew rate. 01b: slow slew rate. 10b: fast slew rate. 11b: the faster slew rate.

Product Folder Links: TLC6984

表 8-11. FC4 Register Field Descriptions (continued)

	表 8-11. FC4 Register Field Descriptions (continued) Bit Field Type Reset Description													
Bit	Field	Type	Reset	Description										
27-26	SR_ON_B	R/W	01b	Slew rate control function when Blue turns on operation 00b: the slower slew rate. 01b: slow slew rate. 10b: fast slew rate. 11b: the faster slew rate.										
31-28	RESERVED	R/W	0000b											
32	CAURSE_R	R/W	0b	Enable the Red brightness compensation level caurse tange 0b: disabled 1b: enabled										
33	CAURSE_G	R/W	0b	Enable the Green brightness compensation level caurse tange 0b: disabled 1b: enabled										
34	CAURSE_B	R/W	0b	Enable the Blue brightness compensation level caurse tange 0b: disabled 1b: enabled										
38-35	FIRST_LINE_DIM	R/W	0000b	Adjust the first line dim level 0000b: level 1 0111b: level 8 1111b: level 16										
39	DE_COUPLE2	R/W	0b	Decoupling between ON and OFF channels 0b: disabled 1b: enabled										
43-40	DE_COUPLE3	R/W	1000b	Set decoupling enhancement level 0000b: level 1 0111b: level 8 1111b: level 16										
44	DE_COUPLE3_EN	R/W	0b	Enable decoupling enhancement 0b: disabled 1b: enabled										
47-45	RESERVED	R/W	000b											
				ı										

8.7.6 FC14

FC14 is shown in FC14 Register and described in FC14 Register Field Descriptions.

図 8-34. FC14 Register

	El 0 on 1 o 14 100glotoi														
47															
	RESERVED														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RESE	RVED				•	•		
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED LOD_LINE_CMD														
	R-0b											R/W-00	00000b		

表 8-12. FC14 Register Field Descriptions

Bit	Field	Туре	Reset	Description
5-0	LOD_LINE_CMD	R/W	000000Ь	Locate the line with LED open load warnings: 000000b: Line 0 011111b: Line 31 111111b: Line 63
47-6	RESERVED	R	0b	Reserved bits

8.7.7 FC15

FC15 is shown in FC15 Register and described in FC15 Register Field Descriptions.

図 8-35. FC15 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	RESERVED														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•					RESE	RVED							
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED LSD_LINE_CMD															
	R-0b											R/W-00	d00000		

表 8-13. FC15 Register Field Descriptions

			_	•
Bit	Field	Туре	Reset	Description
5-0	LSD_LINE_CMD	R/W	000000b	Locate the line with LED short circuitry warnings: 000000b: Line 0 011111b: Line 31
				 1111111b: Line 63
47-6	RESERVED	R	0b	Reserved bits

8.7.8 FC16

FC16 is shown in FC16 Register and described in FC16 Register Field Descriptions.

図 8-36. FC16 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	RESERVED														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RESERVED														
	R-0b														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LOD_LINE_WARN[63:48]														
	R-0b														

Submit Document Feedback

Product Folder Links: TLC6984

INSTRUMENTS www.tij.co.jp

表 8-14. FC16 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-0	LOD_LINE_WARN[63:48]	R		Read the line with LED open load warnings: Bit 0 = 0, Line 48 has no warning; Bit 0 = 1, Line 48 has warning Bit 15 = 0, Line 63 has no warning; Bit 15 = 1, Line 63 has warning
47-16	RESERVED	R	0b	Reserved bits

8.7.9 FC17

FC17 is shown in FC17 Register and described in FC17 Register Field Descriptions.

図 8-37. FC17 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	LOD_LINE_WARN[47:0]														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LOD_LINE_WARN[47:0]														
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LOD_LINE_WARN[47:0]														
	R-0b														

表 8-15. FC17 Register Field Descriptions

Bit	Field	Туре	Reset	Description
47-0	LOD_LINE_WARN[47:0]	R		Read the line with LED open load warnings: Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning
				Bit 47 = 0, Line 47 has no warning; Bit 47 = 1, Line 47 has warning

8.7.10 FC18

FC18 is shown in FC18 Register and described in FC18 Register Field Descriptions.

図 8-38. FC18 Register

							JU U								
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	RESERVED														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RESERVED														
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LSD_LINE_WARN[63:48]														
	R-0b														

表 8-16. FC18 Register Field Descriptions

Bit	Field	Туре	Reset	Description
16-0	LSD_LINE_WARN[63:48]	R		Read the line with LED short circuitry warnings: Bit 0 = 0, Line 48 has no warning; Bit 0 = 1, Line 48 has warning Bit 15 = 0, Line 63 has no warning; Bit 15 = 1, Line 63 has warning

表 8-16. FC18 Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
47-16	RESERVED	R	0b	Reserved bits

8.7.11 FC19

FC19 is shown in FC19 Register and described in FC19 Register Field Descriptions.

図 8-39. FC19 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	LSD_LINE_WARN[47:0]														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LSD_LINE_WARN[47:0]														
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LSD_LINE_WARN[47:0]														
	R-0b														

表 8-17. FC19 Register Field Descriptions

Bit	Field	Туре	Reset	Description
47-0	LSD_LINE_WARN[47:0]	R		Read the line with LED short circuitry warnings: Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning Bit 47 = 0, Line 47 has no warning; Bit 47 = 1, Line 47 has warning

8.7.12 FC20

FC20 is shown in FC20 Register and described in FC20 Register Field Descriptions.

図 8-40. FC20 Register

									,						
47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	LOD_CH														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LOD_CH														
							R-	0b							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LOD_CH														
	R-0b														

表 8-18. FC20 Register Field Descriptions

Bit	Field	Туре	Reset	Description
47-0	LOD_CH	R		Locate the LED opem load channel: Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is short circuitry
				Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is short circuitry

8.7.13 FC21

FC21 is shown in FC21 Register and described in FC21 Register Field Descriptions.

図 8-41. FC21 Register

47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

図 8-41. FC21 Register (continued)

	□ 0-41.1 OZ1 Register (continued)														
	LSD_CH														
	R-0b														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LSD_CH														
	R-0b														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LSD_CH														
							R-	0b							

表 8-19. FC21 Register Field Descriptions

Bit	Field	Туре	Reset	Description
47-0	LSD_CH	R		Locate the LED short circuitry channel: Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is short circuitry Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is short circuitry

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TLC6984 integrates 48 constant current sources and 16 scanning FETs. A single TLC6984 is capable of driving 16 × 16 RGB LED pixels while stacking two TLC6984s can drive 32 × 32 RGB LED pixels. To achieve low power consumption, the TLC6984 supports separated power supplies for the red, green, and blue LEDs by its common cathode structure.

The TLC6984 implements a high speed dual-edge transmission interface (up to 25 MHz) to support high device count daisy-chained and high refresh rate while minimizing electrical-magnetic interference (EMI). SCLK must be continuous, no matter there are data on SIN or not, because SCLK is not only used to sample the data on SIN, but also used as a clock source to generate GCLK by internal frequency multiplier. Based on dual-edge CCSI protocol, all the commands/FC registers/SRAM data are written from the SIN input terminal, and all the FC registers/ LED open and short flag can be read out from the SOUT output terminal. Moreover, the device supports up to 160-MHz GCLK frequency and can achieve 16-bit PWM resolution, with 3840 Hz or even higher refresh rate.

Meanwhile, the TLC6984 integrates enhanced circuits and intelligent algorithms to solve the various display challenges in Narrow Pixel Pitch (NPP) LED display applications and mini and micro-LED products: dim at the first scan line, upper and downside ghosting, non-uniformity in low grayscale, coupling, caterpillar caused by open or short LEDs, which make the TLC6984 a perfect choice in such applications.

The TLC6984 also implements LED open and weak, short and short detections and removals during operations and can also report this information out to the accompanying digital processor.

9.2 Typical Application

The TLC6984 is typically connected in series in a daisy-chain to drive the LED matrix with only a few controller ports.

9-1 shows a typical application diagram with two TLC6984 devices stackable connection to drive 32 × 32 RGB LED pixels.

Product Folder Links: TLC6984

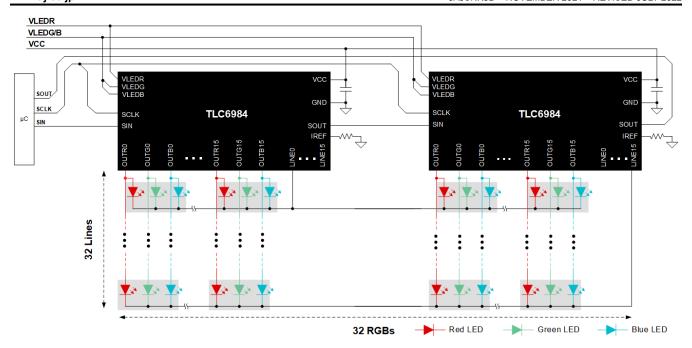


図 9-1. TLC6984 With Dual Devices Stackable Connection

9.2.1 Design Requirements

Taking 4K micro-LED televation for example, the resolution of the screen is 3840×2160 , and the screen consists of many modules. The following sections show an example to build a LED display module with 240×180 pixels.

The example uses the following values as the system design parameters.

DESIGN PARAMETER	EXAMPLE VALUE
V _{CC} and V _R	2.8 V
V_{G} and V_{B}	3.8 V
Maximum current per LED	I _{RED} = 3 mA, I _{GREEN} = 2 mA, I _{BLUE} = 1 mA
PWM resolution	14 bits
Frame rate	120 Hz
Refresh rate	3840 Hz
Display module size	240 × 180 pixels
cascaded devices number	8
devices number per LED display module	96

表 9-1. TLC6984 Design Parameters

9.2.1.1 System Structure

To build an LED display module with 240 × 180 pixels, 96 TLC6984s are required.

-	240 Colume													
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	<u> </u>						
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels							
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30							
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels							
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	180						
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels	Lines						
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	Zines						
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels							
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30							
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels							
30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30	30 x 30							
pixels	pixels	pixels	pixels	pixels	pixels	pixels	pixels							

図 9-2. LED Display Module

As shown in \boxtimes 9-2, the total module can be divided into 48 32 \times 32 matrix. Each matrix includes two devices with stackable connection.

注

To achieve the best performance, TI suggests to distribute the redundant channels and lines to each 32 × 32 matrix. For this case, two Red/Green/Blue channels and two lines are not used in each matrix. And these unused pins can be floated. For the software, TI suggests zero data is to send to the unused channels. There is no must send the zero data to unused lines.

9.2.1.2 SCLK Frequency

The SCLK frequency is determined by the data volume of one frame and frame rate. In this application, the data volume V_Data is $30 \times 32 \times 48$ bits $\times 4 = 184.32$ Kb, the frame rate is 120 Hz. Suppose the data transmission efficiency is 0.8, the minimum frequency of SCLK must be: $f_{SCLK} = V_{Data} \times f_{frame} / 0.8$. So the minimum SCLK frequency is 13.83 MHz with dual-edge transmission.

9.2.1.3 Internal GCLK Frequency

The internal GCLK frequency is configured by the Frequency Multiplier (FREQ_MUL), and is determined by the PWM resolution. The GCLK frequency can be calculated by the below equations:

$$N_{sub_period} = \frac{f_{refresh_rate}}{f_{frame_rate}}$$

$$GS_{max} = 2^K$$

$$GS_{max} = N_{GCLK_Seg} \times N_{sub_period}$$

$$\frac{1}{f_{frame_rate}} = \left(\frac{N_{GCLK_Seg}}{f_{GCLK}} + T_{SW}\right) \times N_{Scan_line} \times N_{sub_period} + T_{Blank}$$
(3)

where

- f_{refresh rate} means the refresh rate
- f_{frame_rate} means the frame rate
- K means the PWM resolution
- N_{sub period} means the sub-period numbers within one frame
- N_{GCLK} seg means the GCLK number per segment (Line switch time excluded)
- f_{GCLK} means GCLK frequency
- T_{SW} means line switching time
- N_{scan line} means the scan line number
- T_{blank} means the blank time in one frame, equals to 0 in ideal configuration
- GS_{max} means the maximum grayscale that the device can output in one frame

表 9-2 gives the values based on the system configuration and equation.

表 9-2. TLC6984 Design Parameters for GCLK Frequency Calculation

DESIGN PARAMETER	EXAMPLE VALUE
N _{sub_period}	32
N _{scan_line}	30
T_{SW}	1.5 µs
T _{blank}	0
N _{GCLK_seg}	512
GS _{max}	16383
f _{GCLK}	71.3 MHz

Considering SCLK frequency and FREQ_MUL, the SCLK can be 13.9 MHz, and FREQ_MUL can be 6. So the GCLK is 83.4 MHz.

9.2.1.4 Line Switch Time

The line switch time is digitalized with the GCLK number and can be set by the LINE_SWT (Bit 40-37 in FC1 register). In this application, it is 1.5 us \times 83.4 MHz = 125 GCLKs, so the LINE_SWT equals to 0011b (120 GCLKs), the actual line switch time is 1.44 us.

9.2.1.5 Blank Time Removal

The TLC6984 has an algorithm to distribute the blank time into each subperiod to prevent the black field when taking photos or video.

From Equation 3, 83.4-MHz GCLK frequency and 1.44-us line switch time, the calculated blank time is 1.059 ms (88280 GCLK), which is too long and brings black field.

Here are detailed steps of the algorithm.

Step 1: Distribute blank time into each segment

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

When the blank GCLK number is larger than $N_{sub-period} \times N_{scan-line}$, it can be distributed into each segment.

In this application, the blank GCLK number is 88280, and $N_{sub_period} \times N_{scan_line}$ is 960, so the distributed GCLK number in each segment is 88280/960 = 91...920. These 91GCLKs can be used to increase PWM length or extend line switch time. If used to increase PWM length, the GCLK number in each segment is 512 + 91= 603, so the SEG_LENGTH (Bit9-0 in FC1 register) is 1001011010b.

Step 2: Distribute blank time into each sub-period

If the left GCLK number is larger than N_{sub} period, it can be distributed into each sub-period.

In this application, the left GCLK is 697, the distributed GCLK number in each sub-period is 920/32=28...24. The BLK_ADJ (Bit46-41 in FC1 register) is 011100b.

After distributing into each sub-period, the left GCLK number is 24, which is about 300 ns, this time is too short to bring black field.

9.2.1.6 BC and CC

Select the reference current-setting resistor R_{IREF} and configure a proper BC value to set the maximum current of the RGB LEDs (see *Brightness Control (BC) Function* for more details). Here the maximum current is 3 mA, BC value is 03h, according to equation \pm 1, the reference resistor value is 0.8 V/3 mA × 85.33 = 22.75 kΩ.

Configure the CC_R/CC_B registers to set the current of Red/ Green/Blue LED current to 3 mA/2 mA/1 mA (see *Color Brightness Control (CC) Function* for more details).

表 9-3 shows the reference current setting resistor R_{IRFF}, BC and CC_R/CC_G/CC_B register value.

DESIGN PARAMETER EXAMPLE VALUE R_{IREF} 22.75 kΩ BC 011 b CC_R 11111111 b CC_G 10101001 b CC_B 01010100 b

表 9-3. Current Setting Value

9.2.2 Detailed Design Procedure

☑ 9-3 gives a detail design procedure for LED display. After power on and digital signals are ready, the first step for the controller is to send the chip index command to let the devices know their identifications. Then, the controller sends the configuration data to the FC registers. After this, it sends the VSYNC at the beginning of each frame and also sends the data to each device. The devices display the data of last frame when the VSYNC comes and meanwhile receive the data of current frame transmitted from controller. The registers can be read at anytime of the frame.

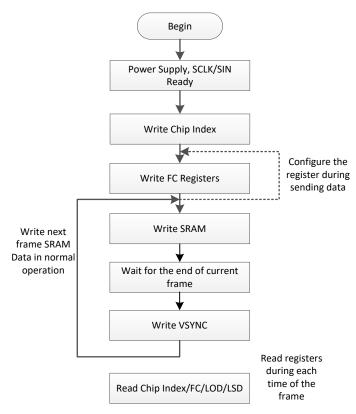


図 9-3. Design Procedure for LED Display

9.2.2.1 Chip Index Command

The chip index is used to distribute the address of the devices in a data chain. Each device gets its unique address by this command. Details can be found in *Chip Index Write Command*.

9.2.2.2 FC Registers Settings

Some bits of FC0, FC1, FC2, FC3 registers must be configured properly before the devices work normally. In this application, the registers value can be:

表 9-4. FC Registers Va	alue
------------------------	------

FC Registers	Register Value (BIN)	Register Value (HEX)
FC0	0010 0000 0000 0000 1011 1000 0101 1101 1000 0001 0000 0111 b	2000 B85D 8107h
FC1	0010 1010 1110 0000 0000 0000 1001 0100 1010 0110 0011 0001 b	2AE0 0094 A631 h
FC2	0000 1011 1000 0000 0000 0000 0000 000	0B80 0000 0AA0 h
FC3	0000 0000 0011 1011 0101 0100 1010 1001 1111 1111 0000 0000 b	003B 54A9 FF00 h

FC6, FC7, FC8, FC9, FC10, FC11, FC12, FC13 registers are used for programmable scanning sequence function.

Copyright © 2022 Texas Instruments Incorporated

The controller can configure the FC by the data write command with broadcast mode (see *Data Write Command* for more detail). The FC0, FC1 registers are updated after the VSYNC command comes, and the other FC registers are updated right away regardless the VSYNC command.

9.2.2.3 Grayscale Data Write

The channel grayscale data is written to SRAM of the device by the data write command with non-broadcast way. Details can be found in *Data Write Command* and *Write a Frame Data into Memory Book*.

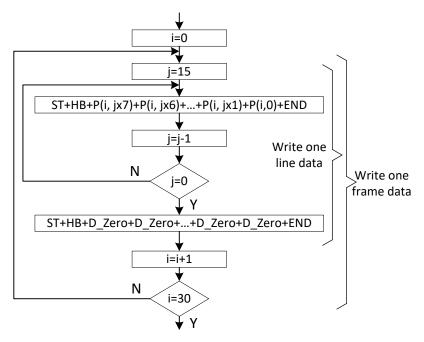
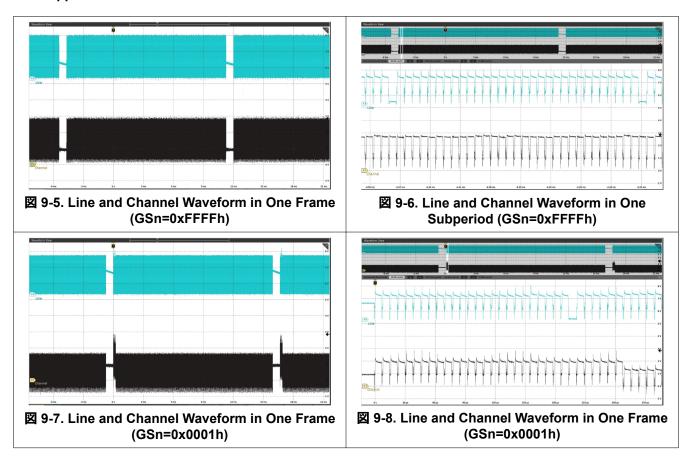


図 9-4. Data Write Flow

9.2.2.4 VSYNC Command

The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. Details can be found in VSYNC Write Command.


9.2.2.5 LED Open and Short Read

FC14, FC15, FC16, FC17, FC18, FC20, FC21 are the read command for LOD/LSD information. Details can be found in *Read LED-open Information* and *Read LED-short Information*.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

9.2.3 Application Curves

10 Power Supply Recommendations

Decouple the VCC power supply voltage by placing a $0.1-\mu F$ ceramic capacitor close to VCC pin and GND plane. Depending on panel size, several electrolytic capacitors must be placed on the board equally distributed to get well regulated LED supply voltage VR/VG/VB. The ripple of the LED supply voltage must be less than 5% of their nominal value. Generally, the green and blue LEDs have the similar forward voltage and they can be supplied by the same power rail.

Furthermore, the VR > Vf(R) + 0.35 V (10-mA constant current example), the VG = VB > Vf(G/B) + 0.35 V (10-mA constant current example), here Vf(R), Vf(G/B) are representative for the maximum forward voltage of red, green/blue LEDs.

To simplify the power design, VCC can be connected to VR power rail.

11 Layout

11.1 Layout Guidelines

- Place the decoupling capacitor near the VCC/VR, VG/VB pins and GND plane.
- Place the current programming resistor RIREF close to IREF pin and GND plane.
- Route the GND thermal pad as widely as possible for large GND currents. Maximum GND current is approximately 2 A for two devices (96-CH × 20 mA = 1.92 A).
- The Thermal pad must be connected to GND plane because the pad is used as power ground pin internally. There is a large current flow through this pad when all channels turn on. Furthermore, this pad must be connected to a heat sink layer by thermal via to reduce device temperature. For more information about suggested thermal via pattern and via size, see *PowerPAD™ Thermally Enhanced Package application note*.
- Routing between the LED Anode side and the device OUTXn pin must be as short and straight as possible to reduce wire inductance.
- The line switch pins must be located in the middle of the matrix, which must be laid out as symmetrically as possible.

11.2 Layout Example

To simplify the system power rails design, we suggest that VR, VCC use one power rail, and VG, VB use another power rail. 🗵 11-1 gives an example for power rails routing.

Connect the GND pin to thermal pad on board with the shortest wire and the thermal pad is connected to GND plane with the vias, as many as possible to help the power dissipation.

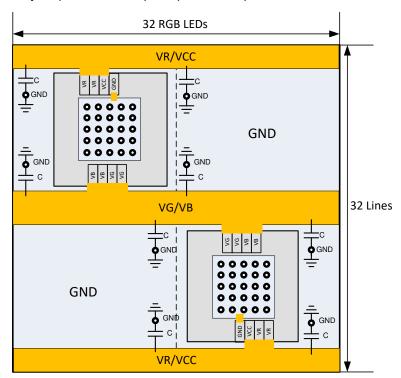


図 11-1. Power Rails Routing Suggestion

☑ 11-2 gives an example for line routing. Connect the line switch to the center of the line bus, so as to uniform the current flowing from the line switch to the left side and right side LEDs in white grayscale. With this connection, the unbalance of the parasitic inductor from the routing is the smallest and the display performance is better, especially in low grayscale condition.

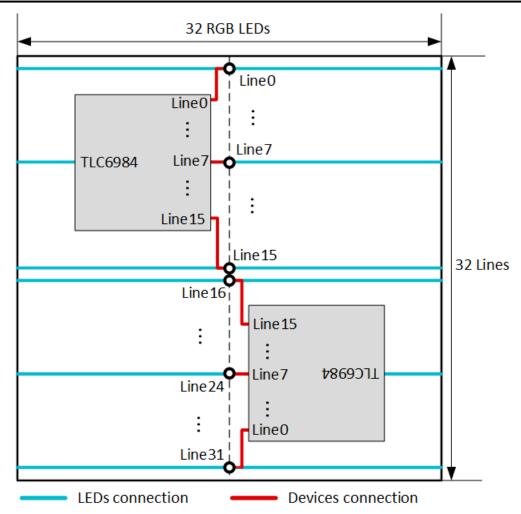


図 11-2. Line Routing Suggestion

☑ 11-3 gives an example for channel routing with the shortest wire. With this connection, the channel to the LED path is the shortest, which can reduce the wire inductance, and be a benefit to the performance. However, the data transmission sequence must be adjusted to follow the pins routing map. For example, R0 connects to column 15 (LED15). The first data must be column 15 (LED15) rather than column 0 (LED0).

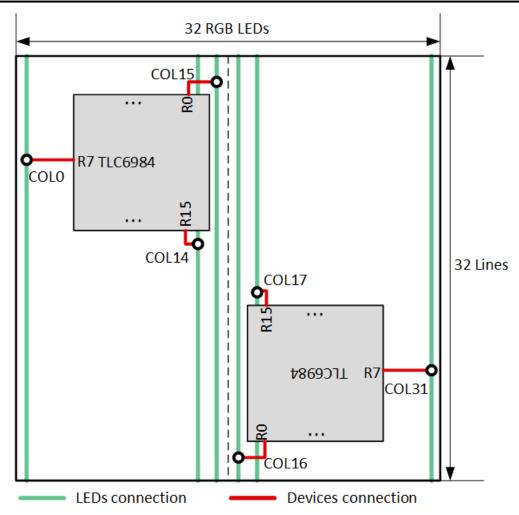


図 11-3. Channel Routing Suggestion With Shortest Wire

☑ 11-4 gives an example for channel routing with pin number sequence. With this connection, the data transmission sequence are the same with pin number sequence. For example, R0 connects to column 0 (LED0). The first data is column 0 (LED0). However, with this connection, the inductance for each channel can be different, which can bring a slight difference for the worst case.

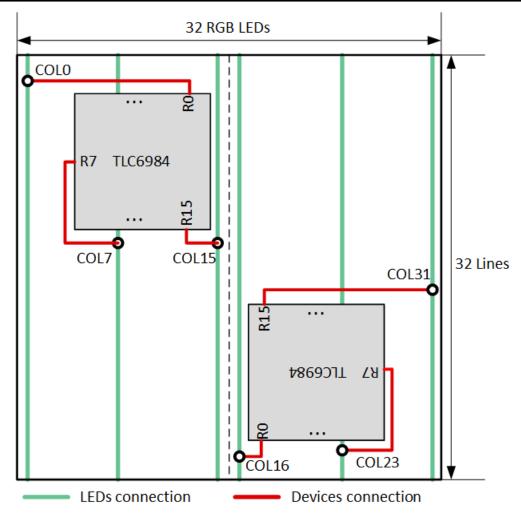


図 11-4. Channel Routing Suggestion With Channel Order Sequence

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

• Texas Instruments, PowerPAD™ Thermally Enhanced Package application note

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 16-Mar-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLC6984RRFR	ACTIVE	VQFN	RRF	76	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	TLC6984	Samples
TLC6984ZXLR	ACTIVE	NFBGA	ZXL	96	2500	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	TLC6984	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

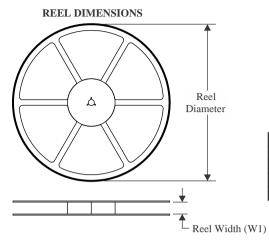
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

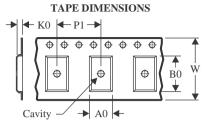
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

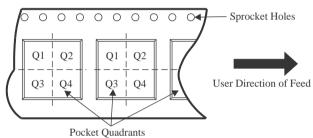
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE OPTION ADDENDUM


www.ti.com 16-Mar-2023

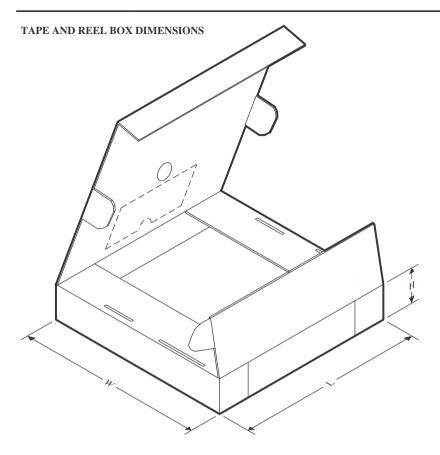
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Mar-2023


TAPE AND REEL INFORMATION

_	Tanana and a same and a same and a same and a same a s
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

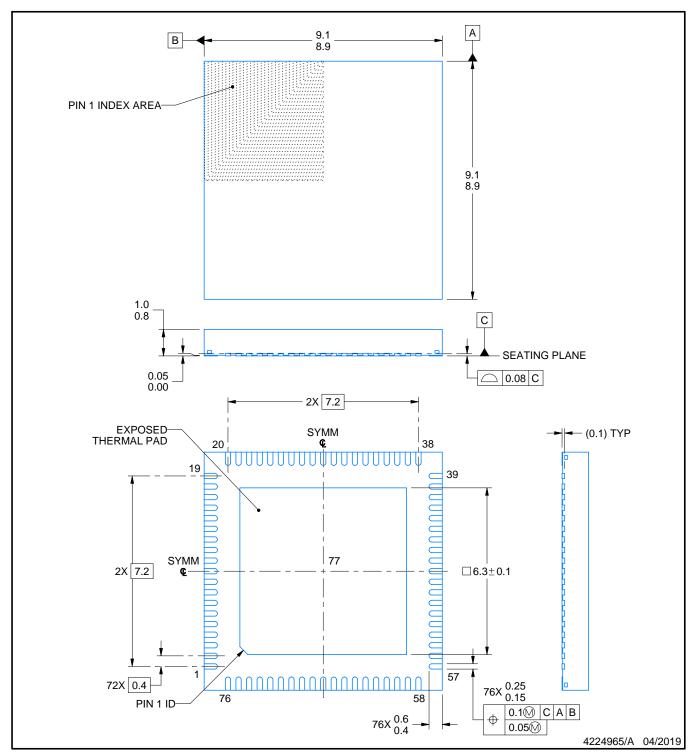


*All dimensions are nominal

Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` '	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC6984ZXLR	NFBGA	ZXL	96	2500	330.0	16.4	6.3	6.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

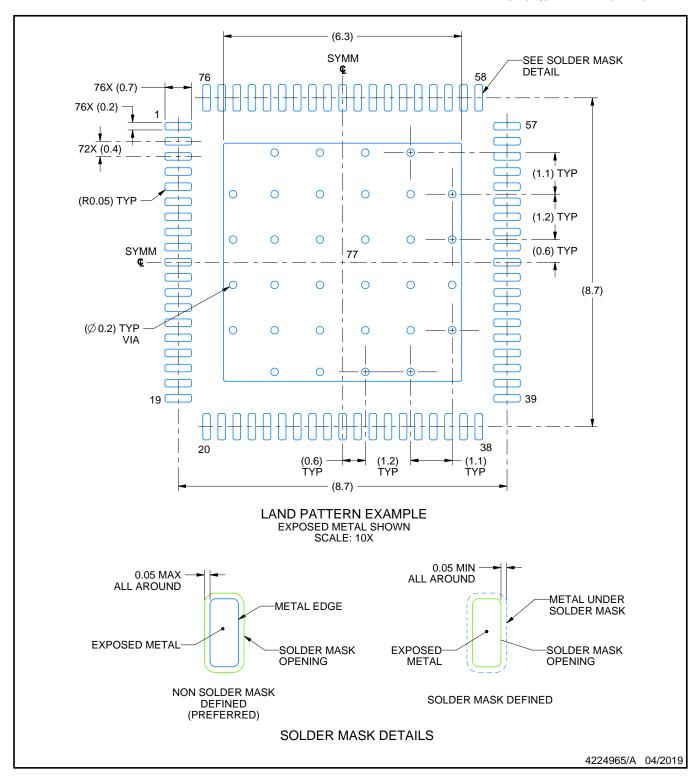
www.ti.com 17-Mar-2023



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC6984ZXLR	NFBGA	ZXL	96	2500	336.6	336.6	31.8

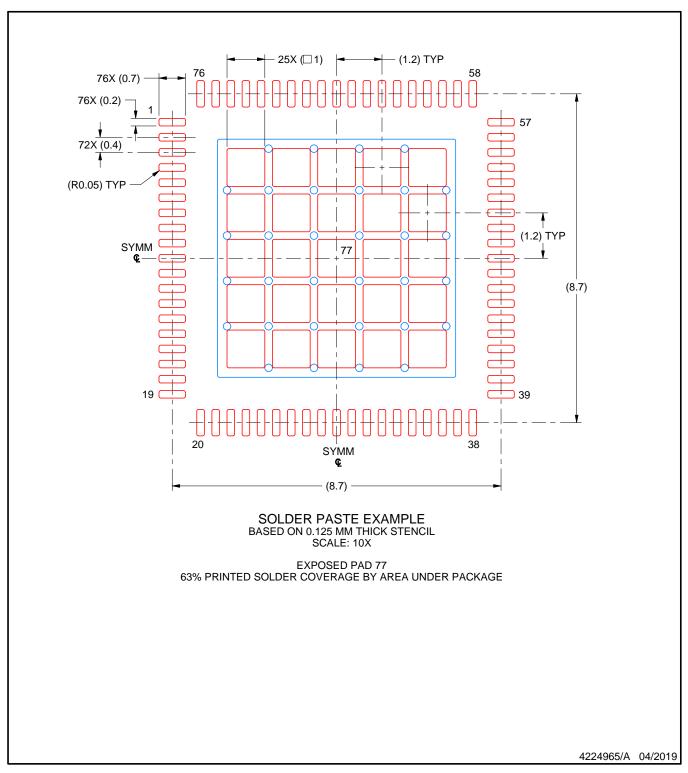
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

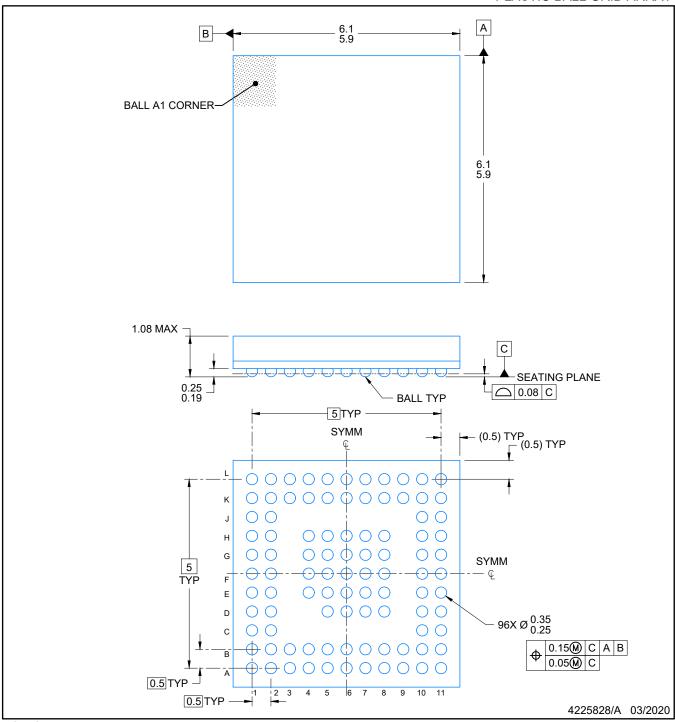
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

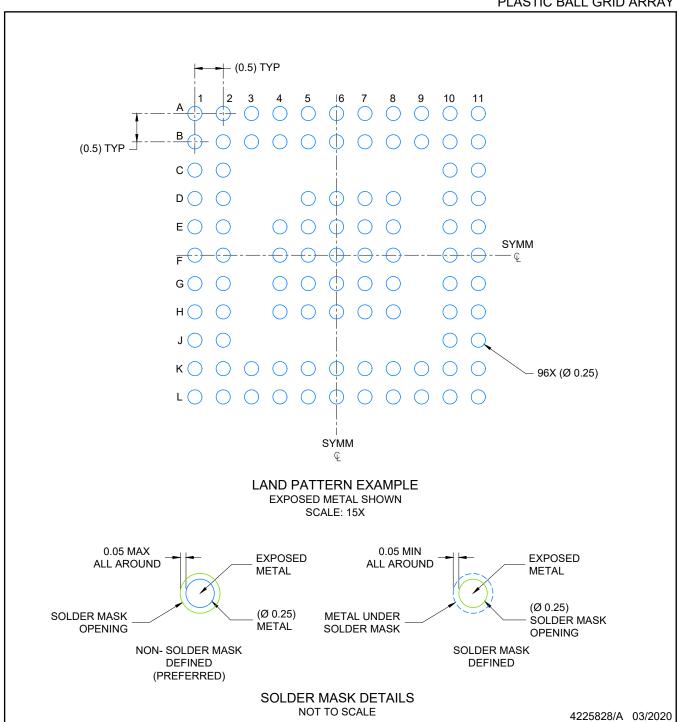
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

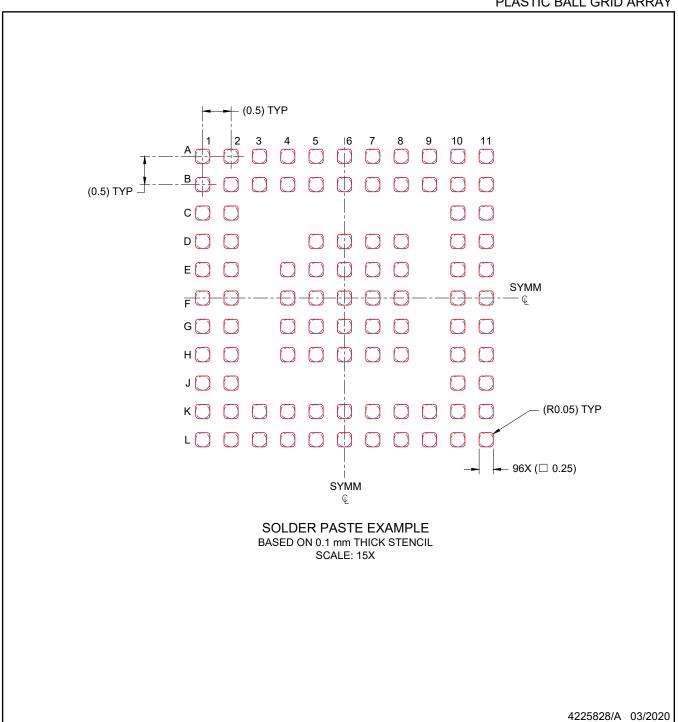
PLASTIC BALL GRID ARRAY


NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated