TI TECH DAYS

Getting started in low power IoT with Wi-Fi[®] connected temperature & humidity sensing

Amit Ashara & Michael Reymond

Temp Humidity Sensing & Connectivity

TI Temperature & Humidity Technology

High Accuracy

Proprietary technology produces superior temperature accuracy, with ± 0.1 °C to ± 0.5 °C, ± 1 °C, and ± 2 °C max accuracies

 Superior accuracy not only accurately protects and precisely compensates electronic system, but also provides added monitoring function, such as a smart thermostat, human body, and etc.

Ultra-Low Power

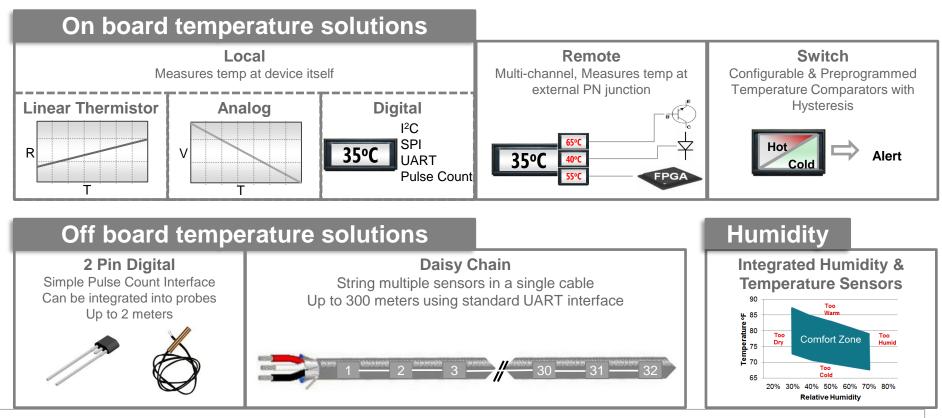
Optimized design reduces current consumption during temperature conversion, saving power for more power intensive components in a system

• Optimized ultra-low power core offering the lowest power sensing solution in the industry, when operating either as a thermostat or a critical protection device

Small Size & Cost

LBC9 Mixed Signal Process + 300mm wafers, available in multitude of small package options

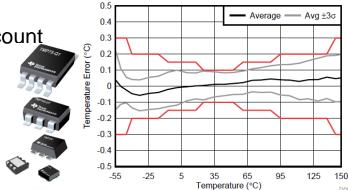
 Small size not only offers robust compact designs, with fast temperature response times, but smaller die size on 300mm wafer also ensures cost effective and stable supply in the long term


Humidity Sensing Option

Combining high accuracy temperature and humidity sensors makes TI humidity sensor the lowest power in the industry

• Combining proven temperature sensing with humidity sensing element enables TI humidity sensor to have the lowest power in the industry, hence augments the thermostat capability to measure temperature and RH%, as well as enabling detection of system condensation

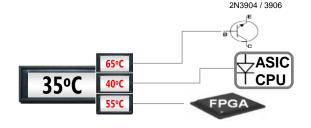
THS | Portfolio Overview



Digital Local Temperature Sensors

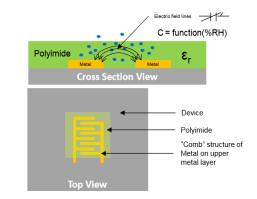
Temperature Accuracy

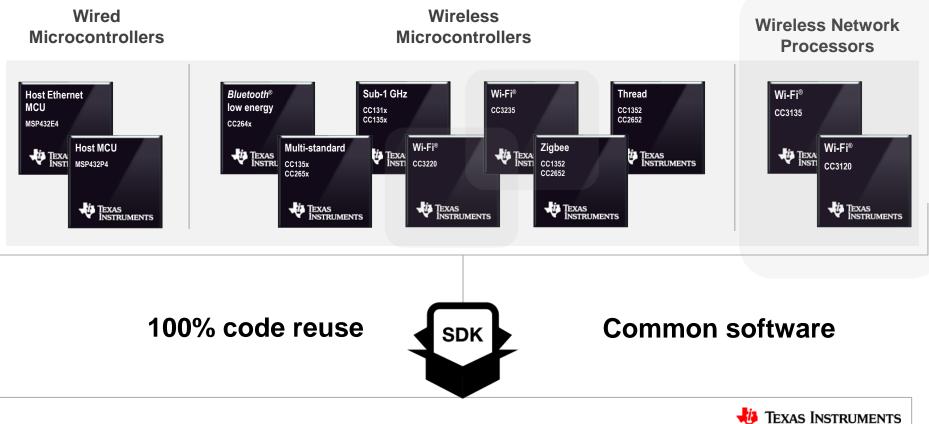
- Full integrated Temp Sensor
- Digital interface includes I²C-bus, SPI, UART or pulse count
- Simplest to design with these features:
 - Accuracies up to ±0.1°C max
 - Active current down to 3uA
 - Footprint down to 0.8 mm x 0.8 mm


I ² C-bus						UART		
	TMP117	TMP112	TMP108	TMP1075	TMP103	TMP107	TMP144	
Accuracy (max)	±0.1°C	±0.5°C	±0.7°C	±1°C	±2°C	±0.4°C	±1°C	
Resolution	16-Bit		12-Bit		9-bit	14-Bit	12-Bit	
Supply Range	1.8V to 5.5V	1.4V o 3.6V	1.4V o 3.6V	1.7V to 5.5V	1.4V o 3.6V	1.7V to 5.5V	1.4V to 3.6V	
IDDQ (max)	3.5uA	10 uA	8uA	4uA	3uA		3uA	
Package Footprint	WSON (2 x 2mm) WCSP (1 x 1.6mm)	SOT-563 1.6 x 1.6mm	WLCSP (0.8 x 1.2 mm)	DFN (2 x 2 mm) MSOP (3 x 3mm), SOIC	WLCSP (0.8 x 0.8mm	SOIC8 (4.9 x 6mm)	WCSP (0.8 x 1mm)	
NIST Traceable	✓	✓	-	√	-	-	-	

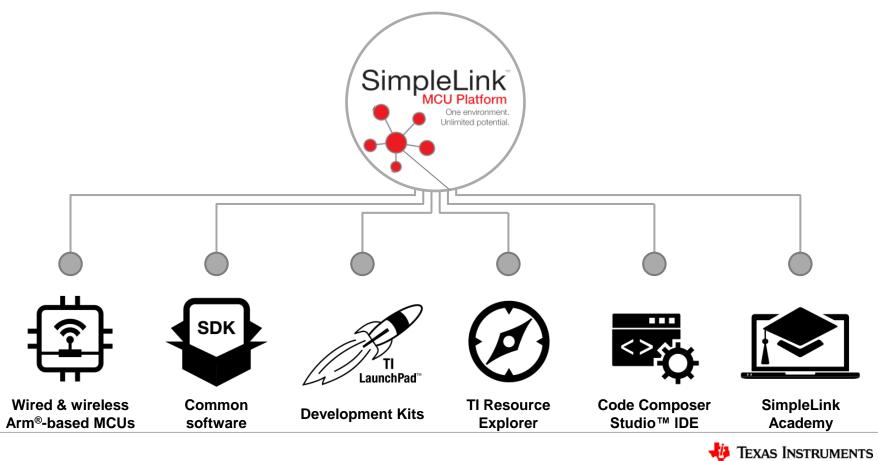
Remote Multi-channel Temperature Sensors

- Remotes offer the ability to monitor temperature at multiple locations using a single IC.
 - All remotes include a local digital temperature sensor
 - Any PN junction can be used for the external sensor element
 - Discrete: diodes & BJT transistors
 - Built-in diodes: CPUs, FPGAs, ASICs
 - 1 to 8 remote channels
 - Integrated current/boltage/power monitoring option
- Built-in series resistance cancellation, n-factor correction, offset, and beta compensation


	TMP468	TMP464	TMP461	TMP451*	TMP432
# of Remote Channels	8	4	1	1	2
Local Accuracy (max)	±0.75°C	+/-0.75C	+/-1C	+/-1C	+/-1C
Remote Accuracy (max)	+/-0.75C	+/-0.75C	+/-0.75C	+/-1C	+/-1C
Supply Range	1.7V to 3.6V	1.7V to 3.6V	1.7V to 3.6V	1.7V to 3.6V	2.7V to 5.5V
lq (max)	67uA	43uA	35uA	27uA	45uA
ADC Resolution	13-bit	13-bit	12-bit	12-bit	12-bit
Package	VQFN(3 x 3mm) DSBGA(1.6 x 1.6mm)	VQFN (3 x 3mm)	WQFN (2 x 2mm)	WSON (2 x 2mm)	VSSOP (3 x 3mm)


Humidity Sensors

- Integrated humidity and temp sensing element
- Accurately measure 0% to 100% RH, with typical 2% and ±0.2°C accuracy
- Lowest active current down to 0.6uA
- Small footprint down to 1.5 x 1.5 mm
- Support VCC down to 1.62V



	HDC1010	HDC1080	HDC2010	HDC2080	HDC2021	HDC2022
					0	
Minimize UV exposure	✓		~			
Space Constraint Applications	✓		~			
5V Support	✓	~				
1.8V Support			~	~	~	✓
Guaranteed RH% tolerance (<u>+</u> 3%RH)			✓	~	~	✓
Conformal Coating, PCB Board Wash					~	
Exposure to dust/debris/water						~
	•		•	-	Texas Instr	UMENTS ⁶

SimpleLink[™] MCU platform

End-to-end development resources

The SimpleLink[™] SDK

Easily add functionality to your product

Sensor to Cloud design with sensing plugins, IoT plugins, and more...

Solve your design problem

Broad range of fully tested and certification-ready stacks with training and examples

Expand and enhance your product offering

Application code portability between techlogies enables easy integration of wireless connectivity

Return on software investment with 100% code portability

TI drivers abstract of the SimpleLink hardware functionality

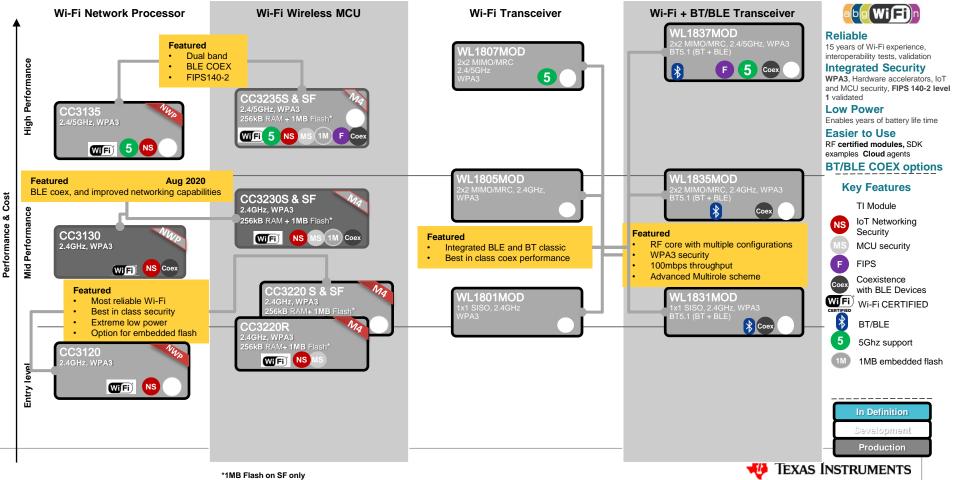
Extend battery life and lower power consumption

TI-RTOS is optimized for SimpleLink hardware architecture

Extend battery life and lo TI-RTOS is optimi Flexible design support POSIX-compatible

POSIX-compatible APIs offer flexible OS/kernels support

Voice Recognition	CapTIvate	Sensor & Actuator	Cloud/IoT	Plus more	Examples		
😵 Bluetooth	Sub-1GHz 15.4-Stack	2.4 GHz Proprietary TI 15.4-Stack	fHREAD	Sub-1GHz EasyLink			
((၇)) Multi-standard	ZigBee*		Graphics	Ethernet	Examples		
TI Drivers (GPIO, I2C, UART, SPI, ADC, PWM,) Examples			POSIX (Code portability between OS'es) Examples				
SPI, ADC, PV	Driver Lib			OS Kernel (optional)			


Connectivity | The most reliable & secured IoT Wi-Fi Portfolio

			Wi-Fi NWP			
	Wi-Fi SoC (256-KB RAM)	Wi-Fi SoC (256-KB RAM and 1-MB Flash)	Wi-Fi network processor	Wi-Fi transceiver	Wi-Fi + Bluetooth LE transceiver	
Frequency	2.4 GHz, 5 GHz	2.4 GHz, 5 GHz	2.4 GHz, 5 GHz	2.4 GHz, 5 GHz	2.4 GHz, 5 GHz	
Host	Internal MCU	Internal MCU	External MCU	External MPU/MCU	External MPU/MCU	
Security	MCU security with secure boot, FIPS 140-2*	MCU security with secure boot, FIPS 140-2*	Network security FIPS 140-2*	-	FIPS 140-2*	
Bluetooth low energy support	External**	External**	External**	None	Integrated Bluetooth LE 5.1	
Distinctive features	WFA certified Network learning algorithm	WFA certified Network learning algorithm	WFA certified Network learning algorithm	MIMO/MRC Mesh Multi-role	MIMO/MRC Mesh Multi-role	
IC option 2.4 GHz	CC3220R, CC3220S, CC3230S	CC3220SF, CC3230SF	CC3120, CC3130	-	-	
IC option 2.4/5 GHz	CC3235S	CC3235SF	CC3135	_	_	
Module option 2.4 GHz	CC3220MODS, CC3220MODAS	CC3220MODSF, CC3220MODASF	CC3120MOD	WL1801MOD, WL1805MOD	WL1831MOD, WL1835MOD	
Module option 2.4/5 GHz	CC3235MODS, CC3235MODAS	CC3235MODSF, CC3235MODASF	CC3135MOD	WL1807MOD	WL1837MOD	

Connectivity | The most reliable & secured IoT Wi-Fi Portfolio

SimpleLink[™] Academy Philosophy

Users Guides

- Brings depth to code examples
- Defines all possibilities of functionality
- Not easy to consume and move forward

Code examples

- Defined functionality usually built to express common use cases
- Can be complex
- Requires extensive comments

SimpleLink Academy

- •Starts with code examples
- •Establishes clear outcome from lab
- •Simplified step-by-step while educating customers
- •References Users Guides

TI-Designs & App Notes

- End-Equipment focused
- Advanced well beyond general code examples
- Great for specific applications

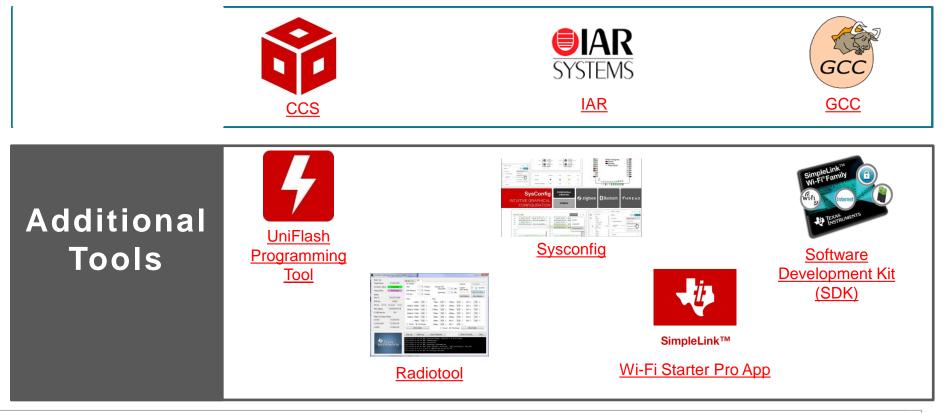
Understanding

Starting Point

Moving Forward

Advanced

The TI IoT Cloud Ecosystem



Visit <u>TI's Overview for the Internet of Thing</u>

Development Tools

Dev.ti.com

TI Cloud Tools Sign-in 🚽 Explore Develop Help **Resource Explorer** CCS Cloud SysConfig Examples Compile Pin Configuration 5 S ()S/W Configuration Libraries Program Welcome to TI's Cloud Tools! Code Generation Documentation Debug 0 0 0 Access online tools to develop nstall Cloud Agent applications and to evaluate TI tools. UniFlash **GUI** Composer Gallery For the best experience, please GUI Composer Flash Dashboards Θ install the TI CLOUD AGENT Apps GUI Applications Program ¢ extension so we can detect your Demos Load Dials and Gauges device. Examples 0 0 0 **BoosterPack Checker** PinMux E2E Community LaunchPads Pin Configuration Engineers * BoosterPacks Auto Solver Questions Code Generation Compatibility Discussions 0 0 0

SysConfig: Sensor Code Studio

💲 SysCo	nfig							- 0) >
Sys	Config FILE ABO	OUT						RES	START
	╤ Type Filter Text	× «	\leftarrow \rightarrow Software $ ightarrow$ TMP1	17				Ð :	뷰 〈
82	 LOCAL DIGITAL I2C TEMP TMP75 		TMP117 (2 Added) 🗇	(⊕ ADD)	REMOVE ALL	Senerated Files			
	TMP75	1 ♥ ⊕ ⊕	TMP117_0		Ô	C / Generated Files			
	TMP275	Ð	TMP117_1		Ô	Filter: all			•
	TMP100	\oplus	Name	TMP117_1		devi2c.h	Analog Sensor Code Studio	8	
	TMP101 TMP102	⊕ ⊕	Host MCU I2C Master	I2CMASTER-1	Ŧ	devi2c.c	Analog Sensor Code Studio	8	
	TMP102	÷	Device Address	ADDR connected to GND (0x48)	•	TMP75.c	Analog Sensor Code Studio	8	
	TMP108 TMP112	⊕ ⊕	Device Configuration		^	TMP75.h	Analog Sensor Code Studio		
	TMP116	\oplus	Temperature Limit & Offset R	egisters	^	TMP117.c	Analog Sensor Code Studio	•	
	TMP117	2 🕑 🕀							
	▼ REMOTE DIGITAL I2C TEM		EEPROM1-3 Registers		^	TMP117.h	Analog Sensor Code Studio	8	
	TMP411 TMP451	+ 1 📀 +				HDC2080.c	Analog Sensor Code Studio	8	
	TMP461	÷				HDC2080.h	Analog Sensor Code Studio	8	
	TMP464	\oplus							
	TMP468	\oplus				TMP451.c	Analog Sensor Code Studio		
	▼ DIGITAL I2C HUMIDITY SE					TMP451.h	Analog Sensor Code Studio	8	
	HDC2010	\oplus							
	HDC2080	1 🕑 🕀				10 Total Files			

SLYP714

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated