MSP430 Assembly Language Tools
v21.6.0.LTS

User’s Guide

Wi} TEXAS INSTRUMENTS

Literature Number: SLAU131Y
OCTOBER 2004 — REVISED JUNE 2021

https://www.ti.com/lit/pdf/SLAU131

Table of Contents

i3 TEXAS INSTRUMENTS

LR Y- Lo I I T E= T ol] PSSP P RRRRN 1"
ADOUL THIS IMANUAL. ...ttt e et e ettt ettt eeeeaaeaaaeeaaaaaaaaaaa s snsaenssseseseeeeeeeeeaaeaaaaeeeeesesssaanannnnsnsnsnnnnnns 1"
HOW 10 USE THIS IMBNUAL......ceiiiiiiiieiie ettt ettt e e e e e e e e e ee e e s e s e e aeatatstateaeeeeeeeeeeaaaaaaaaeeeaeaeasaaaannnnsssnsnsnsnnnnnnnen 1"
[N o) F=YiloT g =TI @7 o] V=T o1 (o] o T USSP PPTRRT 12
Related Documentation From TeXas INSIrUMENTS.uuiiiiiiiiiiiiicec e e e e e e e e e e e e e e e e e e s s b e eeeeeeeeeeees 13
LI =0 (=T 0 =T 2 PPN 13

1 Introduction to the Software Development TOOIS................ooiiiiiiiiiiie e e e s e e e e e e saraeee s 15
1.1 Software DevelopmeENt TOOIS OVEIVIEW............uiiiei it ettt e e et e e e e et e e e e e st e e e e e sasbaaeaeeesnsseeeeeesssseeeessasseeeaesaanes 16
L2 LT E-3 =TT o] 1 o] o - PSPPI 17

2 Introduction t0 OBJECE MOAUIES.............oviiiiii et e e e e ettt e e e e et e e e e e e s e aseeeeeeesntaeeeeesasbaseaaeeanssseeaeeeannnnes 19
2.1 Object File FOrmat SPeCIfiCatiONS............oiiiiiiiiiii et e e e et e e e e st e e e e e e e sbsaeeaeeessnraeeeeesansbeneaesaanes 20
2.2 EXECULADIE ODJECE FIlES....cci ittt ettt e e e et e e e e e et e e e e e e s aataeeeeeaassbeeeaeeaasssseeaeeeannsseeeeesasseneaeeaanes 20
ARGl [011 (oo [N ox 1 To] g I (o TS Y=Y o1 i o] o - TP 20

2.3.1 SPECIAl SECHON NGIMES......cii ittt e et e e e e e e e e e e s et b et e e e e eassaeeeeeesatseeaeesasbeseaeeeassaeeaeeesantanseaesansnrees 21
2.4 How the Assembler HandIEs SECHONS.ccccuiiiii et e et e e e e e e e e et e e e e e e sata e e e e e eesbaeeaeseannaeeaeaans 21
2.4. 1 UNINItIAlIZEA SECHONS.eeiiee ittt e e e e et e e e e s et b e e e e e e e s aeaeeeeeesatseeaeesasbsseaaesassseeeeeesnntanseassansnrees 22
A 11 (=1 [Te IS T=Tex o) o =TSSP PPPRSPR 22
2.4.3 USEI-NAMEA SECHONS.eiiiiiiiiiiiiie et ee ettt e e e ettt e e e e et eeeesetbeeeeeeaasbeaeeaesasasseeaeeaansseseaeesasssaeeaeeesssanseassasnrees 23
D AW 4 (=Y o] 7= Tex 1] OO PPPPRPTRRINE 24
2.4.5 SECHON Program COUNTEIS.cciiiiiiiie i e ettt e e e ettt e e e e ettt e e e e st eeeeeseasbaeeaaesassseeeesassssseeaeessssaseeessasssseeeseassseeaeeans 24
D S 1] o T-1=Tox 1] 1O OURPRPRRRINE 24
2.4.7 USING SECHONS DIMECHIVES.uiiiiiiiiiiiiie ettt et e e e ettt e e e e et e ee e e e s sbs et eaeeassseeeaeesansbaseaeseasssaeeeeeeanssreeens 25
2.5 HOW the LinKer HanAIES SECHONS.........coiieiiiiie ittt et e e e ettt e e e e e et e e e e e e eastaeeeeesnasbeeeeeseanssseeaeeannnraeeens 27
2.5.1 ComMbINING INPUL SECHIONS.ciiiiiiiiee et e e e e e ettt e e e e et e e e e e e saasaeeeeeeaasbaeeaaesassseeaeeeannseeaeessnnres 28
2.5.2 PlaCing SECHONS.eeiiiiiiiiie ettt e et e e e e ettt e e e ettt ee e s e saeaeeeeeasasteeaeeesasbsaeeaeaaasssseeaeeaansbaeeeeesantaeeeeeeeanrreeeeeaanres 28
DS V111 o To] £ TSP SUPPRTP 29
2.6.1 Global (EXIErNal) SYMDOIS.eiieiiiiieiiie ettt e e et e e ettt e sa bt e e et e e e nte e e smseeeabeeeeanteeesnneeeennneeeanee 30
I e o= | IS 0] o Yo [T PP 30
2.6.3 WEAK SYMDOIS.eeiiiiiiiiieie ettt e ettt e e e ettt e e e s et e e e e e e eaasaeeeeeaaantaeeaee s ntbaeeeee e nbaeeaaeeaannrreaaeeaaanreeaeeeaanraneen 30
R TS 0] o To I F=1 o) [T PSSP PPPRR PR 31
2.7 SYMDONIC REIOCATIONS......ciiiiiiiiiiie ettt e e e et e e e e ettt ee e e e aaseeeeee s ataeeeee s e saeeeeaeeasassaeeeeesansaeseaesaanssseeaeesanses 32
D I 5 =1 Fo Tor= T 1 o o T = g4 TSP 32
DA< I Mo =T | o = T (oo | = o PP 32
3 Program Loading @and RUNNING.............oooiiiiiiiiiii ettt e e e e e e e e e e e e e s e s s et b e taeeeeeeeeeaaaaaeaaeeeeeaesssasanansnnsnsnsnes 33
G TR 1o = T | o PP PSRRI 34
R T O o= T =T o I U o [0 | =] PRI 34
B T 28 = ToTo) i1 1 =T o J o Y- To |1 T PP PPESPRPRR 35
BT822 = o 1 Y0 o o | PRSP 37
3.3 RUN-TIME INIEALZATION.euuiiieiiiieeieiei ettt e et et e eeeaeeeeeeessaaa s eaeseebeaeseeeeeeeeeeaaaaaeaaeeesssasanaannnnnsnsnes 38
R TR Tt B I o TS o {1 0O N U o £ o T o PR PPRSRR 38
3.3.2 RAM MOdel VS. ROM MOGEL.......coiitiieiiiiieiiie ettt sttt et e e ettt e s bt e e an bt e e smeeeesneeeeanbeeeenseeesanneeeanbeeenas 38
3.3.3 About Linker-Generated COPY TaDIES...........uuiiii ettt e e e et e e e e et e e e e s e sbtaeeaeeesnsbaeeeeseannnaeeeens 40
BTN o 8T =Y o £ o TN o =1 o PSRRI 41
B TR {01 B T L= = oY= 4T o PSSO 41
Yo [o 1 iTeTaE= 1M T} {oTy s 4= o] o PO PSS UPPRRP 41

L XCT=T=Y 0 0] o =Y gl =TS o T o] T o PP 43
4.1 ASSEMDIET OVEIVIEW.eiiiiiiiiiiii e ettt e et e e e e et e e e e ettt e e e e eaaaeeeee e e e atseeeeesesbaeeeeeaassseeaeeeasssseeeeesassaneeaesasssaeeesennnnnes 44
4.2 The Assembler's Role in the Software Development FIOW............oooiiiiiiiiiiiiiiie e et a e 45
4.3 INVOKING the ASSEMDIET ...ttt ettt e eeaeeeeeeeesaeaaaa s e saee bt basaaee et eeeeaeeaaaaaeaeeeeessaannannnen 46
4.4 Controlling Application BiNary INtEITACE............oii oottt e et e e e e st e e e e s eab e e e e e e eeeassaeeeeesnnnes 47

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 3
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
4.5 Naming Alternate Directories for ASSEMDIEr INPUL..........cooiiiiiiii et 47
4.5.1 Using the --include_path ASSEmMDIEr OPLION.uiiiiiii e 47
4.5.2 Using the MSP430_A_DIR Environment Variable..............c.oooiiiiiiiiii e 48
4.6 SOUrCe STateMENT FOMMAL........eiiiiiii ettt e b e e ettt e s bt e e sab e e e e abe e e snb e e e sebeeeebneennee 49
Ty I o= I YT TSRS 50
4.6.2 MINEMIONIC FIEIA. ...ttt e e h e oo a et oottt e e eb et e e aa ket e eab et e e eab e e e eabe e e enee e e saneeeabeeennee 50
A R @] oT=1 = o I =Y o O PSP U PP OUPRP PR 50
4.6.4 COMMENT FIEIA......eeiiiiii ittt e bt h et ea b et oottt e e b et e e ea ket e eab et e e eab e e e aabe e e enee e e saneeeabeeennee 51
| (=T T O]) =T | T PP SPPRPPN 51
A I a1 (=T [gl 1 (=T = O PP U PR OPPPP PRSI 52
4.7.2 Character STHNG LItEIalS............oooiiiiiiiii ettt ettt e e bt e e sttt e s e e e e bb e e e ante e e sbeeeentneeeaaee 53
4.7.3 FIOAtiNG-POINT LILETAIS. ...ttt ettt e e bt e e st e e s et e ek b e e e aate e e sneeeensneeeaaee 53
4.8 ASSEMDIET SYMDOIS. ...ttt ekt e ettt oo bttt e aa bt e ettt e oo h bt e e ea b et e e b et e e eab e e e et e et e 54
S R I [[T 0111 = TP PP P TSR PPPP 54
4.8.2 LADEIS. ...t b e bt ekt b et o R et e e aa et e e b et e e e ha e e e e b et e nnne e e nanes 54
S G B Mo To= | = o= L PP PR UPPOTPION 54
4.8.4 SYMDBDONC CONSIANES.......eiiiiiiiiiii ettt s et et e e a bt e e ea b et e e b bt e e st et e sab e e e e b b e e e anteeesaneeeeasneeeanes 55
4.8.5 Defining Symbolic Constants (--asm_define OPtion)..........uuiiiiiiiiiiiiii e 56
Example 4-2. Using Symbolic Constants Defined on Command LiN€..........cooouiiiiiiiiiiiieiiiie e 57
4.8.6 Predefined SymbDOIIC CONSTANES.iiiiiiii ittt sb e e et e st e eas 57
S A =T [=T T PSSP OPPROTPIN 58
4.8.8 SUDSHEULION SYMDOIS.eiiiiiiiiitiie ettt b e e ettt o et e ekt e e et et e s bt e e e an e e e e bt e e e nnneas 58
E e (o] (=TT] o T PO PUPPT PRSP 59
4.9.1 Mathematical and LOGICal OPEIAtOrS.uiiiuiiiiiiii ittt sttt ettt sa e e e e bb e e seate e e sneeeenbaeeeanee 60
4.9.2 Relational Operators and Conditional EXPreSSIiONS.c.uiiiiiiiiiiii e 61
4.9.3 Well-DEfiNEA EXPIESSIONS.ccutiiiiiiieittee ettt ettt ettt ettt e bt e e a bt oottt e e bb e e e aa b et e sabe e e e ebbe e e aabeeennaeeesaneeeabaeenan 61
4.10 Built-in FUNCHONS @NA OPEIATOIS. ...cccutiiiiiiiiiiiie etttk ea e s bt e e et b e e e aabe e e sab et e et bt e e eabeeesnneeeanreeenaee 62
4.10.1 Built-In Math and Trigonometric FUNCHONS.oiiiiii e 62
4.10.2 MSP430 Built-In ELF Relocation Generating Operators.coiuiiiiiiiiiiiee ittt 63
T M IS To T8 (ol I 3 (Vo L3 PSPPSRSO P PP 63
4.12 Debugging ASSEMDIY SOUFCE.cccuuiiiiiiiiitie ettt b e e ekt e b bt e e et et e sb e e e eba e e e aabe e e nneeeenaneeeas 65
4.13 CroSS-RETEIENCE LISHINGS.eiiiiiiiiiiie ittt ettt b et b e ettt e e b b e e e aa bt e e snt e e e rba e e e aabeeesneeeennneeeas 66
5 ASSEMDBIET DIFECHIVES.oiiiiiiiie e ettt h et h et e e bt oo h bt e e ea b et e ek bt e e eab e e e e be e e e nte e e nnne e nnreeean 67
5.1 DIFECHVES SUMIMEIY ...ttt ettt ettt e ket oo ettt e o b bt e o sttt e 1a bt e e ok bt e e sttt e ea bt e e e b b e e e aab et e aane e e e an b e e e nabaeesnneas 68
5.2 Directives that DefiNe SECHONS.cciiiiiiiiii ettt et e e b et e e sab e e e st e e sate e e sabeeeabeeennee 72
EXampIE 5-1. SECHONS DIFECHIVES.oueiiiitiii ettt et e et e e s et e e bt e e et et e sb e e e e et e e e ebn e e e nnees 73
5.3 Directives that INIIAliZe VaAlUES............ooo ittt ettt et e et e e e e sneee s 73
5.4 Directives that Perform Alignment and RESEIVE SPACE........cccuuiiiiiiiiiiiie it 76
5.5 Directives that Format the OUIPUL LISTINGS.ooiuiiiiiiii et 77
5.6 Directives that ReferenCe OTher Files........ ..o ittt 78
5.7 Directives that Enable Conditional ASSEMDIY...........oiiiiiiiiiiii et 78
5.8 Directives that Define Union or STrUCIUrE TYPES.oo it b e s 79
5.9 Directives that Define ENUMErated TYPES......ccoiuiiiiiiiiiiii ittt b ettt sb et e et e e sne e e s aanee s 79
5.10 Directives that Define Symbols at ASSEMDIY TiME.......couiiiiiiii e 79
5.11 MiISCEIIANEOUS DIFECHIVES. ...ttt bttt oo a bt e e s bt e ettt e e abe e e e be e e e aabe e e eneeeeaabeeeanbeeenan 80
5.12 DIrCHVES REFEIENCE. ...t h e oottt e bt e oo a et e o bt e e ettt e eabe e e e be e e e anbe e e saneeesanneeeas 81
6 Macro Language DESCIIPHION.cooiiiiiiiii ettt ettt e e e b e e a e s e e e b et 141
(SR O g T I 1V - Tor (o TSROSO PP PRI 142
(S B 1 T o Y =T o TSP USRS PP PRI 143
6.3 Macro Parameters/Substitution SYMDOIS.oooiiii e e 144
6.3.1 Directives That Define Substitution SYMDOIS..........cooiiiiii s 145
6.3.2 Built-In Substitution Symbol FUNCHONS.oiiiiii e e 146
6.3.3 Recursive SUbSHIUION SYMDOIS.cooiiiiii et 147
6.3.4 FOrCed SUDSTIIULION. ..ottt ettt s it e e e bt e e st e sab e e e e abb e e e anteeenanees 147
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols.............cccoiiiii s 148
6.3.6 Substitution Symbols as Local Variables in MACTOS.coouiiiiiiiiii e 148
(O Y o (o N o = 14 o PSPPSR PP 149
6.5 Using Conditional ASSEMDIY iN IMACTOS.........eeiiiiiiiiiie ittt ettt e et e s e e sbb e e et e e nnee e e saneeeas 149
6.6 USING LADEIS IN IMACTOS. ... ittt ettt ettt a e e et et e e bttt e ea b et e et et e e st e e e sabe e e et bt e e enteeenabeeean 151
6.7 ProduCing MESSAQES iN IMACTOS.ueiiiiiieitiie ettt ettt ettt e e s a et e et e e e bttt e sab et e ettt e e eate e e sabeeeeanneeennes 152
6.8 Using Directives to Format the OULPUL LIStING.........eiiiiiiiiiiei et 152
4 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
6.9 Using Recursive and NESTEA IMACTOS.co.uiiiiiiii ittt a et e bt e st e sbb e e et e e e sneeeenaneeeas 154
6.10 MACIO Dir€CHVES SUMIMEAIY.....cutiiiiiiieiiiee ettt ettt oot h e e e ettt e s b et e e b bt e e aab et e eabt et e aab e e e aabe e e anteeesabeeeebneeeanee 155
T ATChIVEE DESCIIPLION. ...ttt ettt b e e a e oo ettt e o bt e e ea b et e e bt e e e sab e e e aabe e e snb e e e sabeeeabneennee 157
7.1 ATCRIVET OVEIVIEW.......eeieiiii ittt ettt etttk e ettt e o bt e ekt e e eaE et e 2o s et e e oh bt e e eab et e e s e et e sa bt e e e bb e e e enteeesnbeeeeasneeenne 158
7.2 The Archiver's Role in the Software Development FIOW..........coiiiiiiiiiii e 158
7.3 INVOKING the ATCRIVET ...ttt bttt e b et oot et e o b et e ek bt e e e b et e e b bt e e anbe e e eabeeesanbeeeanbeeenans 159
A N o TN = 1g] o] [P PU PRSPPI 159
7.5 Library Information ArChiver DESCIIPON.iii ittt et e e b e e e ntneeeaaee 161
7.5.1 Invoking the Library INformation ArCRIVET.............oi it 161
7.5.2 Library Information ArChiver EXAMIPIE.ei ittt ettt ettt e b e e st snn e as 162
7.5.3 Listing the Contents of @an INAEX LIDIary.........cooiiii e 162
[T =T [T =T o g =T T TP PR PSPPI 162
8 LINKEE DESCHIPLION. ...ttt h et h et oottt e o b et e e ea b et e ettt e o be e e e aa b et e e be e e e ebbeeeenbe e e nneeeenareeean 163
8.1 LINKET OVEIVIEW. ...ttt a et e sttt e oa et 4ok et e o sttt o1 e bt e oo ekt e £ sttt e 1a bt e e ettt e ent e e e sab e e e eneeeennneas 164
8.2 The Linker's Role in the Software Development FIOW.............coiiiiiiiiii e 164
8.3 INVOKING the LINKET......eeiiii ettt e et oot ea et o1 a bt e e ek bt e e st et e sab et e es bt e e ean e e e s beeeeanneeennes 165
R I 1] =T @] o] 1] o T PSSP PPPTPRPN 166
8.4.1 Wildcards in File, Section, and Symbol Patterns.c..eiiiiiiiii et 168
8.4.2 Specifying C/C++ Symbols with LinKer OPLiONS.iiiiiiiiiii e 168
8.4.3 Relocation Capabilities (--absolute_exe and --relocatable OplionsS)..........ccoviiiiiiieiiiiiii e 168
8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)..........ccccevvieiiniiiinieec e 169
8.4.5 Compression (--cinit_compression and --copy_compression OPtioN).........c.cooruiieiiiieiriie e 169
8.4.6 CONrol LINKEr DI@gNOSTICS. ... ceiutiiiiitiie ettt ettt a et ettt e ekttt e ea bt e e et et e s nbe e e sab e e e e bbeesante e e nanes 170
8.4.7 Automatic Library Selection (--disable_auto_rts Option)..........couiiiiiiiiiii e 171
8.4.8 Do Not Remove Unused Sections (--unused_section_elimination Option)...........ccccviieiiiiiiiniiiciieeeeeece e, 171
8.4.9 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)...........cccccovieiiiiiiiiniiecinnenn, 171
8.4.10 Error Correcting Code Testing (--€CC OPLONS)......ciiriiiiiiiiiiiie ettt ettt 172
8.4.11 Define an Entry Point (--entry_point OPLiON).........ccuiiiiiiiiiiieeie e 173
8.4.12 Set Default Fill Value (--fill_value OPLION).......cooiuiiiiiiieiiii ettt 173
8.4.13 Define Heap Size (--heap_sSize OPLON).......ouuiiiiiiiiiiiee ettt ne e e aabeeeeaes 174
8.4.14 HidIiNG SYMDOIS.......eiiiieiiiitie ettt e e bt e oo ab et e e be e e e bttt e ea bt e e et et e e n b e e e e e e e bb e et e nnees 174
8.4.15 Alter the Library Search Algorithm (--library, --search_path, and MSP430_C_DIR)......cccooeiiiiiiiniiiiiiee e 174
8.4.16 Change SymDbOl LOCAIZALION.uiiiiiiii it e ettt e e s eente e e nanees 177
8.4.17 Create a Map File (—-map_fil& OPLON).....c.uueiiiieiii ettt 178
8.4.18 Managing Map File Contents (--mapfile_contents OpPtion)............oooiiiiiiiiiiii s 179
8.4.19 Disable Name Demangling (--N0_deMaNGIE)........ccoiuuiiiiiiiiiiiieiiiiee ettt e e et e e 180
8.4.20 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)ccccoorieiiiieiiiiii e, 180
8.4.21 Strip Symbolic Information (--no_symtable OPtion)............cooiiiiiiiiiiii e 180
8.4.22 Name an Output Module (--output_file OPLION)........coiuiiiiiiii e 181
8.4.23 Prioritizing Function Placement (--preferred_order Option)..........cooiieiiiiieeiriie e 181
8.4.24 C Language Options (--ram_model and --rom_model OPLioNS)..........ccocuiiiiiiiiiiiiiiiieeeiee e 181
8.4.25 Retain Discarded Sections (--retain OPtiON)........uuiiiiiiiiiiieiiit ettt e e e e e 181
8.4.26 Create an Absolute Listing File (--run_abs Option)...........cooiiiiiiii e 182
8.4.27 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)............cccovoviiiiieiiiiieiii e 182
8.4.28 Define Stack Size (--Stack_Siz€ OPLION).......coiiiiiiiiiii e 182
8.4.29 Enforce Strict Compatibility (--strict_compatibility Option)............ooeiiiiiiiiiii e 183
8.4.30 Mapping of Symbols (--symbol_map OPLiON).........couiiiiiiiiiee et 183
8.4.31 Introduce an Unresolved Symbol (--undef_sym OPtion)..........cceiiiiiiiiiiiiiiii e 183
8.4.32 Replace Multiply Routine With Hardware Multiplier Routine (--use_hw_mpy)........cccociiiiiiiiiiiieceeee e 184
8.4.33 Display a Message When an Undefined Output Section Is Created (--warn_sections)...........cccccoceveiiieeinierennne 184
8.4.34 Generate XML Link Information File (--xmI_link_info OPtion)..........ccuiiiiiiiiiii e 184
8.4.35 Zero Initialization (--Zero_iNit OPLION)..........eiiiiii ettt 184
8.5 LINKEr COMMANA FlES..... ettt ettt e e a bt oo ae et e s bt e e s bt e e et e e e e bb e e e anbe e e naneeeennneeeas 185
8.5.1 Reserved Names in Linker Command FileS.........cooiuiiiiiiiii et 186
8.5.2 Constants in Linker CoOmMMAaNA FlES.........oooiiiiiiiii ettt e b e e e 186
8.5.3 Accessing Files and Libraries from a Linker Command File.............cccooiiiiiiiiiiiii e 186
8.5.4 The MEMORY DiIECHVE.ceueiitieiiit ettt ettt ettt et e et e st e e be e shb e e bt e se bt e beeemeeesbeeamteesseeenseesneeenbeeanneanneean 188
8.5.5 The SECTIONS DIFECHVE.eiiuiieitieiiiieie ettt sttt ettt e st e bt e s et ea bt e see e e bt e sa bt e bt e sabe e sbeeemeeesbeeembeenneeanbeenneeennes 190
8.5.6 Placing a Section at Different Load and RUN AJAreSSES.........cooiiiiiiiiiiiiie et 202
8.5.7 Using GROUP and UNION SHat@mENtS.ccoiiiiiiiiiiiiiie ittt e et a e 205
8.5.8 Special Section Types (DSECT, COPY, NOLOAD, NOINIT, and VECT_INIT)...ccccoiiiiiieiiieeiee e 209
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 5
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
8.5.9 Configuring Error Correcting Code (ECC) With the LINKEr..........coooiiiiiiiiiiiii e 210
8.5.10 Assigning SYMDOIS @t LiNK TIME....ccoiuuiiiiiiiiiiiie ettt e ettt ettt e e sa e e sbe e e s eneeeeaaneeeeas 212
8.5.11 Creating and FilliNg HOIES.........coo ittt e et e sb e bt e e et e e nne e e e nnnee s 218
8.6 LINKET SYMIDOIS. ...ttt bttt ot e ket e ettt oo b et e ek bt e e et e e e e bb e e e an bt e e ebe e e e anneeeanbeeenan 220
8.6.1 Using Linker Symbols in C/C++ APPHCAtIONS.eiiiiiiiiiiii et e et e 220
8.6.2 Declaring WEak SYMDOIS.eiiiiiiiiie ettt e bt e et e e b bt e e s e bt e e et b e e nb e s e e e nrne e 222
8.6.3 Resolving Symbols with ObJECt LIDraries.........ccuui i 222
8.7 Default Placement AlGOTiTRIM..........oi ettt ek bt e e e bt e e s b et e e as bt e e ebe e e s abneeeanbeeenans 223
8.7.1 How the Allocation Algorithm Creates OUIPUL SECHONS..........oiiiiiiiiiiiiie e 223
8.7.2 Reducing Memory Fragmentation...........c..eu oottt ettt e e et e et 224
8.8 Using Linker-Generated COPY TabIES.ooiiiiiiiiiiieiie ettt et e st e e b e et e e s e nnnee s 224
8.8.1 Using Copy Tables for BOOt LOAMING.ueeiiiiieiiiie ittt et e et e e e e e nbneeenaee 224
8.8.2 Using Built-in Link Operators in Copy TabIES..........coiuiiiiiii et 225
8.8.3 Overlay Management EXAMIPIE......coouiii ittt et sa e e e et e e at e nbe e e et e e 225
8.8.4 Generating Copy Tables With the table() OPerator...........coiuiii i e 226
R SR 0701 14101 £=T1] (o] PO O UPUPPUSPUTPPTPI 230
8.8.6 COPY TaBIE CONTENES.eiiiiiiie ettt et a e et e bttt e s s bt e e et et e e st e e e sab et e et b e e e ante e e saneeeensbee e e 233
8.8.7 General PUrpoSe COPY ROULINE.uiiiiiiiiiiii ettt e e e e ettt e et e e nanes 234
8.9 Linker-Generated CRC Tables and CRC Over Memory RaANGES.uuiiiiiiiiiiiiiiiii et 236
8.9.1 Using the crc_table() Operator in the SECTIONS Dir€CHVE.c..uiiiiiiiiiiiiiiiite et 236
8.9.2 Using the crc() Operator in the MEMORY Dir€CHVE.ccoiiiiiiiiii et 241
8.9.3 Verification of Linker Computed CRC 0N MSPA30.........uuiiiiiiiiiiiie ettt 244
8.10 Partial (INCremental) LINKING........oiueeiiiiiiiee ettt et s at e sab et e e bb e e e st e e e sab e e e ebn e e e nnneas 245
S B I T o O O O oo [SRR 245
8.11.1 RUN-TIME INIIAHIZATION.eiiiiii ettt st e bt e e et e e s b et e e an e e e sneeesnneeeas 246
8.11.2 Object Libraries and RUN-TIME SUPPOIT.........uuiiiiiieiiii ittt et e et e e b e e e anb e e e snreesnnee s 246
8.11.3 Setting the Size of the Stack and Heap SECHONS..........cc.iiiiiiiii e 246
8.11.4 Initializing and Autolnitialzing Variables at RUN TiMe..........ooiiiiiiiiii e 246
8.11.5 Initialization of Cinit and Watchdog Timer HOId............cueiiiiiiiii e 246
8.12 LINKEI EXAMPIE.... .ttt ettt ettt e et e sttt o1 e bt e oo bt e e a et e e e bt e e e bt e e ne e e e e b e e e nr e naneas 247
9 ADSOIULE LiSter DESCIIPLION.ttt b e oot e b et e e bt et e eab e e e sb e e s ate e e nanes 251
9.1 Producing an ADSOIULE LISTING........ceiiiiiiiiiiieiie ettt ettt e s bt e et e e e e bb e e e aabe e e ebee e s anneeeanbeeenan 252
9.2 INVOKING the ADSOIULE LISTETtiiiiiiiieiiee ettt et e e e e et e e e st e e e sab et e ettt e e eateeesnaeeeanneeenaes 253
9.3 ADSOIULE LiSTEr EXAMPIE.eiiiiiiie ittt h et et e e bt e e sttt e sa bt e e et bt e e st e e e sab e e e e nr e e e nnneas 254
10 Cross-Reference Lister DeSCIiPLiON.ooouiiiii ettt et e et s e e eas 257
10.1 Producing @ Cross-Reference LiSTiNgG..........c.uei it ettt e e et e e 258
10.2 Invoking the CrosSS-REfEIENCE LISTET.......ccoiuiiiiiiiiiie et e st 259
10.3 Cross-Reference Listing Example
11 ODJECE File URIIEIES. ..ottt e e ekt e s et et e e bt e sae e e st e e saeeembe e she e e b e e sabeesteeenneenees
11.1 Invoking the Object File DiSplay ULlcoouiiiiiii et an 262
11.2 INVOKING the DiISASSEMIDIETcoiiiiieiiiie ettt bt e bttt e e h bt e e et et e esb e e e sab e e e eba e e e enneeesaneee s 263
11.3 INVOKING the NAME ULIITY.......eeiiiiiiee ettt ettt s bt e ra e e et et e et e e e sabeeeennreeea 264
11.4 INVOKING the SHP ULIITY......oeiiiiieiie ettt et ettt e e st e e s bt e e st e e nne e e e nnee s 264
12 Hex Conversion Utility DEeSCIIPLION............ooiiiiiii et bttt e bt 265
12.1 The Hex Conversion Utility's Role in the Software Development FIOW...........occciiiiiiiiiiiiee e 266
12.2 Invoking the Hex ConVErSION ULIlITY..........ooiuiiiiiiie ettt e bt sbe e e e e e beeeenee 267
12.2.1 Invoking the Hex Conversion Utility From the Command LiNe...........c.ooiiiiiiiiiiiiiieiie e 267
12.2.2 Invoking the Hex Conversion Utility With @ Command File.............cccoiiiiiiiiiiiii e 269
12.3 Understanding Memory WIAThS.ottt at et e st e et e e 270
L2 T I = Ve T AT o PSR TOPRSN 270
12.3.2 Specifying the MemOry WIth..........coo ittt e s et e e nanees 270
12.3.3 Partitioning Data INto OUIPUL FIlES.......coiiiiiiiii e st e abeeeeaes 271
12.3.4 Specifying Word Order for OUIPUE WOIS.........ooiiiiiiiii et e e 273
(I N a1l @ LY SR B =Y o (PSPPSR 273
12.4.1 When t0 Use the ROMS DIF€CHVE.couiiiiiiiiiiiiie ittt ettt ettt e e nane e e ebne e e e 274
12.4.2 An Example of the ROMS DIFECHIVE.eiiiiiiiiiiie ettt e e st e e eane e 275
12.5 THE SECTIONS DiIECHVE. ... e iteeitieetie ettt ettt ettt sttt e sttt e skt e e bt e sttt emteeeaeeeabeeemeeanbeeambeenneeanbeesseeenbeeseeeanneennnean 276
12.6 The Load Image Format (--10ad_image OPLioN)..........c.uiiiiiiiiiiie ittt 277
12.6.1 Load Image SeCtion FOIMEAtioN..........ooiiiii et sttt s bt e st e s e e ebn e e e 278
12.6.2 Load IMage CharaCleriStiCS.ccoiuuiiiiiiii ittt ettt e e bt e e e b et e e b bt e e san e e st e e e ente e e nanees 278
12.7 EXCIUING @ SPECITIEA SECHON. ...ttt ettt b e ettt sab e e st e e e nnte e e nanes 278
6 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
12.8 AsSIgNING OULPUL FIlENAMES. ...ttt b ettt e e aa et e et e e s bt e e e et e e e e b e e e naneas 278
12.9 Image Mode and the —-fill OPHION........couiiii bbb e bt e s e st e et 279
12.9.1 Generating @ MEMOTY IMAGE.c.oouuiiiiiiie ittt e et e e be e e aa b e e e eb bt e e eabe e e aabe e e ente e e nanees 280
12.9.2 SPECITYING @ Fill VAIUE........eeiieeie ettt ettt h e e et st e eb bt e e et e e nnee e e nareeas 280
12.9.3 Steps to Follow in USiNg IMage MOGE.........c..iiiiiiiiiiie ettt et e b 280
12.10 Array OUIPUL FOMMAL. ..ottt et ettt e a e e e e a bt e e e st e e e rab et e eabe e e ent e e e saneeeebaeennee 281
12.11 Controlling the ROM DEVICE AQAIESS.......cciutiiiiiiiiiiii ettt ettt s e et e e st e sbee e e shb e e e et e e snt e e e sabeeeaneeenans 281
12.12 Control Hex Conversion ULility DIagnOSTCS.c.uiiiiiiiiiiiie ittt e e 282
12.13 Description of the ODJECE FOIMALS........ciuiiiiiiii ettt e et e e et e eeesabee s 283
12.13.1 ASCII-Hex Object Format (--asCii OPLION)........coiuiiiiiei ittt s 283
12.13.2 Intel MCS-86 Object Format (--int€l OPLioN).......ccueiiiiiiiiiiie e 284
12.13.3 Motorola Exorciser Object Format (--motorola Oplion).........ccoiiiiiiiiiiie e 285
12.13.4 Extended Tektronix Object Format (--tektronix OPtion)..........cceiiiiiiiiiiiiiii e 286
12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)..........cccovveeiriiiiiiieniniieeeee e 287
12.13.6 TI-TXT Hex Format (—-ti_tXt OPHON)........oiiiiiieei ettt e e e 288
13 Sharing C/C++ Header Files With AsSembly SOUICE.............ccoiiiiiiiiiii e 291
13.1 Overview Of the .CAECIS DIFECHIVE.coiiiiiiiii ettt ettt e et e st e e nbbe e e e 292
13.2 NOLES ON C/CH+ CONVEISIONS.ceiiitiiiiiite ittt ettt ettt ettt e ettt e bt e e e b et e aa b et e e bt e e e eh bt e e aabe e e ssb e e e sabeeeeabeeeenbeeesaneeeebbeennee 292
RS 270 B 00 4010 1 =T | T PP PSP UTP PRI 292
13.2.2 Conditional Compilation (Fif/#elISe/HTATIEIC.)......ouii e 293
LR IR B o - To |0 1 = T PSPPSRI 293
13.2.4 The #error and #Warning DIrECHVES.ooiiiii ettt 293
13.2.5 Predefined symbol _ ASM_HEADERttt ettt et e e e b 293
13.2.6 Usage Within C/C++ asm() STatemeENtS........coouiiiiiii et 293
13.2.7 The FHNCIUAE DIFECLIVE.cuueeiiiiiiie ittt et a ettt e bt e e st et e sab et e e b bt e e aabe e e sneeeeaibeeenaee 293
13.2.8 ConVversion Of #AETINE IMACTOS.........ooiiiiiiiie et rb e e et e e sat e st e e et e e eante e e nanes 293
13.2.9 The HUNAET DIFECHIVE.ciiiiiiiiieie ettt e bt e et e s bttt e eab e e e et bt e snte e e sabeeeebneeenee 294
T3.2.10 ENUMEBIALIONS. ...ttt h ettt e bttt ekt e e sttt e 2 bt e ook b e e e e ab et e eab et e e na bt e e et e e e sent e e e sabeeeenbneenaee 294
LRSI B B OS] (5 To T USRS PURSTIN 294
13.2.12 C/CA+ BUIlt-IN FUNCHONS. ...ttt ettt e a e e st et e s ne e e e sabe e e ebneenaee 295
13.2.13 SErUCIUIES @NA UNIONS......utieiiiiiie ittt ettt ettt a e e et e e st e e rab et e e b bt e e sttt e sabe e e e b b e e e aabneesneeeeanbeeenaee 295
13.2.14 FUNCON/VAriable ProtOtyPES.couiiiiiiiie ittt ettt ettt e e s 296
13.2.15 C Constant Suffixes
LRI Lol = = EY o 071 08 e Y/ o 1= T TSP OPP
13.3 Notes 0N C+ SPECITIC CONVEISIONS.uiiieiiiiiitii ettt ettt ettt e aa e e et et e sbbe e e rab e e e abe e e sante e e sabeeeebneenanee 296
13.3.1 NGME MANGIING. ...ttt ettt e bt e e sttt oo b et e ook b et e eab et e eabt e e e sa bt e e eabe e e sante e e sabeeeenbbeeeanee 296
T3.3.2 DEIIVEA ClIaSSES......eiiiueiiiiiitiee ittt ettt ettt oo ettt a4 bt e e sttt e oab et e e b bt e e eab et e e bt e e e eh bt e e eab e e e nnte e e eabe e e ebneenaee 297
LR R TR T 1= 4 g o] F=1 (S PSP PU PP PP 297
13.3.4 VirtUAI FUNCHONS.....teeee ettt a et e ettt oo ab et e e bt e e e bttt e eabe e e e bt e e e aab e e e naneeeennnee s 297
13.4 Special ASSEMDIET SUPPOIT.iiiiiiei ettt e et e e eab e e s bt e e e ab e e e sabe e e e be e e e ante e e nanes 297
13.4.1 Enumerations (.enum/.emember/.@NAENUM)........cccuiiiiiiiiii et e e 297
13.4.2 Te .defiNE DIFECHIVE.ttt ettt e e e e et e et e s be e e e eabe e e sbn e e s nnbeeeanbeeenaes 298
13.4.3 The .UNdefiNe/.UN@SG DIFECHIVES.coiiiiiiiiie ettt et e et e e e e e e nibe e e e 298
13.4.4 The $defined() BUilt-In FUNCHON.coiiii ettt e te et e st e eae e e eneenneenes 298
13.4.5 The $SiZe0f BUII-IN FUNCHON. ..ottt ettt et e ae e eesreeseesseeseeeneesteensesreeneanseans 298
13.4.6 Structure/Union Alignment and $aIGNOT()......coeeiiiieiiee ettt e e e aeeneen 299
13.4.7 The .CSENG DIFECHIVE. ...ttt ettt b e e st e e bt e e e b et e e aa bt e e e b bt e e san e e e s be e e ente e e nanees 299
A Symbolic Debugging DIr€CLIVES.ooiiiiiiiiiii ettt e h e e st 301
A1 DWARF DebUGGING FOIMAL.......oiiiiiiiiiiii ittt ettt e bt e e st et s e e e e sbb e e e ente e e nneeeenanee s 302
A2 DEDUG DIMECHIVE SYNTAX. ... ittt h e e ettt ot e e bt e e ab et e e b et e e ea b et e ettt e s st e e e aabe e e ente e e nnneas 302
B XML Link Information File DeSCriPtioN............coooiiiiiiiii et 303
B.1 XML Information File EIEMENT TYPES......coouiiiiiiiiiiiiii ettt ettt e bt e et snr e e e naneeeas 304
B.2 DOCUMENT EIEMENTS. ...ttt a et e bt e e sttt s b et e ek bt e e ettt e s b e e e e aab et e enre e e nnneas 304
B.2.1 HEAAET EIBMENES. ... ittt bt a et e bt e h e e e s b et e e bttt e eab e e e sbe e e eanbe e e nanr e e e nnee s 304
P [o T a1 T SO PPRRPRI 305
B.2.3 ObJeCt COMPONENT LIST.......eiiiiiiiiiiiie ettt ettt a e ra et e et e s ae e e sab e e e e bb e e s nnneeesaneee s 306
R oo [o= |l € o T0] o I I SO PSPPSR 307
Sl - Lot T 01T o Y =T o PSPPSR 309
B.2.6 Far Call TrampoOliNg LiSt.........coiiiiiiiiii ettt et e sttt st e ettt e e st e e e aab e e nnb e e e nanes 310
=P)Y 1o Yo I =1 o) [SRS 311
C CRC Reference IMplementation............ ..ot e st e et e et e e nanees 313
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 7
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
C.1 Reference CRC CalCulation ROULINE........ccouiiiiiiiiiiee ettt e e e et e e ene e e aab e e sare e e enneas 314
Example C-1. Reference Implementation of a CRC Calculation Function: example_C1.C........ccccooveviiiiiiiiiiciiiieccieeee 314

C.2 Linker-Generated Copy Tables and CRC TabIes..........coouiiiiiiiiie e 317
Example C-2. Main Routine for Example Application: Main.C.........c.coiiiiiiiiiiiiii e e 317
Example C-3. Checking CRC Values: ChECK_CIC.C......oiiiiiiiiiiiiiiie ettt 318
Example C-4. TaskT ROUTINE: tASKT.C..couuiiiiiiiiiiiie ettt s e et e e et e st e e naneee s 318
Example C-5. Task2 ROUTINE: TASK2.C.......eeiiiiiiiiiie ittt ettt s bt et e e et e st e e eean 319
Example C-6. Task3 ROUTINE: tASK3.C......uuiiiiiiiiiiie ettt st et e e et e snre e e ee s 319
Example C-7. Command File AItION...........oi ittt e e e sbe e b e e e 319

D I T Lo ToL 7 | o OSSP P PRSPPI 321
(D 2 B 1=14 4Tl o] (0T)/ PP RP PR 321

E REVISION HISTOTY ...ttt e bt oo a et e oa b et ookttt eehb et e s b et e es bt e e eab e e e e bt e e nnteeenanns 327

List of Figures
Figure 1-1. MSP430 Software DevelopmeEnt FIOW............coo i 16
Figure 2-1. Partitioning Memory INto LOGICal BIOCKS............oiiiiiiiiieiei ettt 21
Figure 2-2. Using Sections DireCtives EXAMPIE..........ooouiiiiiiiiiiie ettt e e sne e 26
Figure 2-3. Object Code Generated by the File in FIQUre 2-2 ... 27
Figure 2-4. Combining Input Sections to Form an Executable Object Module.............ccoocuiiiiiiiiiiiiii e 28
Figure 3-1. Bootloading Sequence (SIMPlIfied)..........eiiiiiii et e e 35
Figure 3-2. Autoinitialization @t RUN TimIE.......couiiiii e e et e e st e b e e et e e nnr e e e nnneeas 39
Figure 3-3. INitialization @t LOAA TiME.........iiiiiiiiiiie ettt e e bt et e s et e ek b e e e eane e e sneeeeanneeeans 40
Figure 4-1. The Assembler in the MSP430 Software Development FIOW. ...t 45
Figure 4-2. Example ASSEMDIET LiSTING.........oouiiiiiiiiiiit ettt st et e et e s b e e e aa e s e s ne e 64
Figure 5-1. The .fIeld DIFECHIVE.........ueiiieii ettt e e et e et e s bt e e ea bt e et et e e s e e e e b e e e nnne e e nanees 74
Figure 5-2. INitialiZation DiIr€CHVES. ..ottt ettt a e et e e bt e e e sab e e et bt e et e e e saneeeeabreeenee 75
Figure 5-3. The .aligN DIFECHIVE.eiiiiii ettt e e et e et e e b et e e aa b et e ettt e e eae e e e aab e e nnne e e nanees 76
Figure 5-4. The .Space and .DES DIrECHVES.ccoiuiiiiiiii ettt aa et e e bt e et e e sne e e ennee s 76
Figure 5-5. 32-Bit Single-Precision Floating-Point FOrMat............ocuoii e 95
Figure 5-6. 64-Bit Double-Precision Floating-Point FOrmMat..............uiiiiiiiiii e e 95
Figure 5-7. The fIeld DIFECHIVE.ei ettt ee e ettt e e bt e e st e e e et e s bt e e st et e san e e e e abr e e e enneeenanes 103
Figure 5-8. The .USECE DIMECHIVE.oi ittt e e e bt et n e e s b b e et e e nanes 139
Figure 7-1. The Archiver in the MSP430 Software Development FIOW...........cociiiiiiiiiiii e 158
Figure 8-1. The Linker in the MSP430 Software Development FIOW............cooiiiiiiiiiiiii e 164
Figure 8-2. Section Placement Defined by The SECTIONS Dir€CtiVeceeiiiiiiiiiiiiiieceiiee e 192
Figure 8-3. Run-Time Execution of Moving a Function from Slow to Fast Memory at Run Timecccccooiiiiiiiniiccineene 205
Figure 8-4. Memory Allocation Shown in The UNION Statement and Separate Load Addresses for UNION Sections 207
Figure 8-5. CompPressed COPY TaDIE......coouii ittt e et e bt e e bt e s b et e e bt e e ean e e e e be e e nnre e e naneas 230
Figure 8-6. HANAIEr TAbIE.......co ettt bttt e bttt e e h et e e s b et e e st et e nan et e e bb e e e anb e e e nnn e e e nnreeean 231
Figure 8-7. CRC_TABLE ConCeptUal MOGEL..........cooiiiiiiiiieiii ettt ettt et sn e e nnre e e 239
Figure 8-8. CRC Storage Format for MEmMOry RANGES.ooi ittt 244
Figure 9-1. Absolute Lister DeVelOpMENTt FIOW..........c.uii ittt e e e 252
Figure 10-1. The Cross-Reference Lister Development FIOW...........coiiiiiiiiiiiiie et 258
Figure 12-1. The Hex Conversion Utility in the MSP430 Software Development FIOW...........ccccoviiiiiiieiiiic e 266
Figure 12-2. Hex Conversion ULility ProCeSS FIOW.cciiiiiiiiiiiiie ettt 270
Figure 12-3. Object File Data and Memory WIAthS..........cooiiiiii e 271
Figure 12-4. Data, Memory, and ROM WIAEhsS. ...ttt e e e e et e e e e et e e e e e e ennaeeaaaean 273
Figure 12-5. The infile.out File Partitioned Into Four OUtput Files............ooiiiiiiiii e 275
Figure 12-6. ASCII-HEeX ODJECT FOIMAL.........co ittt e e e s b e et e e 283
Figure 12-7. Intel Hexadecimal ObJECt FOrMAL..........oooiiiiii e e 284
Figure 12-8. MOtOrola-S FOMMAL..........uiiiiiiiiii ettt b e et sab et e ek e e e et et e sn e e e aa e e e abn e e s nneas 285
Figure 12-9. Extended Tekironix ObJeCt FOMMAL........coccuiiiiiiiiiiiee e 286
Figure 12-10. TI-Tagged ODJECt FOIMAL..........eiiiiiiiei ettt e e e et s b e e s e e e et enneeas 287
Figure 12-11. TI-TXT ODBJECE FOIMAL.......oo ittt et e ittt e ekt e et e e s et e e e e e e eneeennees 289
List of Tables

Table 4-1. MSP430 ASSEMDIET OPliONS.cccc it e e e e e e et e e e e e e e e e e e aasreeeeeeeeeeetaeaaaaaaeaeeesesaaaaannsnnnsssnsnnnnnnnns 46
Table 4-2. MSP430 Processor SymboliC CONSTANES.........oo ittt e e e et a e e e et e e e e e e e naeeeaaeanns 57
Table 4-3. MSP430 Register Symbols With AlIGSES............eeiiiiiiii ettt e e e et e e e e e et e e e e e e enneeeeaeeannees 58
Table 4-4. Operators Used in EXPresSions (PreCEABNCE).o i ittt et e e e ettt e e e e et e e e e e e aneeeeaeeaannees 60
8 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS

www.ti.com Table of Contents
Table 4-5. Built-In MathematiCal FUNCHONS. ..ot 62
Table 4-6. SYMDOI ALIFDULES.ttt e e e e ettt e e e e e bbe e e e e e e aaneaeeeeeesantaeeaeesansaeeeaeeeannseeeaeeaannseneaaenn 66
Table 5-1. Directives that CoNtrol SECHON USE..........coiiiiiiiii ettt as 68
Table 5-2. Directives that Gather Sections into COMMON GrOUPS......ccciuiiiiiiiiiiiie ettt e e 68
Table 5-3. Directives that Affect Unused Section ElImination..............oooiiiiiiiiiiii e 68
Table 5-4. Directives that Initialize Values (Data and MEMIOTY)........c.ueiiiiiiiiiiie e 68
Table 5-5. Directives that Perform Alignment and RESEIVE SPaCE...........ueiiiiiiiiiiii it 69
Table 5-6. Directives that Format the OUPUL LISTING.......cocuueiiiiii e 69
Table 5-7. Directives that Reference OTher FlES..........oo it 69
Table 5-8. Directives that Affect Symbol Linkage and ViSiDility..........coooiiiiiiiiii e 70
Table 5-9. Directives that Define Symbols at ASSEMDIY TiMEcoouiiiiiiiii e e 70
Table 5-10. Directives that Enable Conditional ASSEMDIY........cooiiiiiiiiiii e 70
Table 5-11. Directives that Define SIrUCIUIE TYPES.......uii ittt e et et e e snee s 70
Table 5-12. Directives that Create or AffECt IMACIOS.cooiiii ittt 71
Table 5-13. Directives that Control DIagNOSTCS.c.uuiiiiiiiiiiit ettt e e st e e st e e e raneeeebeeennee 71
Table 5-14. Directives that Perform Assembly SOUIrCE DEDUG........cccuuiiiiiiiiiiiie e 71
Table 5-15. Directives that Are Used by the ADSOIULE LISTE............eiiiiiiiiii e 71
Table 5-16. Directives that Perform Miscellaneous FUNCHONS..........coiuiiiiiiiiiii et 71
Table 6-1. Substitution Symbol Functions and Return ValUEs..............cooiiiiiiiiiiiiii e 146
Table B-2. Cre@ting IMACTOS.coitiei ittt ettt a e oottt oa e e oo a bt e oot et e o sttt e oa bt e e e be e e e ae e e e ssbe e e e bb e e e anneeenaneee s 155
Table 6-3. Manipulating Substitution SYMDOIS.cooiiii e 155
Table 6-4. CONAIIONAI ASSEMIDIY.......eeiiiiiiiitit ettt bt a bt e b et e e e b et e e e bt e e e bt e e eaa e e e s abe e e enb e e e naneeeannneeeas 155
Table 6-5. Producing ASSEmMDIY-TImME MESSAGES.cuiiuiiiiiiieiiiee ettt ettt et b e e bt e e sb e e e abe e eanteeenanee 155
Table 6-6. FOrmatting the LiSTING.........coiuiiiiiii ettt et e e bt e et e e s b e e e e nb e e e nane e e s nareeeas 155
Table 8-1. BaSiC OPHONS SUMIMEAIY........uiiiiiiiiiiiii ettt ettt e aa b et e ettt e s bttt e aa bt e e eb et e e aae e e e aabe e e esbe e e snneeesneeeeas 166
Table 8-2. File Search Path OptionS SUMMAIY.........oouiiiiiiiiii e ettt e et e e e nanee s 166
Table 8-3. Command File Preprocessing OptionS SUMMAIY........ccocuuiiiiiiiiiiee et 166
Table 8-4. DiagnoStiC OPLiONS SUMMIGIY........uiiiiiiiiiiie ettt ettt a b et e sa bt e e b e e e eab e e e sabe e e enbe e e eaneeesneeeeas 166
Table 8-5. Linker Output OPtioONS SUMIMAIY......cooiuiiiiiie ettt ettt e ab e e et et e s bt e e e ssbe e e ebe e e snneeesaneeean 167
Table 8-6. Symbol Management OpPtioNS SUMMAIY.........cocuiiiiiiiiiiiii ettt ettt e e e s nnees 167
Table 8-7. Run-Time Environment OPtioNS SUMMIAIY.........ooiiiiiiiiiie ittt e e b s 167
Table 8-8. Link-Time Optimization OptioNS SUMMAIY........c.uoi ittt st e e et nre e as 167
Table 8-9. Miscellaneous OPLiONS SUMMIEIY.........uiiiiiiiiiii ittt ettt e s bt e e et e e s e e e s be e e ebb e e e nnneeesneeeeas 168
Table 8-10. Predefined MSP430 MaCIO NAMES.uuiiiiiiiiiiii ettt e e et e et e e st e e ebb e e e saneeesneeeeas 172
Table 8-11. Groups of Operators Used in EXpressions (PreCedenCe)..........cocuuiiiiiiiiiiiie it 214
Table 10-1. Symbol Attributes in Cross-Reference LiStiNg............oioiiiiiiiiiiii e 260
Table 12-1. Basic Hex Conversion ULility OptiONS.oouiiiiiiiiiiii et e e 267
Table 12-2. Options for Specifying Hex Conversion FOrMALS..........ooi ittt e e e e sneee e e e e nnnes 283
Table A-1. Symbolic DEbUGGING DIFECHIVES.........ciiiiiiiiiiie ettt e ab e st b e et e e 302
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 9
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

Table of Contents www.ti.com
This page intentionally left blank.

10 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Preface

Read This First

i3 TEXAS INSTRUMENTS

About This Manual

The MSP430 Assembly Language Tools User's Guide explains how to use the following Texas Instruments Code
Generation object file tools:

* Assembler

* Archiver

* Linker

» Library information archiver
* Absolute lister

» Cross-reference lister

» Disassembler

* Obiject file display utility
* Name utility

» Strip utility

* Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments object file and assembly language tools designed
specifically for the MSP430™ 16-bit devices. This book consists of four parts:

* Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the object
file and assembly language development tools. Chapter 2, in particular, explains object modules and how
they can be managed to help your MSP430 application load and run. It is highly recommended that
developers become familiar with what object modules are and how they are used before using the assembler
and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information about
using the assembler. Chapter 4 and Chapter 5 explain how to invoke the assembler and discuss source
statement format, valid constants and expressions, assembler output, and assembler directives. Chapter 6
focuses on the macro language.

» Linker and other object file tools description, consisting of Chapter 7 through Chapter 12, describes in
detail each of the tools provided with the assembler to help you create executable object files. Chapter 7
provides details about using the archiver to create object libraries. Chapter 8 explains how to invoke the
linker, how the linker operates, and how to use linker directives. Chapter 11 provides a brief overview of some
of the object file utilities that can be useful in examining the content of object files as well as removing symbol
and debug information to reduce the size of a given object file. Chapter 12 explains how to use the hex
conversion utility.

» Additional Reference material, consisting of Appendix A through Appendix D, provides supplementary
information including symbolic debugging directives used by the MSP430 C/C++ compiler. A description of
the XML link information file and a glossary are also provided.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 1
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Read This First www.ti.com

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a special typeface .
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from
items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:

#include <stdio.h>

main ()

{ printf ("hello world\n");
}

In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are in an
italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify

the information within the brackets. Unless the square brackets are in the bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter:

‘cl430 [options] [filenames] [--run_linker [link_options] [object files]]

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not enter the
braces themselves. This is an example of a command with braces that are not included in the actual syntax
but indicate that you must specify either the --rom_model or --ram_model option:

cl430 --run_linker {--rom_model | --ram_model} filenames [--output_file= name.ouf]

--library= libraryname

In assembler syntax statements, The leftmost character position, column 1, is reserved for the first character
of a label or symbol. If the label or symbol is optional, it is usually not shown. If it is a required parameter,

it is shown starting against the left margin of the box, as in the example below. No instruction, command,
directive, or parameter, other than a symbol or label, can begin in column 1.

‘symbol .usect "section name", size in bytes|, alignment] ‘

Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

‘ .byte parameter|, ... , parameter;] ‘

Other symbols and abbreviations used throughout this document include the following:

Symbol Definition
B,b Suffix — binary integer
H, h Suffix — hexadecimal integer
LSB Least significant bit
MSB Most significant bit
0x Prefix — hexadecimal integer
Q. q Suffix — octal integer
12 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Read This First

Related Documentation From Texas Instruments
See the following resources for further information about the TI Code Generation Tools:

* Code Composer Studio: Documentation Overview
» Texas Instruments E2E Community: Software Tools Forum

You can use the following books to supplement this user's guide:

SLAU132 MSP430 Optimizing C/C++ Compiler User's Guide. Describes the MSP430 C/C++ compiler. This
C/C++ compiler accepts ANSI standard C/C++ source code and produces assembly language
source code for the MSP430 devices.

SLAU012 MSP430x3xx Family User's Guide. Describes the MSP430x3xx™ CPU architecture, instruction set,
pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU049 MSP430x1xx Family User's Guide. Describes the MSP430x1xx™ CPU architecture, instruction set,
pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU056 MSP430x4xx Family User's Guide. Describes the MSP430x4xx™ CPU architecture, instruction set,
pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU134 MSP430FE42x ESP30CE1 Peripheral Module User's Guide. Describes common peripherals
available on the MSP430FE42x and ESP430CE1 ultra-low power microcontrollers. This book
includes information on the setup, operation, and registers of the ESP430CE1.

SLAU144 MSP430x2xx Family User's Guide. Describes the MSP430x2xx™ CPU architecture, instruction set,
pipeline, and interrupts for these ultra-low power microcontrollers.

SLAU208 MSP430x5xx Family User's Guide. Describes the MSP430x5xx™ CPU architecture, instruction set,
pipeline, and interrupts for these ultra-low power microcontrollers.

SLAA534 MSP430 Embedded Application Binary Interface. Provides a specification for the ELF-based
Embedded Application Binary Interface (EABI) for the MSP430 family of processors from Texas
Instruments. The EABI defines the low-level interface between programs, program components, and
the execution environment, including the operating system if one is present.

Trademarks
MSP430™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 13
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/ccs_documentation-overview.html
http://e2e.ti.com/support/development_tools/compiler/f/343
https://www.ti.com/lit/pdf/slau132
https://www.ti.com/lit/pdf/slau012
https://www.ti.com/lit/pdf/slau049
https://www.ti.com/lit/pdf/slau056
https://www.ti.com/lit/pdf/slau134
https://www.ti.com/lit/pdf/slau144
https://www.ti.com/lit/pdf/slau208
https://www.ti.com/lit/pdf/slaa534
https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

Read This First www.ti.com
This page intentionally left blank.

14 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Chapter 1
Introduction to the Software Development Tools

i3 TEXAS INSTRUMENTS

The MSP430™ is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these tools.

The MSP430 is supported by the following assembly language development tools:

* Assembler

e Archiver

e Linker

» Library information archiver
* Absolute lister

» Cross-reference lister

» Obiject file display utility
» Disassembler

* Name utility

o Strip utility

* Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools. For
detailed information on the compiler and debugger, and for complete descriptions of the MSP430, refer to the
books listed in Related Documentation From Texas Instruments.

1.1 Software DevelopmeNnt TOOIS OVEIVIEW................iii ittt et ettt e e s e e e abe e e e aane e e sne e e e anneeeenneeesnneeeas 16
I e Yo] E B T =T e T o1 Lo L= PSPPI 17
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 15

Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 shows the MSP430 software development flow. The shaded portion highlights the most common
development path; the other portions are optional. The other portions are peripheral functions that enhance the

development process.

C/C++
source
files
Macro
source Gl
files compiler
C/C++ name
ASSSoeuTctger demangling
utility
Macro
lbrary Assembler

Object Librat.r){.-tbuild Delt)uglging
files utility ools
- Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

Cross-reference § Obiject file
programmer lister utilities

EPROM Absolute lister

Figure 1-1. MSP430 Software Development Flow

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

16 MSP430 Assembly Language Tools
Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Introduction to the Software Development Tools

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

The C/C++ compiler accepts C/C++ source code and produces MSP430 machine code object modules. See

the MSP430 Optimizing C/C++ Compiler User's Guide for more information. A shell program, an optimizer,

and an interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.

— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate code
produced by the compiler with your source code.

The assembler translates assembly language source files into machine language object modules. Source

files can contain instructions, assembler directives, and macro directives. You can use assembler directives

to control the assembly process, including the source listing format, data alignment, and section content. See

Chapter 4 through Chapter 6. See the MSP430x1xx Family User's Guide, the MSP430x2xx Family User's

Guide, the MSP430x3xx Family User's Guide, the MSP430x4xx Family User's Guide, or the MSP430x5xx

Family User's Guide for detailed information on the assembly language instruction set.

The linker combines object files into a single executable object module. It performs symbolic relocation and

resolves external references. The linker accepts relocatable object modules (created by the assembiler) as

input. It also accepts archiver library members and output modules created by a previous linker run. Link

directives allow you to combine object file sections, bind sections or symbols to addresses or within memory

ranges, and define global symbols. See Chapter 8.

The archiver allows you to collect a group of files into a single archive file, called a library. The most common

use of the archiver is to collect a group of object files into an object library. The linker extracts object library

members to resolve external references during the link. You can also use the archiver to collect several

macros into a macro library. The assembler searches the library and uses the members that are called as

macros by the source file. The archiver allows you to modify a library by deleting, replacing, extracting, or

adding members. See Section 7.1.

The library information archiver allows you to create an index library of several object file library variants,

which is useful when several variants of a library with different options are available. Rather than refer to

a specific library, you can link against the index library, and the linker will choose the best match from the

indexed libraries. See Section 7.5 for more information about using the archiver to manage the content of a

library.

You can use the library-build utility to build your own customized run-time-support library. See the MSP430

Optimizing C/C++ Compiler User's Guide for more information.

The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or Tektronix

object format. Converted files can be downloaded to an EPROM programmer. See Chapter 12.

The absolute lister uses linked object files to create .abs files. These files can be assembled to produce a

listing of the absolute addresses of object code. See Chapter 9.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols, their

definition, and their references in the linked source files. See Chapter 10.

The main product of this development process is a executable object file that can be executed on a MSP430

device.

In addition, the following utilities are provided to help examine or manage the content of a given object file:

The object file display utility prints the contents of object files and object libraries in either human readable
or XML formats. See Section 11.1.

The disassembler decodes the machine code from object modules to show the assembly instructions that it
represents. See Section 11.2.

The name utility prints a list of symbol names for objects and functions defined or referenced in an object file
or object archive. See Section 11.3.

The strip utility removes symbol table and debugging information from object files and object libraries. See
Section 11.4.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 17
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

Introduction to the Software Development Tools www.ti.com
This page intentionally left blank.

18 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Chapter 2
Introduction to Object Modules

i3 TEXAS INSTRUMENTS

The assembler creates object modules from assembly code, and the linker creates executable object files from
object modules. These executable object files can be executed by an MSP430 device.

Object modules make modular programming easier because they encourage you to think in terms of blocks of
code and data when you write an assembly language program. These blocks are known as sections. Both the
assembler and the linker provide directives that allow you to create and manipulate sections.

This chapter focuses on the concept and use of sections in assembly language programs.

2.1 Object File Format SPecCifiCations................ccoiiiiiiiii ettt e et en e sneee s 20
2.2 EXecUtable OBJECE FilS......... ..ottt e bt e e e ittt et e e ekt e e aa bt e naan e e e nb e e enne e e nnnes 20
2.3 INtrodUCHION t0 SECHIONS..........oiiiiiii ettt ea e e e e ettt e e eab e e s abe e e e s bt e e enae e e eabeeesanbe e e eanes 20
2.4 How the Assembler Handles S@CLIONS.................ooiiiiiiiiiiii e e e e e e e e e e e e e st e e e e e s ensbeeaaeeanens 21
2.5 How the Linker HandIes SECLIONS.................ooiiiiiiii e et e e e e et e e e e e e e e e e e easanseeaeeeannsseneaeaan 27
P2 TSV 11 o] PR 29
2.7 SYMDOIIC REIOCALIONS............ ittt e et et e ettt e e e e e e he e e e ann et e nnn e e e ann e e s anneeenanns 32
R T Lo 1T I T o Yo |- 11 1T PP PSPPSR SRR 32
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 19
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.1 Object File Format Specifications

The object files created by the assembler and linker conform to the ELF (Executable and Linking Format) binary
format, which is used by the Embedded Application Binary Interface (EABI). See the MSP430 Optimizing C/C++
Compiler User's Guide (SLAU132) and The MSP430 Embedded Application Binary Interface Application Report
(SLAA534) for information on the EABI ABI.

COFF object files are not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If you
would like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and refer to
SLAU131J for documentation.

The ELF object files generated by the assembler and linker conform to the December 17, 2003 snapshot of the
System V generic ABI (or gABI).

2.2 Executable Object Files

The linker produces executable object modules. An executable object module has the same format as object
files that are used as linker input. The sections in an executable object module, however, have been combined
and placed in target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into target system
memory. See Chapter 3 for details about loading and running programs.

2.3 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies contiguous
space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It represents a
contiguous region of target memory. It is a collection of sections that have the same property, such as writeable
or readable. An ELF loader needs the segment information, but does not need the section information. The ELF
standard allows the linker to omit ELF section information entirely from the executable object file.

Obiject files usually contain three default sections:

.text section Contains executable code '
.data section Usually contains initialized data
.bss Usually reserves space for uninitialized variables

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and .bss
sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections Contain data or code. The .text and .data sections are initialized; user-named sections created with
the .sect and .intvec assembler directives are also initialized.

Uninitialized sections Reserve space in the memory map for uninitialized data. The .bss section is uninitialized; user-named
sections created with the .usect assembler directive are also uninitialized.

Several assembiler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file organized as
shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is called
placement. Because most systems contain several types of memory, using sections can help you use target
memory more efficiently. All sections are independently relocatable; you can place any section into any allocated
block of target memory. For example, you can define a section that contains an initialization routine and then
allocate the routine in a portion of the memory map that contains ROM. For information on section placement,

1 Some targets allow content other than text, such as constants, in .text sections.

20 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU132
https://www.ti.com/lit/pdf/SLAA534
https://www.ti.com/lit/pdf/slau131J
http://sco.com/developers/gabi/
https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

see the "Specifying Where to Allocate Sections in Memory" section of the MSP430 Optimizing C/C++ Compiler
User's Guide.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory. ROM may
be EEPROM, FLASH or some other type of physical memory in an actual system.

Object file Target memory
.bss g RAM
.data ™ RAM
dext | P> i
» ROM

Figure 2-1. Partitioning Memory Into Logical Blocks

2.3.1 Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections are treated
in a special manner by the linker and the compiler's run-time support library. If you create a section with the
same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

» .text -- Used for program code.

» .data -- Used for initialized non-const objects (global variables).

* .bss -- Used for uninitialized objects (global variables).

» .const -- Used for initialized const objects (string constants, variables declared const).
» .cinit -- Used to initialize C global variables at startup.

+ .stack -- Used for the function call stack.

* .sysmem - Used for the dynamic memory allocation pool.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of the
MSP430 Optimizing C/C++ Compiler User's Guide.

2.4 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section. The
assembler has the following directives that support this function:

e .bss

* .data

e .intvec
* .sect

e _text

e .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create initialized
sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.4.6.

Note

If you do not use a section directive, the assembler assembles everything into the .text section.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 21
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.4.1 Uninitialized Sections

Uninitialized sections reserve space in MSP430 memory; they are usually placed in RAM. These sections have
no actual contents in the object file; they simply reserve memory. A program can use this space at run time for
creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

* The .bss directive reserves space in the .bss section.
» The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or the
user-named section. The syntax is:

.bss symbol , size in bytes[,alignment]

symbol .usect " section name ", size in bytes|,alignment]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The symbol corresponds to the
name of the variable for which you are reserving space. It can be referenced by any other section and can also be
declared as a global symbol (with the .global directive).
size in bytes is an absolute expression (see Section 4.9).
+ The .bss directive reserves size in bytes bytes in the .bss section. You must specify a size; there is no default
value.
« The .usect directive reserves size in bytes bytes in section name. You must specify a size; there is no default
value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the space allocated. The default
value is byte aligned; this option is represented by the value 1. The value must be a power of 2. The maximum
alignment is 32K.

section name specifies the user-named section in which to reserve space. See Section 2.4.3.

Initialized section directives (.text, .data, .intvec, and .sect) change which section is considered the current
section (see Section 2.4.4). However, the .bss and .usect directives do not change the current section; they
simply escape from the current section temporarily. Immediately after a .bss or .usect directive, the assembler
resumes assembling into whatever the current section was before the directive. The .bss and .usect directives
can appear anywhere in an initialized section without affecting its contents. For an example, see Section 2.4.7.

The .usect directive can also be used to create uninitialized subsections. See Section 2.4.6 for more information
on creating subsections.

The .common directive is similar to directives that create uninitialized data sections, except that common
symbols are created by the linker instead.

2.4.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in the
object file and placed in MSP430 memory when the program is loaded. Each initialized section is independently
relocatable and may reference symbols that are defined in other sections. The linker automatically resolves
these references. The following directives tell the assembler to place code or data into a section. The syntaxes
for these directives are:

text
.data
.sect " section name "

.intvec " section name ", routine name

The .sect directive can also be used to create initialized subsections. See Section 2.4.6, for more information on
creating subsections.

22 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

2.4.3 User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text section
is allocated in memory as a single unit. Suppose there is a portion of executable code (perhaps an initialization
routine) that you want the linker to place in a different location than the rest of .text. If you assemble this segment
of code into a user-named section, it is assembled separately from .text, and you can use the linker to allocate it
into memory separately. You can also assemble initialized data that is separate from the .data section, and you
can reserve space for uninitialized variables that is separate from the .bss section.

These directives let you create user-named sections:

* The .usect directive creates uninitialized sections that are used like the .bss section. These sections reserve
space in RAM for variables.

« The .sect directive creates initialized sections, like the default .text and .data sections, that can contain code
or data. The .sect directive creates user-named sections with relocatable addresses.

* The .intvec directive creates an interrupt vector entry that points to an interrupt routine name

The syntaxes for these directives are:

symbol .usect " section name ", size in bytes[,alignment]
.sect " section name "

.intvec " section name ”, interrupt routine name

The maximum number of sections is 232-1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section name can
refer to a subsection; see Section 2.4.6 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section. Each
time you invoke one of these directives with a name that was already used, the assembler resumes assembling
code or data (or reserves space) into the section with that name. You cannot use the same names with different
directives. That is, you cannot create a section with the .usect directive and then try to use the same section
with .sect or .intvec.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 23
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.4.4 Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently filling

is the current section. The .text, .data, .intvec, and .sect directives change which section is considered the
current section. When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied end of current section command). The assembler sets the designated section
as the current section and assembles subsequent code into the designated section until it encounters
another .text, .data, .intvec, or .sect directive.

If one of these directives sets the current section to a section that already has code or data in it from earlier in
the file, the assembler resumes adding to the end of that section. The assembler generates only one contiguous
section for each given section name. This section is formed by concatenating all of the code or data which was
placed in that section.

Example 2-1. File y.asm

nop ; the assembler always starts with .text as the current section
.data

.word 1

.text

add R5,R5

.data

.word 2

Example 2-2. Disassembly of y.obj

TEXT Section .text, 0x4 bytes at 0x0

000000: 0343 NOP
000002: 0555 RLA.W R5

DATA Section .data, 0x4 bytes at 0x0

000000: 0001 .word 0x0001
000002: 0002 .word 0x0002

2.4.5 Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are known as
section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembiler fills a section with code or data, it increments the appropriate SPC. If you resume
assembling into a section, the assembler remembers the appropriate SPC's previous value and continues
incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates the symbols in each section
according to the final address of the section in which that symbol is defined. See Section 2.7 for information on
relocation.

2.4.6 Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions of
larger sections. Subsections are themselves sections and can be manipulated by the assembler and linker.

The assembler has no concept of subsections; to the assembiler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the assembler will
not combine subsections with their parent sections.

24 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

Subsections are used to keep parts of a section as distinct sections so that they can be separately manipulated.
For instance, by placing each function and object in a uniquely-named subsection, the linker gets a finer-grained
view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather .text
and all subsections of .text into one large output section named ".text". You can instead use the SECTION
directive to control the subsection independently. See Section 8.5.5.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or .usect
directive.

The syntaxes for a subsection name are:

symbol .usect " section_name : subsection_name ", size in bytes[,alignment]

.sect " section_name : subsection_name "

A subsection is identified by the base section name followed by a colon and the name of the subsection. The
subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text: func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text sections.

You can create two types of subsections:

+ Initialized subsections are created using the .sect directive. See Section 2.4.2.
» Uninitialized subsections are created using the .usect directive. See Section 2.4.1.

Subsections are placed in the same manner as sections. See Section 8.5.5 for information on the SECTIONS
directive.

2.4.7 Using Sections Directives

Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back and forth
between the different sections. You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In the latter case, the assembler simply
appends the new code to the code that is already in the section.

The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A line in
a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

See Section 4.11 for more information on interpreting the fields in a source listing.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 25
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Introduction to Object Modules

I

TeExAS
INSTRUMENTS

www.ti.com

AU WN R

10
11
12
13
14
15
16
17
18
19

20

21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

36

37

38
39
40
41
42

0000

0000 0011
0002 0022
0004 0033

0000

0006 0123

0000

0000 403A
0002 1234
0004 521A
0006 0001!

0008

0008 00AA
000a 00BB
000c 00cCC

0000
0001

0008

0008 403C
000a 3456
000c 421D
000e 0000!
0010 1290
0012 FFEE!

0000
0000 0300

Field 1 Field2 Field 2

.global _mpyi
khkhkhkkhkkhkhkhkhkhhhhhhhhdhddkhkhhhhhhdhdhdhddddkdddhhhdhdhdkdxdx*%
* Assemble an initialized table into .data. *
R RS EEEE RS S E SR EEEEEEEEEEEEEEEEEEEEEEEEEEEES]

.data
coeff .word 011h,0x22,0x33

khhhkkhhhkhkhhhdhhhdhdhhddhdhdddhdddddddhdddrdddrddrddrdsx

* Reserve space in .bss for a variable. *
R RS EEEE RS S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

.bss buffer,10

kkhkkhkkhkhhkkhkhhkkhhkhkhhhkhhhkhhhkhkhhhkhhhkhhhkhkhhkhkhhkkhdhkk*x*x

* Still in .data. *

kkhhkkhhhkkhhhkhdhhhdhhhkhdhhkhdhhhdhhhddhhddhhdddhrddhhdddrdxx

ptr .word 0x123

kkhhhkkhhhkhdhhhdhhhddhhdhddhdddhdddddddhdddrdddrddrddrdsx

* Assemble code into the .text section. *
RS R R R RS SRS S SR SRS SRS RS R R R RS SRR RS RS E R EEEEEEE RS

.text
add: MOV.W #0x1234,R10

ADD.W &coeff+1,R10

kkhkkhkkhkhhkkkhhkhkhhkhkhhhkkhhhkkhhhkhkhhkkhhhkhhhkhkhhkkhhkkhdhkkdx*x

* Another initialized table into .data. *
RS RS RS S S S S S S SRS S S SRS E R RS SR SRS SR SRR EEEEEEE RS
.data

ivals .word 0xAA, 0xBB, 0xCC

kkhkhkkkhkhhkkkhhkkhhkhkhhhkhhhkhkhhkhkhhkhkhhhkhhhkhkhhkikhhkkhdhkk*x*x

* Define another section for more variables. *
RS RS RS S S S S S S SRS E S SRS SRS R RS SR SRR SRS EEEEEEEEE RS

var2 .usect “newvars”, 1

inbuf .usect “newvars”, 7

khkhkkhkkhkkhkhkhkhkhhhhhhhhdhdhddhkhhhhhhhdhdhddddkdddhkhhdxdkdxdx*%

* Assemble more code into .text. *

R RS EEEE RS S E SR EEEEEEEEEEEEEEEEEEEEEEEEEEEES]
.text

mpy: MOV.W #0x3456,R12

MOV.W &coeff,R13
CALL _mpyi
R RS EEE RS S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* Define a named section for int. vectors. *
RS RS RS S S S S S SRS RS SRS SRS R RS SR SRS SR SRR EEEEEEE RS

.sect "vectors”
.word 0x300
V
Field 4

Figure 2-2. Using Sections Directives Example

As Figure 2-3 shows, the file in Figure 2-2 creates five sections:

text contains six 32-bit words of object code.

.data contains seven 32-bit words of initialized data.

vectors is a user-named section created with the .sect directive; it contains one word of initialized data.
.bss reserves 10 bytes in memory.

newvars is a user-named section created with the .usect directive; it contains eight bytes in memory.

26 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

The second column shows the object code that is assembled into these sections; the first column shows the
source statements that generated the object code.

Line numbers Object code Section
19 403A text
19 1234
20 521A
20 0001!

35 403C
35 3456
36 421D
36 0000!
37 1290
37 FFEE!
6 0011 .data
6 0022
6 0033
14 0123
25 00AA
25 00BB
25 oocc
No data - .bss
10 ten bytes
reserved
29 No data - newvars
30 eight bytes
reserved

Figure 2-3. Object Code Generated by the File in Figure 2-2

2.5 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the sections in object files as building
blocks; it combines input sections to create output sections in an executable output module. Second, the linker
chooses memory addresses for the output sections; this is called placement. Two linker directives support these
functions:

* The MEMORY directive allows you to define the memory map of a target system. You can name portions of
memory and specify their starting addresses and their lengths.

* The SECTIONS directive tells the linker how to combine input sections into output sections and where to
place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify the location
of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the subsection is
combined with the other sections with the same base section name. See Section 8.5.5.1.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target processor's
default placement algorithm described in Section 8.7. When you do use linker directives, you must specify them
in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:

« Section 8.5, Linker Command Files

« Section 8.5.4, The MEMORY Directive

¢ Section 8.5.5, The SECTIONS Directive
» Section 8.7, Default Placement Algorithm

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 27
Submit Document Feedback v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.5.1 Combining Input Sections
Figure 2-4 provides a simplified example of the process of linking two files together.

Note that this is a simplified example, so it does not show all the sections that will be created or the actual
sequence of the sections. See Section 8.7 for the actual default memory placement map for MSP430.

file1.0bj
Executable
.bss object module Memory map
file1
text (.bss) Space for
I bl variables
file2 (.bss)
.data (.bss)
Init file1
i g Initialized
named section .data
() -1 O 1 ____(___)___. data
file2 (.data)
(.data)
file1
file2.0bj (.text) Executable
——————————— code
file2 (.text)
.bss (text)
text ; Init Init
.data Tables Tables
Tables

(named section)

Figure 2-4. Combining Input Sections to Form an Executable Object Module

In Figure 2-4, file1.0bj and file2.obj have been assembled to be used as linker input. Each contains

the .text, .data, and .bss default sections; in addition, each contains a user-named section. The executable
object module shows the combined sections. The linker combines the .text section from file1.obj and the .text
section from file2.obj to form one .text section, then combines the two .data sections and the two .bss sections,
and finally places the user-named sections at the end. The memory map shows the combined sections to be
placed into memory.

2.5.2 Placing Sections

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to use
the default setup. For example, you may not want all of the .text sections to be combined into a single .text
section. Or you may want a user-named section placed where the .data section would normally be allocated.
Most memory maps contain various types of memory (RAM, ROM, EEPROM, FLASH, etc.) in varying amounts;
you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.4 and
Section 8.5.5. See Section 8.7 for the actual default memory allocation map for MSP430.

28 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

2.6 Symbols

An object file contains a symbol table that stores information about symbols in the object file. The linker uses this
table when it performs relocation. See Section 2.7.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol can represent
things like the start address of a function, variable, section, or an absolute integer (such as the size of the stack).

Symbols are defined in assembly by adding a label or a directive such as .set .equ .bss, or .usect.

Symbols have a binding, which is similar to the C standard concept of linkage. ELF files may contain symbols
bound as local symbols, global symbols, and weak symbols.

* Global symbols are visible to the entire program. The linker does not allow more than one global definition
of a particular symbol; it issues a multiple-definition error if a global symbol is defined more than once. (The
assembler can provide a similar multiple-definition error for local symbols.) A reference to a global symbol
from any object file refers to the one and only allowed global definition of that symbol. Assembly code must
explicitly make a symbol global by adding a .def, .ref, or .global directive. (See Section 2.6.1.)

* Local symbols are visible only within one object file; each object file that uses a symbol needs its own local
definition. References to local symbols in an object file are entirely unrelated to local symbols of the same
name in another object file. By default, a symbol is local. (See Section 2.6.2.)

* Weak symbols are symbols that may be used but not defined in the current module. They may or may not
be defined in another module. A weak symbol is intended to be overridden by a strong (non-weak) global
symbol definition of the same name in another object file. If a strong definition is available, the weak symbol
is replaced by the strong symbol. If no definition is available (that is, if the weak symbol is unresolved), no
error is generated, but the weak variable's address is considered to be null (0). For this reason, application
code that accesses a weak variable must check that its address is not zero before attempting to access the
variable. (See Section 2.6.3.)

Absolute symbols are symbols with a numeric value. They may be constants. To the linker, such symbols are
unsigned, but the integer may be treated as signed or unsigned depending on how it is used. The range of legal
values for an absolute integer is 0 to 2432-1 for unsigned treatment and -2231 to 2*31-1 for signed treatment.

In general, common symbols (see .common directive) are preferred over weak symbols.

See Section 4.8 for information about assembler symbols.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 29
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.6.1 Global (External) Symbols

Global symbols are symbols that are either accessed in the current module but defined in another (an external
symbol) or defined in the current module and accessed in another. Such symbols are visible across object
modules. You must use the .def, .ref, or .global directive to identify a symbol as external:

.def The symbol is defined in the current file and may be used in another file.
.ref The symbol is referenced in the current file, but defined in another file.
.global The symbol can be either of the above. The assembler chooses either .def or .ref as appropriate for each symbol.

The following code fragments illustrate the use of the .global directive.

x: ADD.W #56, R11 ; Define x
.global x ; acts as .def x

Because x is defined in this module, the assembler treats ".global x" as ".def x". Now other modules can refer to
X.

JMP y ; Reference y
.global y ; .ref of y

Because y is not defined in this module, the assembler treats ".global y" as ".ref y". The symbol y must be
defined in another module.

Both the symbols x and y are external symbols and are placed in the object file's symbol table; x as a defined
symbol, and y as an undefined symbol. When the object file is linked with other object files, the entry for x will be
used to resolve references to x in other files. The entry for y causes the linker to look through the symbol tables
of other files for y’s definition.

The linker attempts to match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker from
creating an executable object module.

An error also occurs if the same symbol is defined more than once.
2.6.2 Local Symbols

Local symbols are visible within a single object file. Each object file may have its own local definition for a
particular symbol. References to local symbols in an object file are entirely unrelated to local symbols of the
same name in another object file.

By default, a symbol is local.
2.6.3 Weak Symbols
Weak symbols are symbols that may or may not be defined.

The linker processes symbols that are defined with a "weak" binding differently from symbols that are defined
with global binding. Instead of including a weak symbol in the object file's symbol table (as it would for a global
symbol), the linker only includes a weak symbol in the output of a "final" link if the symbol is required to resolve
an otherwise unresolved reference.

This allows the linker to minimize the number of symbols it includes in the output file's symbol table by omitting
those that are not needed to resolve references. Reducing the size of the output file's symbol table reduces the
time required to link, especially if there are a large number of pre-loaded symbols to link against. This feature is
particularly helpful for OpenCL applications.

30 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

You can define a weak symbol using either the .weak assembly directive or the weak operator in the linker
command file.

Using Assembly: To define a weak symbol in an input object file, the source file can be written in assembly.
Use the .weak and .set directives in combination as shown in the following example, which defines a weak
symbol "ext_addr_sym":

.weak ext addr_sym
ext addr sym .set 0x12345678

Assemble the source file that defines weak symbols, and include the resulting object file in the link. The
"ext_addr_sym" in this example is available as a weak symbol in a final link. It is a candidate for removal if
the symbol is not referenced elsewhere in the application. See .weak directive.

Using the Linker Command File: To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the output
file's symbol table if it is not referenced. In a linker command file, an assignment expression outside a
MEMORY or SECTIONS directive can be used to define a weak linker-defined symbol. For example, you can
define "ext_addr_sym" as follows:

weak (ext addr sym) = 0x12345678;

If the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the linker as
a weak symbol; it will not be included in the resulting output file if the symbol is not referenced. See Section
8.6.2.

Using C/C++ code: See information about the WEAK pragma and weak GCC-style variable attribute in the
MSP430 Optimizing C/C++ Compiler User's Guide.

If there are multiple definitions of the same symbol, the linker uses certain rules to determine which definition
takes precedence. Some definitions may have weak binding and others may have strong binding. "Strong" in
this context means that the symbol has not been given a weak binding by either of the two methods described
above. Some definitions may come from an input object file (that is, using assembly directives) and others may
come from an assignment statement in a linker command file.

The linker uses the following guidelines to determine which definition is used when resolving references to a
symbol:

A strongly bound symbol always takes precedence over a weakly bound symbol.

If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker command file
takes precedence over a symbol defined in an input object file.

If two symbols are both strongly bound and both are defined in an input object file, the linker provides a
symbol redefinition error and halts the link process.

2.6.4 The Symbol Table

The assembler generates entries with global (external) binding in the symbol table for each of the following:

Each .ref, .def, or .global directive (see Section 2.6.1)
The beginning of each section

The assembler generates entries with local binding for each locally-available function.

For informational purposes, there are also entries in the symbol table for each symbol in a program.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 31
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.7 Symbolic Relocations

The assembler treats each section as if it began at address 0. Of course, all sections cannot actually begin
at address 0 in memory, so the linker must relocate sections. Relocations are symbol-relative rather than
section-relative.

The linker can relocate sections by:

» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

* Adjusting symbol values to correspond to the new section addresses

» Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a relocation
entry each time a relocatable symbol is referenced. The linker then uses these entries to patch the references
after the symbols are relocated. The following example contains a code fragment for a MSP430 device for which
the assembler generates relocation entries.

1 ** Generating Relocation Entries **
2
3 .ref X
4 .def Y
5
6 000000 .text
7 000000 5A0B ADD.W R10, RI11
8 000002 4B82 MOV.W R11, &X
000004 0000!
9 000006 4030 BR #Y
000008 000A!
10
11 00000a 5BOC Y ADD.W R11, R12

In the previous example, both symbols X and Y are relocatable. Y is defined in the .text section of this module;
X is defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 8. The assembler generates two relocation
entries: one for X and one for Y. The reference to X is an external reference and the reference to Y is to an
internally defined relocatable symbol (both are indicated by the ! character in the listing).

After the code is linked, suppose that X is relocated to address 0x0800. Suppose also that the .text section is
relocated to begin at address 0x0600; Y now has a relocated value of 0x0608. The linker uses the relocation
entry for the reference to X to patch the branch instruction in the object code:

“413820000! \becomes ‘4B820800 ”

2.7.1 Relocation Entries

EABI uses ELF, in which the relocations are symbol-relative rather than section-relative. This means that the
relocation in the example in Section 2.7 generated for "Y' would refer to the symbol "Y' and resolve the value for
"Y' in the opcode based on where the definition of "Y' ends up.

2.8 Loading a Program

The linker creates an executable object file which can be loaded in several ways, depending on your execution
environment. These methods include using Code Composer Studio or the hex conversion utility. For details, see
Section 3.1.

32 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Chapter 3
Program Loading and Running

i3 TEXAS INSTRUMENTS

Even after a program is written, compiled, and linked into an executable object file, there are still many tasks that
need to be performed before the program does its job. The program must be loaded onto the target, memory
and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a program
performing some of its own initialization. Many of the necessary tasks are handled for you by the compiler and
linker, but if you need more control over these tasks, it helps to understand how the pieces are expected to fit

together.
This chapter will introduce you to the concepts involved in program loading, initialization, and startup.

This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation for
various device-specific aspects of bootstrapping.

B T I T T |3 PP P PSP PPPPR 34
BT 1V o 11 L PP PR PSSP 37
3.3 RUN-TIME INITANZALION............oooii ettt e e et e et e e et e e et a s b e e s aaeeeeeeeeeaeaaaaeaaaaeaeaesaaaaaaassssssssnsnrnns 38
3.4 ArguUMENES tO M@AIN..... ... ettt e e e ettt e e 4 e s e et e e o2 e b et et e oo oo s bbb e e e e e aaa e et e e e e e nne et e e e e e nnnneeeeean 41
3.5 RUN-TIME REIOCALION...........co ettt et e et et et oot e e e e e e ea e eateeeeeeeeaeaaaaaaaaaaaaaaeaaaaaaannnnsnnsnsnsnsnnnnnennnnn 41
3.6 Additional INfOrmMAtioN........... ...t e oo et eeee e e et e eeeeaaaaaaeaaaaaaaaaaaa e nnnnnnnnnrnnnnnes 41
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 33
v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

3.1 Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and data. A
loader might be another program on the device, an external agent (for example, a debugger), or the device might
initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the /oad image in memory before the program starts. The load image
is the program's code and data in memory before execution. What exactly constitutes loading depends on the
environment, such as whether an operating system is present. This section describes several loading schemes
for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

* A debugger running on a connected host workstation. In a typical embedded development setup, the
device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The device is
connected with a communication channel such as a JTAG interface. CCS reads the program and writes the
load image directly to target memory through the communications interface.

+ "Burning" the load image onto an EPROM module. The hex converter (hex430) can assist with this by
converting the executable object file into a format suitable for input to an EPROM programmer. The EPROM
is placed onto the device itself and becomes a part of the device's memory. See Chapter 12 for details.

+ Bootstrap loading from a dedicated peripheral, such as an I2C peripheral. The device may require a
small program called a bootloader to perform the loading from the peripheral. The hex converter can assist in
creating a bootloader.

* Another program running on the device. The running program can create the load image and transfer
control to the loaded program. If an operating system is present, it may have the ability to load and run
programs.

3.1.1 Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable data
in the program must be writable, and so must be located in writable memory, typically RAM. However, RAM is
volatile, meaning it will lose its contents when the power goes out. If this data must have an initial value, that
initial value must be stored somewhere else in the load image, or it would be lost when power is cycled. The
initial value must be copied from the non-volatile ROM to its run-time location in RAM before it is used. See
Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object as it exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code and
read-only data, such as the .const section. In this case, the program can read the data directly from the load
address. Sections that have no initial value, such as the .bss section, do not have load data and are considered
to have load and run addresses that are the same. If you specify different load and run addresses for an
uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data, such as
the .data section. The .data section's starting contents are placed in ROM and copied to RAM. This often occurs
during program startup, but depending on the needs of the object, it may be deferred to sometime later in the
program as described in Section 3.5.

Symbols in assembly code and object files almost always refer to the run address. When you look at an address
in the program, you are almost always looking at the run address. The load address is rarely used for anything
but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in the
object file metadata.

34 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

The load address determines where a loader places the raw data for the section. Any references to the section
(such as references to labels in it) refer to its run address. The application must copy the section from its load
address to its run address before the first reference of the symbol is encountered at run time; this does not
happen automatically simply because you specify a separate run address. For examples that specify load and
run addresses, see Section 8.5.6.1.

For an example that illustrates how to move a block of code at run time, see Moving a Function from Slow

to Fast Memory at Run Time. To create a symbol that lets you refer to the load-time address, rather than the
run-time address, see the .label directive. To use copy tables to copy objects from load-space to run-space at
boot time, see Section 8.8.

ELF format executable object files contain segments. See Section 2.3 for information about sections and
segments.

3.1.2 Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device supports
every bootloading mode, and using the bootloader is optional. This section discusses various bootloading
schemes to help you understand how they work. Refer to your device's data sheet to see which bootloading
schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data may be
stored in ROM or FLASH memory. At power-on, an on-chip bootloader built into the device hardware starts
automatically.

Figure 3-1. Bootloading Sequence (Simplified)

The bootloader is typically very small and copies a limited amount of memory from a dedicated location in ROM
to a dedicated location in RAM. (Some bootloaders support copying the program from an 1/O peripheral.) After
the copy is completed, it transfers control to the program.

3.1.2.1 Boot, Load, and Run Addresses
The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for .const data.
If they are different, the object's contents must be copied to the correct location before the object may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the raw data
to the load address.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 35
Submit Document Feedback v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Program Loading and Running

13 TEXAS
INSTRUMENTS

www.ti.com

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a

convention shared by the bootloader and the program.
3.1.2.2 Bootloader

The detailed operation of the bootloader is device-specific. Some devices have complex capabilities such as

booting from an 1/O peripheral or configuring memory controller parameters.
3.1.2.3 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up. For this

reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for MSP430F5xx and MSP430F6xx devices. For more about setting up the
bootloader, see the Creating a Custom Flash-Based Bootloader (BSL) (SLAA450) application note.

Example 3-1. Sample Bootloader Routine

,-,-**

;7 BSL SW low level functions

I R R
o

.cdecls C,LIST,"msp430x54xA.h"

ARGl .equ R12
ARG2 .equ R13
ARG3 .equ R14
ARG4 .equ R15

RET low .equ R12
RET _high .equ rl3

.ref version_array
.ref ¢ int00

.sect ".ZAREA"

.retain
;BSL Z-Area

BSL Entry JMP JMP C Branch ; BSL ENTRY AREA
JMP BSL_ACTIONO
JMP $;BSL_ACTION1 unused
JMP $;BSL ACTION2 unused
JMP $ 7BSL_ACTION3 unused

C Branch BR # c_int00 ;BSL ACTION4 unused

.sect ".ZAREA CODE"

.retain
,-,-**
;; Name :BSL_ACTIONO
;7 Function :BSL Action 0 is a function caller
;; Arguments :rl5, Function ID

;i - 0: Get Software ID

;i - 1: Unlock BSL Flash area
;; Returns :rl4, Low Word

;i :rl5, High Word

I R R
o

BSL_ACTIONO:

CMP #0xDEAD, ARG2

JNE RETURN ERROR

CMP #0xBEEF, ARG3

JNE RETURN_ ERROR

JMP RETURN_TO BSL ; 2 == return to BSL
RETURN_ERROR

CLR RET low

CLR RET high

RETA

I R R R R
o

;; Name :RETURN_TO BSL
;7 Function :Returns to a BSL function after that function has made
36 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAA450
https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

i :an external function call
;7 Arguments none
;7 Returns :none

;;**

RETURN TO BSL

POP.W RET_low ; remove first word from return addr
POP.W RET _high ; remove second word from return addr
RETA ; should now return to the BSL location

.def BslEntryLoc ;location of BSL Entry Address

.def BslProtectVecLoc ;location of BSL_Protect() vector
.def PBSLSigLoc ;location of primary BSL signature
.def SBSLSigLoc ;location of secondary BSL signature
.def PJTAGLOCK KEY ;location of primary JTAG Lock Key
.def SJTAGLOCK_KEY ;location of secondary JTAG Lock Key

.def BSL REQ JTAG OPEN
.def BSL REQ APP CALL

IRk 2k b b kb 2 bk kb b b b h b b b b b b b b b b b b b b b b b b 2h b

:0 in R12.1 for no appended call
:1 in R12.1 for appended call via BSLENTRY : BSL _REQ APP CALL

I R e R R
rr

;; Name :BSL_Protect

;; Function :Protects the BSL memory and protects the SYS module

;7 Arguments :none

;; Returns :0 in R12.0 for lock (keep JTAGLOCK KEY state)

F :1 in R12.0 for unlock (overwrite JTAGLOCK KEY) : BSL REQ JTAG OPEN

BSL REQ JTAG OPEN .equ 0x0001 ;Return Value for BSLUNLOCK Function to open JTAG
BSL_REQ APP CALL .equ 0x0002 ;Return Value for BSLUNLOCK Function to Call BSL again
BSL Protect:

CLR RET low ;lock (keep JTAGLOCK KEY state)

BIS #SYSBSLPE+SYSBSLSIZEO+SYSBSLSIZE1 , &SYSBSLC ; protects BSL

bit #SYSBSLIND, &SYSCTL ;check for BSL start request

jz BCC2BSL

BIS.W #BSL REQ APP CALL, RET low
BCC2BSL RETA

.sect ".BSLSIG";

.retain
.word OXFFFF
BslProtectVecLoc .word BSL Protect ;adress of function
PBSLSigLoc .word 03CA5h ;1st BSL signature
SBSLSigLoc .word 0C35Ah ;2nd BSL signature
.word OXFFFF
BslEntryLoc .word BSL_Entry_ JMP
.sect ".JTAGLOCKKEY";
.retain
PJTAGLOCK _KEY .word OxXFFFF ; Primary Key Location
SJTAGLOCK KEY .word OxXFFFF ; Secondary Key Location
; set default unlock JTAG with option to lock with
writting
; a value <> 0x0000 or OxFFFF
.end

3.2 Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the startup
routine. The startup routine is responsible for initializing and calling the rest of the program. For a C/C++
program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is loaded, the
value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You can
select a custom entry point; see Section 8.4.11. The device itself cannot read the entry point field from the object
file, so it has to be encoded in the program somewhere.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 37
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

« If you are using an interrupt vector, the entry point is installed as the RESET interrupt handler. When RESET
is applied, the startup routine will be invoked.

« If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter (PC)
to the value of the entry point.

3.3 Run-Time Initialization

After the load image is in place, the program can run. The subsections that follow describe bootstrap initialization
of a C/C++ program. An assembly-only program may not need to perform all of these steps.

3.3.1 The _c_int00 Function

The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs all the
steps necessary for a C/C++ program to initialize itself.

The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets up
the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry point for C
programs by default. The compiler's run-time-support library provides a default implementation of _c_int00.

The startup routine is responsible for performing the following actions:

1. Set up the stack

2. Process the .cinit run-time initialization table to autoinitialize global variables (when using the --rom_model
option)

3. Call all global constructors (in .init_array) for C++

4. Call the function main

5. Call exit when main returns

3.3.2 RAM Model vs. ROM Model

Choose a startup model based on the needs of your application. The ROM model performs more work during the
boot routine. The RAM model performs more work while loading the application.

If your application is likely to need frequent RESETs or is a standalone application, the ROM model may be a
better choice, because the boot routine will have all the data it needs to initialize RAM variables. However, for a
system with an operating system, it may be better to use the RAM model.

In the EABI ROM model, the C boot routine copies data from the .cinit section to the run-time location of the
variables to be initialized.

In the EABI RAM model, no .cinit records are generated at startup.

38 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the
linker with the --rom_model option.

The ROM model allows initialization data to be stored in slow non-volatile memory and copied to fast memory
each time the program is reset. Use this method if your application runs from code burned into slow memory or
needs to survive a reset.

For the ROM model , the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called __Tl_CINIT_Base that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by .cinit)
into the run-time location of the variables.

Figure 3-2 illustrates autoinitialization at run time using the ROM model.

Object file Memory

Initialization

.cinit cint
section tables

(EXT_MEM)

Boot
routine

.bss
section
(D_MEM)

Figure 3-2. Autoinitialization at Run Time

3.3.2.2 Initializing Variables at Load Time (--ram_model)

The RAM model Initializes variables at load time. To use this method, invoke the linker with the --ram_model
option.

This model may reduce boot time and save memory used by the initialization tables.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's header.
This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no space in the
memory map.)

The linker sets Tl _CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

The loader copies values directly from the .data section to memory.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 39
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

Figure 3-3 illustrates the initialization of variables at load time .

Object file Memory

.cinit —Dl Loader I

.bss

Figure 3-3. Initialization at Load Time

3.3.2.3 The --rom_model and --ram_model Linker Options
The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model option.

* The symbol c_int00 is defined as the program entry point. The _c¢_int00 symbol is the start of the C
boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from the
appropriate run-time-support library.

* When you use the ROM model to autoinitialize at run time (--rom_model option):

— The linker defines a special symbol called Tl _CINIT_Base that points to the beginning of the
initialization tables in memory. When the program begins running, the C boot routine copies data from
the tables (pointed to by .cinit) into the run-time location of the variables.

* When you use the RAM model to initialize at load time (--ram_model option):

— Thelinker sets Tl CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

3.3.3 About Linker-Generated Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load address
to its run address. This function reads size and location information from copy tables. The linker automatically
generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays with copy tables. See Section 8.8.4 for details and examples.

Copy tables can be used by the linker to implement run-time relocations as described in Section 3.5, however
copy tables require a specific table format.

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the copying at
auto-initialization time. Refer to Section 8.8.4.2 for more about the BINIT copy table name. The BINIT copy table
is copied before .cinit processing.

3.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Section 3.3.2.1 for more about using the .cinit section
with the ROM model and Section 3.3.2.2 for more using it with the RAM model.

40 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

3.4 Arguments to main

Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an embedded
program, but the Tl runtime does provide a way to do it. The user must allocate an .args section of an
appropriate size using the --args linker option. It is the responsibility of the loader to populate the .args section. It
is not specified how the loader determines which arguments to pass to the target. The format of the arguments is
the same as an array of pointers to char on the target.

See Section 8.4.4 for information about allocating memory for argument passing.
3.5 Run-Time Relocation

At times you may want to load code into one area of memory and move it to another area before running it.

For example, you may have performance-critical code in an external-memory-based system. The code must be
loaded into external memory, but it would run faster in internal memory. Because internal memory is limited, you
might swap in different speed-critical functions at different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the linker
to allocate a section twice: first to set its load address and again to set its run address. Use the load keyword
for the load address and the run keyword for the run address. See Section 3.1.1 for more about load and run
addresses. If a section is assigned two addresses at link time, all labels defined in the section are relocated to
refer to the run-time address so that references to the section (such as branches) are correct when the code
runs.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and loads
and runs at the same address. If you provide both allocations, the section is actually allocated as if it were two
separate sections. The two sections are the same size if the load section is not compressed.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The linker
allocates uninitialized sections only once; if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of run-time relocation, see Section 8.5.6.

3.6 Additional Information

See the following sections and documents for additional information:

Section 8.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.11, "Define an Entry Point (--entry_point Option)"

Section 8.5.6.1 ,"Specifying Load and Run Addresses"

Section 8.8, "Linker-Generated Copy Tables"

Section 8.11.1, "Run-Time Initialization"

Jlabel directive

Chapter 12, "Hex Conversion Utility Description"

"Run-Time Initialization" and "System Initialization" sections in the MSP430 Optimizing C/C++ Compiler User's
Guide

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 41
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

Program Loading and Running www.ti.com
This page intentionally left blank.

42 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Chapter 4
Assembler Description

i3 TEXAS INSTRUMENTS

The MSP430 assembler translates assembly language source files into machine language object files. These
files are object modules, which are discussed in Chapter 2. Source files can contain the following assembly
language elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the MSP430x1xx Family User's Guide, MSP430x3xx Family User's

Guide, or MSP430x4xx Family User's Guide.

4.1 ASSEIMDBIET OVEIVIBW. ...ttt ettt ettt e ettt e e a et e ekt ee e eate e e s ae e e e st et e easte e e ae e e e anbe e e eanteeeemneeeanbeeeenneeeamneeeanbeeenans 44
4.2 The Assembler's Role in the Software Development FIOW.....................c.oiiiiii e 45
4.3 INVOKING the ASSEMDIET ettt e e oottt e e e e e aabe et e e e e e aaeeeaeaeannneeeaeeaanbeeeaaeaannns 46
4.4 Controlling Application Binary INterface................ccooiiiiiiiiii e 47
4.5 Naming Alternate Directories for Assembler INpUL..................cooiiiiiiii s 47
4.6 Source Statement FOIMAL.................oooiiiiiii ettt ettt b et et e e e e e e b e e san e e ebe e saneeeneenarees 49
4.7 LIteral CONSTANTS.oiiiii ittt ettt e e bt e e e a b et e s bt e e e s bt e e eae e e e e se e e e s bt e e eaneeeenneeeanbeeeenneeeanneeeanbeeenans 51
4.8 ASSEMDIEr SYMBOIS. ...ttt et ettt e et e e an et e e e te e e naeeeante e e e n et e e annee e e neeeeanneeeanneeeannneenn 54
I b o (=== o o L= 59
4.10 Built-in FUNCLIONS @Nd OPEIatOrsS.coiiiiiiiiiii ittt e st e aa e e e e st e s enn e e e aane e e e nne e s enneeeaneeenn 62
4171 SOUICE LISTINGS.coiiiitiiiiiiii ittt s e e e ettt e eae e e e oA ket e e sttt e oa st e e 4a ket e e sttt e eane e e e kbt e enne e e naneeeenneenan 63
4.12 Debugging ASSEMDBIY SOUICE.oiiiiiii ittt ettt sb e e e bt e e aabe e e saae e e e bt e e e aabee e sanneeeanbeeeenneeenannes 65
4.13 CroSS-ReferenCe LiStiNGS.ooiiiiiiiiiiiiiiie ettt ettt e et e e aa bt e e s aae e e e bbeeeanteeeaaneeeenbeeeanneeeennees 66
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 43
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.1 Assembler Overview

The 2-pass assembler does the following:

Processes the source statements in a text file to produce a relocatable object file

Produces a source listing (if requested) and provides you with control over this listing

Allows you to divide your code into sections and maintain a section program counter (SPC) for each section
of object code

Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

Allows conditional assembly

Supports macros, allowing you to define macros inline or in a library

44

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights the
most common assembler development path. The assembler accepts assembly language source files as input,
both those you create and those created by the MSP430 C/C++ compiler.

C/IC++
source
files
Macro
source C/C++
files compiler

C/C++ name

Assembler

demanglin
source giing

utility

Macro
library Assembler
Object Librat_r)I/_-tbuiId Debugging
files auy
L Run-time-
Library of 4 support
object q library
files
Executable
object file

Hex-conversion
1111113

EPROM
programmer

Cross-reference
lister

Object file
utilities

Absolute lister

Figure 4-1. The Assembler in the MSP430 Software Development Flow

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

MSP430 Assembly Language Tools 45
Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

Assembler Description www.ti.com
4.3 Invoking the Assembler

To invoke the assembler, enter the following:

‘ ¢cl430 input file [options]

cl430 is the command that invokes the assembler through the compiler. The compiler considers any file with an .asm extension

to be an assembly file and invokes the assembler.
input file names the assembly language source file.
options identify the assembler options that you want to use. Options are case sensitive and can appear anywhere on the

command line following the command. Precede each option with one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Some runtime model options such as --code_model and --silicon version influence the behavior of the
assembler. These options are passed to the compiler, assembler, and linker from the shell utility, which is
detailed in the MSP430 Optimizing C/C++ Compiler User's Guide.

Table 4-1. MSP430 Assembler Options

Option Alias Description

--absolute_listing -aa Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

--asm_define=name[=def] -ad Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1. See
Section 4.8.5.

--asm_dependency -apd Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

--asm_includes -api Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name as
the source file but with a .ppa extension.

--asm_listing -al Produces a listing file with the same name as the input file with a .Ist extension.

--asm_listing_cross_reference -ax

--asm_undefine=name -au
--cmd_file=filename -@
--include_file=filename -ahi

--include_path=pathname -l

--quiet -q

--silicon_version={msp|mspx}

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --asm_listing_cross_reference option, the assembler creates a
listing file automatically, naming it with the same name as the input file with a .Ist extension.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a semicolon
(* or ;) at the beginning of a line in the command file to include comments. Comments that
begin in any other column must begin with a semicolon. Within the command file, filenames or
option parameters containing embedded spaces or hyphens must be surrounded with quotation
marks. For example: "this-file.asm"

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.5.1.

Suppresses the banner and progress information (assembler runs in quiet mode).

Selects the instruction set version. Using --silicon_version=mspx generates code for MSP430x
devices (20-bit code addresses). Using --silicon_version=msp generates code for 16-bit
MSP430 devices.

Modules assembled/compiled for 16-bit MSP devices are not compatible with modules that are
assembled/compiled for 20-bit MSPx devices. The linker generates errors if an attempt is made
to combine incompatible object files.

46 MSP430 Assembly Language Tools
v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Description
Table 4-1. MSP430 Assembler Options (continued)

Option Alias Description

--symdebug:dwarf or -g (DWAREF is on by default) Enables assembler source debugging in the C source debugger. Line

--symdebug:none information is output to the object module for every line of source in the assembly language
source file. You cannot use this option on assembly code that contains .line directives. See
Section 4.12.

4.4 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. The ABI exists to allow ABI-compliant object code to link together,
regardless of its source, and allows the resulting executable to run on any system that supports that ABI. See
the MSP430 Optimizing C/C++ Compiler User's Guide (SLAU132) and The MSP430 Embedded Application
Binary Interface Application Report (SLAA534) for information on the EABI ABI.

COFF object files are not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If you
would like to produce COFF output files, please use v4.4 of the MSP430 Code Generation Tools and refer to
SLAU131J for documentation.

All object files in an EABI application must be built for EABI. The linker detects situations where object modules
conform to different ABIs and generates an error.

Note that converting an assembly file from the COFF API to EABI requires some changes to the assembly code.
4.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and .include
directives tell the assembler to read source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 5 contains examples of the .copy, .include, and .mlib directives. The
syntax for these directives is:

.copy ["Ifilename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copy/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.

The assembler searches for the file in the following locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled when
the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option

3. Any directories named with the MSP430_A_DIR environment variable

4. Any directories named with the MSP430_C_DIR environment variable

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using the
--include_path option (described in Section 4.5.1) or the MSP430_A_DIR environment variable (described
in Section 4.5.2). The MSP430_C_DIR environment variable is discussed in the MSP430 Optimizing C/C++
Compiler User's Guide.

4.5.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or macro
libraries. The format of the --include_path option is as follows:

cl430 --include_path= pathname source filename [other options]

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 47
Submit Document Feedback v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU132
https://www.ti.com/lit/pdf/SLAA534
https://www.ti.com/lit/pdf/slau131J
https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying path
information. If the assembler does not find the file in the directory that contains the current source file, it
searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the following
directive statement:

.copy "copy.asm"

Assume the following paths for the copy.asm file:

UNIX: /tools/files/copy.asm

Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) ‘ cl1430 --include_path=/tools/files source.asm ‘
Windows ‘01430 --include path=c:\tools\files source.asm

The assembiler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

4.5.2 Using the MSP430_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses the
MSP430_A_DIR environment variable to name alternate directories that contain copy/include files or macro
libraries.

The assembler looks for the MSP430_A DIR environment variable and then reads and processes it. If the
assembler does not find the MSP430_A_DIR variable, it then searches for MSP430_C_DIR. The processor-
specific variables are useful when you are using Texas Instruments tools for different processors at the same
time.

See the MSP430 Optimizing C/C++ Compiler User's Guide for details on MSP430_C_DIR.

The command syntax for assigning the environment variable is as follows:

Operating System Enter

UNIX (Bourne Shell) MSP430_A_DIR=" pathname, ; pathname, ; . .. "; export
MSP430_A_DIR

Windows set MSP430_A_DIR= pathname, ; pathname,; . . .

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must follow
these constraints:

* Pathnames must be separated with a semicolon.
» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after the
semicolon in the following is ignored:

‘ set MSP A DIR= c:\path\one\to\tools ; c:\path\two\to\tools ‘

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

‘ set MSP_A DIR=c:\first path\to\tools;d:\second path\to\tools ‘

48 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information. If the
assembler does not find the file in the directory that contains the current source file or in directories named by

the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asm"
.copy "copy2.asm"

Assume the following paths for the files:

UNIX: ltools/files/copy1.asm and /dsys/copy2.asm
Windows: c:\tools\files\copy1.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) MSP430 A DIR="/dsys"; export MSP430 A DIR
cl430 --include_path=/tools/files source.asm
Windows MSP430_ A DIR=c:\dsys
cl430 --include path=c:\tools\files source.asm

The assembiler first searches for copy1.asm and copy2.asm in the current directory because source.asm is
in the current directory. Then the assembler searches in the directory named with the --include_path option
and finds copy1.asm. Finally, the assembler searches the directory named with MSP430_A_DIR and finds

copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of these

commands:
Operating System Enter
UNIX (Bourne shell) ‘unset MSP430 A DIR ‘
Windows ‘set MSP430_A DIR= ‘

4.6 Source Statement Format

Each line in a MSP430 assembly input file can be empty, a comment, an assembler directive, a macro
invocation, or an assembly instruction.

Assembly language source statements can contain four ordered fields (label, mnemonic, operand list, and
comment). The general syntax for source statements is as follows:

[label[:]lmnemonic [operand list][;comment]

Following are examples of source statements:

SYM1 .set 2 ; Symbol SYM1 = 2
Begin: MOV . W #SyM1, RI11 ; Load R11 with 2
.word 016h ; Initialize word (016h)

The MSP430 assembler reads an unlimited number of characters per line. Source statements that extend
beyond 400 characters in length (including comments) are truncated in the listing file.

Follow these guidelines:

« All statements must begin with a label, a blank, an asterisk, or a semicolon.
» Labels are optional for most statements; if used, they must begin in column 1.
» One or more space or tab characters must separate each field.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

49

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

» Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (* or ;),
but comments that begin in any other column must begin with a semicolon.

Note

A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes and
assembler directive names without the . prefix are valid label names. Remember to always use
whitespace before the mnemonic, or the assembler will think the identifier is a new label definition.

The following sections describe each of the fields.
4.6.1 Label Field

A label must be a legal identifier (see Section 4.8.1) placed in column 1. Every instruction may optionally have a
label. Many directives allow a label, and some require a label.

A label can be followed by a colon (:). The colon is not treated as part of the label name. If you do not use a
label, the first character position must contain a blank, a semicolon, or an asterisk.

When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.8) with the
same name is created. Its value is the current value of the section program counter (SPC, see Section 2.4.5).
This symbol represents the address of that instruction. In the following example, the .word directive is used to
create an array of 3 words. Because a label was used, the assembly symbol Start refers to the first word, and
the symbol will have the value 40h.

9 0000 ; Assume some code was assembled
10 0040 000A Start: .word 0OAh, 3,7

0044 0003

0048 0007

A label on a line by itself is a valid statement. When a label appears on a line by itself, it points to the instruction
on the next line (the SPC is not incremented):

3 0050 Here:
4 0050 0003 .word 3

A label on a line by itself is equivalent to writing:

Here: .equ $; $ provides the current value of the SPC

If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
4.6.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is interpreted
as a label. The mnemonic field contains one of the following items:

* Machine-instruction mnemonic (such as ADD, MOV, JMP)
» Assembler directive (such as .data, .list, .equ)

* Macro directive (such as .macro, .var, .mexit)

* Macro invocation

4.6.3 Operand Field

The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:

» an immediate operand (usually a constant or symbol) (see Section 4.7 and Section 4.8)
* aregister operand

* amemory reference operand

» an expression that evaluates to one of the above (see Section 4.9)

50 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

An immediate operand is encoded directly in the instruction. The value of an immediate operand must be a
constant expression. Most instructions with an immediate operand require an absolute constant expression,
such as 1234. Some instructions (such as a call instruction) allow a relocatable constant expression, such as a
symbol defined in another file. (See Section 4.9 for details about types of expressions.)

A register operand is a special pre-defined symbol that represents a CPU register.

A memory reference operand uses one of several memory addressing modes to refer to a memory location.
Memory reference operands use a target-specific syntax defined in the appropriate CPU and Instruction Set
Reference Guide.

You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU and Instruction Set Reference Guide for your device family.

You use immediate values as operands primarily with instructions. In some cases, you can use immediate
values with the operands of directives.

See the MSP430x1xx Family User’s Guide, the MSP430x3xx Family User’s Guide, and the MSP430x4xx Family
User’s Guide for more information on the syntax and usage of instructions. See Chapter 5 for more information
on the syntax and usage of directives.

4.6.3.1 Operand Syntaxes for Instructions

The assembler allows you to specify that an operand should be used as an immediate value by using the #
sign as a prefix. For instance, you can use immediate values with the .byte directive to load values into the
current section. It is not usually necessary or permitted to use the # prefix in directives. Compare the following
statements:

ADD.W #10, RI1
byte 10

In the first statement, the # prefix is necessary to tell the assembler to add the value 10 to R11. In the second
statement, however, the # prefix is not used; the assembler expects the operand to be a value and initializes a
byte with the value 10.

4.6.4 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain any
ASCII character, including blanks. Comments are printed in the assembly source listing, but they do not affect
the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a semicolon
(;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a semicolon. The
asterisk identifies a comment only if it appears in column 1.

4.7 Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value that
represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:

* Binary integer literals

* Octal integer literals

* Decimal integer literals

* Hexadecimal integer literals
* Character literals

» Character string literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 51
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.7.1 Integer Literals

The assembler maintains each integer literal internally as a 32-bit signless quantity. Literals are considered
unsigned values, and are not sign extended. For example, the literal 00FFh is equal to 00FF (base 16) or 255
(base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store OFFh in a .byte location,
the bits will be exactly the same as if you had stored -1. It is up to the reader of that location to interpret the
signedness of the bits.

4.7.1.1 Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary literals
of the form "O[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler right justifies the
value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 049 or 046
0100000b Literal equal to 3245 or 204¢
01b Literal equal to 14g or 14¢
11111000B Literal equal to 2484 or OF84¢
0b00101010 Literal equal to 424 or 2A4¢
0B101010 Literal equal to 4244 or 2A4¢

4.7.1.2 Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (O through 7) followed by the suffix Q (or q). Octal literals
may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of valid octal
literals:

10Q Literal equal to 849 or 846

054321 Literal equal to 22737 or 58D14¢
100000Q Literal equal to 327684y or 800044
226q Literal equal to 1504 or 96¢

4.7.1.3 Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These are
examples of valid decimal integer literals:

1000 Literal equal to 10004¢ or 3E84¢

-32768 Literal equal to -32 768 or -8000+¢

25 Literal equal to 254 or 194

4815162342 Literal equal to 48151623424 or 11F018BE6+¢

4.7.1.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by 0x. A hexadecimal literal must begin with a decimal value (0-9) if it is indicated by the H or h suffix.

Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. If fewer than eight hexadecimal
digits are specified, the assembler right-justifies the bits.

These are examples of valid hexadecimal literals:

78h Literal equal to 1204 or 007844
0x78 Literal equal to 12049 or 00784¢
OFh Literal equal to 154¢ or 000F 1
37ACh Literal equal to 142524 or 37AC+g
52 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.7.1.5 Character Literals

A character literal is a single character enclosed in single quotes. The characters are represented internally as
8-bit ASCII characters. Two consecutive single quotes are required to represent each single quote that is part of
a character literal. A character literal consisting only of two single quotes is valid and is assigned the value 0.
These are examples of valid character literals:

Defines the character literal a and is represented internally as 614¢
'C’ Defines the character literal C and is represented internally as 434¢
Defines the character literal 'and is represented internally as 274
Defines a null character and is represented internally as 004¢

Notice the difference between character literals and character string literals (Section 4.7.2 discusses character strings). A character literal
represents a single integer value; a string is a sequence of characters.

4.7.2 Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string varies and
is defined for each directive that requires a character string. Characters are represented internally as 8-bit ASCII
characters.

These are examples of valid character strings:

"sample program” defines the 14-character string sample program.
"PLAN ""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

» Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

« Datainitialization directives, as in .byte "charstring"
» Operands of .string directives

4.7.3 Floating-Point Literals

A floating-point literal is a string of decimal digits followed by a required decimal point, an optional fractional
portion, and an optional exponent portion. The syntax for a floating-point number is:

[+]-1nnn.[nnn][Ele[+|-1nnn]

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a decimal
point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10. These are examples
of valid floating-point literals:

3.0

3.14

3.
-0.314el3
+314.59%e-2

The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants, but the
$strtod built-in mathematical function supports both. If you want to specify a floating-point literal using one of
those formats, use $strtod. For example:

Sstrtod(".3")
Sstrtod ("0x1.234p-5")

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 53
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $strtod to express these values.
The "NaN" and "Inf" strings are handled case-insensitively. See Section 4.10.1 for built-in functions.

Sstrtod ("NaN")
Sstrtod("Inf")

4.8 Assembler Symbols

An assembler symbol is a named 32-bit signless integer value, usually representing an address or absolute
integer. A symbol can represent such things as the starting address of a function, variable, or section. The name
of a symbol must be a legal identifier. The identifier becomes a symbolic representation of the symbol's value,
and may be used in subsequent instructions to refer to the symbol's location or value.

Some assembler symbols become external symbols, and are placed in the object file's symbol table. A symbol
is valid only within the module in which it is defined, unless you use the .global directive or the .def directive to
declare it as an external symbol (see .global directive).

See Section 2.6 for more about symbols and the symbol tables in object files.
4.8.1 Identifiers

Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string of
alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and). The first character in an
identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you define are
case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct identifiers.

4.8.2 Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program. Labels
within a file must be unique.

Note

A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes and
assembler directive names without the . prefix are valid label names. Remember to always use
whitespace before the mnemonic, or the assembler will think the identifier is a new label definition.

Symbols derived from labels can also be used as the operands of .bss, .global, .ref, or .def directives.

.global func

MOV #CON1, R11
MOV R11, 0(SP)
CALL #func

4.8.3 Local Labels
Local labels are special labels whose scope and effect are temporary. A local label can be defined in two ways:

* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See Example
4-1.

* name?, where name is any legal identifier as described above. The assembler replaces the question mark
with a period followed by a unique number. When the source code is expanded, you will not see the unique
number in the listing file. Your label appears with the question mark as it did in the source definition.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined by
directives.

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

54 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

* By changing sections (using a .sect, .text, or .data directive)
* By entering an include file (specified by the .include or .copy directive)
* By leaving an include file (specified by the .include or .copy directive)

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

.global ADDRA, ADDRB, ADDRC
Labell: MOV #ADDRA, RI11 Load Address A to R11.
SUB #ADDRB, R11 Subtract Address B.

JL S1 ; If < 0, branch to $1
MOV #ADDRB, RI11 ; otherwise, load ADDRB to R11
JMP $2 ; and branch to $2.
S1 MOV #ADDRA, R11 ; $1: load ADDRA to ACO.
$2 ADD #ADDRC, R11 ; $2: add ADDRC.
.newblock ; Undefine $1 so it can be used again.
JMP S1 ; If less than zero, branch to $1.

MOV R11, &ADDRC Store ACO low in ADDRC.

$1 NOP

The following code uses a local label illegally:

.global ADDRA, ADDRB, ADDRC
Labell: MOV #ADDRA, RI11 Load Address A to RI11.
SUB #ADDRB, R11 Subtract Address B.

JL S1 ; If < 0, branch to $1
MOV #ADDRB, R11 ; otherwise, load ADDRB to R11
JMP $2 ; and branch to $2.
S1 MOV #ADDRA, R11 ; $1: load ADDRA to ACO.
$2 ADD #ADDRC, R11 ; $2: add ADDRC.
JMP $1 ; If less than zero, branch to $1.

MOV R11, &ADDRC Store ACO low in ADDRC.

$1 NOP

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is redefined,
which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than once, the
assembler issues a multiple-definition error. If you use a local label and .newblock within a macro, however, the
local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not limited.
After you undefine a local label, you can define it and use it again. Local labels do not appear in the object code
symbol table.

For more information about using labels in macros see Section 6.6.

4.8.4 Symbolic Constants

A symbolic constant is a symbol with a value that is an absolute constant expression (see Section

4.9). By using symbolic constants, you can assign meaningful names to constant expressions. The .set

and .struct/.tag/.endstruct directives enable you to set symbolic constants (see Define Assembly-Time Constant).
Once defined, symbolic constants cannot be redefined.

If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant and may be
used where a constant expression is expected. For example:

shift3 .set 3
MOV #shift3, R11

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 55
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

You can also use the .set directive to assign symbolic constants for other symbols, such as register names. In
this case, the symbolic constant becomes a synonym for the register:

OP1 .set R11
MOV OP1, 2(SP)

The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct directives.
It creates the symbolic constants K, maxbuf, item, value, delta, and i_len.

K .set 1024 ; constant definitions
maxbuf .set 2*K
item .struct ; item structure definition
value .int ; constant offsets value = 0
delta .int ; constant offsets value =1
i len .endstruct
array .tag item ; array declaration

.bss array, i_len*K

The assembler also has many predefined symbolic constants; these are discussed in Section 4.8.6.
4.8.5 Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used in
place of a value in assembly source. The format of the --asm_define option is as follows:

cl430 --asm_define= name[= value]

The name is the name of the symbol you want to define. The value is the constant or string value you want to
assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted string and keep
the quotation marks, do one of the following:

* For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""
* For UNIX, use --asm_define= name =" value ™. For example, --asm_define=car=""sedan™
» For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used with assembly directives
and instructions as if it had been defined with the .set directive. For example, on the command line you enter:

cl430 --asm_define=SYMl=1 --asm define=SYM2=2 --asm define=SYM3=3 --asm define=SYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code. Example
4-2 shows how the value.asm file uses these symbols without defining them explicitly.

In assembler source, you can test the symbol defined with the --asm_define option with these directives:

Type of Test Directive Usage
Existence .if $isdefed(" name ")
Nonexistence .if $isdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the argument to be
interpreted literally rather than as a substitution symbol.

56 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Description

Example 4-2. Using Symbolic Constants Defined on Command Line

IF 4: .if SyM4 =
.byte SYM4
.else
.byte SYM2 *
.endif

IF 5: .if SYM1 <=
.byte 10
.else
.byte SYM1
.endif

IF 6: .if SYM3 *
.byte SYM3 *
.else
.byte SYM4 +
.endif

IF 7: .if SYML =
.byte SYM1
.elseif SYM2 +
.byte SYM2 +
.endif

SYM2

SYM2

10

SYM2
SYM2

SYM4

SYM2

SYM3
SYM3

* SYM2
; Equal values

; Unequal values

; Less than / equal
; Greater than

= SYM4 + SYM2
; Unequal value

; Equal values

4.8.6 Predefined Symbolic Constants

The assembler has several types of predefined symbols.

$, the dollar-sign character, represents the current value of the section program counter (SPC).

In addition, the following predefined processor symbolic constants are available:
Table 4-2. MSP430 Processor Symbolic Constants

Symbol name

Description

.MSP430(")

MSP430X(")

.MSP4619(1)
__LARGE_CODE_MODEL_ _
_ _LARGE_DATA_MODEL_ _
_ _LONG_PTRDIFF_ T__

__UNSIGNED_LONG_SIZE T__

Always set to 1

Set to 1 if the --silicon_version=mspx option is specified, otherwise 0

Set to 1 if the --silicon_version=mspXx option is specified, otherwise 0

Set to 1 if the --code_model=large option is specified; otherwise 0

Set to 1 if the --data_model=large or ——data_model=restricted option is specified, otherwise 0
Set to 1(indicates ptrdiff_t is a long) if the --data_model=large option is specified, otherwise 0

Set to 1 (indicates size_t is an unsigned long) if the --data_model=large option is specified,
otherwise 0

__TI_EABI_ _ Set to 1 if EABI is enabled. EABI is now the only supported ABI; see Section 4.4.
(1) The processor symbol can be entered as all uppercase or all lowercase characters; for example: .MSP430X could also be entered
as .msp430x.
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 57

Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.8.7 Registers
The names of MSP430 registers are predefined symbols, including R0-R15 and their aliases.
Table 4-3. MSP430 Register Symbols with Aliases

Register Name Alias
RO PC
R1 SP
R2 SR

Register symbols and aliases can be entered as all uppercase or all lowercase characters. For example, R1
could also be entered as r1, SP, or sp.

Control register symbols can be entered in all upper-case or all lower-case characters.

See the "Register Conventions" section of the MSP430 Optimizing C/C++ Compiler User's Guide for details
about the registers and their uses.

4.8.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to create aliases for character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When the
assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike symbolic
constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

.asg "SP", stack-pointer
; Assigns the string SP to the substitution symbol
; stack-pointer.

.asg "#0x20", block2

Assigns the string #0x20 to the substitution
; symbol block2.

ADD block2, stack-pointer
; Adds the value in SP to #0x20 and stores the

; result in SP.

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution symbols
are used in macros:

myadd .macro src, dest
; addl macro definition
ADD src, dest
; Add the value in register dest to the value in
; register src.
.endm
*myadd invocation
myadd R4, RS
; Calls the macro addl and substitutes R4 for src
; and R5 for dest. The macro adds the value of R4
; and the value of R5.

See Chapter 6 for more information about macros.

58 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.9 Expressions
Nearly all values and operands in assembly language are expressions, which may be any of the following:

¢ a literal constant

* aregister
* a memory reference
* asymbol

* a built-in function invocation
* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some instruction
operands accept limited types of expressions. For example, the .if directive requires its operand be an absolute
constant expression with an integer value. Absolute in the context of assembly code means that the value of the
expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.
An immediate operand will usually not accept a register or memory reference. It must be given a constant
expression. Constant expressions may be any of the following:

* a literal constant

* an address constant expression

* asymbol whose value is a constant expression

* a built-in function invocation on a constant expression

* a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands that
require an address value can accept a symbol plus an addend; for example, some branch instructions. The
symbol must have a value that is an address, and it may be an external symbol. The addend must be

an absolute constant expression with an integer value. For example, a valid address constant expression is
"array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time. Relocatable
means constant, but not known until link time. External symbols are relocatable, even if they refer to a symbol
defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In other
words, an absolute constant expression may be any of the following:

» a literal constant

* an absolute address constant expression

* asymbol whose value is an absolute constant expression

* a built-in function invocation whose arguments are all absolute constant expressions
« a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. For ELF, such expressions may contain
at most one external symbol. A relocatable constant expression may be any of the following:

* an external symbol

* arelocatable address constant expression

* asymbol whose value is a relocatable constant expression

* a built-in function invocation with any arguments that are relocatable constant expressions

« a mathematical or logical operation on one or more expressions, at least one of which is a relocatable
constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For example, a
relative displacement branch may branch to a label defined in the same section.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 59
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.9.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must use the
correct number of operands and the operation must make sense. For example, you cannot take the XOR of a
floating-point value. In addition, well-defined expressions contain only symbols or assembly-time constants that
have been defined before they occur in the directive's expression.

Three main factors influence the order of expression evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({ }) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 4-4, are divided into nine precedence groups. When parentheses do not determine
the order of expression evaluation, the highest precedence operation is evaluated first.

8+4/2=10(4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of expression evaluation, the
expressions are evaluated from left to right, except for Group 1, which is evaluated from right to left.

8/4*2=4,but8/(4*2) =1

Table 4-4 lists the operators that can be used in expressions, according to precedence group.

Table 4-4. Operators Used in Expressions (Precedence)

Group(") Operator Description(?)
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
& Bitwise AND
A Bitwise exclusive OR (XOR)
| Bitwise OR

(1) Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
(2) Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed during
assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow occurs. The
assembler does not check for overflow or underflow in multiplication.

60 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.9.2 Relational Operators and Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially useful for
conditional assembly. Relational operators include the following:

= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false and can be used only on operands of equivalent types;
for example, absolute value compared to absolute value, but not absolute value compared to relocatable value.

4.9.3 Well-Defined Expressions
Some assembler directives, such as .if, require well-defined absolute constant expressions as operands. Well-
defined expressions contain only symbols or assembly-time constants that have been defined before they occur

in the directive's expression. In addition, they must use the correct number of operands and the operation must
make sense. The evaluation of a well-defined expression must be unambiguous.

This is an example of a well-defined expression:

1000h+X

where X was previously defined as an absolute symbol.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

MSP430 Assembly Language Tools 61
Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Description

13 TEXAS
INSTRUMENTS

www.ti.com

4.10 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

The built-in substitution symbol functions are discussed in Section 6.3.2.

4.10.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 4-5 describes
the built-in functions. The expr must be an absolute constant expression.

Table 4-5. Built-In Mathematical Functions

Function

Description

$acos(expr)
$asin(expr)
$atan(expr)
$atan2(expr, y)
$ceil(expr)
$cos(expr)
$cosh(expr)
$cvf(expr)
$cvi(expr)
$exp(expr)
$fabs(expr)
$floor(expr)
$fmod(expr, y)
$int(expr)
$ldexp(expr, expr2)
$log(expr)
$log10(expr)
$max(expri, expr2)
$min(expr1, expr2)
$pow(expri, expr2)
$round(expr)
$sgn(expr)
$sin(expr)
$sinh(expr)
$sqrt(expr)
$strtod(str)

$tan(expr)
$tanh(expr)

$trunc(expr)

Returns the arccosine of expr as a floating-point value

Returns the arcsine of expr as a floating-point value

Returns the arctangent of expr as a floating-point value

Returns the arctangent of expr as a floating-point value in range [-m, 1]
Returns the smallest integer not less than expr

Returns the cosine of expr as a floating-point value

Returns the hyperbolic cosine of expr as a floating-point value
Converts expr to a floating-point value

converts expr to integer value

Returns the exponential function e€*P"

Returns the absolute value of expr as a floating-point value
Returns the largest integer not greater than expr

Returns the remainder of expr1 + expr2

Returns 1 if expr has an integer value; else returns 0. Returns an integer.
Multiplies expr by an integer power of 2. That is, expr1 x 2exPr2
Returns the natural logarithm of expr, where expr>0

Returns the base 10 logarithm of expr, where expr>0

Returns the maximum of two values

Returns the minimum of two values

Returns expriraised to the power of expr2

Returns expr rounded to the nearest integer

Returns the sign of expr.

Returns the sine of expr

Returns the hyperbolic sine of expr as a floating-point value
Returns the square root of expr, expr=0, as a floating-point value

Converts a character string to a double precision floating-point value. The string contains a properly-formatted
C99-style floating-point literal.

Returns the tangent of expr as a floating-point value
Returns the hyperbolic tangent of expr as a floating-point value

Returns expr rounded toward 0

62 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.10.2 MSP430 Built-In ELF Relocation Generating Operators

The assembler supports MSP430-specific ELF relocation generating built-in operators. The operators are used
in compiler-generated code to support symbolic addressing of objects.

$HI16 and $LO16 create an ELF relocation representing the high and low 16 bits respectively of a link-time
constant (such as an address). These operators are sometimes necessary when treating a 20-bit data or
function pointer as a 32-bit unsigned long value.

The argument to these operators must be a relocatable constant expression.
Example:

The following C function, when compiled for EABI in large data model, will generate the following assembly code
to load the appropriate 32-bit value into the return registers.

/* cl430 --abi=eabi -ml -vmspx */
extern int xyz;
unsigned long func() { return symval (&xyz); }
MOV.W #SLO16 (xyz),rl2
MOV.W #$HI16 (xyz),rl3 ; after this instruction, the register
; pair rl3:rl1l2 holds the 32-bit value of &x.

RETA

4.11 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke the
assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied by
the .title directive is printed on the title line. A page number is printed to the right of the title. If you do not use
the .title directive, the name of the source file is printed. The assembler inserts a blank line below the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in an
actual listing file.

Field 1: Source Statement Number
Line number

The source statement number is a decimal number. The assembler numbers source lines as it encounters them
in the source file; some statements increment the line counter but are not listed. (For example, .title statements
and statements following a .nolist are not listed.) The difference between two consecutive source line numbers

indicates the number of intervening statements in the source file that are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by the letter.
Nesting level humber

A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named sections)
maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 63
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and directives use
this field to list object code. This field also indicates the relocation type associated with an operand for this line
of source code. If more than one operand is relocatable, this column indicates the relocation type for the first
operand. The characters that can appear in this column and their associated relocation types are listed below:

! undefined external reference
' text relocatable

+ .sect relocatable

" .data relocatable

- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the spacing in
the source statement.

Figure 4-2 shows an assembler listing with each of the four fields identified.

Include file Line number
Ietter\
\ 1 .copy "macl.inc”
A 1 addfive .macro dst
A 2 ADD.W #5,dst
A 3 .endm
2
3 .global varl
4
5
6 0000 430B MOV.W #0,R11
-
8 .loop 5
9 addfive R11
10 .endloop
1 0002 addfive R11
2 0002 503B ADD.W #5,R11
0004 0005
1 0006 addfive R11
2 0006 503B ADD.W #5,R11
0008 0005
1 000a addfive R11
2 000a 503B ADD.W #5,R11
000c 0005
1 000e addfive R11
2 000e 503B ADD.W #5,R11
0010 0005
1 0012 addfive R11
2 0012 503B ADD.W #5,R11
0014 0005
11
12 0016 4B82 MOV.W R11,&varl
0018 _0000!
V
Field 1 Field 2 Field 2 Field 4

Figure 4-2. Example Assembler Listing

64 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.12 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information that
allows you to step through your assembly code in a debugger rather than using the Disassembly window in
Code Composer Studio. This enables you to view source comments and other source-code annotations while
debugging. The default has the same behavior as using the --symdebug:dwarf option. You can disable the
generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed by
the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions named with
this syntax:

‘$ filename : starting source line : ending source line $ ‘

If you want to view your variables as a user-defined type in C code, the types must be declared and the variables
must be defined in a C file. This C file can then be referenced in assembly code using the .ref directive (see .ref
directive). The C example that follows shows the cvar.c program that defines a variable, svar, as the structure
type X. The svar variable is then referenced in the addfive.asm assembly program that follows, and 5 is added to
svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

cl430 --symdebug:dwarf cvars.c addfive.asm --run linker --library=Ilnk.cmd --library=rts430.1ib
--output file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor the
values in svar while stepping through main just as you would any regular C variable.

Viewing Assembly Variables as C Types C Program

typedef struct {
int ml;
int m2;

} X

X svar = { 1, 2 };

addfive.asm Assembly Program

.ref svar

.global addfive
addfive: .asmfunc

MOV #5,R12

ADD R12, &svar

ADD R12, &svar + 2

RET

.endasmfunc
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 65
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Description

13 TEXAS
INSTRUMENTS

www.ti.com

4.13 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke the
assembler with the --asm_listing_cross_reference option (see Section 4.3) or use the .option directive with the
X operand (see Select Listing Options). The assembler appends the cross-reference to the end of the source
listing. The following example shows the four fields contained in the cross-reference listing.

LABEL VALUE DEFN REF
.MSP430 0001 0

.msp430 0001 0

addfive 0000" 6 3

svar REF 1 7 8

Label column contains each symbol that was defined or referenced during the assembly.

Value column contains an 8-digit hexadecimal number (which is the value assigned to the symbol) or a name that
describes the symbol's attributes. A value may also be preceded by a character that describes the symbol's
attributes. The following table lists these characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This column is blank for undefined
symbols.

Reference (REF) column lists the line numbers of statements that reference the symbol. A blank in this column indicates
that the symbol was never used.

Table 4-6. Symbol Attributes
Character or Name Meaning
REF External reference (global symbol)
UNDF Undefined
' Symbol defined in a .text section
" Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section
66 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Chapter 5
Assembler Directives

i3 TEXAS INSTRUMENTS

Assembler directives supply data to the program and control the assembly process. Assembler directives enable
you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

+ Assemble conditional blocks

+ Define global variables

» Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.11) describes the directives
according to function, and the second part (Section 5.12) is an alphabetical reference.

5.1 DiIr@CLIVES SUMMAIYottt ettt e ekt e ettt e e a e e e 4a e e e e e et e e eae e e e 4a b et e e s et e e e an e e e e ne e e e nn e e e nanneesanneean 68
5.2 Directives that Define SECLIONS.............ooo i ettt e bt sae e e st e e ene e enees 72
5.3 Directives that INitialize ValUES.................ooooiiiiiiiii ittt e e e e et e e e e e st e eeeeeeaasabaeeaeeannnbeeaeesannnns 73
5.4 Directives that Perform Alignment and ReServe SPace..............ccooouiiiiiiiiiiiiiiiiie e 76
5.5 Directives that Format the Output LiStings..............coooiiiiii it e e eneee s 77
5.6 Directives that Reference Other Files................o e e e e e e e e 78
5.7 Directives that Enable Conditional ASSEemMDbIY................ccoiiiiiiiiiiii e 78
5.8 Directives that Define Union or Structure TYPES...........ooouiiiiiiiiiiiii it ene e 79
5.9 Directives that Define ENUMErated TYPES............ooiiiiiiiiiiiiiiie ettt sbe e e sbb e e st e e snne e e snneeas 79
5.10 Directives that Define Symbols at Assembly Time...............cooiiiiiiiii e 79
5.11 MiISCellanN@OUS DIr@CLIVES............oooiiiiiiiiiii ettt e ettt e e e e ettt e e e e e abe e e e e e e e nnbeeeeeeannbeeeeeeannneeas 80
5.12 DIrectives REFEIENCE. e ettt e e oottt e e e e e ae et e e e e e aba e e e e e e e nneeeeaeeaannbeeeeaeannneeas 81
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 67
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

I

TeExAS
INSTRUMENTS

www.ti.com

5.1 Directives Summary

Table 5-1 through Table 5-16 summarize the assembler directives.

Besides the assembler directives documented here, the MSP430 software tools support the following directives:

» Macro directives are discussed in Chapter 6; they are not discussed in this chapter.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives; they
are not discussed in this chapter.

Note

Labels and Comments Are Not Shown in Syntaxes

Most source statements that contain a directive can also contain a label and a comment. Labels begin
in the first column (only labels and comments can appear in the first column), and comments must be
preceded by a semicolon, or an asterisk if the comment is the only element in the line. To improve
readability, labels and comments are not shown as part of the directive syntax here. See the detailed
description of each directive for using labels with directives.

Table 5-1. Directives that Control Section Use

Mnemonic and Syntax Description See
.bss symbol, size in bytes[,alignment] Reserves size bytes in the .bss (uninitialized data) section .bss topic
.data Assembles into the .data (initialized data) section .data topic
.intvec Creates an interrupt vector entry in a named section that points to .intvec topic
an interrupt routine name.

.sect " section name " Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect " section name ", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[,alignment]

Table 5-2. Directives that Gather Sections into Common Groups
Mnemonic and Syntax Description See

.endgroup

.gmember section name

Ends the group declaration.

Designates section name as a member of the group.

.endgroup topic

.gmember topic

.group group section name group type : Begins a group declaration. .group topic
Table 5-3. Directives that Affect Unused Section Elimination
Mnemonic and Syntax Description See
.retain " section name " Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not
.retainrefs " section name " Instructs the linker to include any data object that references the .retain topic
current or specified section.
Table 5-4. Directives that Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.bits value[, ... , valuey] Initializes one or more successive bits in the current section .bits topic
.byte valueq|, ... , value,] Initializes one or more successive bytes in the current section .byte topic
.char value/|, ... , value,) Initializes one or more successive bytes in the current section .char topic
.cstring {expr|" string; "},... , {expry|" string, "}] Initializes one or more text strings .string topic
.double value [, .. Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants
field value|, size] Initializes a field of size bits (1-32) with value field topic

68 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

Table 5-4. Directives that Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax Description See

float value|, ... , value) Initializes one or more 32-bit, IEEE single-precision, floating-point .float topic
constants

.half value/], ... , value,) Initializes one or more 16-bit integers (halfword) .half topic

.int value4|, ... , value,) Initializes one or more 16-bit integers .int topic

long value/|, ... , value,] Initializes one or more 32-bit integers .long topic

.short value|, ... , value) Initializes one or more 16-bit integers (halfword) .short topic

.string {expr|" strings "}[;... , {expr,|" string, "}] Initializes one or more text strings .string topic

.ubyte valueq|, ... , value,] Initializes one or more successive unsigned bytes in the current .ubyte topic
section

.uchar valueq|, ... , value] Initializes one or more successive unsigned bytes in the current .uchar topic
section

.uhalf value/|, ... , value,) Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic

.uint value, ..., value) Initializes one or more unsigned 32-bit integers .uint topic

.ulong valueq|, ..., valuey) Initializes one or more unsigned 32-bit integers .long topic

.ushort value[, ..., value) Initializes one or more unsigned 16-bit integers (halfword) .short topic

.uword value, ..., value) Initializes one or more unsigned 16-bit integers .uword topic

.word value[, ... , value,) Initializes one or more 16-bit integers .word topic

Table 5-5. Directives that Perform Alignment and Reserve Space
Mnemonic and Syntax Description See

.align [size in bytes] Aligns the SPC on a boundary specified by size in bytes, which .align topic
must be a power of 2; defaults to word (2-byte) boundary

.bes size Reserves size bytes in the current section; a label points to the end .bes topic
of the reserved space

.space size Reserves size bytes in the current section; a label points to the .space topic
beginning of the reserved space

Table 5-6. Directives that Format the Output Listing

Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic
.drnolist Suppresses listing of certain directive lines .drnolist topic
fclist Allows false conditional code block listing (default) fclist topic
fcnolist Suppresses false conditional code block listing fcnolist topic
.length [page length] Sets the page length of the source listing .length topic
Jdist Restarts the source listing list topic
.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
.nolist Stops the source listing .nolist topic
.option option,[, option, , . . .] Selects output listing options; available options are A, B, H, M, N, .option topic
O, R, T, W, and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title " string ™ Prints a title in the listing page heading title topic
.width [page width] Sets the page width of the source listing .width topic

Table 5-7. Directives that Reference Other Files

Mnemonic and Syntax Description See

.copy ["Ifilename["] Includes source statements from another file .copy topic
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 69
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I3 TEXAS
INSTRUMENTS
Assembler Directives www.ti.com
Table 5-7. Directives that Reference Other Files (continued)

Mnemonic and Syntax Description See

.include ["]filename["] Includes source statements from another file .include topic

.mlib ["]filename["] Specifies a macro library from which to retrieve macro definitions .mlib topic

Table 5-8. Directives that Affect Symbol Linkage and Visibility
Mnemonic and Syntax Description See

.common symbol, size in bytes [, alignment]

Defines a common symbol for a variable.

.common symbol, structure tag [, alignment]

.def symbol{, ... , symboly]

.global symboly, ... , symboly]

.ref symbol,], ...

, Symbol,]

Identifies one or more symbols that are defined in the current
module and that can be used in other modules.

Identifies one or more global (external) symbols.

Identifies one or more symbols used in the current module that are
defined in another module.

.symdepend dst symbol name][, src symbol name] Creates an artificial reference from a section to a symbol.

.common topic

.def topic

.global topic

.ref topic

.symdepend topic

.weak symbol name Identifies a symbol used in the current module that is defined in .weak topic
another module.
Table 5-9. Directives that Define Symbols at Assembly Time
Mnemonic and Syntax Description See
.asg ["|character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .asg can be redefined.
.define ["|character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.
symbol .equ value Equates value with symbol .equ topic
.elfsym name, SYM_SIZE(size) Provides ELF symbol information .elfsym topic
.eval expression , Performs arithmetic on a numeric substitution symbol .eval topic
substitution symbol
.label symbol Defines a load-time relocatable label in a section .label topic
.newblock Undefines local labels .newblock topic
symbol .set value Equates value with symbol .set topic
.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic
.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic
Table 5-10. Directives that Enable Conditional Assembly
Mnemonic and Syntax Description See
.if condition Assembles code block if the condition is true .if topic
.else Assembles code block if the .if condition is false. When using the .if .else topic
construct, the .else construct is optional.
.elseif condition Assembles code block if the .if condition is false and the .elseif .elseif topic
condition is true. When using the .if construct, the .elseif construct is
optional.
.endif Ends .if code block .endif topic
Jloop [count] Begins repeatable assembly of a code block; the loop count is .loop topic
determined by the count.
.break [end condition] Ends .loop assembly if end condition is true. When using the .loop .break topic

.endloop

construct, the .break construct is optional.
Ends .loop code block

.endloop topic

Table 5-11. Directives that Define Structure Types

Mnemonic and Syntax Description See
.emember Sets up C-like enumerated types in assembly code Section 5.9
.endenum Sets up C-like enumerated types in assembly code Section 5.9

70 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
Table 5-11. Directives that Define Structure Types (continued)

Mnemonic and Syntax Description See

.endstruct Ends a structure definition .struct topic

.enum Sets up C-like enumerated types in assembly code Section 5.9

.struct Begins structure definition .struct topic

.tag Assigns structure attributes to a label .struct topic

Table 5-12. Directives that Create or Affect Macros

Mnemonic and Syntax Description See

macname .macro [parameter][,... , parameter,] Begin definition of macro named macname .macro topic

.endm End macro definition .endm topic

.mexit Go to .endm Section 6.2

.mlib filename Identify library containing macro definitions .mlib topic

.var Adds a local substitution symbol to a macro's parameter list .var topic

Table 5-13. Directives that Control Diagnostics
Mnemonic and Syntax Description See
.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file

.mmsg string Sends user-defined messages to the output device .mmsg topic

.wmsg string Sends user-defined warning messages to the output device .wmsg topic
Table 5-14. Directives that Perform Assembly Source Debug

Mnemonic and Syntax Description See

.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic

.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc topic

Table 5-15. Directives that Are Used by the Absolute Lister

Mnemonic and Syntax Description See

.setsect Produced by absolute lister; sets a section Chapter 9

.setsym Produced by the absolute lister; sets a symbol Chapter 9
Table 5-16. Directives that Perform Miscellaneous Functions

Mnemonic and Syntax Description See

.cdecls [options ,]" filename "[, " filename2 "[, ...] Share C headers between C and assembly code .cdecls topic

.end Ends program .end topic

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several

directives when it creates assembly code. These directives are to be used only by the compiler; do not attempt

to use these directives:

+ DWAREF directives listed in Section A.1

* The .bound directive is used internally.

» The .comdat directive is used internally.

» The .compiler_opts directive indicates that the assembly code was produced by the compiler, and which
build model options were used for this file.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 71
Submit Document Feedback v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

5.2 Directives that Define Sections
These directives associate portions of an assembly language program with the appropriate sections:

* The .bss directive reserves space in the .bss section for uninitialized variables.

» The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

* The .intvec directive creates an interrupt vector entry that points to an interrupt routine name.

* The .retain directive can be used to indicate that the current or specified section must be included in the
linked output. Thus even if no other sections included in the link reference the current or specified section, it
is still included in the link.

* The .retainrefs directive can be used to force sections that refer to the specified section. This is useful in the
case of interrupt vectors.

* The .sect directive defines an initialized named section and associates subsequent code or data with that
section. A section defined with .sect can contain code or data.

* The .text directive identifies portions of code in the .text section. The .text section usually contains executable
code.

» The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 5-1 shows how you can use sections directives to associate code and data with the proper sections.
This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values. (Each section has
its own program counter, or SPC.) When code is first placed in a section, its SPC equals 0. When you resume
assembling into a section after other code is assembled, the section's SPC resumes counting as if there had
been no intervening code.

The directives in Example 5-1 perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the specified
amount of space, and then the assembler resumes assembling code or data into the current section.

72 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

Example 5-1. Sections Directives

0000

0000 0001
0002 0002
0004 0003
0006 0004

=S w N

(€]

0000

0000 0009
0002 000A
11 0004 000B
0006 000C

15 0000
16 0000 0011
0002 0012

20 0008
21 0008 000D
000a 0OO0O0E

23 0000
24 000c 000F
000e 0010

28 0008

29 0008 0005
000a 0006

30 0000 usym

31 000c 0007
000e 0008

; Commentl here

.text
.word

.word

; Comment 2

.data
.word

.word

; Comment 3
.sect
.word

; Comment 4
.data

.word

.bss
.word
; Comment 5

.text
.word

.usect
.word

Start assembling

"var_defs"
17,18

13,14

sym, 19
15,16

5,6

"y, 20
7,8

5.3 Directives that Initialize Values

Several directives assemble values for the current section. For example:

The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current section.
These directives are similar to .word, .int, and .long, except that the width of each value is restricted to 8 bits.
The .double directive calculates the IEEE format representation of one or more values and stores them in the
current section. The stored value is an IEEE 64-bit double-precision floating-point value, and is stored in two

words aligned to a word boundary. (MSP430 has no alignment greater than word alignment.)

The .field and .bits directives place a single value into a specified number of bits in the current word.

With .field, you can pack multiple fields into a single word; the assembler does not increment the SPC until
a word is filled. If a field will not fit in the space remaining in the current word, .field will insert zeros to fill
the current word and then place the field in the next word. The .bits directive is similar but does not force

alignment to a field boundary. See the .field topic and .bits topic.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

MSP430 Assembly Language Tools 73

v21.6.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that the
SPC does not change for the first three fields (the fields are packed into the same word):

1 0000 0003 .field 3,3
2 0000 0043 .field 8,6
3 0000 2043 .field 16,5
4 0002 1234 .field 0x1234,16

15 2 1 0

| 0 1 1|.fie|d3,3

7/
3 bits
15 8 7 6 5 4
| 0 0 1 ooo|0 1 1|.field8,6
V.
15 1312 11 10 9 6 bits
| 10 00 o|o 0 1 0 0 o|0 1 1|_field16,5
_v—/
5 bits

15 14 13 12 11 10 9
o 0 0o 1[0 0 10f0 01 1]/0o 1 0 of feld1es

V
16 bits
Figure 5-1. The .field Directive

* The .float directive calculates the IEEE format representation of one or more values and stores them in the
current section. The stored value is an IEEE 32-bit single-precision floating-point value, and is stored in one
word aligned to a word boundary.

* The .int and .word directives place one or more 16-bit values into consecutive 16-bit values in the current
section.

* The .string and .cstring directives place 8-bit characters from one or more character strings into the current
section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each consecutive
byte of the current section. The .cstring directive adds a NUL character needed by C; the .string directive
does not add a NUL character.

* The .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, and .uword directives are provided as unsigned versions
of their respective signed directives. These directives are used primarily by the C/C++ compiler to support
unsigned types in C/C++.

Note
Directives that Initialize Constants When Used in a .struct/.endstruct Sequence

The .bits, .byte, .char, .word, .int, .long, .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, .uword, .string, .dou
ble, .float, .half, .short, and .field directives do not initialize memory when they are part of

a .struct/ .endstruct sequence; rather, they define a member’s size. For more information, see

the .struct/.endstruct directives.

74 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

Figure 5-2 compares the .byte, .char, .int, .long, .float, .word, and .string directives using the following assembled
code:

1 0000 00AA .byte 0AAh, OBBh
0001 OOBB
2 0002 oO0cCC .char 0xCC
3 0004 DDDD .word 0xDDDD
4 0006 FFFF .long O0XEEEEFFFF
0008 EEEE
5 000a DDDD .int 0xDDDD
6 000c FCB9 .float 1.9999
000e 3FFF
7 0010 0048 .string "Help"
0011 0065
0012 006C
0013 0070
Byte Code
7 0
0 A A .byte OAAh
7 0
1 B B .byte OBBh
7 0
2 c C .char OCCh
15 0
4 D DDD .word DDDDh
15 0
6 FFFF long EEEEFFFFh
15 0
8 E E EE
15 0
a D DDD .int 0DDDDh
31 0
C F CBD float 1.9999
31 0
€ 3 FFF
7 0
10 4 8 .string “Help”
H
11 6 5
e
12 6 C
|
13 70
p

Figure 5-2. Initialization Directives

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 75
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

5.4 Directives that Perform Alignment and Reserve Space
These directives align the section program counter (SPC) or reserve space in a section:

« The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This ensures that the code following
the directive begins on the byte value that you specify. If the SPC is already aligned at the selected boundary,
it is not incremented. Operands for the .align directive must equal a power of 2 between 20 and 2%, inclusive.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 0000 0002 .field 2,3
2 0000 005A .field 11,5
3 .align 2
4 0002 0045 .string "Err"
0003 0072
0004 0072
5 .align
6 0006 0004 .byte 4
___4//——\\\ \‘_’//——\\
New SPC = 04h
02h Y after assembling
current 2bytes| p------------- / .align 2 directive
SPC =03h 04h Y

Figure 5-3. The .align Directive
» The .bes and .space directives reserve a specified number of bytes in the current section. The assembler fills
these reserved byres with Os.
— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the /ast byte that contains reserved bits.
» Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1 0000 0100 .word 0x100,0x200
0002 0200

2 0004 Res 1 .space 17

3 0016 000F .word 15

4 002b Res_2 .bes 20

5 002c 00BA .byte OxBA

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the space
reserved by .bes.

AN
~N —__
17 bytes <4— Res_1=04h
reserved
20 bytes
reserved
<4— Res_2=2Bh
T T N
AN
~N -

Figure 5-4. The .space and .bes Directives

76 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

5.5 Directives that Format the Output Listings

These directives format the listing file:

The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off for
certain directives. You can use the .drnolist directive to suppress the printing of the following directives. You
can use the .drlist directive to turn the listing on again.

.asg .eval Jength .mnolist .var
.break felist .mlist .sslist .width
.emsg fenolist .mmsg .ssnolist .wmsg

The source code listing includes false conditional blocks that do not generate code. The .fclist and .fenolist
directives turn this listing on and off. You can use the .fclist directive to list false conditional blocks exactly as
they appear in the source code. You can use the .fcnolist directive to list only the conditional blocks that are
actually assembled.

The .length directive controls the page length of the listing file. You can use this directive to adjust listings for
various output devices.

The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to prevent
the assembler from printing selected source statements in the listing file. Use the .list directive to turn the
listing on again.

The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives turn
this listing on and off. You can use the .mlist directive to print all macro expansions and loop blocks to the
listing, and the .mnolist directive to suppress this listing.

The .option directive controls certain features in the listing file. This directive has the following operands:
turns on listing of all directives and data, and subsequent expansions, macros, and blocks.

limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, M, T, and, W directives (turns off the limits of B, H, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

X s 4 3m o0z =T 0w >»

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing by invoking the assembler
with the --asm_listing_cross_reference option (see Section 4.3).

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives turn this
listing on and off. You can use the .sslist directive to print all substitution symbol expansions to the listing,

and the .ssnolist directive to suppress this listing. These directives are useful for debugging the expansion of
substitution symbols.

The .tab directive defines tab size.

The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust listings for
various output devices.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 77
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

5.6 Directives that Reference Other Files
These directives supply information for or about other files that can be used in the assembly of the current file:

* The .copy and .include directives tell the assembler to begin reading source statements from another file.
When the assembler finishes reading the source statements in the copy/include file, it resumes reading
source statements from the current file. The statements read from a copied file are printed in the listing file;
the statements read from an included file are not printed in the listing file.

« The .def directive identifies a symbol that is defined in the current module and that can be used in another
module. The assembler includes the symbol in the symbol table.

« The .global directive declares a symbol external so that it is available to other modules at link time. (For more
information about global symbols, see Section 2.6.1). The .global directive does double duty, acting as a .def
for defined symbols and as a .ref for undefined symbols. The linker resolves an undefined global symbol
reference only if the symbol is used in the program. The .global directive declares a 16-bit symbol.

* The .mlib directive supplies the assembler with the name of an archive library that contains macro definitions.
When the assembler encounters a macro that is not defined in the current module, it searches for it in the
macro library specified with .mlib.

« The .ref directive identifies a symbol that is used in the current module but is defined in another module. The
assembler marks the symbol as an undefined external symbol and enters it in the object symbol table so the
linker can resolve its definition. The .ref directive forces the linker to resolve a symbol reference.

* The .symdepend directive creates an artificial reference from the section defining the source symbol name
to the destination symbol. The .symdepend directive prevents the linker from removing the section containing
the destination symbol if the source symbol section is included in the output module.

* The .weak directive identifies a symbol that is used in the current module but is defined in another module. It
is equivalent to the .ref directive, except that the reference has weak linkage.

5.7 Directives that Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble conditional
blocks of code:

« The .ifl.elseifl.elsel/.endif directives tell the assembler to conditionally assemble a block of code according to the evaluation of an

expression.
.if condition marks the beginning of a conditional block and assembles code if the .if condition is true.
[.elseif condition] marks a block of code to be assembled if the .if condition is false and the .elseif condition is true.
.else marks a block of code to be assembled if the .if condition is false and any .elseif conditions are false.
.endif marks the end of a conditional block and terminates the block.

* The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code according to the evaluation of an

expression.
.loop [count] marks the beginning of a repeatable block of code. The optional expression evaluates to the loop count.
.break [end tells the assembler to assemble repeatedly when the .break end condition is false and to go to the code
condition] immediately after .endloop when the expression is true or omitted.
.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more information about relational
operators, see Section 4.9.2.

78 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

5.8 Directives that Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union types of
the C language.

The .struct and .union directives group related data into an aggregate structure which is more easily accessed.
These directives do not allocate space for any object. Objects must be separately allocated, and the .tag
directive must be used to assign the type to the object.

type .struct ; structure tag definition
X .int
Y .int

T LEN .endstruct
COORD .tag type
COORD .space T_LEN
LDR RO, COORD.Y

declare COORD (coordinate)
actual memory allocation
load member Y of structure
COORD into register RO.

5.9 Directives that Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names to
refer to compile-time constants. The types created are analogous to the enum type of the C language. This
allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.
5.10 Directives that Define Symbols at Assembly Time
Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

* The .asg directive assigns a character string to a substitution symbol. The value is stored in the substitution
symbol table. When the assembler encounters a substitution symbol, it replaces the symbol with its character
string value. Substitution symbols created with .asg can be redefined.

.asg "10, 20, 30, 40", coefficients
; Assign string to substitution symbol.
.byte coefficients
; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

» The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the symbol
with its character string value. Substitution symbols created with .define cannot be redefined.

» The .eval directive evaluates a well-defined expression, translates the results into a character string, and
assigns the character string to a substitution symbol. This directive is most useful for manipulating counters:

.asg 1, x ;o x =1

.loop ; Begin conditional loop.

.byte x*10h ; Store value into current section.
.break x = 4 ; Break loop if x = 4.

.eval x+1l, x ; Increment x by 1.

.endloop ; End conditional loop.

« The .label directive defines a special symbol that refers to the load-time address within the current section.
This is useful when a section loads at one address but runs at a different address. For example, you may
want to load a block of performance-critical code into slower off-chip memory to save space and move the
code to high-speed on-chip memory to run. See the .label topic for an example using a load-time address

label.
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 79
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table and
cannot be redefined; for example:

The .unasg directive turns off substitution symbol assignment made with .asg.

The .undefine directive turns off substitution symbol assignment made with .define.

The .var directive allows you to use substitution symbols as local variables within a macro.

5.11 Miscellaneous Directives

These directives enable miscellaneous functions or features:

The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with the
compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between C and assembly code.

The .end directive terminates assembly. If you use the .end directive, it should be the last source statement of
a program. This directive has the same effect as an end-of-file character.

The .group, .gmember, and .endgroup directives define an ELF group section to be shared by several
sections.

The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a decimal
digit, or of the form NAME?, where you specify NAME. They are defined when they appear in the label field.
Local labels are temporary labels that can be used as operands for jump instructions. The .newblock directive
limits the scope of local labels by resetting them after they are used. See Section 4.8.3 for information on
local labels.

These three directives enable you to define your own error and warning messages:

The .emsg directive sends error messages to the standard output device. The .emsg directive generates
errors in the same manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg directive
functions in the same manner as the .emsg and .wmsg directives but does not set the error count or the
warning count. It does not affect the creation of the object file.

The .wmsg directive sends warning messages to the standard output device. The .wmsg directive functions
in the same manner as the .emsg directive but increments the warning count rather than the error count. It
does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

80

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Assembler Directives

5.12 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one directive
per topic. Related directives (such as .if/.else/.endif), however, are presented together in one topic.

.align
Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2 between 20
and 215, inclusive. An operand of 2 aligns the SPC on the next word boundary, and this is
the default if no size is given. For example:

2 aligns SPC to word boundary

4 aligns SPC to 2 word boundary

128 aligns SPC to 128-byte boundary

Using the .align directive has two effects:

» The assembler aligns the SPC on an x-byte boundary within the current section.

+ The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 4, .align 8, and a
default .align.

1 0000 0004 .byte 4
2 .align 2
3 0002 0045 .string "Errorcnt"
0003 0072
0004 0072
0005 006F
0006 0072
0007 0063
0008 006E
0009 0074
4 .align
5 000a 0003 .field 3,3
6 000a 002B .field 5,4
7 .align 2
8 000c 0003 .field 3,3
9 .align 8
10 0010 0005 .field 5,4
11 .align
12 0012 0004 .byte 4
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 81

Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg " character string "', substitution symbol
.define " character string "', substitution symbol

.eval expression , substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a constant
value (which cannot be redefined) to a symbol, .asg assigns a character string (which can
be redefined) to a substitution symbol.

+ The assembler assigns the character string to the substitution symbol.

+ The substitution symbol must be a valid symbol name. The substitution symbol is up to
128 characters long and must begin with a letter. Remaining characters of the symbol
can be a combination of alphanumeric characters, the underscore (_), and the dollar

sign ($).

The .define directive functions in the same manner as the .asg directive, except

that .define disallows creation of a substitution symbol that has the same name as

a register symbol or mnemonic. It does not create a new symbol nhame space in

the assembler, rather it uses the existing substitution symbol name space. The .define
directive is used to prevent corruption of the assembly environment when converting C/C+
+ headers. See Chapter 13 for more information about using C/C++ headers in assembly
source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the expression and assigns the string
value of the result to the substitution symbol. The .eval directive is especially useful as a
counter in .loop/.endloop blocks.

» The expression is a well-defined alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an absolute
expression.

« The substitution symbol must be a valid symbol name. The substitution symbol is up to
128 characters long and must begin with a letter. Remaining characters of the symbol
can be a combination of alphanumeric characters, the underscore (_), and the dollar

sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

82 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.asg/.define/.eval (continued)

Assign a Substitution Symbol

Example This example shows how .asg and .eval can be used.
1 .sslist ; show expanded sub. symbols
2 ; using .asg and .eval
3
4 .asg R12, LOCALSTACK
5 .asg &, AND
6
7 0000 503C ADD #280 AND 255, LOCALSTACK
ADD #280 & 255, R12
0002 0018
8
9 .asg 0,x
10 .loop 5
11 .eval x+1, x
12 .word X
13 .endloop
1 .eval x+1, x
.eval 0+1, x
1 0004 0001 .word X
.word 1
1 .eval x+1, x
.eval 1+1, x
1 0006 0002 .word X
.word 2
1 .eval x+1, x
.eval 2+1, x
1 0008 0003 .word X
.word 3
1 .eval x+1, x
.eval 3+1, x
1 000a 0004 .word X
.word 4
1 .eval x+1, x
.eval 4+1, x
1 000c 0005 .word X
.word 5
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 83
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.asmfunc/.endasmfunc

Syntax

Description

Mark Function Boundaries

symbol .asmfunc [stack_usage(num)]

.endasmfunc

The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code sections
to be debugged in the same manner as C/C++ functions.

You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.

The symbol is a label that must appear in the label field.

The .asmfunc directive has an optional parameter, stack_usage, which indicates that the
function may use up to num bytes.

Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:

$ filename : beginning source line : ending source line $

84

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.bits

Initialize Bits

Syntax .bits value], size in bits]

Description The .bits directive places a value into consecutive bits of the current section.

The .bits directive is similar to the .field directive (see .field topic). However, the .bits
directive does not force the value to be aligned to a field boundary. If the .bits directive is
followed by a different space-creating directive, the SPC is aligned to an appropriate value
for the directive that follows.

This directive has two operands:

+ The value is a required parameter; it is an expression that is evaluated and placed in
the current section at the current location. The value must be absolute.

» The size in bits is an optional parameter; it specifies a number from 1 to 32, which
is the number of bits in the value. The default size is 16 bits. If you specify a value
that cannot fit in size in bits, the assembler truncates the value and issues a warning
message. For example, .bits 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

**% WARNING! line 21: W0001l: Field value truncated to 1
.bits 3, 1

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 85
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com

.bss
Reserve Space in the .bss Section

Syntax .bss symbol , size in bytes|, alignment]

Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

This directive is similar to the .usect directive (see .usect topic); both simply reserve space

for data and that space has no contents. However, .usect defines additional sections that

can be placed anywhere in memory, independently of the .bss section.

» The symbol is a required parameter. It defines a symbol that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

+ The size in bytes is a required parameter; it must be an absolute constant expression.
The assembler allocates size bytes in the .bss section. There is no default size.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary must be set to a power of 2
between 20 and 215, inclusive. If the SPC is already aligned at the specified boundary,
it is not incremented.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for two variables, TEMP and ARRAY.
The symbol TEMP points to four bytes of uninitialized space (at .bss SPC = 0). The
symbol ARRAY points to 100 bytes of uninitialized space (at .bss SPC = 04h). Symbols
declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared external.

l Ak hkhkhkkhhkkhkhhkhhkhhhhhkhhkhhkhkhhkhhkhkhrkhhhkhhkhkhkhkhkkhkhkhkhkhhhkhr*k
2 ** Start assembling into the .text section. **
3 khkkhkkhkkhkkhkhkkhhhkxx
4 0000 .text
5 0000 4302 MOV #0, R10
6
7 Ak hkhkhkkhkhkkhkhhkhhkhhhhhkhhhhkhkhhkhkhkhkhrkhhkhkhkhkhkhkhkhkhkhkhkhkhhhxkh*k
8 wx Allocate 4 bytes in .bss for TEMP. Hx
9 dkhkkhkkhkkhkkhkhkkhhhhxx
10 0000 Var 1: .bss TEMP, 4
11
12 dhkkhkkhkhkkhkkhkkhhhhxx
13 o Still in .text. o
14 R R R R R R S
15 0002 503B ADD #56h, R11
0004 0056
16 0006 5COB ADD R12, R11
17
18 hAhkhkhkhkkhhkkhkhhkhhkkhhkhhhkhhhhkhhhkhkhkhkhkkhhhkhhkhkhkhkhkkhkhkhkhkhhhkhh*k
19 ** Allocate 100 bytes in .bss for the symbol **
20 *x named ARRAY. *x
21 hAhkhkhkhkkhkhkkhkhhkhhhhhhhkhkhkhhrkhkhkhkhhkhkhkkhhhkhhkhkhkhkhkkhkhkhkhkhhrkh*k
22 0004 .bss ARRAY, 100, 4
23
24 hAhkhkhkhkkhhkkhkhhkhhkkhhhhhkhhkhhkhhhkhhkhkhrkhhkhkhkhkhkhkhkhkkhkhkhkhkhhhkhr*k
25 xR Assemble more code into .text. *x
26 dkhkkhkkhkkhkkhkkhkkhhhhxx
27 0008 4130 RET
28
29 dkhkkhkkhkkhkkhkkhhhhxx
30 E Declare external .bss symbols. E
31 R R R R R I
32 .global ARRAY, TEMP
33 .end
86 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.bytel.ubyte/.char/.uchar

Syntax

Description

Example

Initialize Byte

.byte value/|, ..., value,]

.ubyte value/, ... , value,]
.char value/, ... , value,]
.uchar valueq|, ... , value,]

The .byte, .ubyte, .char, and .uchar directives place one or more values into consecutive
bytes of the current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed nhumber

* A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The assembler truncates values greater than eight bits.
If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive bytes
in memory with .char. The label STRX has the value Oh, which is the location of the first
initialized byte. The label STRY has the value 6h, which is the first byte initialized by

the .char directive.

1 0000 .space 100h
2 0100 000A STRX .byte 10, -1, "abc", 'a'
0101 OOFF
0102 0061
0103 0062
0104 0063
0105 0061
3 0106 0008 .char 8, -3, "def", 'b'
0107 OO0FD
0108 0064
0109 0065
010a 0066
010b 0062

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021 MSP430 Assembly Language Tools 87
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.cdecls

Share C Headers Between C and Assembly Code

Syntax Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]
Syntax Multiple Lines:
.cdecls [options]
%of
r* */
[* C/C++ code - Typically a list of #includes and a few defines */
r* */

%}

Description The .cdecls directive allows programmers in mixed assembly and C/C++ environments to
share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations
cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code; such as calling functions, allocating space, and
accessing structure members; using the equivalent assembly mechanisms. While function
and variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how
the .cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the opposite
of the C option.

NOLIST Do not include the converted assembly code in any listing file generated for
the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of the
NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %{, up to the closing block indicator %}, is treated
as C/C++ source and processed. Ordinary assembler processing then resumes on the
line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into assembly
language. Much of C language syntax, including function and variable definitions as
well as function-like macros, is not supported and is ignored during the conversion.

88 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.cdecls (continued)

Example

Share C Headers Between C and Assembly Code

However, all of what traditionally appears in C header files is supported, including function
and variable prototypes; structure and union declarations; non-function-like macros;
enumerations; and #defines.

The resulting assembly language is included in the assembly file at the point of the .cdecls
directive. If the LIST option is used, the converted assembly statements are printed in the
listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included.
The assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is not
inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.
C header file:

#define WANT_ID 10

#define NAME "John\n"

extern int a variable;

extern float cvt integer (int src);

struct myCstruct { int member a; float member b; };
enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:

.cdecls C,LIST, "myheader.h"

size: .int $sizeof (myCstruct)
aoffset: .int myCstruct.member_ a
boffset: .int myCstruct.member b
okvalue: .int status_enum.OK

failval: .int status_enum.FAILED
.if $defined (WANT_ ID)

id .cstring NAME
.endif
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 89

Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.cdecls (continued)

Share C Headers Between C and Assembly Code

Listing File:
1 .cdecls C,LIST, "myheader.h"
A 1 e ittt
A 2 ; Assembly Generated from C/C++ Source Code
A 3 ;
A 4
A 5 ; =========== MACRO DEFINITIONS ===========
A 6 .define "1",WANT ID
A 7 .define """John\n""",NAME
A 8 .define "1", OPTIMIZE FOR SPACE
A 9
A 10 ; =========== TYPE DEFINITIONS ===========
A 11 status enum .enum
A 12 0001 OK - .emember 1
A 13 0100 FAILED .emember 256
A 14 0000 RUNNING .emember 0
A 15 .endenum
A 16
A 17 myCstruct .struct 0,2 ; struct size=(6 bytes|48
bits), alignment=2
A 18 0000 member a .field 16 ; int member a - offset 0
bytes, size (2 bytes]|1l6 bits)
A 19 0002 member b .field 32 ; float member b-offset 2
bytes, size (4 bytes|32 bits)
A 20 0006 .endstruct ; final size=(6 bytes|48 bits)
A 21
A 22 ; =========== EXTERNAL FUNCTIONS ===========
A 23 .global cvt integer
A 24 B
A 25 ; =========== EXTERNAL VARIABLES ===========
A 26 .global a variable
2
3 0000 0006 size: int $sizeof (myCstruct)
4 0002 0000 aoffset: .int myCstruct.member a
5 0004 0002 Dboffset: .int myCstruct.member b
6 0006 0001 okvalue: .int status enum.OK
7 0008 0100 failval: .int status enum.FAILED
8 .if $defined (WANT_ID)
9 000a 004A id .cstring NAME
000b 006F
000c 0068
000d 006E
000e 000A
000f 0000
10 .endif

90

MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.common

Syntax

Description

Create a Common Symbol

.common symbol , size in bytes|[, alignment]

.common symbol , structure tagl, alignment]

The .common directive creates a common symbol in a common block, rather than placing
the variable in a memory section.

The benefit of common symbols is that generated code can remove unused variables that
would otherwise increase the size of the .bss section. (Uninitialized variables of a size
larger than 32 bytes are separately optimized through placement in separate subsections
that can be omitted from a link.)

This directive is used by the compiler when the --common option is enabled (the default),
which causes uninitialized file scope variables to be emitted as common symbols. This
optimization happens for C/C++ code by default unless you use the --common=off
compiler option.

» The symbol is a required parameter. It defines a name for the symbol created by this
directive. The symbol nhame must correspond to the variable that you are reserving
space for.

« The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the section used for common symbols. There is no
default size.

» A structure tag can be used in place of a size to specify a structure created with
the .struct directive. Either a size or a structure tag is required for this argument.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary must be set to a power of 2
between 20 and 215, inclusive. If the SPC is already aligned at the specified boundary,
it is not incremented.

Common symbols are symbols that are placed in the symbol table of an ELF object file.
They represent an uninitialized variable. Common symbols do not reference a section.
(In contrast, initialized variables need to reference a section that contains the initialized
data.) The value of a common symbol is its required alignment; it has no address and
stores no address. While symbols for an uninitialized common block can appear in
executable object files, common symbols may only appear in relocatable object files.
Common symbols are preferred over weak symbols. See the section on the "Symbol
Table" in the System V ABI specification for more about common symbols.

When object files containing common symbols are linked, space is reserved in an
uninitialized section (.common) for each common symbol. A symbol is created in place
of the common symbol to refer to its reserved location.

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021 MSP430 Assembly Language Tools 91
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy " filename "

.include " filename "

The .copy and .include directives tell the assembler to read source statements from
a different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:

1. Stops assembling statements in the current source file

2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
quotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/file1.asm). If you do not specify a
full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the MSP430_A_DIR environment variable
4. Any directories specified by the MSP430_C_DIR environment variable

For more information about the --include_path option and MSP430_A DIR, see Section
4.5. For more information about MSP430_C_DIR, see the MSP430 Optimizing C/C++
Compiler User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code to
identify the level of copying. A indicates the first copied file, B indicates a second copied
file, etc.

In this example, the .copy directive is used to read and assemble source statements from
other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte.asm ** In word.asm

.copy "byte.asm" .byte 32,1+ 'A' .word OABCDh, 56qg
** Back in original file .copy "word.asm"

.string "done" ** Back in byte.asm
.byte 67h + 3qg

92

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.copyl/.include (continued)

Copy Source File
Listing file:
1 0000 .space 29
2 .copy "byte.asm"
A 1 ** In byte.asm
A 2 001d 0020 .byte 32,1+ 'A'
001le 0042
A 3 .copy "word.asm"
B 1 ** In word.asm
B 2 0020 ABCD .word OABCDh, 56g
0022 002E
A 4 ** Back in byte.asm
A 5 0024 006A .byte 67h + 3g
3
4 ** Back in original file
5 0025 0064 .string "done"
0026 006F
0027 006E
0028 0065
Example 2 In this example, the .include directive is used to read and assemble source statements

from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the

listing file.
include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
.space 29 ** In byte2.asm ** In word2.asm
.include "byte2.asm" .byte 32,1+ 'A' .word OABCDh, 569
** Back in original file .include "word2.asm"
.string "done" ** Back in byte2.asm
.byte 67h + 3qg
Listing file:
1 0000 .space 29
2 .include "byte2.asm"
3
4 **Back in original file
5 0025 0064 .string "done"
0026 006F
0027 006E
0028 0065
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 93
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.data
Assemble Into the .data Section
Syntax .data
Description The .data directive sets .data as the current section; the lines that follow will be
assembled into the .data section. The .data section is normally used to contain tables
of data or preinitialized variables.
For more information about sections, see Chapter 2.
Example In this example, code is assembled into the .data and .text sections.
1 ; Comments here
2 0000 .data
3 0000 .space 0xCC
4
5
6 ; Comments here
7 0000 .text
8 0000 INDEX .set O
9 0000 430B MOV #INDEX,R11
10
11
12
13 ; Comments here
14 00cc Table: .data
15 00cc FFFF .word -1
16 00ce OOFF .byte OxFF
17
18
19
20 ; Comments here
21 0002 .text
22 0002 O00CC! con .field Table,1l6
23 0004 421B MOV &con,R11
0006 0002!
24 0008 5B1C ADD 0(R11),R12
000a 0000
25
26 00ct .data
94 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.double/.float

Initialize Single- or Double-Precision Floating-Point Value

Syntax .double value; |, ..., value,)
float value], ..., value,]
Description The .double directive places the IEEE double-precision floating-point representation of

one or more floating-point values into the current section.

Each value must be an absolute constant expression with an arithmetic type or a symbol
equated to an absolute constant expression with an arithmetic type. Each constant is
converted to a floating-point value in IEEE single-precision 32-bit format for .float and
64-bit format for .double. Floating point constants are aligned on word boundaries.

The 32-bit value is stored exponent byte first, most significant byte of fraction second, and
least significant byte of fraction third, in the format shown in Figure 5-5.

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMM MM M
31 23 0

value = (_1)SX (10 + mantissa) X (z)exponent-127
Legend: S =sign (1 bit)

E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

Figure 5-5. 32-Bit Single-Precision Floating-Point Format

The 64-bit value is stored in the format shown in Figure 5-6.

|[SEEEEEEEEEEEMMMMMMMMMMMMMMMMM MM M|
31 20 0

|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl
31 0

Legend: S =sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

Figure 5-6. 64-Bit Double-Precision Floating-Point Format

When you use .double or .float in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.
Example Following are examples of the .float and .double directives:
1 0000 5951 .double -2.0e25
0002 E984
2 0004 5951 .float -1.0e25
0006 E904
3 0008 0000 .double 6
000a 40CO
4 000c 0000 .float 3
000e 4040
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 95
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.double/.float (continued)

Initialize Single- or Double-Precision Floating-Point Value

.drlist/.drnolist

Control Listing of Directives

Syntax .drlist
.drnolist
Description Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing file.

The .drnolist directive has no affect within macros.

+ .asg + .fenolist
* .break + .mlist

*+ .emsg *+ .mmsg
+ .eval * .mnolist
« felist + .sslist

.ssnolist
.var
.wmsg

By default, the assembler acts as if the .drlist directive had been specified.

Example This example shows how .drnolist inhibits the listing of the specified directives.
Source file:

.asg 0, x

.loop 2

.eval x+1, x

.endloop

.drnolist

.asg 1, x

.loop 3

.eval x+1, x

.endloop

Listing file:
1 .asg 0, x
2 .loop 2
3 .eval x+1, x
4 .endloop
1 .eval 0+1, x
1 .eval 1+1, x

5
6 .drnolist
7
9 .loop 3

10 .eval x+1, x
11 .endloop

96 MSP430 Assembly Language Tools
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.elfsym
ELF Symbol Information
Syntax .elfsym name , SYM_SIZE(size)
Description The .elfsym directive provides additional information for symbols in the ELF format. This

directive is designed to convey different types of information, so the type(value) syntax is
used for each type. Currently, this directive supports only the SYM_SIZE type.

Note

SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.
.sect ".examp"
.align 4
.elfsym ex sym, SYM SIZE(4)
ex_sym:
.word 0
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 97

Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.emsg/.mmsg/.wmsg

Define Messages

Syntax .emsg string
.mmsg string
.wmsg string
Description These directives allow you to define your own error and warning messages. When
you use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.
The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.
The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.
The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the error
count, however. It does not prevent the assembler from producing an object file.
Example This example sends the message ERROR -- MISSING PARAMETER to the standard
output device.
Source file:
MSG_EX .macro parml
Jif $symlen (parml) = 0
.emsg "ERROR -- MISSING PARAMETER"
.else
ADD parml, r7, r8
.endif
.endm
MSG_EX RI11
MSG_EX
Listing file:
1 MSG_EX .macro parml
2 Jif $symlen (parml) =0
3 .emsg "ERROR -- MISSING PARAMETER"
4 .else
5 ADD parml, r7
6 .endif
7 .endm
8
9 0000 MSG_EX R11
1 if Ssymlen (parml) =0
1 .emsg "ERROR -- MISSING PARAMETER"
1 .else
1 0000 5B07 ADD R11, 7
1 .endif
10
11 0002 MSG_EX
1 if $symlen (parml) =0
1 .emsg "ERROR -- MISSING PARAMETER"
"emsg.asm", ERROR! at line 11: [***** USER ERROR ***** -] ERROR --
MISSING PARAMETER
1 .else
1 ADD parml, r7
1 .endif
1 Assembly Error, No Assembly Warnings
98 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.emsg/.mmsg/.wmsg (continued)

Define Messages

In addition, the following messages are sent to standard output by the assembler:

%* ERROR! line 11: *** USER ERROR ****#* — : ERROR -- MISSING PARAMETER
.emsg "ERROR -- MISSING PARAMETER"

1 Error, No Warnings

Errors in source - Assembler Aborted

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 99
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.emsg/.mmsg/.wmsg (continued)

.end

Syntax

Description

Example

Define Messages

End Assembly

.end

The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be

the last source statement of a program.

This directive has the same effect as an end-of-file character. You can use .end when you
are debugging and you want to stop assembling at a specific point in your code.

Ending a Macro

Note

Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

This example shows how the .end directive terminates assembly. Any source statements
that follow the .end directive are ignored by the assembler.

Source file:
START: .space 300
TEMP .set 15
.bss LOC1,0x48
LOCL n .word LOC1
MOV #TEMP,R11
MOV &LOCL_n,R12
MOV 0(R12),R13
.end
.byte 4
.word 0xCCC
Listing file:
1 0000 START: .space 300
2 000F TEMP .set 15
3 0000 .bss LOC1,0x48
4 012c 0000! LOCL n .word LOC1
5 012e 403B MOV #TEMP,R11
0130 00OF
6 0132 421cC MOV &LOCL n,R12
0134 o012C!
7 0136 4C1D MOV 0(R12),R13
0138 0000
8 .end

100 MSP430 Assembly Language Tools

v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist

fcnolist

Two directives enable you to control the listing of false conditional blocks:

The .fclist directive allows the listing of false conditional blocks (conditional blocks that do

not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive had

been used.

This example shows the assembly language and listing files for code with and without the
conditional blocks listed.

Source file:
AAA .set 1
BB .set 0
.fclist
LJif AAA
ADD #1024,R11
.else
ADD #1024*10,R11
.endif
.fcnolist
LJif AAA
ADD #1024,R11
.else
ADD #1024*10,R11
.endif
Listing file:
1 0001 AAA .set 1
2 0000 BB .set 0
3 .fclist
4 Lif AAA
5 0000 503B ADD #1024,R11
0002 0400
6 .else
7 ADD #1024*10,R11
8 .endif
9 .fcnolist
11 0004 503B ADD #1024,R11
0006 0400

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

MSP430 Assembly Language Tools 101
v21.6.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
field
Initialize Field
Syntax field value|, size in bits]
Description The .field directive initializes a multiple-bit field within a single word (16 bits) of memory.
This directive has two operands:
+ The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.
» The size in bits is an optional value from 1 to 32, which is the number of bits in the
field. The default size is 16 bits. If you specify a value that cannot fit in size in bits, the
assembler truncates the value and issues a warning message. For example, .field 3,1
causes the assembler to truncate the value 3 to 1 and print this message:
*** WARNING! line 21: W000l: Field value truncated to 1
.field 3, 1
Successive .field directives pack values into the specified number of bits.
The .field directive is similar to the .bits directive (see the .bits topic). However, the .bits
directive does not force alignment to a field boundary and does not automatically
increment the SPC when a word boundary is reached.
Use the .align directive to force the next .field directive to begin packing a new word.
If you use a label, it points to the byte that contains the specified field.
When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.
Example This example shows how fields are packed into a word. The SPC does not change until a
word is filled and the next word is begun.
l KA Ak k kK&
2 o Initialize a 14-bit field. **
3 R R R R R
4 0000 OABC .field O0ABCh, 14
5
6 R R R R R
7 x Initialize a 5-bit field x
8 bk in the same word. X
9 R R R R R
10 0002 000A 1 _F: .field 0ah, 5
11
12 R R R R R
13 x Write out the word. x
14 khkhkkhkhkkhhkkhkhhkhkhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkk
15 .align 4
16
17 hAhkhkkhkhkkhhkkhkhkhkhhkkhhkhkhhkhkhkkhhkhkhhkhkhkhhkhkhhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkk
18 ** Initialize a 4-bit field. Field starts a new word **
19 KA Ak kA kA Ak Ak Ak kK&
20 0004 000C x: .field O0Ch, 4
21
22 ER R R R S R SRR R R R R R R R R R R SRR R R R R R R R RS R R R R R
23 ** 16-bit relocatable field in the next word *x
24 R R R R R R R R R R S
25 0006 0004! .field x
26
27 BRI R R R R
28 x Initialize a 16-bit field. x
29 khkhkkhkhkkhhkkhkhkhkhkhkkhhkkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkrkhkhkkhkk
30 0008 4321 .field 04321h, 16
Figure 5-7 shows how the directives in this example affect memory.
102 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

field (continued)

Initialize Field

Word Code
1513 0
o | o00101010111100] fed oaBch 14
V
14-bit field
15 0

o foojoo101010111100]| fed ooans

1 01010 |
7/
5-bit field
15 0 .align 4
2| [1 100]| feld och 4
/
4-bit field
15 0

3 Jooooooofooo0000010] fed x

15 0
4 (01 0000110010000 1]| feld 04321, 16

Figure 5-7. The .field Directive

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 103
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol4|, ... , symbol,]
.def symbol4|, ... , symbol,]

.ref symbol[, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears as
a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide
a similar multiple-definition error for local symbols.) The .ref directive always creates a
symbol table entry for a symbol, whether the module uses the symbol or not; .global,
however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

+ If the symbol is not defined in the current module (which includes macro, copy,
and include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an unresolved
reference error. At link time, the linker looks for the symbol's definition in other
modules.

+ If the symbol is defined in the current module, the .global or .def directive declares that
the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

This example shows four files. The file1.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The file1.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and make
it available to other modules; both files use the external symbols X, Y, and Z. Also, file1.Ist
uses the .global directive to identify these global symbols; file3.Ist uses .ref and .def to
identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and

Z and make them available to other modules; both files use the external symbol INIT.
Also, file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref
and .def to identify the symbols.

104 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.global/.def/.ref (continued)
Identify Global Symbols

file1.lst
1 ; Global symbol defined in this file
2 .global INIT
3 ; Global symbols defined in file2.lst
4 .global X, Y, Z
5 0000 INIT:
6 0000 503B ADD #56h, RI11
0002 0056
7 0004 0000! .word X
8 ;
9 ;
10 ; .
11 .end
file2.Ist
1 ; Global symbols defined in this file
2 .global X, Y, Z
3 ; Global symbol defined in filel.lst
4 .global INIT
5 0001 X: .set 1
6 0002 Y: .set 2
7 0003 Z: .set 3
8 0000 0000! .word INIT
9 ;
10 ;
11 ; .
12 .end
file3.Ist
1 ; Global symbol defined in this file
2 .def INIT
3 ; Global symbols defined in file2.lst
4 .ref X, Y, Z
5 0000 INIT:
6 0000 503B ADD #56h, RI11
0002 0056
7 0004 0000! .word X
8 ;
9 ;
10 ; .
11 .end
filed.Ist
1 ; Global symbols defined in this file
2 .def X, Y, Z
3 ; Global symbol defined in file3.lst
4 .ref INIT
5 0001 X: .set 1
6 0002 Y: .set 2
7 0003 7Z: .set 3
8 0000 0000! .word INIT
9 ;
10 ;
11 ; .
12 .end
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 105
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.group/.gmember/.endgroup

Syntax

Description

Define Common Data Section

.group group_section_name group_type
.gmember section_name

.endgroup

Three directives instruct the assembler to make certain sections members of an ELF
group section (see the ELF specification for more information on group sections).

Note

The .group directive begins the group declaration. The group_section_name designates
the name of the group section. The group_type designates the type of the group. The
following types are supported:

0x0 Regular ELF group
0x1 COMDAT ELF group

Duplicate COMDAT (common data) groups are allowed in multiple modules; the linker
keeps only one. Creating such duplicate groups is useful for late instantiation of C++
templates and for providing debugging information.

The .gmember directive designates section_name as a member of the group.

The .endgroup directive ends the group declaration.

106

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.half/.short/.uhalf/.ushort

Initialize 16-Bit Integers

Syntax .half value/[, ... , value, |
.short value, ... , value,]
.uhalf value/|, ... , value,]
.ushort value/|, ..., value,)]
Description The .half and .short directives place one or more values into consecutive halfwords in the

current section. A value can be either:

« An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

+ A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

The assembler truncates values greater than 16 bits.

If you use a label with .half or .short, it points to the location where the assembler places
the first byte.

These directives perform a word (16-bit) alignment before data is written to the section.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

Example In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 0000 .space 100h * 16
2 1000 000A .half 10, -1, "abc", "a'
1002 FFFF
1004 0061
1006 0062
1008 0063
100a 0061
3 100c 0008 STRN .short 8, -3, "def", 'b'
100e FFFD
1010 0064
1012 0065
1014 0066
1016 0062

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 107
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.ifl.elseifl.else/.endif

Assemble Conditional Blocks

Syntax .if condition
[.elseif condition)
[.else]
.endif
Description The .if directive marks the beginning of a conditional block. The condition is required.
+ If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).
+ If the expression evaluates to false (0), the assembler assembles code that follows
a .elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).
The .elseif directive identifies a block of code to be assembled when the .if expression
is false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif (if
no .elseif or .else is present). The .elseif is optional in a conditional block, and more than
one .elseif can be used. If an expression is false and there is no .elseif, the assembler
continues with the code that follows a .else (if present) or a .endif.
The .else directive identifies code the assembler assembles when the .if expression and
all .elseif expressions are false (0). The .else directive is optional; if an expression is
false and there is no .else statement, the assembler continues with the code that follows
the .endif. The .elseif and .else directives can be used in the same conditional block.
The .endif directive terminates a conditional block.
See Section 4.9.2 for information about relational operators.
Example This example shows conditional assembly:
1 0001 SYML .set 1
2 0002 SYM2 .set 2
3 0003 SYM3 .set 3
4 0004 SYM4 .set 4
5
6 If 4: .if SYM4 = SYM2 * SYM2
7 0000 0004 .byte SYM4 ; Equal values
8 .else
9 .byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 If 5: .if SYMI <= 10
13 0001 000A .byte 10 ; Equal values
14 .else
15 .byte SYM1 ; Unequal values
16 .endif
17
18 If 6: .if SYM3 * SYM2 != SYM4 + SYM2
19 .byte SYM3 * SYM2 ; Unequal value
20 .else
21 0002 0008 .byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If 7: .if SYM1 = SYM2
25 .byte SsyM1
26 .elseif SYM2 + SYM3 = 5
27 0003 0005 .byte SYM2 + SYM3
28 .endif
108 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.int/.unint/.word/.uword

Initialize 16-Bit Integers

Syntax .int valueq[, ... , value,]
.uint value4|, ..., value,]
.word value4|, ..., value,]
.uword value4|, ..., value,]
Description The .int, .unint, .word, and .uword directives place one or more values into consecutive

words in the current section. Each value is placed in a 16-bit word by itself and is aligned
on a word boundary. A value can be either:

« An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

+ A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example In this example, the .int and .word directives are used to initialize words. The symbol
WORDX points to the first word that is reserved by .word.

0000 .space 73h
0000 .bss PAGE, 128
0080 .bss SYMPTR, 4
0074 403B INST: MOV #056h, R11
0076 0056
5 0078 000A .int 10, SYMPTR, -1, 35 + 'a', INST, "abc"
007a 0080!
007c FFFF
007e 0084
0080 0074!
0082 0061
0084 0062
0086 0063
6 0000 0C80 WORDX: .word 3200, 1 + 'AB', -0AFh, 'X'
0002 4242
0004 FF51
0006 0058

DSw N

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 109
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.intvec

Syntax

Description

Example

Create an Interrupt Vector

.intvec "section_name", routine_name

The .intvec directive creates an interrupt vector with a pointer to an interrupt function.

It defines a named section and specifies the ISR routine to be run for the interrupt.

The .intvec directive is equivalent to performing the .sect directive followed by the .short
directive.

The section_name identifies the section for the interrupt vector pointer to the interrupt
routine. The name must be of the form .intxx where xx is the number of the interrupt
vector. The section name must be enclosed in double quotes. See Section 2.4.3 for
information about named sections.

The routine_name identifies the ISR trap routine that should be run as a result of this
interrupt.

The linker command file must specify output sections that map to the physical memory
location for each interrupt vector. The standard linker command files are set up to handle
the .intxx naming convention used by the .intvec directive.

If you do not specify an ISR routine for some interrupt vectors, an ISR routine will be
provided for those vectors from the RTS library and the RTS library will automatically be
linked with your application. The default ISR routine puts the device in low power mode.
You can override the ISR provided by the RTS by using the .intvec directive with the
"default_isr" section name as shown in the following example.

‘ .intvec "default isr", isr trap function ‘

This example creates an interrupt vector in the .int55 section that runs a routine called
ADC12_ISR.

‘ .intvec ".int55", ADC12 ISR ‘

110

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

label

Syntax

Description

Example

Create a Load-Time Address Label

Jabel symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at

a different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address so
that references to the section (such as branches) are correct when the code runs. See
Section 3.5 for more information about run-time relocation.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of the
code that relocates the section.

This example shows the use of a load-time address label.

sect ".examp"
.label examp load ; load address of section

start: ; run address of section
<code>

finish: ; run address of section end
.label examp _end ; load address of section end

See Section 8.5.6 for more information about assigning run-time and load-time addresses
in the linker.

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021 MSP430 Assembly Language Tools 1M
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.Ilength/.width
Set Listing Page Size
Syntax ength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the .length
directive without specifying the page length, the output listing length defaults to 60
lines.
* Minimum length: 1 line
+ Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
» Default width: 132 characters. If you do not use the .width directive or if you use
the .width directive without specifying a page width, the output listing width defaults to
132 characters.
* Minimum width: 80 characters
» Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and object
code are counted as part of the width of a line. Comments and other portions of a source
statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
*x Page length = 65 lines i
*x Page width = 85 characters *x
.length 65
.width 85
*x Page length = 55 lines i
*x Page width = 100 characters *x
.length 55
.width 100
112 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

Jdist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

Jdist

.nolist

Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke the
assembler by including the --asm_listing option on the command line (see Section 4.3),
the assembler ignores the .list directive.

This example shows how the .copy directive inserts source statements from another file.
The first time this directive is encountered, the assembler lists the copied source lines

in the listing file. The second time this directive is encountered, the assembler does not
list the copied source lines, because a .nolist directive was assembled. The .nolist, the
second .copy, and the .list directives do not appear in the listing file. Also, the line counter
is incremented, even when source statements are not listed.

Source file:

* Back in original file
NOP
.nolist
.copy "copyZ2.asm"
.list

* Back in original file
.string "Done"

Listing file:
1 .copy "copy2.asm"
A 1 * In copy2.asm (copy file)
A 2 0000 0020 .word 32, 1 + 'A'
0002 0042
2 * Back in original file
3 0004 4303 NOP
7 * Back in original file
8 000a 0044 .string "Done"
000b 006F
000c O006E
000d 0065
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 113

Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.long/.ulong
Initialize 32-Bit Integer
Syntax dong value4|, ..., value,]
.ulong value|, ... , value,)
Description The .long directive places one or more values into consecutive words in the current
section. A value can be either:
« An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number
* A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.
A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.
The .long directive performs a word (16-bit) alignment before any data is written to the
section.
When you use .long directive in a .struct/.endstruct sequence, it defines a member's size;
it does not initialize memory. See the .struct/.endstruct/.tag topic.
Example This example shows how the .long directive initializes words. The symbol DAT1 points to

the first word that is reserved.

1 0000
0002
0004
0006
0008
000a
000c
000e

2 0010
0012
0014
0016

3 0018

ABCD
0000
0141
0000
0067
0000
006F
0000
0000!
0000
CCDD
AABB

DAT1:

DAT2:

.long

.long

0ABCDh, 'A'

DAT1,

+ 100h, 'g', 'o'

OAABBCCDDh

114 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.loop/.endloop/.break

Syntax

Description

Example

Assemble Code Block Repeatedly

loop [count]
.break [end-condition]

.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional count operand, if
used, must be a well-defined integer expression. The count indicates the number of loops
to be performed (the loop count). If count is omitted, it defaults to 1024. The loop will be
repeated count number of times, unless terminated early by a .break directive.

The optional .break directive terminates a .loop early. You may use .loop without

using .break. The .break directive terminates a .loop only if the end-condition expression
is true (evaluates to nonzero). If the optional end-condition operand is omitted, it defaults
to true. If end-condition is true, the assembler stops repeating the .loop body immediately;
any remaining statements after .break and before .endloop are not assembled. The
assembler resumes assembling with the statement after the .endloop directive. If end-
condition is false (evaluates to 0), the loop continues.

The .endloop directive marks the end of a repeatable block of code. When the loop
terminates, whether by a .break directive with a true end-condition or by performing
the loop count number of iterations, the assembler stops repeating the loop body and
resumes assembling with the statement after the .endloop directive.

This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1 .eval 0,x

2 COEF .loop

3 .word x*100

4 .eval x+1, x

5 .break X =6

6 .endloop
1 0000 0000 .word 0*100
1 .eval 0+1, x
1 .break 1 =6
1 0002 0064 .word 1*100
1 .eval 1+1, x
1 .break 2 =6
1 0004 o00cC8 .word 2*100
1 .eval 2+1, x
1 .break 3 =26
1 0006 012C .word 3*100
1 .eval 341, x
1 .break 4 =6
1 0008 0190 .word 4*100
1 .eval 4+1, x
1 .break 5 =26
1 000a O01F4 .word 5*100
1 .eval 5+1, x
1 .break 6 =6

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021 MSP430 Assembly Language Tools 115
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.macro/.endm

Define Macro

Syntax macname .macro [parameter|, ... , parameter,]]

model statements or macro directives
.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in
an .include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source statement's
label field.

.macro identifies the source statement as the first line of a macro definition.
You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for
the .macro directive.

model statements are instructions or assembler directives that are executed each time
the macro is called.

macro directives are used to control macro expansion.

.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 6.

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

116 MSP430 Assembly Language Tools
Submit Document Feedback

v21.6.0.LTS
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.mlib
Define Macro Library
Syntax .mlib " filename "
Description The .mlib directive provides the assembler with the filename of a macro library. A macro

library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the MSP430_A_DIR environment variable
4. Any directories specified by the MSP430_C_DIR environment variable

See Section 4.5 for more information about the --include_path option.

A .mlib directive causes the assembler to open the specified library and create a table of
the library's contents. The assembler stores names of library members in the opcode table
as library entries. This redefines any existing opcodes or macros with the same name. If
one of these macros is called, the assembler extracts the library entry and loads it into the
macro table. The assembler expands the library entry as with other macros, but it does
not place the source code in the listing. Only macros from the library are extracted, and
they are extracted only once. See Chapter 6 for details.

Example The code creates a macro library that defines two macros, inc4.asm and dec4.asm. The
file inc4.asm contains the definition of inc4 and dec4.asm contains the definition of dec4.
Macro for incrementing: inc4.asm Macro for decrementing: dec4.asm
inc4 .macro reg dec4 .macro reg
ADD.W #1, reg SUB.W #1, reg
ADD.W #1, reg SUB.W #1, reg
ADD.W #1, reg SUB.W #1, reg
ADD.W #1, reg SUB.W #1, reg
.endm .endm

Use the archiver with a command line like the following to create a macro library:

ar430 -a mac incéd.asm decéd.asm

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 17
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.mlib (continued)

Define Macro Library

Use .mlib to reference the macro library. Define the inc4.asm and dec4.asm macros:

1 .mlist
2 .mlib "mac.lib"
3 ; Macro call
4 0000 inc4 R11, R12, R13, R1l4
1 0000 531B ADD.W #1,R11
1 0002 531C ADD.W #1,R12
1 0004 531D ADD.W #1,R13
1 0006 531E ADD.W #1,R14
5
6 ; Macro call
7 0008 dec4 R11, R12, R13, R14
1 0008 831B SUB.W #1,R11
1 000a 831C SUB.W #1,R12
1 000c 831D SUB.W #1,R13
1 000e 831E SUB.W #1,R14
118 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.mlist/.mnolist

Syntax

Description

Example

Start/Stop Macro Expansion Listing

.mlist

.mnolist

Two directives enable you to control the listing of macro and repeatable block expansions
in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See
the .loop/.break/.endloop topic for information on conditional blocks.

This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

STR 3 .macro P1, P2, P3
.string ":pl:", ":p2:", ":p3:"
.endm

g W N

0000 STR_3 "as", "I", "am" ; Invoke STR 3 macro.

1 0000 003A .string ":pl:", ":p2:", ":p3:"

0001 0070

0002 0031

0003 003A

0004 003A

0005 0070

0006 0032

0007 003A

0008 003A

0009 0070

000a 0033

000b 003A
.mnolist

000c STR 3 "as", "I", "am"
.mlist

0018 STR_3 "as", "I", "am"

1 0018 003A .string ":pl:", ":p2:",

0019 0070

00la 0031

001b 003A

001lc 003A

001d 0070

001le 0032

001f 003A

0020 003A

0021 0070

0022 0033

0023 003A

Suppress expansion.
Invoke STR 3 macro.
Show macro expansion.
Invoke STR 3 macro.
tp3:" B

O 0 J o

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021 MSP430 Assembly Language Tools 119
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.newblock
Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See Section 4.8.3 for more information on the use of local labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.
1 .global ADDRA,ADDRB, ADDRC
2
3 0000 403B Labell: MOV #ADDRA, R11 ; Load Address A to R11
0002 0000!
4 0004 803B SUB #ADDRB, R11 ; Subtract Address B.
0006 0000!
5 0008 3803 JL $1 ; If < 0, branch to $1
6 000a 403B MOV #ADDRB, R11 ; otherwise, load ADDRB to R11
000c 0000!
7 000e 3C02 JMP $2 ; and branch to $2
8 0010 403B s$1 MOV #ADDRA, R11 ; $1: load ADDRA to ACO.
0012 0000!
9 0014 503B $2 ADD #ADDRC, R11 ; $2: add ADDRC.
0016 0000!
10 .newblock ; Undefine $1 so can be used
again.
11 0018 3C02 JMP $1 ; If less than zero, branch to $1.
12 00la 4B82 MOV R11, &ADDRC ; Store ACO low in ADDRC.
001lc 0000!
13 00le 4303 $1 NOP
120 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.option

Select Listing Options

Syntax .option option4[, option, ,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. Options are not case
sensitive. These are valid options:

A turns on listing of all directives, data, subsequent expansions, macros, and blocks.

B limits the listing of .byte and .char directives to one line.

H limits the listing of .half and .short directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

o turns on listing (performs list).

R resets any B, H, M, T, and, W (turns off the limits of B, H, M, T, and, W).

T limits the listing of .string directives to one line.

w limits the listing of .word and .int directives to one line.

X produces a cross-reference symbol listing. You can also obtain this listing by invoking the

assembler with the --asm_listing_cross_reference option (see Section 4.3).

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 121
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.option (continued)

Select Listing Options

Example This example shows how to limit the listings of the .byte, .char, .int, long, .word, and .string
directives to one line each.

LR R RS R SRR SRR SRR R R R R R R R R R R R R R R SRS E

** Limit the listing of .byte, .char, .int, .long, **
** .word, and .string directives to 1 line each. **
LR R RS R SRR SRR SRR R R R R R R R R R R R R R R SRS E
.option B, W, T

0000 OO0BD .byte -'Cc', 0BOh, 5

0003 00BC .char -'D', 0COh, 6

0006 000A .int 10, 35 + 'a', "abc"

0010 CCDD .long OAABBCCDDh, 536 + 'A'

0012 AABB

0014 0259

0016 0000

10 0018 15AA .word 5546, 78h

11 001lc 0045 .string "Extended Registers"

OO0 Jo Ul WN

13 AR R R RS E R R SRR R R R R R R R R R R R R RS

14 E Reset the listing options. E
15 R R R R R R R R R R
16 .option R
17 002e 00BD .byte -'Cc', 0BOh, 5
002f 00BO
0030 0005
18 0031 00BC .char -'D', 0COh, 6
0032 00CO
0033 0006
19 0034 000A .int 10, 35 + 'a', "abc"
0036 0084
0038 0061
003a 0062
003c 0063
20 003e CCDD .long 0OAABBCCDDh, 536 + 'A'
0040 AABB
0042 0259
0044 0000
21 0046 15AA .word 5546, 78h
0048 0078
22 004a 0045 .string "Extended Registers"
004b 0078
004c 0074
004d 0065
004e 006E
004f 0064
0050 0065
0051 0064
0052 0020
0053 0052
0054 0065
0055 0067
0056 0069
0057 0073
0058 0074
0059 0065
005a 0072
005b 0073

122 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.page

Syntax

Description

Example

Eject Page in Listing

.page

The .page directive produces a page eject in the listing file. The .page directive is not
printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

This example shows how the .page directive causes the assembler to begin a new page

of the source listing.

Source file:

Source file
.title

.page

(generic)
"Ax4x Page Directive Example ****"

Listing file:

MSP430 Assembler PC
Tools Copyright (c)
**x*% Page Directive

2

3

4
MSP430 Assembler PC
Tools Copyright (c)
**x*% Page Directive

VX.X.X Day
2003-2011 Texas
Example ****
VX.X.X Day
2003-2011 Texas
Example ****

Time Year
Instruments Incorporated
PAGE 1

Time Year
Instruments Incorporated

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

Submit Document Feedback

MSP430 Assembly Language Tools
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

123

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.retain / .retainrefs

Syntax

Description

Conditionally Retain Sections In Object Module Output

.retain[" section name "]

.retainrefs[" section name "]

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with
the --unused_section_elimination=off linker option.

The .retainrefs directive indicates that any sections that refer to the current or specified
section are not eligible for removal via conditional linking. For example, applications may
use an .intvecs section to set up interrupt vectors. The .intvecs section is eligible for
removal during conditional linking by default. You can force the .intvecs section and any
sections that reference it to be retained by applying the .retain and .retainrefs directives to
the .intvecs section.

The section name identifies the section. If the directive is used without a section name,
it applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section name :
subsection name.

The linker assumes that all sections by default are eligible for removal via conditional
linking. (However, the linker does automatically retain the .reset section.) The .retain
directive is useful for overriding this default conditional linking behavior for sections that
you want to keep included in the link, even if the section is not referenced by any other
section in the link. For example, you could apply a .retain directive to an interrupt function
that you have written in assembly language, but which is not referenced from any normal
entry point in the application.

124

MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com Assembler Directives

.sect
Assemble Into Named Section

Syntax .sect " section name "

Description The .sect directive defines a named section that can be used like the default .text
and .data sections. The .sect directive sets section name to be the current section; the
lines that follow are assembled into the section name section.
The section name identifies the section. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section name :
subsection name. See Chapter 2 for more information about sections.

Example This example defines a special-purpose section named Vars and assembles code into it.

0000

0000 403B
0002 0078
6 0004 503B
0006 0078

ar s W N

0000

0000 cccp
0002 3D4C
12 0004 00AA

16 0008
17 0008 5BOC

22 0006 000D
23 0008 000A
24 000a 0010

E R R R R

*x Begin assembling into .text section. i
AR R R R R SRR R RS SR SRR R R R R R R R R R R R R SR
.text

MOV #0x78,R11

ADD #0x78,R11

AR R R R R SRR R RS SR SRR R R R R R R R R R R R SRS

*x Begin assembling into Vars section. *x
KA AR A A AR A A A A, Kk

.sect "Vars"

.float 0.05
X: .word OxAA
hAhkhkhhkkhhkhkhhkhkhkhhkhhhkhkhhhkhkhhkhhhkhrkhhhkhhkhkhrkhhkhkhkhkhkhrhkhkkhhkkhxkhx
wx Resume assembling into .text section. Hx
AR R R R SRR R RS SRR R R R R R R R R R R R R SRS
.text

ADD R11,R12

AR R R R SRR R RS SR SRR R R R R R R R R R R R SRS

ks Resume assembling into Vars section. E
dAhhkhkhkkhhhkhhkhkhhhhhhkhkhhhkhhhkhhhkhrkhhhhkhkhkrkhhhkhkhhkrkhhkhkhdhxkx
.sect "Vars"
.field 13
.field 0xA
.field 0x10

SLAU131Y — OCTOBER 2004 —

Submit Document Feedback

REVISED JUNE 2021

MSP430 Assembly Language Tools
v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

125

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.set/.equ
Define Assembly-Time Constant
Syntax symbol .set value
symbol .equ value
Description The .set and .equ directives equate a constant value to a .set/.equ symbol. The symbol
can then be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values. The .set and .equ directives are
identical and can be used interchangeably.
* The symbol is a label that must appear in the label field.
* The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.
Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is assigned
is also relocatable.
The value of the expression appears in the object field of the listing. This value is not part
of the actual object code and is not written to the output file.
Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.
Example This example shows how symbols can be assigned with .set and .equ.
1 Ak hkhkhkkhkhkhkhhkhhkhhkhhhkhhkhhkhhkhkhhkhkhhhkhhhkhkhkhkhrkhkhhkhkhkhkhkhkhkkhkhkhkhkxkhx
2 *x Equate symbol ACCUM to register R11 and use *x
3 *x it instead of the register. *x
4 Ak hkhkhkkhkhkkhkhhkhhkhhkhkhhkhhkhhkhhhkhhkhkhkhhkhhhkhkhkhhrkhkhhkhkhkhkrhkhkkhkhkkhkxkhx
5 000B ACCUM .set R11
6 0000 401B MOV 0x56, ACCUM
0002 0054
.
8 khkkhkkhkhkkhkkhkkhkkhhhkxkx
9 E Set symbol INDEX to an integer expression E
10 wx and use it as an immediate operand. Hx
11 khkkhkkhkhkhkhkhkkhhhkxx
12 0035 INDEX .equ 100/2 + 3
13 0004 503B ADD #INDEX, ACCUM
0006 0035
14
15 KA AR A A A A A A A A A A Ak A A A KKk
16 ** Set symbol SYMTAB to a relocatable expression **
17 ld and use it as a relocatable operand. *x
18 KA KA KKk
19 0008 000A LABEL .word 10
20 0009! SYMTAB .set LABEL + 1
21
22 khkkhkkhkhkhkhkkhhhkxx
23 E Set symbol NSYMS equal to the symbol INDEX ks
24 Hx and use it as you would INDEX. wx
25 khkkhkkhkkhkkhhhkxx
26 0035 NSYMS .set INDEX
27 000a 0035 .word NSYMS
126 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.spacel.bes
Reserve Space
Syntax [label] .space size in bytes
[labell .bes size in bytes
Description The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to point
to the word following the reserved space.
When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the /ast reserved.
Example This example shows how memory is reserved with the .space and .bes directives .
l hAhkhkhkhkkhhkhkhhkhhkhhkhhhkhkhhhkhhkhkhhkhkhrkhkhkhkhhkhkhkhhkkhhkhkhkhkhkhrkhkhrkhhxk
2 *x Begin assembling into the .text section. *x
3 khkkhhkhkxx
4 0000 .text
5
6 dhkkhhkhkxx
7 E Reserve 0F0 bytes in the .text section. E
8 R R R R R
9 0000 .space 0FOh
10 00£0 0100 .word ~ 100h, 200h
00£2 0200
11 khkkhkhkkhkhkkhhkkkxx
12 x Begin assembling into the .data section. xx
13 R R R R R R R R
14 0000 .data
15 0000 0049 .string "In .data"
0001 006E
0002 0020
0003 002E
0004 0064
0005 0061
0006 0074
0007 0061
16 khkkhkhkkhkhkkhkhkkhhhkxkx
17 ** Reserve 100 bytes in the .data section; RES 1 **
18 *x points to the first byte that contains *x
19 *x reserved bytes. *x
20 hAhkhkhhkkhhkkhkhhkhkhkhhkhhhkhkhkhhkhhhkhhkhkhkhhhkhkhkhkhrkhkhhkhhkhkhkhkhkkhhkkhkxkhx
21 0008 RES 1: .space 100
22 006c 000F .word 15
23 006e 0008! .word RES_1
24 KA * KKk
25 ** Reserve 20 bits in the .data section; RES 2 **
26 E points to the last byte that contains E
27 xR reserved bytes. *x
28 dkhkkhkkhkkhkkhkkhhhkxx
29 0083 RES 2: .bes 20
30 0084 0036 .word 36h
31 0086 0083! .word RES_2
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 127
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.sslist/.ssnolist

Syntax

Description

Example

Control Listing of Substitution Symbols

.sslist

.ssnolist

Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The expanded
line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

1 SHIFT .macro dst,amount
2 .loop amount
3 RLA dst
4 .endloop
5 .endm
6
7 .global value
8
9 0000 SHIFT R5,3
1 .loop 3
1 RLA dst
1 .endloop
2 0000 5505 RLA R5
2 0002 5505 RLA R5
2 0004 5505 RLA R5
10 0006 5582 ADD R5, &value
0008 0000!
11
12 .sslist
13
14 000a SHIFT R5,3
1 .loop amount
.loop 3
1 RLA dst
1 .endloop
2 000a 5505 RLA dst
RLA R5
2 000c 5505 RLA dst
RLA R5
2 000e 5505 RLA dst
RLA R5

128 MSP430 Assembly Language Tools

v21.6.0.LTS

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.string/.cstring

Initialize Text

Syntax .string {expr; | " string; "} [, ... , {€xpr, | " string, "}]

.cstring {exprs|" string; "} [, ... , {expr, | " string, "}]

Description The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

* A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\\a \b \f\n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit on
a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see
the .struct/.endstruct/.tag topic.

Example In this example, 8-bit values are placed into consecutive words in the current section.

1 0000 0041 Str Ptr: .string "ABCD"
0001 0042
0002 0043
0003 0044
2 0004 0041 .string 41h, 42h, 43h, 44h
0005 0042
0006 0043
0007 0044
3 0008 0041 .string "Austin", "Houston", "Dallas"
0009 0075
000a 0073
000b 0074
000c 0069
000d 006E
000e 0048
000f 006F
0010 0075
0011 0073
0012 0074
0013 006F
0014 006E
0015 0044
0016 0061
0017 006C
0018 006C
0019 0061
001la 0073
4 001b 0030 .string 36 + 12

SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 129
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.struct/.endstruct/.tag

Syntax

Description

Declare Structure Type

[stag] .struct [expr]

[memy)] element [expro]
[memy] element [exprq]

[mem,] .tag stag [expra]

[memy] element [expr]
[size] .endstruct

label .tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The .struct
directive does not allocate memory; it merely creates a symbolic template that can be
used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag

directives:

+ The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the global
symbol table with the value of their absolute offset from the top of the structure. The
stag is optional for .struct, but is required for .tag.

+ The expris an optional expression indicating the beginning offset of the structure. The
default starting point for a structure is 0.

+ The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

+ The element is one of the following
descriptors: .byte, .char, .word, .int, .long, .string, .double, .float, .half, .short, field,
and .tag. All of these except .tag are typical directives that initialize memory. Following
a .struct directive, these directives describe the structure element's size. They do not
allocate memory. The .tag directive is a special case because stag must be used (as in
the definition of stag).

* The expr,,y is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the structure.

130 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021

v21.6.0.LTS

Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.struct/.endstruct/.tag (continued)

Declare Structure Type

Note
Directives that Can Appear in a .struct/.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align directive,
which aligns the member offsets on word boundaries. Empty structures are
illegal.

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1
1 REAL_REC .struct ;stag
2 0000 NOM .int ;memberl = 0
3 0002 DEN .int ;member2 = 2
4 0004 REAL LEN .endstruct ;jreal len = 4
5
6 0000 .bss REAL, REAL LEN
7
8 0000 .text
9 0000 521B ADD.W &REAL + REAL REC.DEN,R11
0002 0002!
10
Example 2
11 0000 .data
12 CPLX REC .struct
13 0000 REALT .tag REAL_REC ; stag
14 0004 IMAGI .tag REAL_REC ; memberl = 0
15 0008 CPLX LEN .endstruct ; cplx len = 8
16
17 COMPLEX .tag CPLX REC ; assign structure
attrib
18
19 0004 .bss COMPLEX, CPLX LEN
20
21 0004 .text
22 0004 521B ADD &COMPLEX.REALI,R11 ; access structure
0006 0004!
Example 3
1 0000 .data
2 .struct ; no stag puts mems into
3 ; global symbol table
4 0000 X .int ; create 3 dim templates
5 0002 Y .int
6 0004 Z .int
7 0006 .endstruct
Example 4
1 0000 .data
2 BIT REC .struct ; stag
3 0000 STREAM .string 64
4 0040 BIT7 .field 7 ; bitsl = 64
5 0040 BIT9 .field 9 ; bits2 = 64
6 0042 BIT10 .field 10 ; bits3 = 65
7 0044 X INT .int ; X _int = 66
8 0046 BIT LEN .endstruct ; length = 67
9
10 BITS .tag BIT REC
11
12 0000 .bss BITS, BIT_REC
13
14 0000 .text
SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021 MSP430 Assembly Language Tools 131
Submit Document Feedback v21.6.0.LTS

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.struct/.endstruct/.tag (continued)
Declare Structure Type
15 0000 521B ADD &BITS.BIT7,R11 ; move into R11
0002 0040!
16 0004 FO3B AND #127,R11 ; mask off garbage bits
0006 007F
132 MSP430 Assembly Language Tools SLAU131Y — OCTOBER 2004 — REVISED JUNE 2021
v21.6.0.LTS Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU131
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU131Y&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Assembler Directives

.struct/.endstruct/.tag (continued)

.symdepend

Syntax

Description

Declare Structure Type

Create an Artificial Reference from a Section to a Symbol

.symdepend dst symbol name][, src symbol name]

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

A global symbol is defined in the same manner as any other symbol; that is, it appears as
a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide a
similar multiple-definition error for local symbols.)

The .symdepend directive creates a symbol table entry only if the module actually uses
the symbol. The .weak directive, in contrast, always creates a symbol table entry for a
symbol, whether the module uses the symbol or not (see .weak topic).

If the symbol is defined in the current module, use the .symdepend directive to declare
that the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

SLAU131Y — OC