

TPS61060, TPS61061 TPS61062

TPS61060, TPA61061, TPS61062 定電流出力LEDドライバ(デジタル/PWM輝度コントロール)

特 乍

▶ 過電圧/短絡保護回路内蔵LEDドライバ

● 入力電圧範囲:2.7V~6.0V

● フィードバック電圧:500mV/250mV ● TPS61060:最大3個のLEDを駆動 ● TPS61061:最大4個のLEDを駆動 ● TPS61062:最大5個のLEDを駆動

● イネーブル・ピンによるPWM輝度コントロール

● ILEDピンによるデジタル輝度コントロール

● 1MHzの固定スイッチング周波数動作

● 内部パワーMOSFETスイッチ電流:400mA

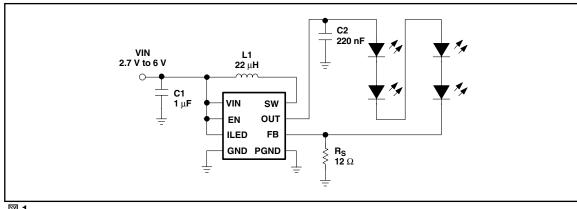
● シャットダウン時LEDを電源から遮断

● 最小220nF (0.22μF) の小型出力コンデンサで動作 可能

● 最大効率:80%

● 8ピンNanoFree™パッケージ (チップスケール、 CSP)

● QFNパッケージ (3mm x 3mm)


アプリケーション

- 白色LEDドライバ
- 携帯電話
- PDA、ポケット・タイプPC、スマート・フォン
- デジタル・スチル・カメラ
- 携帯機器

概 要

TPS61060/61/62は、白色LEDを最大5個まで駆動できる定電流 出力の高周波同期整流方式ブースト・コンバータです。安全性が 保たれるよう、このデバイスには過電圧保護機能及び出力がグ ランドと短絡した場合の高度な短絡保護機能が内蔵されていま す。デバイスは1MHzの固定スイッチング周波数で動作するため、 外付け部品を小型化にし、発生する可能性のあるEMIの問題を 単純化することができます。このデバイスには3種類の過電圧保 護スレッシュホールド (14V/18V/23V) の製品が用意されている ため、電圧定格の低い、安価で小型の出力コンデンサが使用可 能です。LED電流の初期値は外付け検出抵抗Rsで設定され、ま た、フィードバック電圧はILEDピンの構成により500mVまたは 250mVにレギュレーションされます。ILEDピンに単純なデジタ

TYPICAL APPLICATION

PowerPADTM、NanoFreeTMはテキサス・インスツルメンツの商標です。

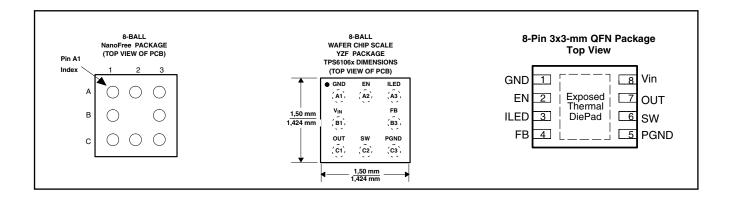
この資料は、Texas Instruments Incorporated (TI) が英文で記述した資料 を、皆様のご理解の一助として頂くために日本テキサス・インスツルメンツ (日本TI)が英文から和文へ翻訳して作成したものです。

資料によっては正規英語版資料の更新に対応していないものがあります。 日本TIによる和文資料は、あくまでもTI正規英語版をご理解頂くための補助的参考資料としてご使用下さい。

製品のご検討およびご採用にあたりましては必ず正規英語版の最新資料を ご確認下さい

TIおよび日本TIは、正規英語版にて更新の情報を提供しているにもかかわ らず、更新以前の情報に基づいて発生した問題や障害等につきましては如 何なる責任も負いません。

ル信号を加えることでデジタルでの輝度コントロールを行うことができます。もう一つの方法として、LEDの輝度コントロールにイネーブル・ピンに最大1kHzのPWM信号を印加することもできます。シャットダウン時、LEDに流れる漏れ電流を回避するため出力は入力から切り離されます。

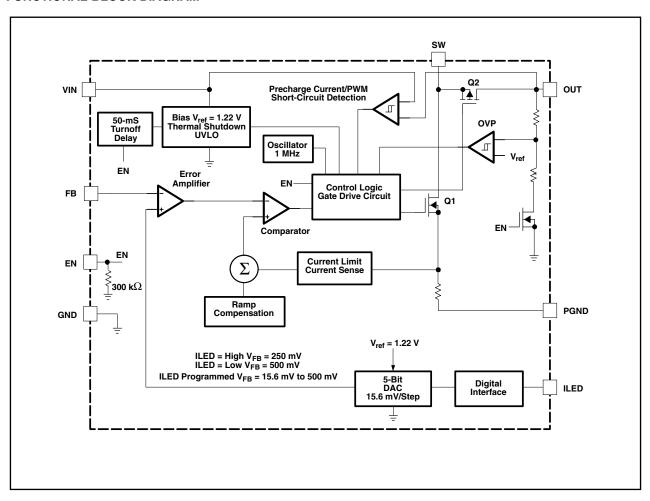

静電気放電対策

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

ORDERING INFORMATION(1)

	OVERVOLTAGE	PACK	AGE	PACKAGE MARKING		
T _A	PROTECTION (OVP)	NanoFree ⁽²⁾	QFN ⁽³⁾	NanoFree	QFN	
–40 to 85°C	14 V (min)	TPS61060YZF	TPS61060DRB	AKX	AQP	
	18 V (min)	TPS61061YZF	TPS61061DRB	AKY	AQQ	
	22.2 V (min)	TPS61062YZF	TPS61062DRB	AKZ	AQR	

- (1) YZFパッケージはテープ/リールで供給されています。デバイス・タイプの末尾にRを付けると (例、TPS61060YZFR)、発注数量単位はリールあたり3000個です。末尾にTを付けると (例、TPS61060YZFT) リールあたり250個です。
- あたり250個です。 (2) DRBパッケージはテープ/リールで供給されています。デバイス・タイプの末尾にRを付けると(例、TPS61060DRBR)、発注数量単位はリールあたり3000個です。



端子機能

TERMINAL		MINAL		TERMINAL			
NABAT	N	0.	1/0	DESCRIPTION			
NAME	CSP	QFN					
VIN	B1	8	I	デバイスの入力電源ピン			
EN	A2	2	I	イネーブル・ピン。デバイスをイネーブルにするにはこのピンを"H"レベルにすることが必要です。 LEDの輝度コントロールを可能にするため、最大1kHzのPWM信号を入力することができます。 このピンにはプルダウン抵抗が内蔵されています。			
GND	A1	1		アナログ・グランド			
PGND	C3	5		電源グランド			
FB	В3	4	ı	このピンはデバイスのフィードバック・ピンです。フィードバック・ピンは、Rs端の電圧を安定化させることにより検出抵抗を流れるLED電流をレギュレーションします。フィードバック電圧はILEDピンで設定されます。 ILED = GNDにするとフィードバック電圧は500mVに設定されます。ILED = "H" レベルにするとフィードバック電圧は250mVに設定されます。詳細な情報については"デジタル輝度コントロール"の項を参照してください。			
OUT	C1	7	0	デバイスの出力			
SW	C2	6	ı	デバイスのスイッチ・ピン			
ILED	АЗ	3	ı	デジタル輝度コントロール入力。このピンがグランドに接続されている場合、デジタル輝度コントロールはディスエーブルです。このピンが"H"レベルに接続されている場合は、フィードバック電圧は250mV(Typ)に低減され、デジタル輝度コントロールはイネーブルとなります。詳細な情報については"デジタル輝度コントロール"の項を参照してください。			
PowerPAD™	_	_		PowerPAD™ (サーマル・パッド)はQFNパッケージでのみ有効です。PowerPAD™ はアナログ・グランド (GND) に接続し半田付けする必要があります。			

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		UNIT
VIN ⁽²⁾	Supply voltages on pin	−0.3 V to 7 V
EN, ILED, FB ⁽²⁾	Voltages on pins	−0.3 V to 7 V
OUT ⁽²⁾	Voltage on pin	33 V
SW ⁽²⁾	Voltage on pin	33 V
ESD	Human body model (HBM)	4kV
	Continuous power dissipation	See Dissipation Rating Table
	Operating junction temperature range	–40°C to 150°C
	Storage temperature range	−55°C to 150°C
	Lead temperature (soldering, 10 s)	260°C

⁽¹⁾絶対最大定格以上のストレスは、製品に恒久的・致命的なダメージを製品に与えることがあります。これはストレスの定格のみについて示してあり、このデータシートの「推奨動作条件」に示された値を越える状態での本製品の機能動作を意味するものではありません。絶対最大定格の状態に長時間置くことは、本製品の信頼性に影響を与えることがあります。(2)全ての電圧は回路のグランドを基準としています。

DISSIPATION RATINGS

PACKAGE	$R_{\theta JA}$	T _A ≤25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°1C POWER RATING	
QFN ⁽¹⁾	270°C/W	370 mW	204 mW	148 mW	
QFN ⁽²⁾	60°C/W	1.6 W	916 mW	666 mW	
CSP ⁽³⁾	220°C/W	454 mW	250 mW	181 mW	
CSP ⁽⁴⁾	110°C/W	909 mW	500 mW	363 mW	

- (1) サーマル・パッドにビアのない標準2層PCBにPowerPADを半田付けした場合。
 (2) サーマル・パッドにビアのある標準4層PCBにPowerPADを半田付けした場合。
 (3) R_θはJEDEC規格に従い1層PCBに基づいています。
 (4) R_θはJEDEC規格に従い2層PCBに基づいています。熱抵抗R_{θJA}の改善方法については"アプリケーション情報"の項を参照してください。

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V _I	Input voltage range	2.7		6.0	٧
L	Inductor ⁽¹⁾		22		μН
Cı	Input capacitor ⁽¹⁾		1		μF
Co	Output capacitor ⁽¹⁾	0.22	1		μF
T _A	Operating ambient temperature	-40		85	°C
T_J	Operating junction temperature	-40		125	°C

⁽¹⁾ 詳細については"アプリケーション情報"の項を参照してください。

ELECTRICAL CHARACTERISTICS

 $V_{IN} = 3.6 \text{ V}$, EN = V_{IN} , $T_{A} = -40^{\circ}\text{C}$ to 85°C, typical values are at $T_{A} = 25^{\circ}\text{C}$ (unless otherwise noted)

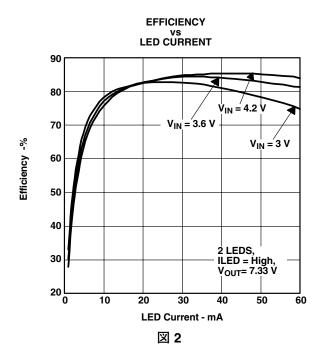
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT	•				
V _{IN}	Input voltage range		2.7		6	V
ΙQ	Operating quiescent current into Vin	Device not switching			1	mA
I _{SD}	Shutdown current	EN = GND		1	10	μΑ
V _{UVLO}	Undervoltage lockout threshold	V _{IN} falling		1.65	1.8	V
V _{HYS}	Undervoltage lockout hysteresis			50		mV
	E AND ILED				·	
V _{EN}	Enable high-level voltage	V _{IN} = 2.7 V to 6 V	1.2			V
V _{EN}	Enable low-level voltage	V _{IN} = 2.7 V to 6 V			0.4	V
R _{EN}	Enable pulldown resistor		200	300		k
t _{shtdn}	Enable-to-shutdown delay (1)	EN = high to low			50	ms
PWML	PWM low-level signal time (1)	PWM signal applied to EN			25	ms
V_{ILED}	ILED high-level voltage	V _{IN} = 2.7 V to 6 V	1.2			V
V _{ILED}	ILED low-level voltage	V _{IN} = 2.7 V to 6 V			0.4	V
I _{ILED}	ILED input leakage current	ILED = GND or VIN		0.1	3	μΑ
	DAC resolution	5 Bit		15.6		mV
t _{up}	Increase feedback voltage one step	ILED = high to low	1		75	8
down	Decrease feedback voltage one step	ILED = high to low	180		300	us
delay	Delay time between up/down steps	ILED = low to high	1.5			us
t _{off}	Digital programming off, VFB=500mV	ILED = high to low	720			us

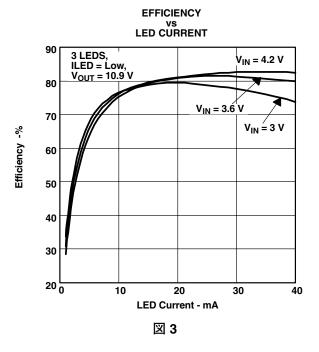
⁽¹⁾ ENピンに25ms以上PWMの "L"レベル信号が加わるとデバイスはシャットダウンすることがあります。これが50ms以上であるとデバイスは必ずシャット ダウン・モードになります。

ELECTRICAL CHARACTERISTICS (continued)

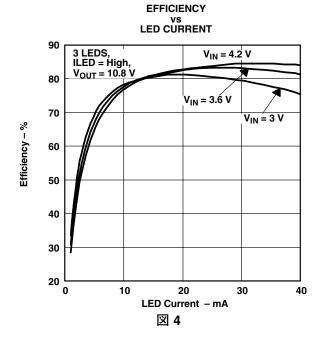
 V_{IN} = 3.6 V, EN = V_{IN} , T_A = -40°C to 85°C, typical values are at T_A = 25°C (unless otherwise noted)

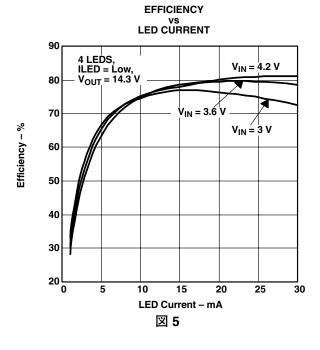
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FEEDBA	CK FB					
I _{FB}	Feedback input bias current	V _{FB} = 500 mV		1	1.5	uA
V _{FB}	Feedback regulation voltage	ILED = GND, after start-up	485	500	515	mV
V _{FB}	Feedback regulation voltage	ILED = High, after start-up	240	250	260	mV
POWER :	SWITCH SYNCHRONOUS RECTIFIER AND	CURRENT LIMIT (SW)	•		·	
r _{DS(ON)}	P-channel MOSFET on-resistance	V _O = 10 V, Isw = 10 mA		2.5	3.7	Ω
D	N-channel MOSFET on-resistance	V _{IN} = V _{GS} = 3.6 V, Isw = 100 mA		0.6	0.9	Ω
R _{DS(ON)}	N-channel MOSFET on-resistance	V _{IN} = V _{GS} = 2.7 V, Isw = 100 mA		0.7	1.0	Ω
I _{swleak}	Switch leakage current ⁽²⁾	$V_{IN} = V_{SW} = 6 \text{ V}, V_{OUT} = \text{GND},$ EN = GND		0.1	2	μΑ
I _{SW}	N-Channel MOSFET current limit	V _O = 10 V	325	400	475	mA
OSCILLA	TOR		•		·	
f _s	Switching frequency		0.8	1.0	1.2	MHz
OUTPUT			•		·	
Vovp	Output overvoltage protection	V _O rising; TPS61060	14	14.5	16	V
Vovp	Output overvoltage protection	V _O rising; TPS61061	18	18.5	19.8	V
Vovp	Output overvoltage protection	V _O rising; TPS61062	22.2	23.5	25	٧
Vovp	Output overvoltage protection hysteresis	TPS61060/61/62, V _O falling		0.7		V
Vo	Output voltage threshold for short-circuit detection	V _O falling		V _{IN} -0.7		V
Vo	Output voltage threshold for short-circuit detection	V _O rising		V _{IN} -0.3		V
		Start-up, EN = low to high, OUT = GND				
Ipre	Precharge current and short-circuit current	V _{IN} = 6 V		180		
	-	V _{IN} = 3.6 V	95			mA
		V _{IN} = 2.7 V	65			
D	Maximum duty cycle			95%		

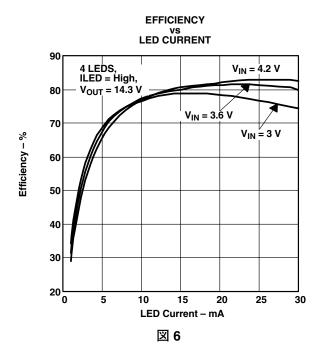

⁽²⁾ The switch leakage current includes the leakage current of both internal switches, which is the leakage current from SW to ground, and from SW to V_{OUT} , with $V_{IN} = V_{SW}$.

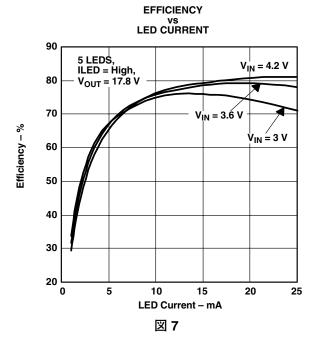


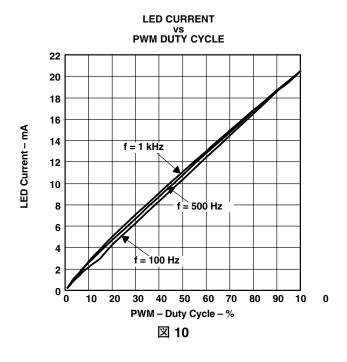
TYPICAL CHARACTERISTICS


Table of Graphs


			FIGURE
η	Efficiency	vs LED current; 2 LEDs, ILED = high	2
		vs LED current; 3 LEDs, ILED = low	3
		vs LED current; 3 LEDs, ILED = high	4
		vs LED current; 4 LEDs, ILED = low	5
		vs LED current; 4 LEDs, ILED = high	6
		vs LED current; 5 LEDs, ILED = high	7
	PWM dimming		8
	Digital brightness control	Feedback voltage vs ILED programming step	9
	LED current	vs PWM duty cycle	10
	Soft-start operation		11
	Short-circuit protection		12
	Overvoltage protection		13
	Input voltage ripple		14







PWM DIMMING C1 Frequency 199.9991 Hz Low Signal Amplitude Inductor Current 100 mA/div LED Current 20 mA/div 1 ms/div

Stepsize typ = 15.6 mV VFB - Voltage Feedback - mV 8 9 10 11 12 13 14 15 16 17

図 8

SOFT-START OPERATION

ILED – Programming Step

図 9

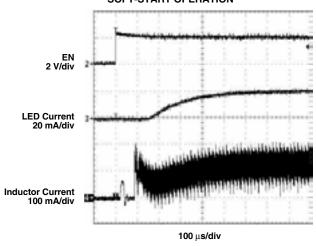
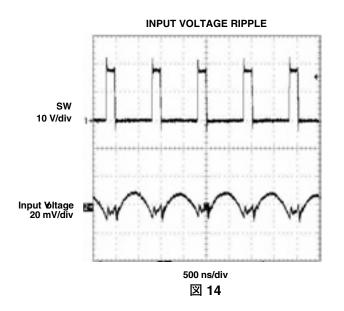



図 11

SHORT-CIRCUIT PROTECTION SW 20 V/div Output Voltage 20 V/div Inductor Current 200 mA/div 20 µs/div

OVERVOLTAGE PROTECTION TPS61062 SW 20 V/div Output Voltage 2 V/div 17 V DC Offset 500 µs/div 図 13

詳細説明

動作

TPS61060/61/62は、NチャネルのMOSFETスイッチとPチャネルMOSFET同期整流器を内蔵した固定周波数PWM動作のPWM電流モードコンバータです。このデバイスは1MHzの固定スイッチング周波数のパルス幅変調(PWM)で動作します。動作の理解の為にブロック図を参照して下さい。コンバータのデューティ・サイクルはコンパレータへ入力される誤差増幅器の出力電圧とのこぎり波状ランプ電圧で設定されます。コント

ロールのアーキテクチャは電流モード・コントロールに基づいているため、50%より大きなデューティ・サイクルで安定した動作が可能となるよう補償用ランプが付加されています。コンバータは常時連続モードで動作する完全集積化された同期整流方式ブースト・コンバータです。このことにより、低ノイズ動作が可能で、また、不連続モードで動作するコンバータのスイッチ・ピンに発生するリンギングが回避されます。

詳細説明(続き)

起動

起動時の高い突入電流を回避する為に突入電流をコントロールする特別な制御を行ないます。デバイスが最初にイネーブルになった時、出力電圧がVinより0.3V (Typ) 低い電圧になるまで、出力コンデンサは100mA (Typ) の固定プリチャージ電流で充電されます。デバイスは40µs (Typ) の間アナログ的にコントロールされた低い制限電流で起動します。この時間の経過後、デバイスは全制限電流での通常のレギュレーションになります。起動時の電流波形を図11に示します。起動時の固定プリチャージ電流の場合でも、LEDの順方向電圧に達してから電流を流し始めるため、LED駆動時にデバイスは問題なく起動することができます。何らかの理由で抵抗性負荷が駆動される場合は、最大起動負荷電流はプリチャージ電流より小さいか、または等しいことが必要です。

短絡保護

TPS6106xファミリーにはデバイスの出力がグランドに短絡された場合に備えて高度な短絡保護機能があります。このデバイスはLEDが短絡された時でも定電流源として構成されているため、最大電流は検出抵抗Rsでコントロールされます。その他の安全機能として、TPS6106xシリーズは出力がグランドに短絡した場合にデバイスやインダクタを保護する機能があります。出力がグランドに短絡した場合、デバイスはプリチャージ・モードになり、最大電流を100mA(Typ)に制限します。

過電圧保護(OVP)

他の定電流源と同様に、出力がハイ・インピーダンスになるか、または切断されると出力電圧は上昇します。出力電圧がメイン・スイッチの最大スイッチ電圧定格 (33V) を越えないようにするため、過電圧保護回路が内蔵されています。出力電圧がOVPスレッシュホールドを越えるとすぐに、コンバータはスイッチングを停止し、出力電圧は低下します。出力電圧がOVPスレッシュホールドより下がった時、コンバータは出力電圧が再びOVPスレッシュホールドを越えるまでの間、動作を継続します。安価な低電圧の出力コンデンサが使用できるようにするため、TPS6106xシリーズには外付けLEDの数やその最大順方向電圧に応じて選択することの出来る種々のOVPレベルの製品が用意されています。

PWMディミングのイネーブル

イネーブル・ピンでは、1KHz (Typ) までのPWM信号を加えることによるLEDの輝度コントロールだけでなく、デバイスのイネーブル/ディスエーブルが可能です。PWM信号が加えられている場合、LED電流はENが"H"レベルの時オンになり、ENが"L"レベルの時オフになります。そのため、PWMのデューティ・サイクルを変化させるとLEDの輝度が変わります。イネーブル・ピンでの高いPWM周波数での制御を可能とするために、PWM信号が加えられている間デバイスは動作し続けています。ブロック図に示されているように、デバイスを完全にオフにするにはENピンは少なくとも50msの間"L"レベルであることが必要です。イネーブル入力ピンにはフローティングの場合デバイスをディスエーブルにするため300k Ω のプルダウン抵抗が内蔵されています。

デジタル輝度コントロール (ILED)

デジタル制御での輝度コントロールが可能となるよう簡素なデジタル・インターフェイスとしてILEDピンが用意されています。これによりプロセッサの電力やバッテリの寿命を節約できます。LEDの輝度をコントロールするためにデジタル・インターフェイスを使用すると、継続的なPWM信号は不要ですし、プロセッサはスリープ・モードに移行することも可能となります。制御信号線の節約のため、1本の信号で同時にデジタルでのプログラム及びイネーブル/ディスエーブル機能を可能とするようILEDピンはイネーブル・ピンに接続することができます。その回路を図22に示します。

ILEDピンはフィードバック・レギュレーション電圧 (V_{FB}) を設定するため、これによりLED電流も設定されます。ILEDピンがGNDに接続された場合、デジタル輝度コントロールはディスエーブルで、フィードバック電圧は V_{FB} = 500mVにレギュレーションされます。ILEDピンが"H"レベルの場合は、デジタル輝度コントロールはイネーブルで、その中点であるフィードバック電圧が V_{FB} = 250mVにレギュレーションされている点から始まります。デジタル輝度コントロールは最大電圧 V_{FB} = 500mVへデジタル式のステップでフィードバック電圧を調整することにより行われます。このため、5ビットのDACが使用され、ステップあたり15.6mV単位の32ステップを作ります。内部基準電圧を増減するには、表1での説明及び電気的特性表に規定されている時間"L"レベルにすることが必要です。内部のDACがその最大値または最小値にプログラムされた場合、再度反対方向にプログラムされるまでその値を維持します。

フィードバック電圧	時間	ILEDのロジック・レベル	
增加	1 μs to 75 μs	"L"	
減少	180 μs to 300 μs	"L"	
輝度コントロール・ディスエーブル	≥550 μs	"L"	
ステップ間遅延	1.5 μs	"H"	

表1. 内部基準電圧の増減

各サイクル間でILEDピンは1.5µsの間 "H"レベルにする必要があります。

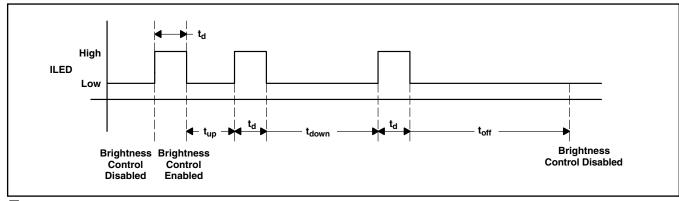


図 15. ILED Timing Diagram

ILEDピンのデジタル・インターフェイスは、ILEDを"H" レベルまたは"L" レベルにすることで簡素な2段階のみの輝度コントロールも可能となります。 $V_{FB}=500 mV$ の全LED電流にするには、ILEDを"L" レベルに、 $V_{FB}=250 mV$ の半分のLED電流にプログラムするには、ILEDピンを"H" レベルにすることが必要です。

効率とフィードバック電圧

フィードバック電圧はコンバータの効率に直接影響を与えます。フィードバック抵抗端の電圧降下は出力電力(LEDの輝度)に寄与しないため、フィードバック電圧が低いと効率は高くなります。特に、3つ以下のLEDを駆動する場合、フィードバック電圧はLEDの順方向電圧の合計によっては約2%効率に影響を与えます。効率の改善の為に、ILEDピンをVINピンに接続し、フィードバック電圧を250mVに設定することができます。

低電圧ロックアウト(UVLO)

低電圧ロックアウト機能により、入力電圧が1.65V (Typ) 未満の場合におけるデバイスの誤動作が防止されます。入力電圧が低電圧スレッシュホールドより低い場合、デバイスは停止状態で内部MOSFETは両方ともオフになり入出力間は絶縁されます。

サーマル・シャットダウン

サーマル・シャットダウン機能が内蔵されており、標準で接合部温度が 160° Cを越えると内部のMOSFETはオフになります。サーマル・シャットダウンのヒステリシスは 15° C(Typ)です。

チップスケール・パッケージ寸法

TPS6106xはチップスケール・パッケージでも供給されており、その寸法は、E = D = 1.446mm (Typ)、E = D = 1.424mm (Min)、E = D = 1.5mm (Max) です。パッケージ (YZF) の寸法 図を参照してください。

アプリケーション情報

インダクタの選択

このデバイスには標準で22μHまたは10μHのインダクタンスを使用します。インダクタを選択する場合、インダクタの定格電流 (飽和開始電流) は最大負荷電圧時及び最大LED電流時それぞれのピーク・インダクタ電流と同じ大きさでなければなりません。コントロール・ループの設計が特殊なため、インダクタの定格電流はコンバータの最大スイッチ電流である必要はありません。PWM信号をイネーブル・ピンに加えることでLED電流がパルス化された場合でも、通常コンバータの最大スイッチ電流には達しません。インダクタの最大ピーク電流と供給可能な最大LED電流は以下の式で求められます。

デューティ・サイクル

$$D = 1 - \frac{Vin}{Vout}$$
 (1)

最大LED電流

$$I_{LED} = \left(Isw - \frac{Vin \times D}{2 \times fs \times L} \right) \times (1 - D) \times \eta \quad (2)$$

インダクタのピーク電流

$$i_{\text{Lpeak}} = \frac{V \text{in} \times D}{2 \times f \text{s} \times L} + \frac{i_{\text{LED}}}{(1 - D) \times \eta}$$
 (3)

但し、:

fs = スイッチング周波数(1MHzTyp)

L = インダクタ値

η = コンバータの推定効率(0.75)

Isw = NチャネルMOSFETの最小制限電流(325mA)

ピーク・インダクタ電流と最大可能LED電流を計算する簡単な方法として、コンバータの想定効率を使用することもあります。効率はデータシートの効率曲線の数値を使用するか、ワースト・ケースとしての想定効率(例えば、75%)を使用するという方法で見積もることができます。

効率

アプリケーションでの総合効率は個別のアプリケーション条件に依存し、主としてインダクタの選択により決まります。物理的に小型のインダクタは、通常、インダクタでのスイッチング損失(銅損、近接損失、表皮効果損失)が大きいため効率が

低下します。インダクタの物理的寸法と総合効率でトレードオフを行うことが必要です。効率は選択したインダクタにより一般的に±5%変動します。図2から図7はアプリケーションごとの効率についてのガイドラインとして有用です。この図の曲線は22μHのインダクタ(Murata LQH32CN220K23)を使用した場合の標準的な効率を示しています。図23は効率が以下の式で求められる基本回路と測定ポイントを表しています。

$$\eta = \frac{V_{LED} \times I_{LED}}{V_{in} \times I_{in}}$$
 (4)

出力コンデンサの選択

このデバイスはセラミック出力コンデンサが幅広く選択可能なように設計されています。出力コンデンサ値の選択には、出力電圧リップル、コンデンサのコスト及び外形寸法間でトレードオフがあります。一般的に、コンデンサの値は220nFから最大4.7µFを使用することができます。220nFの出力コンデンサを用いた場合、温度及び印加電圧の全範囲で出力コンデンサの値が220nFを大きく下回ることを回避するためX5RまたはX7Rの誘電体を使用することを推奨します。ワイヤレスまたはRF回路をもつシステムでは、EMIは常に問題となります。LED列及びボード配線の電圧リップルを最小限に抑えるため、出力コンデンサはLED側に接続するのではなくデバイスのOUTピンからグランドへ直接接続することが必要です。出力コンデンサの容量を大きくすると出力電圧リップルは低減します。表3に使用可能な入出力コンデンサを示します。

入力コンデンサの選択

入力電圧に良好なフィルタを施すには、低ESRのセラミック・コンデンサを推奨します。ほとんどのアプリケーションでは1µFのセラミック入力コンデンサで差し支えありません。入力電圧により良好なフィルタを施し、EMIを低減するのため、容量を増やすことができます。入力コンデンサはコンバータの入力ピンにできるだけ近づけて配置しなければなりません。表3に使用可能な入出力コンデンサを示します。

インダクタ値	メーカー	寸法
10 μΗ	TDK VLF3012AT-100MR49	2,6 mm × 2,8 mm × 1,2 mm
10 μΗ	Murata LQH32CN100K53	3,2 mm × 2,5 mm × 1,55 mm
10 μΗ	Murata LQH32CN100K23	3,2 mm \times 2,5 mm \times 2,0 mm
22 μΗ	TDK VLF3012AT-220MR33	2,6 mm × 2,8 mm × 1,2 mm
22 μΗ	Murata LQH32CN220K53	3,2 mm × 2,5 mm × 1,55 mm
22 μΗ	Murata LQH32CN220K23	3,2 mm × 2,5 mm × 2,0 mm

表2. インダクタの選択

コンデンサ	電圧定格	形状	メーカー ⁽¹⁾	コメント
入力コンデンサ				
1 μF	10 V	0603	Tayo Yuden LMK107BJ105	
出力コンデンサ				
220 nF	16 V	0603	Tayo Yuden EMK107BJ224	TPS61060
220 nF	50 V	0805	Tayo Yuden UMK212BJ224	TPS61060/61/62
470 nF	35 V	0805	Tayo Yuden GMK212BJ474	TPS61060/61/62
1 μF	16 V	0805	Tayo Yuden EMK212BJ105	TPS61060
1 μF	35 V	1206	Tayo Yuden GMK316BJ105	TPS61060/61/62
1 μF	25 V	1206	TDK C3216X7R1E105	TPS61060/61/62

表3. Capacitor Selection

(1) TDK及び他のメーカーからも同様のコンデンサが入手できます。

レイアウトについての考察

すべてのスイッチング電源、特に高いピーク電流及び高いスイッチング周波数の場合のレイアウトは設計での重要なステップとなります。レイアウトが注意深く行われていないと、レギュレータにノイズの問題やデューティ・サイクルのジッタが生じる恐れがあります。入力コンデンサは入力電圧に良好なフィルタを施すよう入力ピンにできるだけ近づけて配置しなければなりません。インダクタは他の回路への結合によるノイズの発生を最小限に抑えるためできるだけスイッチ・ピンの近くに配置す

ることが必要です。出力コンデンサはLED側に接続するのではなくOUTピンからGNDに直接接続することが必要です。このことにより、LEDへの配線におけるリップル電流が低減します。GNDピンはPGNDピンに直接接続することが必要です。PCBのレイアウトを行う場合は、インダクタ、入出力コンデンサの配置だけでなく太線で示されている配線部(図16参照)を最初に引き廻さなければなりません。

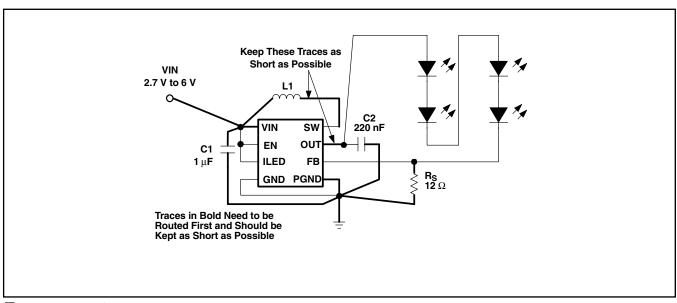


図16. Layout Considerations

熱についての考察

TPS6106xは放熱特性に優れたQFNパッケージで供給されています。このパッケージにはパッケージの放熱能力を改善するサーマル・パッドが使用されています。QFN/SON PCB Attachmentアプリケーション・ノート (SLUA271) も参照してください。QFNパッケージの接合部/周囲間熱抵抗 $R_{\theta JA}$ はPCBのレイアウトに大きく依存します。サーマル・ビアと幅広いPCB

配線を使用することにより熱抵抗 $R_{\theta JA}$ は改善します。サーマル・パッドはPCBのアナログ・グランドに半田付けすることが必要です。

NanoFreeパッケージについては、QFNパッケージに関する ガイドラインが適用できます。熱抵抗 $R_{\theta JA}$ は主にPCBのレイアウトに依存します。

TYPICAL APPLICATIONS

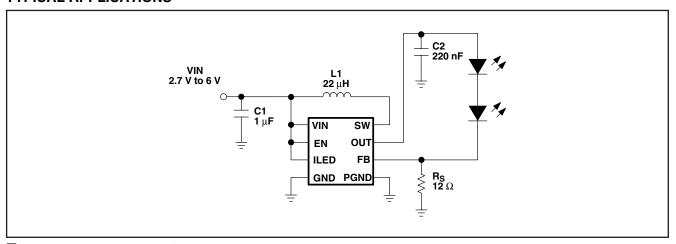


図17. TPS61060 Powering Two White LEDs

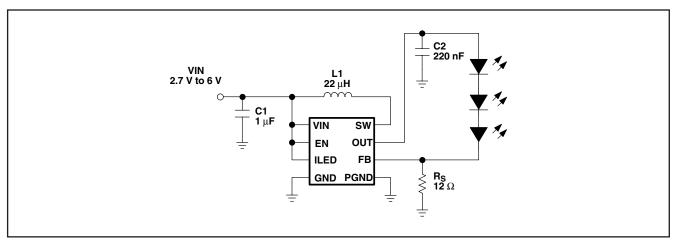


図18. TPS61060 Powering Three White LEDs

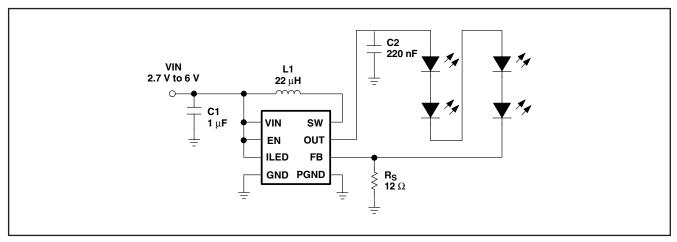


図19. TPS61061 Powering Four White LEDs

TYPICAL APPLICATIONS (continued)

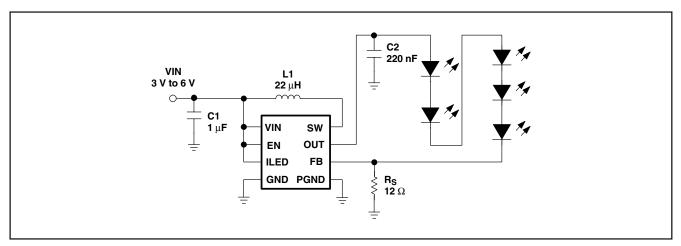


図20. TPS61062 Powering Five White LEDs

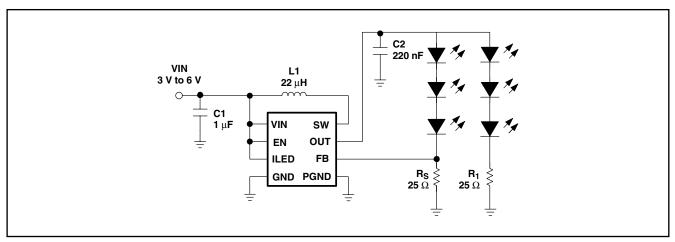


図21. TPS61060 Powering Six White LEDs

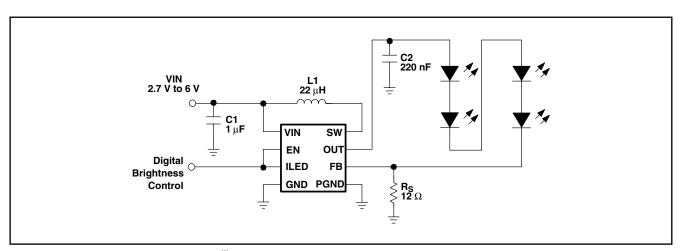
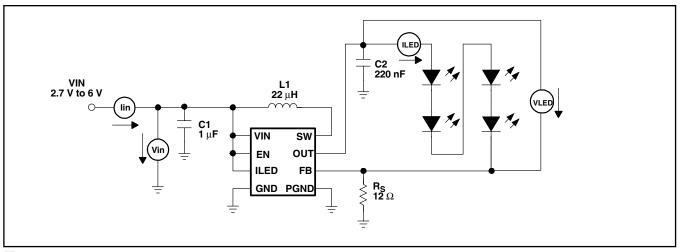
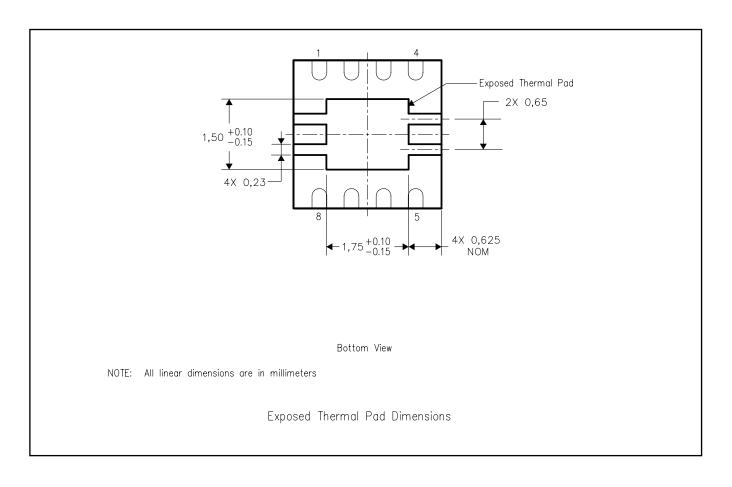



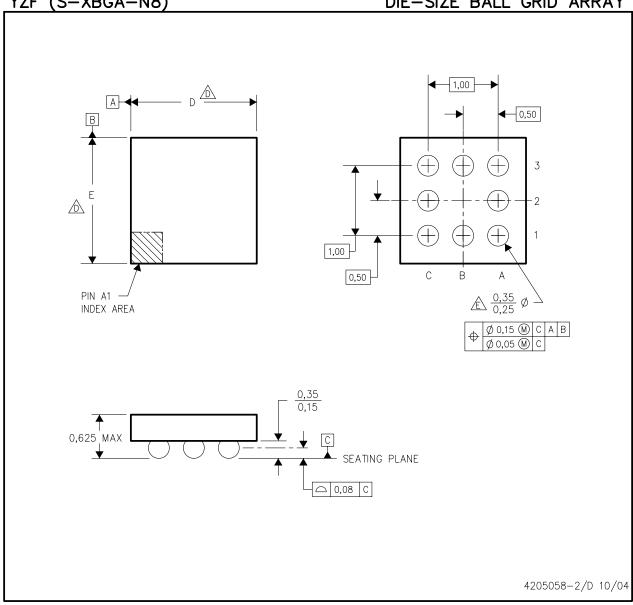
図22. TPS61061 Digital Brightness Control⁽¹⁾

(1) This circuit combines the enable with the digital brightness control pin, allowing the digital signal applied to ILED to also enable and disable the device.

TYPICAL APPLICATIONS (continued)


図23. Efficiency Measurement Setup

熱情報


このパッケージは外部のヒートシンクに直接接続できるよう 設計された露出したサーマル・パッドをもっています。このサーマル・パッドはプリント回路基板 (PCB) に直接半田付けしなければならず、PCBはヒートシンクとして使用されます。さらに、サーマル・ビアを使用することにより、サーマル・パッドはグランド・プレーンまたはPCBに設計された特別なヒートシンク構造に直接接続することができます。この設計により、集積回路 (IC) からの熱の移動が最適化されます。

クワッド・フラットパック・ノーリード (QFN) パッケージと その利点については、アプリケーション・レポート (Quad Flatpack No-Lead Logic Packages - 文献番号SCBA017) を参照してください。この文献はホームページwwww.ti.comから入手できます。

このパッケージのサーマル・パッドの寸法は以下の図に示されています。

- 注: A. 全ての線寸法の単位はミリメートルです。
 - B. 図は予告なく変更することがあります。
 - C. NanoFree™パッケージ構造です。
 - <u>↑</u> YZFパッケージのデバイスでは寸法Dは1.35mm~2.15mmで、寸法Eは1.35mm~2.15mmです。個々のデバイスの正確なパッケージ寸法を確定するには、データシートを参照するか、または弊社にお問い合わせください。
 - 企 配列については製品のデータシートを参照してください。この図では参考として 3×3のマトリクス・パターンを示しています。
 - F. このパッケージには無鉛ボールが含まれています。 SnPbのボールはYEF (DWG#4204181) を参照してください。

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
TPS61060DRBR	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61060DRBRG4	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61060YZFR	ACTIVE	DSBGA	YZF	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS61060YZFT	ACTIVE	DSBGA	YZF	8	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS61061DRBR	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61061DRBRG4	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61061YZFR	ACTIVE	DSBGA	YZF	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS61061YZFT	ACTIVE	DSBGA	YZF	8	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS61062DRBR	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61062DRBRG4	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
TPS61062YZFR	ACTIVE	DSBGA	YZF	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
TPS61062YZFT	ACTIVE	DSBGA	YZF	8	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

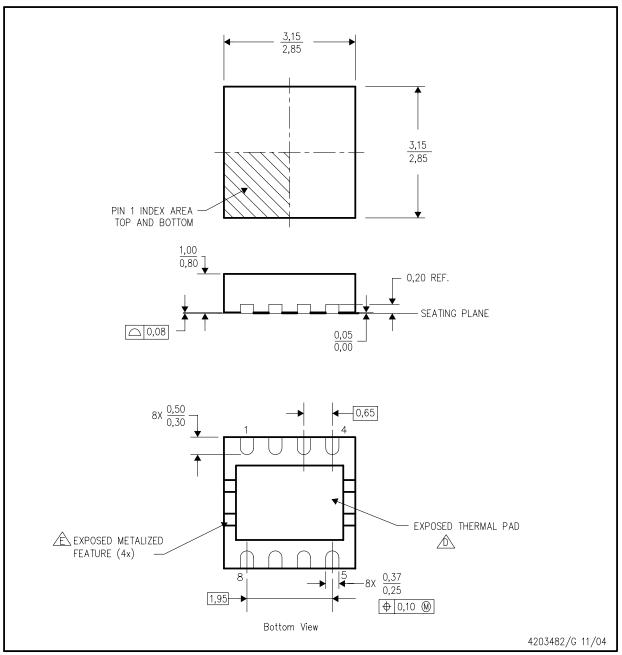
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): Ti's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

- 注:A. 全ての線寸法の単位はミリメートルです。寸法/公差はASME Y14.5M-1994によります。
 - B. 図は予告なく変更することがあります。
 - C. スモール·アウトライン·ノーリード(SON)パッケージ構成です。
 - ↑ パッケージのサーマル・パッドは熱的/機械的特性のためボードに半田付けしなければなりません。サーマル・パッドの寸法についての詳細はデータシートを参照してください。
 - ⚠ メッキの特性はメーカーのオプションで、パッケージ上になされていないことがあります。

(SLVS314C)

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 テキサス・インスツルメンツの販売条件、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ 一スを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated