

Technical documentation



Support & training

参考資料



#### SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 JAJSND7P - FEBRUARY 2002 - REVISED FEBRUARY 2022

# SNx5HVD1x 3.3V RS-485 トランシーバ

## 1 特長

- 3.3V 電源で動作
- 16kV HBM を超えるバス・ピンの ESD 保護
- 1/8 ユニット負荷オプション使用可能 (バス上に最大 256 個のノード)
- オプションの信号速度に対するドライバ出力の遷移時 間 1
- ANSI TIA/EIA-485-A の要件を満たす、または超える 性能
- $-7V\sim$ 12V のバス・ピンの短絡保護
- 低消費電力のスタンバイ・モード:1µA (標準値)
- 開回路、アイドル・バス、短絡バスのフェイルセーフ・レ シーバ
- サーマル・シャットダウン保護機能
- 電源オンおよび電源オフ時のグリッチ・フリー保護によ りホットプラグ・アプリケーションに対応
- SN75176 フットプリント

# 2 アプリケーション

- デジタル・モーター制御
- 公共料金メーター
- シャーシ間相互接続
- 電子セキュリティ・ステーション
- 産業用プロセス制御
- ビル・オートメーション
- POS 端末とネットワーク

## 3 概要

SN65HVD10 SN75HVD10 SN65HVD11 SN75HVD11、SN65HVD12、SN75HVD12 バス・トラン シーバは、いずれも 3.3V 単一電源で動作するスリー・ス テート差動ライン・ドライバと、差動入力ライン・レシーバを 組み合わせています。これらの製品は平衡伝送ラインを想 定して設計されており、ANSI 規格の TIA/EIA-485-A およ び ISO 8482:1993 の要件を満たす、または超える性能を 備えます。これらの差動バス・トランシーバは、モノリシック IC であり、マルチポイント・バス伝送ライン上での双方向デ ータ通信を目的として設計されています。ドライバとレシー バはそれぞれアクティブ HIGH、アクティブ LOW のイネー ブルを備えており、それらのイネーブルを外部で互いに接 続することで、方向制御として機能させることができます。 ドライバとレシーバをディスエーブルにすることにより、デ バイスのスタンバイ時消費電流を非常に小さくできます。

ドライバの差動出力とレシーバの差動入力は、差動入出 力 (I/O) バス・ポートを構成するように内部で接続されてい ます。これらのポートは、ドライバがディセーブルされてい る場合、または V<sub>CC</sub> = 0 の場合、バスへの負荷を最小化 するように設計されています。これらのポートは広い正負 の同相電圧範囲を持っているため、パーティライン・アプリ ケーションに適しています。

| 製品情報                 |                 |  |  |  |  |  |
|----------------------|-----------------|--|--|--|--|--|
| パッケージ <sup>(1)</sup> | 本体サイズ (公称)      |  |  |  |  |  |
|                      |                 |  |  |  |  |  |
| SOIC (8)             | 4.90mm × 3.91mm |  |  |  |  |  |
|                      |                 |  |  |  |  |  |
|                      |                 |  |  |  |  |  |
| PDIP (8)             | 9.81mm × 6.35mm |  |  |  |  |  |
|                      |                 |  |  |  |  |  |
|                      | SOIC (8)        |  |  |  |  |  |

利用可能なパッケージについては、このデータシートの末尾にあ (1)る注文情報を参照してください。



## 代表的なアプリケーションの図

<sup>1</sup> ラインの信号速度は、1 秒あたりのビット数の bps 単位 (1Mbps、10Mbps、 32Mbps) で表される電圧遷移回数

英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、 🐼 www.ti.com で閲覧でき、その内容が常に優先されます。 TI では翻訳の正確性および妥当性につきましては一切保証いたしません。 実際の設計などの前には、必ず 最新版の英語版をご参照くださいますようお願いいたします。





## **Table of Contents**

| 1 特長1                                    |
|------------------------------------------|
| 2 アプリケーション                               |
| 3概要1                                     |
| 4 Revision History                       |
| 5 Device Comparison Table                |
| 6 Pin Configuration and Functions        |
| 7 Specifications                         |
| 7.1 Absolute Maximum Ratings4            |
| 7.2 ESD Ratings                          |
| 7.3 Recommended Operating Conditions4    |
| 7.4 Thermal Information5                 |
| 7.5 Driver Electrical Characteristics5   |
| 7.6 Receiver Electrical Characteristics6 |
| 7.7 Power Dissipation Characteristics6   |
| 7.8 Driver Switching Characteristics7    |
| 7.9 Receiver Switching Characteristics8  |
| 7.10 Dissipation Ratings8                |
| 7.11 Typical Characteristics9            |
| 8 Parameter Measurement Information      |
| 9 Detailed Description17                 |
| 9.1 Overview                             |

| 9.2 Functional Block Diagram                          | .17  |
|-------------------------------------------------------|------|
| 9.3 Feature Description.                              | 17   |
| 9.4 Device Functional Modes                           |      |
| 10 Application and Implementation                     |      |
| 10.1 Application Information                          |      |
| 10.2 Typical Application                              |      |
| 11 Power Supply Recommendations                       |      |
| 12 Layout                                             |      |
| 12.1 Layout Guidelines                                |      |
| 12.2 Layout Example                                   |      |
| 12.3 Thermal Considerations                           |      |
| 13 Device and Documentation Support                   |      |
| 13.1 Device Support                                   |      |
| 13.2 Related Links                                    |      |
| 13.3 Receiving Notification of Documentation Updates. |      |
| 13.4 サポート・リソース                                        |      |
| 13.5 Trademarks                                       |      |
| 13.6 Electrostatic Discharge Caution                  |      |
| -                                                     |      |
| 13.7 Glossary                                         | .20  |
| 14 Mechanical, Packaging, and Orderable               | 20   |
| Information                                           | . 26 |

## **4 Revision History**

| Cł | hanges from Revision O (February 2017) to Revision P (February 2022) | Page |
|----|----------------------------------------------------------------------|------|
| •  | Changed the Thermal Information table                                | 5    |

## Changes from Revision N (July 2015) to Revision O (February 2017) Page Added MIN value of -55°C to the Storage temperature in Absolute Maximum Ratings ......4 Changes from Revision M (July 2013) to Revision N (July 2015) Page 「ピン構成および機能」セクション、「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプ リケーションと実装 | セクション、「電源に関する推奨事項 | セクション、「レイアウト | セクション、「デバイスおよびドキュメ ントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加...... Changes from Revision L (July 2013) to Revision M (July 2013) Page Changes from Revision K (September 2011) to Revision L (July 2013) Page Added TYP = -0.1 V to V<sub>IT</sub>-.....6 Changes from Revision J (February 2009) to Revision K (September 2011) Page

|   | hanges nom Kevision 5 (rebraary 2005) to Kevision K (September 2017)               | i aye |
|---|------------------------------------------------------------------------------------|-------|
| • | Added new section 'LOW-POWER STANDBY MODE', in the Application Information section |       |



## **5 Device Comparison Table**

| PART N              | UMBER       | SIGNALING RATE | UNIT LOADS       | т              | SOIC MARKING |
|---------------------|-------------|----------------|------------------|----------------|--------------|
| SOIC <sup>(1)</sup> | PDIP        | SIGNALING RATE | UNIT LOADS       | T <sub>A</sub> | SOIC MARKING |
| SN65HVD10D          | SN65HVD10P  | 32 Mbps 1/2    |                  |                | VP10         |
| SN65HVD11D          | SN65HVD11P  | 10 Mbps        | 1/8              | –40°C to 85°C  | VP11         |
| SN65HVD12D          | SN65HVD12P  | 1 Mbps         | 1/8              |                | VP12         |
| SN75HVD10D          | SN75HVD10P  | 32 Mbps        | 1/2              |                | VN10         |
| SN75HVD11D          | SN75HVD11P  | 10 Mbps        | 1/8 –0°C to 70°C |                | VN11         |
| SN75HVD12D          | SN75HVD12P  | 1 Mbps         | 1/8              |                | VN12         |
| SN65HVD10QD         | SN65HVD10QP | 32 Mbps        | 1/2              | –40°C to 125°C | VP10Q        |
| SN65HVD11QD         | SN65HVD11QP | 10 Mbps        | 1/8              | -40 0 10 125 0 | VP11Q        |

(1) The D package is available as a tape and reel. Add an R suffix to the part number (that is, SN75HVD11DR) for this option.

## **6** Pin Configuration and Functions



図 6-1. D, JD, or HKJ Package 8-Pin SOIC or PDIP (Top View)

#### 表 6-1. Pin Functions

| PIN             |     | ТҮРЕ                | DESCRIPTION                                          |  |  |
|-----------------|-----|---------------------|------------------------------------------------------|--|--|
| NAME            | NO. |                     | DESCRIPTION                                          |  |  |
| A               | 6   | Bus input/output    | Driver output or receiver input (complementary to B) |  |  |
| В               | 7   | Bus input/output    | Driver output or receiver input (complementary to A) |  |  |
| D               | 4   | Digital input       | Driver data input                                    |  |  |
| DE              | 3   | Digital input       | Active-high driver enable                            |  |  |
| GND             | 5   | Reference potential | Local device ground                                  |  |  |
| R               | 1   | Digital output      | Receive data output                                  |  |  |
| RE              | 2   | Digital input       | Active-low receiver enable                           |  |  |
| V <sub>CC</sub> | 8   | Supply              | 3-V to 3.6-V supply                                  |  |  |



## 7 Specifications

## 7.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted (1) (2)

|                  |                                                                                     | MIN   | MAX                   | UNIT |
|------------------|-------------------------------------------------------------------------------------|-------|-----------------------|------|
| V <sub>CC</sub>  | Supply voltage                                                                      | -0.3  | 6                     | V    |
|                  | Voltage at A or B                                                                   | -9    | 14                    | V    |
|                  | Input voltage at D, DE, R, or RE                                                    | -0.5  | V <sub>CC</sub> + 0.5 | V    |
|                  | Voltage input, transient pulse, A and B, through 100 $\Omega,$ see $\boxtimes$ 8-12 | -50   | 50                    | V    |
| I <sub>O</sub>   | Receiver output current                                                             | -11   | 11                    | mA   |
|                  | Continuous total power dissipation                                                  | See 🛃 | クション 7.10             |      |
| TJ               | Junction temperature                                                                |       | 170                   | °C   |
| T <sub>stg</sub> | Storage temperature                                                                 | -55   | 145                   | °C   |

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under セクション 7.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

## 7.2 ESD Ratings

|                    |               |                                                                   |                  | VALUE  | UNIT |
|--------------------|---------------|-------------------------------------------------------------------|------------------|--------|------|
| V <sub>(ESD)</sub> |               | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | Pins 5, 6, and 7 | ±16000 |      |
|                    | Electrostatic |                                                                   | All pins         | ±4000  |      |
|                    | discharge     | Charged device model (CDM) per IEDEC exacting                     | All pins         | ±1000  | V    |
|                    |               | Electrical fast transient/burst <sup>(3)</sup>                    | Pins 5, 6, and 7 | ±4000  |      |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) Tested in accordance with IEC 61000-4-4.

## 7.3 Recommended Operating Conditions

over operating free-air temperature range unless otherwise noted

|                                   |                                     |                       | MIN               | NOM | MAX             | UNIT |  |
|-----------------------------------|-------------------------------------|-----------------------|-------------------|-----|-----------------|------|--|
| V <sub>CC</sub>                   | Supply voltage                      |                       | 3                 |     | 3.6             |      |  |
| V <sub>I</sub> or V <sub>IC</sub> | Voltage at any bus terminal (separa | ately or common mode) | -7 <sup>(1)</sup> |     | 12              |      |  |
| V <sub>IH</sub>                   | High-level input voltage            | D, DE, RE             | 2                 |     | V <sub>CC</sub> | c V  |  |
| V <sub>IL</sub>                   | Low-level input voltage             | D, DE, RE             | 0                 |     | 0.8             |      |  |
| V <sub>ID</sub>                   | Differential input voltage          | See 🗵 8-8             | -12               |     | 12              |      |  |
| I <sub>OH</sub>                   |                                     | Driver                | -60               |     |                 |      |  |
|                                   | High-level output current           | Receiver              | -8                |     |                 | mA   |  |
|                                   | Low-level output current            | Driver                |                   |     | 60              | mA   |  |
| I <sub>OL</sub>                   |                                     | Receiver              |                   |     | 8               |      |  |
| RL                                | Differential load resistance        |                       | 54                | 60  |                 | Ω    |  |
| CL                                | Differential load capacitance       |                       |                   | 50  |                 | pF   |  |
|                                   |                                     | HVD10                 |                   |     | 32              |      |  |
|                                   | Signaling rate                      | HVD11                 |                   |     | 10              | Mbps |  |
|                                   |                                     | HVD12                 |                   |     | 1               |      |  |
| T <sub>J</sub> (2)                | Junction temperature                |                       |                   |     | 145             | °C   |  |

The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.
 See thermal characteristics table for information regarding this specification.



## 7.4 Thermal Information

|                           |                                              | SNx5H    |          |      |
|---------------------------|----------------------------------------------|----------|----------|------|
|                           | THERMAL METRIC <sup>(1)</sup>                | D (SOIC) | P (PDIP) | UNIT |
|                           |                                              | 8 Pins   | 8 Pins   |      |
| R <sub>θJA</sub>          | Junction-to-ambient thermal resistance       | 116.7    | 84.3     | °C/W |
| R <sub>θ</sub><br>JC(top) | Junction-to-case (top) thermal resistance    | 56.3     | 65.4     | °C/W |
| R <sub>θJB</sub>          | Junction-to-board thermal resistance         | 63.4     | 62.1     | °C/W |
| Ψյт                       | Junction-to-top characterization parameter   | 8.8      | 31.3     | °C/W |
| Ψ <sub>JB</sub>           | Junction-to-board characterization parameter | 62.6     | 60.4     | °C/W |

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report.

## 7.5 Driver Electrical Characteristics

Over recommended operating conditions unless otherwise noted

|                                                             | PARAMETER                                   |                                                                                                    | TEST                                                               | CONDITIONS                           | MIN   | TYP <sup>(1)</sup> | MAX             | UNIT |
|-------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|-------|--------------------|-----------------|------|
| V <sub>IK</sub>                                             | Input clamp voltage                         |                                                                                                    | I <sub>I</sub> = –18 mA                                            |                                      | -1.5  |                    |                 | V    |
|                                                             |                                             |                                                                                                    | I <sub>O</sub> = 0                                                 |                                      | 2     |                    | V <sub>CC</sub> |      |
| $ V_{OD} $ Differential output voltage <sup>(2)</sup> $R_L$ |                                             | R <sub>L</sub> = 54 Ω, See 🗵 8                                                                     | I-1                                                                | 1.5                                  |       |                    | V               |      |
|                                                             |                                             |                                                                                                    | V <sub>test</sub> = -7 V to 12 V,                                  | See 🗵 8-2                            | 1.5   |                    |                 |      |
| Δ V <sub>OD</sub>                                           | Change in magnitude of differe voltage      | ential output                                                                                      | See 🗵 8-1 and 🗵 8                                                  | -2                                   | -0.2  |                    | 0.2             | V    |
| V <sub>OC(PP)</sub>                                         | Peak-to-peak common-mode o voltage          | output                                                                                             |                                                                    |                                      |       | 400                |                 | mV   |
| V <sub>OC(SS)</sub>                                         | Steady-state common-mode o                  | utput voltage                                                                                      | See 🗵 8-3                                                          |                                      | 1.4   |                    | 2.5             | V    |
| $\Delta V_{OC(SS)}$                                         | Change in steady-state commo output voltage | on-mode                                                                                            | -                                                                  |                                      | -0.05 |                    | 0.05            | V    |
| I <sub>OZ</sub>                                             | High-impedance output curren                | t                                                                                                  | See receiver input c                                               | urrents                              |       |                    |                 |      |
| 1                                                           | Input ourrant                               | D                                                                                                  |                                                                    |                                      | -100  |                    | 0               | – uA |
| I <sub>I</sub>                                              | Input current                               | DE                                                                                                 |                                                                    |                                      | 0     |                    | 100             |      |
| l <sub>os</sub>                                             | Short-circuit output current                |                                                                                                    | –7 V ≤ V <sub>O</sub> ≤ 12 V                                       |                                      | -250  |                    | 250             | mA   |
| C <sub>(OD)</sub>                                           | Differential output capacitance             |                                                                                                    | V <sub>OD</sub> = 0.4 sin(4E6π                                     | t) + 0.5 V, DE at 0 V                |       | 16                 |                 | pF   |
|                                                             |                                             |                                                                                                    | RE at V <sub>CC</sub> ,<br>D and DE at V <sub>CC,</sub><br>No load | Receiver disabled and driver enabled |       | 9                  | 15.5            | mA   |
| I <sub>CC</sub>                                             | Supply current                              | $\begin{tabular}{l} \hline RE at V_{CC}, \\ D at V_{CC}, \\ DE at 0 V, \\ No \ load \end{tabular}$ | Receiver disabled and<br>driver disabled<br>(standby)              |                                      | 1     | 5                  | μΑ              |      |
|                                                             |                                             |                                                                                                    | RE at 0 V,<br>D and DE at V <sub>CC</sub> ,<br>No load             | Receiver enabled and driver enabled  |       | 9                  | 15.5            | mA   |

(1) All typical values are at 25°C and with a 3.3-V supply.

(2) For  $T_A > 85^{\circ}C$ ,  $V_{CC}$  is ±5%.



## 7.6 Receiver Electrical Characteristics

Over recommended operating conditions unless otherwise noted

|                  | PARAMETER                                                 | TE                                                                                                                                                           | ST CONDI                                        | TIONS               | MIN   | TYP <sup>(1)</sup> | MAX   | UNIT |
|------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|-------|--------------------|-------|------|
| V <sub>IT+</sub> | Positive-going input threshold voltage                    | I <sub>O</sub> = –8 mA                                                                                                                                       |                                                 |                     |       | -0.065             | -0.01 |      |
| V <sub>IT-</sub> | Negative-going input threshold voltage                    | I <sub>O</sub> = 8 mA                                                                                                                                        |                                                 |                     | -0.2  | -0.1               |       | V    |
| V <sub>hys</sub> | Hysteresis voltage (V <sub>IT+</sub> – V <sub>IT–</sub> ) |                                                                                                                                                              |                                                 |                     |       | 35                 |       | mV   |
| V <sub>IK</sub>  | Enable-input clamp voltage                                | I <sub>I</sub> = –18 mA                                                                                                                                      |                                                 |                     | -1.5  |                    |       | V    |
| V <sub>OH</sub>  | High-level output voltage                                 | V <sub>ID</sub> = 200 mV, I <sub>OH</sub> =                                                                                                                  | = –8 mA, se                                     | e 🗵 8-8             | 2.4   |                    |       | V    |
| V <sub>OL</sub>  | Low-level output voltage                                  | V <sub>ID</sub> = -200 mV, I <sub>OL</sub>                                                                                                                   | = 8 mA, se                                      | e 🗵 8-8             |       |                    | 0.4   | V    |
| l <sub>oz</sub>  | High-impedance-state output current                       | $V_0 = 0 \text{ or } V_{CC}, \overline{RE}$                                                                                                                  | at V <sub>CC</sub>                              |                     | -1    |                    | 1     | μA   |
|                  |                                                           | $V_A$ or $V_B$ = 12 V                                                                                                                                        |                                                 |                     |       | 0.05               | 0.11  |      |
|                  | Bus input current                                         | $V_A$ or $V_B$ = 12 V, $V_C$                                                                                                                                 | $V_A$ or $V_B$ = 12 V, $V_{CC}$ = 0 V HV        |                     |       | 0.06               | 0.13  |      |
|                  |                                                           | $V_A$ or $V_B = -7 V$                                                                                                                                        |                                                 | Other inputs at 0 V | -0.1  | -0.05              |       | mA   |
| I                |                                                           | $V_A$ or $V_B$ = -7 V, $V_{CC}$ = 0 V                                                                                                                        |                                                 | -                   | -0.05 | -0.04              |       |      |
|                  |                                                           | $V_A$ or $V_B$ = 12 V                                                                                                                                        |                                                 |                     |       | 0.2                | 0.5   |      |
|                  |                                                           | $V_A$ or $V_B$ = 12 V, $V_{CC}$ = 0 V                                                                                                                        |                                                 | HVD10,              |       | 0.25               | 0.5   | mA   |
|                  |                                                           | $\label{eq:VA} \begin{array}{c} V_A \text{ or } V_B = -7 \text{ V} \\ V_A \text{ or } V_B = -7 \text{ V},  V_{CC} = 0 \text{ V} \end{array} \end{array} Oth$ |                                                 | Other inputs at 0 V | -0.4  | -0.2               |       | IIIA |
|                  |                                                           |                                                                                                                                                              |                                                 |                     | -0.4  | -0.15              |       |      |
| I <sub>IH</sub>  | High-level input current, RE                              | V <sub>IH</sub> = 2 V                                                                                                                                        |                                                 |                     | -30   |                    | 0     | μA   |
| IIL              | Low-level input current, RE                               | V <sub>IL</sub> = 0.8 V                                                                                                                                      |                                                 |                     | -30   |                    | 0     | μA   |
| C <sub>ID</sub>  | Differential input capacitance                            | V <sub>ID</sub> = 0.4 sin(4E6π                                                                                                                               | t) + 0.5 V, D                                   | DE at 0 V           |       | 15                 |       | pF   |
|                  |                                                           | RE at 0 V<br>D and DE at 0 V<br>No load                                                                                                                      | Receiver e<br>disabled                          | enabled and driver  |       | 4                  | 8     | mA   |
| I <sub>CC</sub>  | Supply current                                            | RE at V <sub>CC</sub><br>D at V <sub>CC</sub><br>DE at 0 V<br>No load                                                                                        | Receiver disabled and driver disabled (standby) |                     |       | 1                  | 5     | μA   |
|                  |                                                           | RE at 0 V<br>D and DE at V <sub>CC</sub><br>No load                                                                                                          | Receiver e<br>enabled                           | enabled and driver  |       | 9                  | 15.5  | mA   |

(1) All typical values are at  $25^{\circ}$ C and with a 3.3-V supply.

### 7.7 Power Dissipation Characteristics

|                  | PARAMETER                              | TEST CONDITIONS                                                                                           | MIN                 | TYP | MAX | UNIT |    |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|-----|-----|------|----|
| P <sub>D</sub>   | Device power dissipation               | $R_L = 60 \Omega, C_L = 50 pF,$                                                                           | HVD10<br>(32Mbps)   |     | 198 | 250  |    |
|                  |                                        | DE at V <sub>CC</sub> , RE at 0 V,<br>nput to D is a 50% duty-cycle<br>square wave at indicated signaling | HVD11<br>(10Mbps)   |     | 141 | 176  | mW |
|                  |                                        | rate                                                                                                      | HVD12<br>(500 kbps) |     | 133 | 161  |    |
| т                | Ambient eir temperature(1)             | High-K board, no airflow                                                                                  | D pkg               | -40 |     | 116  | °C |
| TA               | Ambient air temperature <sup>(1)</sup> | No airflow <sup>(2)</sup> P pkg                                                                           |                     | -40 |     | 123  | C  |
| T <sub>JSD</sub> | Thermal shutdown junction terr         |                                                                                                           |                     | 165 |     | °C   |    |

(1) See セクション 12.3.1 section for an explanation of these parameters.

(2) JESD51-10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements.

Copyright © 2022 Texas Instruments Incorporated



## 7.8 Driver Switching Characteristics

Over recommended operating conditions unless otherwise noted

| PARAMETER                          |                                                          | TEST CONDITIONS | MIN                                                        | <b>TYP</b> <sup>(1)</sup> | MAX | UNIT |    |
|------------------------------------|----------------------------------------------------------|-----------------|------------------------------------------------------------|---------------------------|-----|------|----|
|                                    | HVD10                                                    |                 |                                                            | 5                         | 8.5 | 16   |    |
| PLH                                | Propagation delay time,<br>low-to-high-level output      | HVD11           |                                                            | 18                        | 25  | 40   | ns |
|                                    | low to high lover output                                 | HVD12           |                                                            | 135                       | 200 | 300  |    |
|                                    |                                                          | HVD10           |                                                            | 5                         | 8.5 | 16   |    |
| PHL                                | Propagation delay time,<br>high-to-low-level output      | HVD11           |                                                            | 18                        | 25  | 40   | ns |
|                                    | high to low lovel output                                 | HVD12           |                                                            | 135                       | 200 | 300  |    |
|                                    |                                                          | HVD10           |                                                            | 3                         | 4.5 | 10   |    |
| r                                  | Differential output signal<br>rise time                  | HVD11           | R <sub>L</sub> = 54 Ω, C <sub>L</sub> = 50 pF<br>See ⊠ 8-4 | 10                        | 20  | 30   | ns |
|                                    |                                                          | HVD12           |                                                            | 100                       | 170 | 300  |    |
|                                    |                                                          | HVD10           |                                                            | 3                         | 4.5 | 10   |    |
| f                                  | Differential output signal<br>fall time                  | HVD11           |                                                            | 10                        | 20  | 30   | ns |
|                                    |                                                          | HVD12           |                                                            | 100                       | 170 | 300  |    |
|                                    | Pulse skew ( t <sub>PHL</sub> – t <sub>PLH</sub>  )      | HVD10           |                                                            |                           |     | 1.5  |    |
| t <sub>sk(p)</sub>                 |                                                          | HVD11           | 1                                                          |                           |     | 2.5  | ns |
|                                    |                                                          | HVD12           |                                                            |                           |     | 7    |    |
| t <sub>sk(pp)</sub> <sup>(2)</sup> |                                                          | HVD10           |                                                            |                           |     | 6    |    |
|                                    | Part-to-part skew                                        | HVD11           |                                                            |                           |     | 11   | ns |
|                                    |                                                          | HVD12           |                                                            |                           |     | 100  |    |
|                                    | Propagation delay time,<br>high-impedance-to-high-       | HVD10           |                                                            |                           |     | 31   |    |
| PZH                                |                                                          | HVD11           | _                                                          |                           |     | 55   | ns |
|                                    | level output                                             | HVD12           | R <sub>L</sub> = 110 Ω, <del>RE</del> at 0 V               |                           |     | 300  |    |
|                                    | Propagation delay time,                                  | HVD10           | See 🗵 8-5                                                  |                           |     | 25   |    |
| PHZ                                | high-level-to-high-                                      | HVD11           |                                                            |                           |     | 55   | ns |
|                                    | impedance output                                         | HVD12           |                                                            |                           |     | 300  |    |
|                                    | Propagation delay time,                                  | HVD10           |                                                            |                           |     | 26   |    |
| PZL                                | high-impedance-to-low-                                   | HVD11           |                                                            |                           |     | 55   | ns |
|                                    | level output                                             | HVD12           | R <sub>L</sub> = 110 Ω, RE at 0 V                          |                           |     | 300  |    |
|                                    | Propagation delay time,                                  | HVD10           | See 🗵 8-6                                                  |                           |     | 26   |    |
| t <sub>PLZ</sub>                   | low-level-to-high-                                       | HVD11           |                                                            |                           |     | 75   | ns |
|                                    | impedance output                                         | HVD12           |                                                            |                           |     | 400  |    |
| PZH                                | Propagation delay time, standby-to-high-<br>level output |                 | R <sub>L</sub> = 110 Ω, RE at 3 V<br>See 🗵 8-5             |                           |     | 6    | μs |
| PZL                                |                                                          |                 | R <sub>L</sub> = 110 Ω, RE at 3 V<br>See 🗵 8-6             |                           |     | 6    | μs |

(1) (2)

All typical values are at 25°C and with a 3.3-V supply.  $t_{sk(pp)}$  is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.



## 7.9 Receiver Switching Characteristics

Over recommended operating conditions unless otherwise noted

| PARAMETER                       |                                                          | TEST CONDITIONS MIN                     |                                                             | TYP <sup>(1)</sup> | MAX | UNIT |            |
|---------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|--------------------|-----|------|------------|
| t <sub>PLH</sub>                | Propagation delay time,<br>low-to-high-level output      |                                         | 12.5                                                        | 20                 | 25  | 20   |            |
| t <sub>PHL</sub>                | Propagation delay time,<br>high-to-low-level output      | HVD10                                   | -                                                           | 12.5               | 20  | 25   | ns         |
| t <sub>PLH</sub>                | Propagation delay time,<br>low-to-high-level output      | HVD11<br>HVD12                          | V <sub>ID</sub> = -1.5 V to 1.5 V<br>C <sub>I</sub> = 15 pF | 30                 | 55  | 70   | ns         |
| t <sub>PHL</sub>                | Propagation delay time,<br>high-to-low-level output      | HVD11<br>HVD12                          | See 🗵 8-9                                                   | 30                 | 55  | 70   | ns         |
|                                 |                                                          | HVD10                                   | -                                                           |                    |     | 1.5  |            |
| t <sub>sk(p)</sub>              | Pulse skew ( t <sub>PHL</sub> – t <sub>PLH</sub>  )      | HVD11                                   | -                                                           |                    |     | 4    | ns         |
|                                 |                                                          | HVD12                                   |                                                             |                    |     | 4    |            |
|                                 | Part-to-part skew                                        | HVD10                                   |                                                             |                    |     | 8    |            |
| t <sub>sk(pp)</sub> (2)         |                                                          | HVD11                                   |                                                             |                    |     | 15   | ns         |
|                                 |                                                          | HVD12                                   |                                                             |                    |     | 15   |            |
| t <sub>r</sub>                  | Output signal rise time                                  |                                         | C <sub>L</sub> = 15 pF                                      | 1                  | 2   | 5    | ns         |
| t <sub>f</sub>                  | Output signal fall time                                  |                                         | See 🗵 8-9                                                   | 1                  | 2   | 5    | 115        |
| t <sub>PZH</sub> (1)            | Output enable time to high                               | level                                   |                                                             |                    |     | 15   |            |
| t <sub>PZL</sub> (1)            | Output enable time to low I                              | evel                                    | C <sub>L</sub> = 15 pF, DE at 3 V                           |                    |     | 15   | <b>n</b> 0 |
| t <sub>PHZ</sub>                | Output disable time from high level                      |                                         | See 🗵 8-10                                                  |                    |     | 20   | ns         |
| t <sub>PLZ</sub>                | Output disable time from lo                              | Itput disable time from low level       |                                                             |                    |     | 15   |            |
| t <sub>PZH</sub> <sup>(2)</sup> | Propagation delay time, standby-to-high-<br>level output |                                         | C <sub>L</sub> = 15 pF, DE at 0                             |                    |     | 6    |            |
| t <sub>PZL</sub> <sup>(2)</sup> | Propagation delay time, sta<br>level output              | Propagation delay time, standby-to-low- |                                                             |                    |     | 6    | μs         |

(1) All typical values are at 25°C and with a 3.3-V supply

(2) t<sub>sk(pp)</sub> is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

## 7.10 Dissipation Ratings

| -                | V                                     |                                                               |                                       |                                       |                                        |
|------------------|---------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| PACKAGE          | T <sub>A</sub> ≤ 25°C<br>POWER RATING | DERATING FACTOR <sup>(1)</sup><br>ABOVE T <sub>A</sub> = 25°C | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING | T <sub>A</sub> = 125°C<br>POWER RATING |
| D <sup>(2)</sup> | 597 mW                                | 4.97 mW/°C                                                    | 373 mW                                | 298 mW                                | 100 mW                                 |
| D <sup>(3)</sup> | 990 mW                                | 8.26 mW/°C                                                    | 620 mW                                | 496 mW                                | 165 mW                                 |
| Р                | 1290 mW                               | 10.75 mW/°C                                                   | 806 mW                                | 645 mW                                | 215 mW                                 |

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3.

(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7.



## 7.11 Typical Characteristics



Copyright © 2022 Texas Instruments Incorporated



### 7.11 Typical Characteristics (continued)





## **8 Parameter Measurement Information**



Copyright © 2017, Texas Instruments Incorporated

#### 図 8-1. Driver V<sub>OD</sub> Test Circuit and Voltage and Current Definitions



Copyright © 2017, Texas Instruments Incorporated

## 図 8-2. Driver V<sub>OD</sub> With Common-Mode Loading Test Circuit



Copyright © 2017, Texas Instruments Incorporated

Input: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  < 60 ns,  $t_f$  < 6 ns  $Z_O$  = 50  $\Omega$ 





Copyright © 2017, Texas Instruments Incorporated

Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r < 60$  ns,  $t_f < 6$  ns  $Z_0 = 50 \Omega$ 

#### **図** 8-4. Driver Switching Test Circuit and Voltage Waveforms



#### SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 JAJSND7P – FEBRUARY 2002 – REVISED FEBRUARY 2022



Copyright © 2017, Texas Instruments Incorporated

Texas

**NSTRUMENTS** 

Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  < 60 ns,  $t_f$  < 6 ns Z<sub>O</sub> = 50  $\Omega$ 





Copyright © 2017, Texas Instruments Incorporated

Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  < 60 ns,  $t_f$  < 6 ns Z<sub>O</sub> = 50  $\Omega$ 

#### 図 8-6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



The time  $t_{PZL(x)}$  is the measure from DE to  $V_{OD}(x)$ .  $V_{OD}$  is valid when it is greater than 1.5 V.

#### **図** 8-7. Driver Enable Time from DE to V<sub>OD</sub>











Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  <6 ns,  $t_f$  <6 ns,  $Z_o$  = 50  $\Omega$ 



**図** 8-9. Receiver Switching Test Circuit and Voltage Waveforms

Copyright © 2022 Texas Instruments Incorporated

#### SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 JAJSND7P – FEBRUARY 2002 – REVISED FEBRUARY 2022





Generator: PRR = 500 kHz, 50% Duty Cycle,  $t_r$  <6 ns,  $t_f$  <6 ns,  $Z_o$  = 50  $\Omega$ 



**2**8-10. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled





Generator: PRR = 100 kHz, 50% Duty Cycle,  $t_r$  <6 ns,  $t_f$  <6 ns,  $Z_o$  = 50  $\Omega$ 







Copyright © 2017, Texas Instruments Incorporated

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

#### **2** 8-12. Test Circuit, Transient Over Voltage Test

#### SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 JAJSND7P – FEBRUARY 2002 – REVISED FEBRUARY 2022





8-13. Equivalent Input and Output Schematic Diagrams

Copyright © 2022 Texas Instruments Incorporated

Copyright © 2017, Texas Instruments Incorporated



## 9 Detailed Description

## 9.1 Overview

The SN65HVD10, SN65HVD11, and SN65HVD12 are 3.3 V, half-duplex, and RS-485 transceivers that are available in 3 speed grades suitable for data transmission up to 32 Mbps, 10 Mbps, and 1 Mbps.

These devices have both active-high driver enables and active-low receiver enables. A standby current of less than

5  $\mu$ A can be achieved by disabling both driver and receiver.

## 9.2 Functional Block Diagram



Copyright © 2016, Texas Instruments Incorporated

### 9.3 Feature Description

Internal ESD protection circuits protect the transceiver bus terminals against ±16-kV Human Body Model (HBM) electrostatic discharges and ±4-kV electrical fast transients (EFT) according to IEC61000-4-4.

The SN65HVD1x half-duplex family provides internal biasing of the receiver input thresholds for open-circuit, bus-idle, or short-circuit fail-safe conditions, as well as a typical receiver hysteresis of 35 mV.

### 9.4 Device Functional Modes

When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case, the differential output voltage defined as  $V_{OD} = V_A - V_B$  is positive. When D is low, the output states reverse, B turns high, A becomes low, and  $V_{OD}$  is negative.

When DE is low, both outputs turn high-impedance. In this condition, the logic state at D is irrelevant. The DE pin has an internal pulldown resistor to ground; therefore, when left open, the driver is disabled (high-impedance) by default. The D pin has an internal pullup resistor to  $V_{CC}$ ; therefore, when left open while the driver is enabled, output A turns high and B turns low.

| INPUT | ENABLE | OUT | PUTS | FUNCTION                           |  |  |  |  |  |
|-------|--------|-----|------|------------------------------------|--|--|--|--|--|
| D     | DE     | A   | В    | FUNCTION                           |  |  |  |  |  |
| Н     | Н      | Н   | L    | Actively drive bus High            |  |  |  |  |  |
| L     | Н      | L   | Н    | Actively drive bus Low             |  |  |  |  |  |
| Х     | L      | Z   | Z    | Driver disabled                    |  |  |  |  |  |
| Х     | OPEN   | Z   | Z    | Driver disabled by default         |  |  |  |  |  |
| OPEN  | Н      | Н   | L    | Actively drive bus High by default |  |  |  |  |  |

(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

When the receiver enable pin,  $\overline{RE}$ , is logic low, the receiver is enabled. When the differential input voltage defined as  $V_{ID} = V_A - V_B$  is positive and higher than the positive input threshold,  $V_{IT+}$ , the receiver output, R,



turns high. When  $V_{ID}$  is negative and lower than the negative input threshold,  $V_{IT-}$ , the receiver output, R, turns low. If  $V_{ID}$  is between  $V_{IT+}$  and  $V_{IT-}$ , the output is indeterminate.

When  $\overline{RE}$  is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of V<sub>ID</sub> are irrelevant. Internal biasing of the receiver inputs causes the output to go fail-safe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or when the bus is not actively driven (idle bus).

| ENABLE<br>RE | OUTPUT<br>R            | FUNCTION                                                                                                                                            |  |  |  |  |  |  |
|--------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| L            | Н                      | Receive valid bus High                                                                                                                              |  |  |  |  |  |  |
| L            | ?                      | Indeterminate bus state                                                                                                                             |  |  |  |  |  |  |
| L            | L                      | Receive valid bus Low                                                                                                                               |  |  |  |  |  |  |
| Н            | Z                      | Receiver disabled                                                                                                                                   |  |  |  |  |  |  |
| OPEN         | Z                      | Receiver disabled by default                                                                                                                        |  |  |  |  |  |  |
| L            | Н                      | Fail-safe high output                                                                                                                               |  |  |  |  |  |  |
| L            | Н                      | Fail-safe high output                                                                                                                               |  |  |  |  |  |  |
|              | RE<br>L<br>L<br>L<br>H | RE         R           L         H           L         ?           L         L           H         Z           OPEN         Z           L         H |  |  |  |  |  |  |

#### 表 9-2. Receiver Functions<sup>(1)</sup>

(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate

#### 9.4.1 Low-Power Standby Mode

When both the driver and receiver are disabled (DE low and  $\overline{RE}$  high) the device is in standby mode. If the enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against inadvertently entering standby mode during driver or receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most internal circuitry is powered down, and the supply current is typically less than 1  $\mu$ A. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.



## **10** Application and Implementation

Note

以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

## **10.1 Application Information**

The SN65HVD10, 'HVD11, and 'HVD12 are half-duplex RS-485 transceivers commonly used for asynchronous data transmissions. The driver and receiver enable pins allow the configuration of different operating modes.



a) Independent driver and receiver enable signals



b) Combined enable signals for use as directional control pin



c) Receiver always on

Copyright © 2016, Texas Instruments Incorporated

#### 図 10-1. Half-Duplex Transceiver Configurations

- 1. Using independent enable lines provides the most flexible control, as it allows the driver and the receiver to be turned on and off individually. While this configuration requires two control lines, it allows selective listening into the bus traffic, whether the driver is transmitting data or not.
- 2. Combining the enable signals simplify the interface to the controller, by forming a single direction-control signal. In this configuration, the transceiver operates as a driver when the direction-control line is high, and as a receiver when the direction-control line is low.
- 3. Only one line is required when connecting the receiver-enable input to ground and controlling only the driverenable input. In this configuration, a node not only receives the data from the bus, but also the data it sends and can verify that the correct data have been transmitted.

Copyright © 2022 Texas Instruments Incorporated



## **10.2 Typical Application**

An RS-485 bus consists of multiple transceivers connected in parallel to a bus cable. To eliminate line reflections, each cable end is terminated with a termination resistor,  $R_T$ , whose value matches the characteristic impedance,  $Z_0$ , of the cable. This method, known as parallel termination, allows higher data rates over a longer cable length.



2 10-2. Typical RS-485 Network With Half-Duplex Transceivers

### 10.2.1 Design Requirements

RS-485 is a robust electrical standard suitable for long-distance networking, that may be used in a wide range of applications with varying requirements, such as distance, data rate, and number of nodes.

#### 10.2.1.1 Data Rate and Bus Length

There is an inverse relationship between data rate and bus length, meaning the higher the data rate, the shorter the cable length; and conversely, the lower the data rate, the longer the cable may be without introducing data errors. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing small signal jitter of up to 5 or 10%.



図 10-3. Cable Length vs Data Rate Characteristic



### 10.2.1.2 Stub Length

When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, should be as short as possible. Stubs present a nonterminated piece of bus line, which can introduce reflections as the length of the stub increases. As a general guideline, the electrical length or round-trip delay of a stub should be less than one-tenth of the rise time of the driver, therefore giving a maximum physical stub length as shown in  $\neq 1$ .

$$L_{(STUB)} \le 0.1 \times t_r \times v \times c$$

(1)

#### where

- t<sub>r</sub> is the 10/90 rise time of the driver
- v is the signal velocity of the cable or trace as a factor of c
- *c* is the speed of light  $(3 \times 10^8 \text{ m/s})$

Per  $regiment{degreen}$  1,  $regiment{degreen$ 

| DEVICE    | MINIMUM DRIVER OUTPUT | MAXIMUM ST | TUB LENGTH |  |  |  |  |  |  |
|-----------|-----------------------|------------|------------|--|--|--|--|--|--|
|           | RISE TIME (ns)        | (m)        | (ft)       |  |  |  |  |  |  |
| SN65HVD10 | 3                     | 0.07       | 0.23       |  |  |  |  |  |  |
| SN65HVD11 | 10                    | 0.23       | 0.75       |  |  |  |  |  |  |
| SN65HVD12 | 100                   | 2.34       | 7.67       |  |  |  |  |  |  |

#### 表 10-1. Maximum Stub Length

#### 10.2.1.3 Bus Loading

The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit load represents a load impedance of approximately 12 k $\Omega$ . SN65HVD11 and HVD12 are both 1/8 UL transceivers, which means that up to 256 receivers can be connected to the bus. The SN65HVD10 is a 1/4 UL transceiver, and up to 64 receivers can be connected to the bus.

#### 10.2.1.4 Receiver Fail-safe

The differential receivers of the SN65HVD1x family are fail-safe to invalid bus states caused by:

- Open bus conditions, such as a disconnected connector
- Shorted bus conditions, such as cable damage shorting the twisted-pair together
- Idle bus conditions that occur when no driver on the bus is actively driving.

In any of these cases, the differential receiver will output a fail-safe logic High state so that the output of the receiver is not indeterminate.

Receiver fail-safe is accomplished by offsetting the receiver thresholds, such that the input indeterminate range does not include zero volts differential. To comply with the RS-422 and RS-485 standards, the receiver output must output a High when the differential input V<sub>ID</sub> is more positive than +200 mV, and must output a Low when V<sub>ID</sub> is more negative than -200 mV. The receiver parameters which determine the fail-safe performance are V<sub>IT(+)</sub> and V<sub>IT(-)</sub>. As shown in  $\frac{1}{2}\sqrt{2}\sqrt{2}\sqrt{7.6}$ , differential signals more negative than -200 mV will always cause a Low receiver output, and differential signals more positive than +200 mV will always cause a High receiver output.

When the differential input signal is close to zero, it is still above the maximum  $V_{IT(+)}$  threshold of -10 mV, and the receiver output will be High.



#### 10.2.2 Detailed Design Procedure

To protect bus nodes against high-energy transients, the implementation of external transient protection devices is therefore necessary.  $\boxtimes$  10-4 shows a protection circuit against 10-kV ESD (IEC 61000-4-2), 4-kV EFT (IEC 61000-4-4), and 1-kV surge (IEC 61000-4-5) transients.



Copyright © 2017, Texas Instruments Incorporated

#### 図 10-4. Transient Protection Against ESD, EFT, and Surge Transients

| DEVICE | FUNCTION                                        | ORDER NUMBER       | MANUFACTURER |  |  |  |  |  |  |  |
|--------|-------------------------------------------------|--------------------|--------------|--|--|--|--|--|--|--|
| XCVR   | 3.3-V, full-duplex RS-485<br>transceiver        | SN65HVD1xD         | TI           |  |  |  |  |  |  |  |
| R1, R2 | 10- $\Omega$ , pulse-proof, thick-film resistor | CRCW0603010RJNEAHP | Vishay       |  |  |  |  |  |  |  |
| TVS    | Bidirectional 400-W<br>transient suppressor     | CDSOT23-SM712      | Bourns       |  |  |  |  |  |  |  |

#### 表 10-2. Bill of Materials

#### **10.2.3 Application Curve**

 $\boxed{≥}$  10-5 demonstrates operation of the SN65HVD12 at a signaling rate of 250 kbps. Two SN65HVD12 transceivers are used to transmit data through a 2,000 foot (600 m) segment of Commscope 5524 category 5e+ twisted pair cable. The bus is terminated at each end by a 100-Ω resistor, matching the cable characteristic impedance.



#### 図 10-5. SN65HVD12 Input and Output Through 2000 Feet of Cable

Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12



## 11 Power Supply Recommendations

To assure reliable operation at all data rates and supply voltages, each supply must be buffered with a 100-nF ceramic capacitor located as close to the supply pins as possible. The TPS76333 linear voltage regulator is suitable for the 3.3-V supply.

## 12 Layout

## 12.1 Layout Guidelines

On-chip IEC-ESD protection is sufficient for laboratory and portable equipment, but never sufficient for EFT and surge transients occurring in industrial environments. Therefore, robust and reliable bus node design requires the use of external transient protection devices.

It is because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, that high-frequency layout techniques must be applied during PCB design.

- 1. Place the protection circuitry close to the bus connector to prevent noise transients from entering the board.
- 2. Use V<sub>CC</sub> and ground planes to provide low-inductance. Note that high-frequency currents follow the path of least inductance and not the path of least impedance.
- 3. Design the protection components into the direction of the signal path. Do not force the transient currents to divert from the signal path to reach the protection device.
- 4. Apply 100-nF to 220-nF bypass capacitors as close as possible to the V<sub>CC</sub> pins of transceiver, UART, and controller ICs on the board.
- 5. Use at least two vias for V<sub>CC</sub> and ground connections of bypass capacitors and protection devices to minimize effective via-inductance.
- 6. Use  $1-k\Omega$  to  $10-k\Omega$  pull-up or pull-down resistors to enable lines to limit noise currents in these lines during transient events.
- 7. Insert pulse-proof series resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified maximum voltage of the transceiver bus terminals. These resistors limit the residual clamping current into the transceiver and prevent it from latching up.
- 8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient blocking units (TBUs) that limit transient current to less than 1 mA.

Copyright © 2022 Texas Instruments Incorporated



## 12.2 Layout Example



### 図 12-1. SN65HVD1x Layout Example

### **12.3 Thermal Considerations**

### 12.3.1 Thermal Characteristics of IC Packages

**R<sub>0JA</sub> (Junction-to-Ambient Thermal Resistance)** is defined as the difference in junction temperature to ambient temperature divided by the operating power.

 $R_{\theta JA}$  is not a constant and is a strong function of:

- the PCB design (50% variation)
- altitude (20% variation)
- device power (5% variation)

 $R_{\theta JA}$  can be used to compare the thermal performance of packages when specific test conditions are defined and used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations, and the thermal characteristics of holding fixtures.  $R_{\theta JA}$  is often misused when it is used to calculate junction temperatures for other installations.

TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition thermal performance, and it consists of a single copper trace layer 25 mm long and 2-oz thick. The high-k board gives best case in-use condition, and it consists of two 1-oz buried power planes with a single copper trace layer 25 mm long and 2-oz thick. A 4% to 50% difference in  $R_{\theta JA}$  can be measured between these two test cards.

 $R_{\theta JC}$  (Junction-to-Case Thermal Resistance) is defined as the difference in junction temperature to case divided by the operating power. It is measured by putting the mounted package up against a copper block cold plate to force heat to flow from the die, through the mold compound into the copper block.

 $R_{\theta JC}$  is a useful thermal characteristic when a heat sink is applied to package. It is not a useful characteristic to predict junction temperature, because it provides pessimistic numbers if the case temperature is measured in a nonstandard system and junction temperatures are backed out. It can be used with  $R_{\theta JB}$  in 1-dimensional thermal simulation of a package system.

 $R_{\theta JB}$  (Junction-to-Board Thermal Resistance) is defined as the difference in the junction temperature and the PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate structure.  $R_{\theta JB}$  is only defined for the high-k test card.

 $R_{\theta JB}$  provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal resistance (especially for BGAs with thermal balls) and can be used for simple 1-dimensional network analysis of package system, see  $\boxtimes$  12-2.





🛛 12-2. PCB Thermal Resistances

Copyright © 2022 Texas Instruments Incorporated



## 13 Device and Documentation Support

### **13.1 Device Support**

## 13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

| PARTS PRODUCT FOLD |            | ORDER NOW  | TECHNICAL<br>DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT &<br>COMMUNITY |  |  |  |  |  |
|--------------------|------------|------------|------------------------|---------------------|------------------------|--|--|--|--|--|
| SN65HVD10          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |
| SN65HVD11          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |
| SN65HVD12          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |
| SN75HVD10          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |
| SN75HVD11          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |
| SN75HVD12          | Click here | Click here | Click here             | Click here          | Click here             |  |  |  |  |  |

## ± 40.4 Deleted Links

### **13.3 Receiving Notification of Documentation Updates**

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

## 13.4 サポート・リソース

TI E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接 得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得るこ とができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するも のではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

## 13.5 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

#### 13.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 13.7 Glossary

**TI Glossarv** This glossary lists and explains terms, acronyms, and definitions.

## 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



# **PACKAGING INFORMATION**

| Orderable part number | Status<br>(1) | Material type (2) | Package   Pins | Package qty   Carrier | <b>RoHS</b><br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|-----------------------|---------------|-------------------|----------------|-----------------------|--------------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| SN65HVD10D            | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | -40 to 85    | VP10                |
| SN65HVD10DR           | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP10                |
| SN65HVD10DR.A         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP10                |
| SN65HVD10DRG4         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP10                |
| SN65HVD10P            | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD10             |
| SN65HVD10P.A          | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD10             |
| SN65HVD10QD           | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | -40 to 125   | VP10Q               |
| SN65HVD10QDR          | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP10Q               |
| SN65HVD10QDR.A        | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP10Q               |
| SN65HVD10QDRG4        | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP10Q               |
| SN65HVD10QDRG4.A      | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP10Q               |
| SN65HVD11D            | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | -40 to 85    | VP11                |
| SN65HVD11DR           | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP11                |
| SN65HVD11DR.A         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP11                |
| SN65HVD11DRG4         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP11                |
| SN65HVD11P            | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD11             |
| SN65HVD11P.A          | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD11             |
| SN65HVD11QD           | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | -40 to 125   | VP11Q               |
| SN65HVD11QDR          | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP11Q               |
| SN65HVD11QDR.A        | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP11Q               |
| SN65HVD11QDRG4        | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP11Q               |
| SN65HVD11QDRG4.A      | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 125   | VP11Q               |
| SN65HVD12D            | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | -40 to 85    | VP12                |
| SN65HVD12DR           | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP12                |
| SN65HVD12DR.A         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP12                |
| SN65HVD12DRG4         | Active        | Production        | SOIC (D)   8   | 2500   LARGE T&R      | Yes                | NIPDAU                               | Level-1-260C-UNLIM                | -40 to 85    | VP12                |
| SN65HVD12P            | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD12             |
| SN65HVD12P.A          | Active        | Production        | PDIP (P)   8   | 50   TUBE             | Yes                | NIPDAU                               | N/A for Pkg Type                  | -40 to 85    | 65HVD12             |
| SN75HVD10D            | Obsolete      | Production        | SOIC (D)   8   | -                     | -                  | Call TI                              | Call TI                           | 0 to 70      | VN10                |



| Orderable part number | Status   | Material type | Package   Pins | Package qty   Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking |
|-----------------------|----------|---------------|----------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------|
|                       | (1)      | (2)           |                |                       | (3)  | (4)                           | (5)                        |              | (6)          |
| SN75HVD10DR           | Obsolete | Production    | SOIC (D)   8   | -                     | -    | Call TI                       | Call TI                    | 0 to 70      | VN10         |
| SN75HVD10P            | Obsolete | Production    | PDIP (P)   8   | -                     | -    | Call TI                       | Call TI                    | 0 to 70      | 75HVD10      |
| SN75HVD11D            | Obsolete | Production    | SOIC (D)   8   | -                     | -    | Call TI                       | Call TI                    | 0 to 70      | VN11         |
| SN75HVD12D            | Obsolete | Production    | SOIC (D)   8   | -                     | -    | Call TI                       | Call TI                    | 0 to 70      | VN12         |
| SN75HVD12DR           | Obsolete | Production    | SOIC (D)   8   | -                     | -    | Call TI                       | Call TI                    | 0 to 70      | VN12         |
| SN75HVD12P            | Active   | Production    | PDIP (P)   8   | 50   TUBE             | Yes  | NIPDAU                        | N/A for Pkg Type           | 0 to 70      | 75HVD12      |
| SN75HVD12P.A          | Active   | Production    | PDIP (P)   8   | 50   TUBE             | Yes  | NIPDAU                        | N/A for Pkg Type           | 0 to 70      | 75HVD12      |
| SN75HVD12PE4          | Active   | Production    | PDIP (P)   8   | 50   TUBE             | Yes  | NIPDAU                        | N/A for Pkg Type           | 0 to 70      | 75HVD12      |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



www.ti.com

OTHER QUALIFIED VERSIONS OF SN65HVD10, SN65HVD11, SN65HVD12 :

Enhanced Product : SN65HVD10-EP, SN65HVD12-EP

NOTE: Qualified Version Definitions:

• Enhanced Product - Supports Defense, Aerospace and Medical Applications



Texas

STRUMENTS

## TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| *All dimensions are nominal |                 |                    |   |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN65HVD10DR                 | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD10DR                 | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD10QDR                | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD10QDRG4              | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD11DR                 | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD11QDR                | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD11QDRG4              | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN65HVD12DR                 | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |



www.ti.com

# PACKAGE MATERIALS INFORMATION

27-Jun-2025



|                | 1            | 1               |      |      |             |            |             |
|----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| Device         | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
| SN65HVD10DR    | SOIC         | D               | 8    | 2500 | 340.5       | 336.1      | 25.0        |
| SN65HVD10DR    | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| SN65HVD10QDR   | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| SN65HVD10QDRG4 | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| SN65HVD11DR    | SOIC         | D               | 8    | 2500 | 340.5       | 336.1      | 25.0        |
| SN65HVD11QDR   | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| SN65HVD11QDRG4 | SOIC         | D               | 8    | 2500 | 356.0       | 356.0      | 35.0        |
| SN65HVD12DR    | SOIC         | D               | 8    | 2500 | 340.5       | 336.1      | 25.0        |

## TEXAS INSTRUMENTS

www.ti.com

27-Jun-2025

## TUBE



## - B - Alignment groove width

#### \*All dimensions are nominal

| Device       | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|--------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| SN65HVD10P   | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN65HVD10P.A | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN65HVD11P   | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN65HVD11P.A | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN65HVD12P   | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN65HVD12P.A | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN75HVD12P   | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN75HVD12P.A | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |
| SN75HVD12PE4 | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |

# D0008A



# **PACKAGE OUTLINE**

## SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



#### NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



# D0008A

# **EXAMPLE BOARD LAYOUT**

# SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



# D0008A

# **EXAMPLE STENCIL DESIGN**

# SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.



P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.



#### 重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みま す)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある 「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証 も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、 テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様 のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様の アプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任 を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツル メンツ製品を使用するアプリケーションの開発の目的でのみ、 テキサス・インスツルメンツはその使用をお客様に許諾します。これらの リソースに関して、他の目的で複製することや掲載することは禁止されています。 テキサス・インスツルメンツや第三者の知的財産権の ライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、 費用、損失、責任について、 テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、 テキサス・インスツルメンツは 一切の責任を拒否します。

テキサス・インスツルメンツの製品は、 <del>テキサス・インスツルメンツの販売条件</del>、または ti.com やかかる テキサス・インスツルメンツ 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。 テキサス・インスツルメンツがこれらのリソ ースを提供することは、適用される テキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありませ ん。

お客様がいかなる追加条項または代替条項を提案した場合でも、 テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated