ARM Assembly Language Tools
v20.2.0.LTS

User’s Guide

Wi} TEXAS INSTRUMENTS

Literature Number: SPNU118Z
SEPTEMBER 1995 — REVISED MARCH 2023

https://www.ti.com/lit/pdf/SPNU118

Table of Contents

i3 TEXAS INSTRUMENTS

REAA This FiISt...... .. oottt e et e oo oottt e oo o s bttt e e e e b b et e e e e e e bt e et e e e st b ee e e e e eaaneneeeeeannnnee 11
ADOUL THIS IMIBINMUAL. ...ttt ettt e e oo e bttt e e 2o st e et e e 4o s b bttt e o4 e s bt et e e e e anba et e e e e e antb e e e e e e anbeneas 11
HOW 10 USE ThiIS IMABNUAL. ...ttt ettt e oo bttt e e e ettt e e e e e aa et e e e e e aab et e e e e eannb e e e e e ennneaeeeas 11
oY e L[a T T I @0 a1V =T o1 (o] oL RS SPSN 12
Related Documentation From Texas INSIIUMENTS..........oooi e 13
JLILE e (100 =T o G PSP OPUPUPPOT 13

1 Introduction to the Software Development TOOIS................ooiiiiiiiiiiie e e e s e e e e e e saraeee s 15
1.1 Software DevelopmeENt TOOIS OVEIVIEW............uiiiei it ettt e e et e e e e et e e e e e st e e e e e sasbaaeaeeesnsseeeeeesssseeeessasseeeaesaanes 16
L2 LT E-3 =TT o] 1 o] o - PSPPI 17

2 Introduction t0 OBJECE MOAUIES.............oviiiiii et e e e e ettt e e e e et e e e e e e s e aseeeeeeesntaeeeeesasbaseaaeeanssseeaeeeannnnes 19
2.1 Object File FOrmat SPeCIfiCatiONS............oiiiiiiiiiii et e e e et e e e e st e e e e e e e sbsaeeaeeessnraeeeeesansbeneaesaanes 20
2.2 EXECULADIE ODJECE FIlES....cci ittt ettt e e e et e e e e e et e e e e e e s aataeeeeeaassbeeeaeeaasssseeaeeeannsseeeeesasseneaeeaanes 20
PR B a1 (o To 18 o1 fo T a TN (o TS T=Tox 1] o - T PR S 20

2.3.1 SPECIAl SECHON NGIMES......cii ittt e et e e e e e e e e e e s et b et e e e e eassaeeeeeesatseeaeesasbeseaeeeassaeeaeeesantanseaesansnrees 21
2.4 How the Assembler HandIes SECHONS........coiuiii ittt ettt et e e e e e st e e se b e e snte e e sneeeeanbeeeanneeeenneeas 21
b B g T 11 (=1 [To [T=Tox 1) o PP 22
P A a1 = =T IS T=T o] o T OSSPSR 22
b B U L= A F= g 1o BT Tor o o OSSR 23
B O N[y (=Y 1 G0 T=Tox () o PR 23
2.4.5 SECHON Program COUNTEIS.cciiiiiiiie i e ettt e e e ettt e e e e ettt e e e e st eeeeeseasbaeeaaesassseeeesassssseeaeessssaseeessasssseeeseassseeaeeans 23
B SRS 18] o =7= T o] oI S USSR 24
2.4.7 USING SECHONS DIMECHIVES.uiiiiiiiiiiiiie ettt et e e e ettt e e e e et e ee e e e s sbs et eaeeassseeeaeesansbaseaeseasssaeeeeeeanssreeens 24
2.5 How the LINKer HANAIES SECHONS.iiiiiiieiiii ettt ettt e e ettt eest e e e saae e e snbeeeenneeesnneeesneeeenee 26
2.5.1 ComMbINING INPUL SECHIONS.ciiiiiiiiee et e e e e e ettt e e e e et e e e e e e saasaeeeeeeaasbaeeaaesassseeaeeeannseeaeessnnres 27
2.5.2 PlaCing SECHONS.eeiiiiiiiiie ettt e et e e e e ettt e e e ettt ee e s e saeaeeeeeasasteeaeeesasbsaeeaeaaasssseeaeeaansbaeeeeesantaeeeeeeeanrreeeeeaanres 27
DS V111 o To] £ TSP SUPPRTP 27
2.6.1 Global (EXIErNal) SYMDOIS.eiieiiiiieiiie ettt e e et e e ettt e sa bt e e et e e e nte e e smseeeabeeeeanteeesnneeeennneeeanee 28
I e o= | IS 0] o Yo [T PP 29
2.6.3 WEAK SYMDOIS.eeiiiiiiiiieie ettt e ettt e e e ettt e e e s et e e e e e e eaasaeeeeeaaantaeeaee s ntbaeeeee e nbaeeaaeeaannrreaaeeaaanreeaeeeaanraneen 29
R TS 0] o To I F=1 o) [T PSSP PPPRR PR 30
2.7 SYMDONIC REIOCATIONS......ciiiiiiiiiiie ettt e e e et e e e e ettt ee e e e aaseeeeee s ataeeeee s e saeeeeaeeasassaeeeeesansaeseaesaanssseeaeesanses 30
DA< 3 Mo =T | o = T o = o PSPPSR 30
3 Program Loading @and RUNNING.............ooooiiiiiiiiii et et e e e e e e e e e e e e e s e s s e et b et taeeeeeeeeeaaaaaaaaaeeeeeessasaanaansnnsnsnnnes 31
G TR 1o = T | o PSPPSR 32
3.1.1 Load @nd RUN AGAIESSES. ...ttt ettt e e e e bttt e e e e b bttt e e s e aaab bttt e e s e e et e e e e s annt e e e e e e aneneeeas 32
B T V28 = ToTo) i1 1 =T o J oY= To 11 T PP PPERPRPPR 33
B T2 =t o 11 Y0 o o | PRSPPI 36
3.3 RUN-TIME INILIAHZATION.ceeiiie ettt e e ettt e e e e s ae et e e s e s e e e e e e s e an b e e e e e s antbeeeeeenan 37
R TR Wt B I o TS o {1 0O N U o £ o T o PSRRI 37
3.3.2 RAM MOdel VS. ROM MOGEL.......coiiiiieiiiiie ittt sttt st e ettt e e ettt e s bt e e s bt e e s et e e sneeeeanbeeeenseeesanneeeanseeenas 37
3.3.3 About Linker-Generated COPY TaDIES........c..uiiiii ittt e e e e e e e e et e e e e s esabseeeaeeanasbaeeeessansnneeaens 39
BTN o 8T =Y o £ o TN o =1 o PRSP 39
3.5 RUN-TIME REIOCAION. ...ttt e e ettt e e 4okttt e e e e sttt e e e e et et e e e e e aaeb e et e e e naanneeeee s 39
NG RN Lo [iToT g =TI a1 oy o 4 =1 (T o T PSSR 40

L XCT=T=Y 0 0] o =Y gl =TT o T o T o PP 41
g ST T4 o] oY @ AT T PSR 42
4.2 The Assembler's Role in the Software Development FIOW............ocoiiiiiiiiiiiiiiie et 42
4.3 INVOKING the ASSEMDIET ...ttt ettt e e e e e e e e e e e e e e e aesa s saee bt basaaee et eeeeaeaaaaaaaeeeeeeesnanaannnen 43
4.4 Controlling Application BiNary INtEITACE............oii ittt e e e e e e st e e e e s st e e e e e eeannaeeeeesnnnes 44
4.5 Naming Alternate Directories for ASSEMDIEr INPUL.............ooiiiiiiiii e e e e e e e e e eareeeaeas 44

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 3
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
4.5.1 Using the --include_path ASSEmMDIEr OPLON.uiiiiiii et 44
4.5.2 Using the TI_ARM_A_DIR Environment Vari@ble.............couiiiiiiiiiie ettt 45
4.6 SOUrCe STateMENT FOMMAL..... ..ottt et e bt e e ettt e s bt e e sa bt e e et e e e ssb e e e seneeeabaeennee 46
Ty I o =Y I Y Lo TSP UR 47
4.6.2 MINEMIONIC FIEIA. ...ttt e e b e a bt oo bt e e eb bt e e aa ket e e b et e e eab e e e aabe e e snbe e e saneeeabeeennee 47
A R @] oT=1 = o Il =Y o OO PSPPSR U PR OUPRP PRSP 48
4.6.4 COMMENT FIEIA......eeiiiiii ittt e bt e bt e e a bt oottt e eh e et e ea bt e e eas et e e eab e e e eabe e e enbe e e saneeeabeeennee 50
| (=T | O]) =T | T TP OPPRPPN 50
A I a1 (=T [gl 1 (=T = OO SOU PP OPPRP PRSI 50
4.7.2 Character STHNG LItEralS............oooiiiiiiiiii ettt ettt e e bt e e st e e s et e e b bt e e ante e e sneeeeabneenaaes 51
4.7.3 FIoatiNgG-POINt LILETAIS. ...ttt ettt e e bt e e sttt e s et e ek b e e e ante e e sneeeensneeeanee 52
4.8 ASSEMDIET SYMDOIS. ...ttt ekt oottt e o b et e e aa bt e e ettt e e b bt e e e a b et e nbe e e e eab e e e et e e et 52
S R I [[T 01 (1= £ T PSPPSR PPR 52
S IR | o= T PP TSR PPPP 52
G B Mo To= | [= o 1= LS PSPPI 53
4.8.4 SYMDBDOIC CONSIANES.......eiiiiiiiiiii ettt ettt ettt e e bt e e st et oo e b et e e b bt e e st et e sab et e e b b e e e anteeesabeeeensneeeanee 54
4.8.5 Defining Symbolic Constants (--asm_defing OPtion).........c.euiiiiiiiiii e 54
4.8.6 Predefined SymbDOIIC CONSTANES.iiiiiiii ittt et sb e et st e es 55
A =T) =T T PP P OPPROTPRON 56
4.8.8 SUDSHEULION SYMDOIS.eiiiiii ittt e bt ettt e ekt e e et et e sbe e e e an b e e e e bn e e e enneas 57
e (o] (=TT] o TSP UPPT PRSP 58
4.9.1 Mathematical and LOGICal OPEIAtOrS.eiiiuiiiiiiii ittt e e bt e et e e st e et b e e e ente e e sneeeanbneeeaaee 59
4.9.2 Relational Operators and Conditional EXPreSSIiONS..........c.uiiiiiiiiiiiie e 60
4.9.3 Well-DEfiNEA EXPIESSIONS.ciutiiiiiiieiiiee ettt ettt sttt ettt e bt eaa et oottt e e ebe e e e aab et e sabe e e e ebb e e e aabe e e nneeeesaneeeabneenan 60
4.9.4 Relocatable Symbols and Legal EXPreSSIiONS.coouuii ittt e e es 60
4.9.5 EXPreSSION EXAMPIES.oiiiiiiiiiiiee ittt ettt r et e e bt e e a bt o b et e ekt e e et e e e b e e e an e nn e nneas 61
4.10 Built-in FUNCHONS @NA OPEIATOIS. ...cccutiiiiiiiiiiiie etttk ea e s bt e e et b e e e aabe e e sab et e et bt e e eabeeesnneeeanreeenaee 62
4.10.1 Built-In Math and Trigonometric FUNCHONS.oiiiiii e 62
4.11 Unified Assembly Language SYNtaxX SUPPOIT.........ci ittt ettt st e rane e e b e e e eaee e e nanes 63
412 SOUICE LISHINGS. ... eee ittt ettt ea et oot e ekt e e sttt o1 b et e ek bt e e eabe e e sabe e e e b bt e e e abe e e e nneeeanbeeenaes 63
4.13 Debugging ASSEMDIY SOUFCE.ccuuiiiiiiiieiiie ettt et e e ebb e e et et e sbt e e e eba e e e aabe e e sne e e e nnneeeas 66
4.14 CroSS-ReEfEIENCE LISHINGS.ci ittt b ettt e e bt e e ebe e e e ea bt e e sat e e e eba e e e aabeeesnteeennneeean 67
5 ASSEMDBIET DIFECHIVES.oiiiiiiiie e ettt h et h et e e bt oo h bt e e ea b et e ek bt e e eab e e e e be e e e nte e e nnne e nnreeean 69
5.1 DIFECHVES SUMIMEIY ...ttt ettt ettt e ket oo ettt e o b bt e o sttt e 1a bt e e ok bt e e sttt e ea bt e e e b b e e e aab et e aane e e e an b e e e nabaeesnneas 70
5.2 Directives that DefiNe SECHONS.cciiiiiiiiii ettt et e e b et e e sab e e e st e e sate e e sabeeeabeeennee 74
5.3 Directives that Change the INSIUCHION TYPE......oouuii ittt 77
5.4 Directives that INIIAliZe VaAlUES............ooo ittt ettt et e et nne e e sneee s 77
5.5 Directives that Perform Alignment and RESEIVE SPaACE........cccuuiiiiuiiiiiiiie ittt 80
5.6 Directives that Format the OUIPUL LISTINGS.cooiuiiiiiiii et e e e 81
5.7 Directives that ReferenCe OTher FilES........ ..ottt 82
5.8 Directives that Enable Conditional ASSEMDIY...........ooiiiiiiiiiii et 82
5.9 Directives that Define Union or STrUCIUrE TYPES.......ooiiiiiiiiiei ettt 83
5.10 Directives that Define ENUMErated TYPES.ccuuiiiiiiiiiiiii ittt ettt b e st e e sne e e nnnee s 83
5.11 Directives that Define Symbols at ASSEMDIY TiME......cooiiiiiiiii et 83
5.12 MISCEIIANEOUS DIFECHIVES.eeiiiiiiiiiiie ettt ea e e s bt e et e e a bt esa b et e e bb e e e eabe e e s abe e e nnn e e e nanees 84
5.13 DIrCHVES REFEIENCE. ...ttt et ettt e oo a et e s bt e e sttt e eab e e e e bt e e aabe e e nneeeennneeeas 85
6 Macro Language DESCIIPHION.cooiiiiiiiii ettt ettt e e e b e e a e s e e e b et 155
(SR O g T I 1V - Tor (o TSROSO PP PRI 156
(S B 1 T o Y =T o TSP USRS PP PRI 156
6.3 Macro Parameters/Substitution SYMDOIS.oooiiii e e 158
6.3.1 Directives That Define Substitution SYMDOIS..........cooiiiiii s 159
6.3.2 Built-In Substitution Symbol FUNCHONS.oiiiiii e e 160
6.3.3 Recursive SUbSHIUION SYMDOIS.cooiiiiii et 161
6.3.4 FOrCed SUDSTIIULION. ..ottt ettt s it e e e bt e e st e sab e e e e abb e e e anteeenanees 161
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols.............cccoiiiii s 162
6.3.6 Substitution Symbols as Local Variables in MACTOS.coouiiiiiiiiii e 162
(O Y o (o N o = 14 o PSPPSR PP 163
6.5 Using Conditional ASSEMDIY iN IMACTOS.........eeiiiiiiiiiie ittt ettt e et e s e e sbb e e et e e nnee e e saneeeas 163
6.6 USING LADEIS IN IMACTOS. ... ittt ettt ettt a e e et et e e bttt e ea b et e et et e e st e e e sabe e e et bt e e enteeenabeeean 165
6.7 ProduCing MESSAQES iN IMACTOS.ueiiiiiieitiie ettt ettt ettt e e s a et e et e e e bttt e sab et e ettt e e eate e e sabeeeeanneeennes 166
6.8 Using Directives to Format the OULPUL LIStING.........eiiiiiiiiiiei et 167
4 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
6.9 Using Recursive and NESTEA IMACTOS.co.uiiiiiiii ittt a et e bt e st e sbb e e et e e e sneeeenaneeeas 168
6.10 MACIO Dir€CHVES SUMIMEAIY.....cutiiiiiiieiiiee ettt ettt oot h e e e ettt e s b et e e b bt e e aab et e eabt et e aab e e e aabe e e anteeesabeeeebneeeanee 169
T ATChIVEE DESCIIPLION. ...ttt ettt b e e a e oo ettt e o bt e e ea b et e e bt e e e sab e e e aabe e e snb e e e sabeeeabneennee 171
7.1 ATCRIVET OVEIVIEW.......eeieiiii ittt ettt etttk e ettt e o bt e ekt e e eaE et e 2o s et e e oh bt e e eab et e e s e et e sa bt e e e bb e e e enteeesnbeeeeasneeenne 172
7.2 The Archiver's Role in the Software Development FIOW..........coiiiiiiiiiii e 172
7.3 INVOKING the ATCRIVET ...ttt bttt e b et oot et e o b et e ek bt e e e b et e e b bt e e anbe e e eabeeesanbeeeanbeeenans 173
A N o TN = 1g] o] [P PU PRSPPI 173
7.5 Library Information ArChiver DESCIIPON.iii ittt et e e b e e e ntneeeaaee 175
7.5.1 Invoking the Library INformation ArCRIVET.............oi it 175
7.5.2 Library Information ArChiver EXAMIPIE.ei ittt ettt ettt e b e e st snn e as 175
7.5.3 Listing the Contents of @an INAEX LIDIary.........cooiiii e 176
[T =T [T =T o g =T T TP PR PSPPI 176
8 LINKEE DESCHIPLION. ...ttt h et h et oottt e o b et e e ea b et e ettt e o be e e e aa b et e e be e e e ebbeeeenbe e e nneeeenareeean 177
8.1 LINKET OVEIVIEW. ...ttt a et e sttt e oa et 4ok et e o sttt o1 e bt e oo ekt e £ sttt e 1a bt e e ettt e ent e e e sab e e e eneeeennneas 178
8.2 The Linker's Role in the Software Development FIOW.............coiiiiiiiiii e 178
8.3 INVOKING the LINKET......eeiiii ettt e et oot ea et o1 a bt e e ek bt e e st et e sab et e es bt e e ean e e e s beeeeanneeennes 179
R I 1] =T @] o] 1] o T PSSP PPPTPRPN 180
8.4.1 Wildcards in File, Section, and Symbol Patterns.c..eiiiiiiiii et 182
8.4.2 Specifying C/C++ Symbols with LinKer OPLiONS.iiiiiiiiiii e 182
8.4.3 Relocation Capabilities (-—-absolute_exe and --relocatable Options).............cooiiiiiiiiiiiiiiii e 182
8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)..........ccccevvieiiniiiinieec e 183
8.4.5 Changing Encoding of Big-Endian INSIrUCHIONS.............oiiiiiiiiiii e 183
8.4.6 Compression (--cinit_compression and --copy_compression OPtioN).........c.cooiiiieiiiieiiiie e 184
8.4.7 Compress DWARF Information (--compress_dwarf OPioN)..........ooiuiiiiiiiiiiiie e 184
8.4.8 CONrol LINKEr DI@gNOSTICS. ... ceiuttieiitiie ettt ettt a e et e e bt e e eab et e s be e e s nb e e e sab e e e e bb e e e anteeenanees 184
8.4.9 Automatic Library Selection (--disable_auto_rts Opion)..........couiiiiiiiiiii s 185
8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)...........cccoceeviiiiiiniie e 185
8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)...........ccccocveeiiiiiinieeeninnenns 185
8.4.12 Error Correcting Code Testing (--€CC OPLIONS).....cceiuriiiiiiiiiiiie ettt ettt e et 187
8.4.13 Define an Entry Point (-—entry_point OPtioN)...........eeiiiiiiiiiee ettt 188
8.4.14 Set Default Fill Value (-fill_value OPtioN)........c.eiiiieiieiiie ettt et steeseb e steeeneeesteeenseesneeans 188
8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)............ccoooiiiiiiiiiiieeiiiie e 188
8.4.16 Define Heap Size (--heap_sSize OPLON).......ouiii ittt ettt e e e eaes 188
8.4.17 HIdING SYMDOIS.ottt ettt h e et esa e e ea bt e sat e e bt e sh bt e b e e embe e st e e embeesbeeenbeeanseebeeanneeneeans 189
8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C_DIR)......ccccovciiiiiiiiiniiieniee e 189
8.4.19 Change SymDbOl LOCAIZALION.uiiiiiiiiiii ettt e e e st e e snte e e 192
8.4.20 Create a Map File (--map_fil& OPtION).......uueiiiieiiei ettt 193
8.4.21 Managing Map File Contents (--mapfile_contents Option)............oooiiiiiiiiiiiie s 194
8.4.22 Disable Name Demangling (--N0_deMaNGIE)........ccoiuuiiiiiiiiiiiie ittt e et e e 195
8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)ccccoovieiiiiiiiniie e 195
8.4.24 Strip Symbolic Information (--no_symtable OPtion)............cooiiiiiiiiiii e 195
8.4.25 Name an Output Module (--output_file OPLION).......ccoiiiiiiiiii e 196
8.4.26 Prioritizing Function Placement (--preferred_order OPtion)..........cooiuiieiiieeiriie e 196
8.4.27 C Language Options (--ram_model and --rom_model OPLioNS)...........cocuiiiiiiiiiiiiii e 196
8.4.28 Retain Discarded Sections (--retain OPtiON).........uuiiiiiiiiiiie ittt st e e e e 196
8.4.29 Create an Absolute Listing File (--run_abs Option)...........cooiiiiiiiiiiiii e 197
8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)...........ccccovoviiiiieiiiieeiiieeeee e 197
8.4.31 Define Stack Size (--Stack_Siz€ OPLION).......coiiuiiiiiiii it 197
8.4.32 Mapping of Symbols (--symbol_map OPLiON).........couiiiiiiiiie e 198
8.4.33 Generate Far Call Trampolines (--trampolines OPLiON).........coiiuiiiiiiiiiiiiie e 198
8.4.34 Introduce an Unresolved Symbol (--undef_sym OPtion)..........cccciiiiiiiiiiiiiii e 200
8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections).........c.ccocccvevieiiiiiiieeeennns 201
8.4.36 Generate XML Link Information File (--xmI_link_info OPtion).........cccuiiiiiiiiiiee e 201
8.4.37 Zero Initialization (--Zero_iNit OPLION)..........ei it e et 201
8.5 LINKEr COMMANA FlES.......eiiiiiiie ittt ettt e e a et e ettt e s bt e e s bt e e eabe e e e bb e e e anbe e e naneeeennneeean 202
8.5.1 Reserved Names in Linker Command FileS.........ccoiuiiiiiiiiiie et 203
8.5.2 Constants in Linker CoOmMMAaNA FlES.........cooiiiiiiiiei ettt b e e 203
8.5.3 Accessing Files and Libraries from a Linker Command File.............cccoiiiiiiiiiiiiiiiec e 203
8.5.4 The MEMORY DiIECHVE.ccueiitieitit ettt ettt ettt et e et e s et e e beeshb e e bt e sa bt e beeemeeesbeeenseesseeenteesneeenbeesneeannenan 205
8.5.5 The SECTIONS DIFECHVE.eiiueeetieiiti ettt ettt ettt et e et e s et e et ese bt e aeesa bt e st e saseesbeeemeeesbeeenbeeaneeanbeeaneeentes 208
8.5.6 Placing a Section at Different Load and RUN AJAreSSES.........ccoiiiiiiiiiiiiie ettt 220
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 5
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS
INSTRUMENTS
Table of Contents www.ti.com
8.5.7 Using GROUP and UNION SHat@mENtS.ccoiiiiiiiiiiiiiie ettt ettt e et e e 222
8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)....ccciuitiiiiieiiiieeiee et 226
8.5.9 Configuring Error Correcting Code (ECC) With the LINKEr..........ccoouiiiiiiiiiii e 226
8.5.10 Assigning SYmMDOIS @t LINK TiME....ccoiuiiiiiiiiiiiiie ettt eb et bt e e ea e e sbe e e s nbeeeeaabeeenas 229
8.5.11 Creating and FilliNg HOIES.........coo ittt e et sb e ab bt e e aabe e e sneeeennnee s 234
8.6 LINKET SYMIDOIS. ...ttt h ettt st e b et oot et oo b et e e s bt e e e s e e e e b bt e e an b e e e ebe e e e nnneeeanbeeenan 237
8.6.1 Linker-Defined FUNCHONS @NA ATTAYS........uiiiiiiieiiiie ittt ettt bt e ss e st e e ebe e e e aste e e naneeeabreeenee 237
8.6.2 Linker-Defined INTEGEr VaAIUES.c..oiiiiiii ittt ettt e et e e ebe e e nnes 237
8.6.3 LINKEr-DefiNEd AQUIrESSES.ciiiiiiiiiiiie ittt ettt ettt et e bt e o ab e e et et e es bt e e sabe e e e bb e e e anbe e e saneeeebbeeeaaee 238
8.6.4 More ADOUL the _SYMVAl OPEIAtON.......cccuuiiiiiii ittt ettt b e e e s bt e rab et e et e e e aane e e nanees 238
8.6.5 WK SYMDOIS.ttt ekttt o bt e a et e et bt e a et e b et e bt e et et nn e e e e nnree s 239
8.6.6 Resolving Symbols with ObJect LIDraries.c.ui i 239
8.7 Default Placement AlGOTiTRIM..........oii ettt ettt ek b e e et e e e s b et e e as b e e e ebe e e e abbeeeaabeeenans 241
8.7.1 How the Allocation Algorithm Creates OUIPUL SECHONS..........oiiiiiiiiiiee e 241
8.7.2 Reducing Memory Fragmentation...........c..eu oottt ettt e e et e et 242
8.8 Using Linker-Generated COPY TabIES.ooiuiiiiiiiiieiie ettt ettt e b e et e e e e e naneeeas 242
8.8.1 Using Copy Tables for BOOt LOAMING.ueeiiiiieiiiie ittt et e et e e e e e nbneeenaee 242
8.8.2 Using Built-in Link Operators in Copy TabIES..........coiuiiiiiiie et 243
8.8.3 Overlay Management EXAMIPIE......co ittt ettt et sb ettt e et b e e eat e nne e e et e 243
8.8.4 Generating Copy Tables With the table() OPerator............oouiiiiiiiiiiie e e 244
R SR 0701 14101 £=T1] (o] PO O S PUUP PV PPTPPTPI 247
8.8.6 COPY TaDIE CONENES.eeiiieeie ettt ettt e bttt e o s bt e e et bt e e s te e e sabe e e et b e e e anbe e e saneeeensbeeenaee 251
8.8.7 General PUrpoSe COPY ROULINE.uiiiiiiiiiiii ettt e e e e ettt e et e e nanes 252
8.9 Linker-Generated CREC TaAbIES.......ccoiuuiiiiieiiiie ettt e a et e e bt e e s bt e e sab et e et e e e aate e e sbeeeensneeennee 253
8.9.1 Using the crc_table() Operator in the SECTIONS Dir€CHVE.c..uiiiiiiiiiiiieiiite et 253
8.9.2 A Note on the TMS570_CRCB4_ISO AlGOTithm.......coouiiiiiiiiiiit ettt e e 257
8.10 Partial (INCremental) LINKING........oiuiioiiieiie ettt ettt et s sttt sab et e e bb e e s st e e e sab e e e ebn e e e nnneas 258
S B I g o O O O oo [SRR 258
8.11.1 RUN-TIME INIIAlIZATION.eiiiiii ettt st e ek e e et e e e s b et e e st e e e sneeeanneeeas 259
8.11.2 Object Libraries and RUN-TIME SUPPOIT.........uuiiiiiieiiii ittt et eb e e s bt e e an b e e snreesneee s 259
8.11.3 Setting the Size of the Stack and Heap SECHONS.........cccuii i 259
8.11.4 Initializing and Autolnitialzing Variables at RUN TiMe.......cc.oiiiiiiiii e 259
8.11.5 Initialization of Cinit and Watchdog Timer HOId...........ccuuiiiiiiiiii e 260
8.12 LINKEI EXAMPIE.... .ottt ettt ettt a e e ekt e o sttt o1 e et oot et e e s et e e sa bt e e e b bt e e nn e e e n b e e e b naneas 260
9 ADSOlULE LiSter DESCIIPLION.ttt b e e ettt s bt e e bt e e ean e e sb e e e bt e e e naneas 263
9.1 Producing @n ADSOIULE LISTING........ceiiiiiiiiite ittt ettt e e bt e e be e e e abb e e e aabe e e ebee e e snneeeanbeeenan 264
9.2 INVOKING the ADSOIULE LISTET........uteiiiiiiieieee ettt e e et e e et bt e e st e e sab et e ettt e e eateeesbaeeeanneeenaes 265
9.3 ADSOIULE LiSTEr EXAMPIE.eiiiieiie ittt ettt e et e e sttt e sab et e e bt e e st e e e sab e e e et e e e enneas 266
10 Cross-Reference Lister DeSCIIPLION. ...ttt e et e e eas 269
10.1 Producing @ Cross-Reference LiSTiNgG..........c.uii ittt st e e et e e 270
10.2 Invoking the CroSS-REfEIENCE LISTE.......ccoiuiiiiiiiiie ettt e st et 271
10.3 Cross-Reference Listing EXAMPIE.........ooo ittt ettt e se e e st e s st e e e as 272
11 ODJECE File URIIIES. ..ottt et e et b e e bt e s ae e e s bt e saeeembeesbeeenbeesabeeabeeenneenees 273
11.1 Invoking the Object File DiSplay ULlcoouiiiiiiii et 274
11.2 INVOKING the DiISASSEMIDIETcoiiiiiiiiiie ettt b ettt e s a bt e e et et e sne et e sab et e eba e e e anneeesabeee s 275
Example 11-1. Object File MemMCPY32.8SM...... ..ottt ettt e et e e et e e s nne e e e aabeeenaee 276
Example 11-2. Disassembly From mMemCPY32.8SM........coiiiiiiiiiiiiiee ittt ettt e b e b e 276
Example 11-3. Partial Copy Record Output With Different Load and Run Address............ccceeveiiiiieeeiniiiiene e 276
11.3 INVOKING the NAME ULIITY.......eeiiiiiieee ettt et st e ra bt e e et e e st e e e sabeeeennbeeean 277
11.4 INVOKING the SHP ULIITY......oeiiiiieiie ettt et ettt e e st e e s bt e e st e e nne e e e nnee s 277
12 Hex Conversion Utility DeSCIIPLION............oiiiiiiiiii ettt 279
12.1 The Hex Conversion Utility's Role in the Software Development FIOW...........occiiiiiiiiiiiiicee e 280
12.2 Invoking the Hex ConVErSION ULIlITY..........ooiiiiiiiiie ettt st e e e e et e e 281
12.2.1 Invoking the Hex Conversion Utility From the Command LiNe...........cc.ooiiiiiiiiiiiiiie e 282
12.2.2 Invoking the Hex Conversion Utility With @ Command File.............cccooiiiiiiiiiiiii e 284
12.3 Understanding Memory WIAThS.ooi oottt e e et e et e e 285
L2 T I = T T AT o PSSR TOPR SO 285
12.3.2 Specifying the MemOry WIth..........ooo it e e e e et e nanees 285
12.3.3 Partitioning Data INto OUIPUL FIlES.......coieiiiiiie et sb e e e abe e eaes 287
(I a1l (@ LY SR B =Y o (PRSP 289
12.4.1 When t0 Use the ROMS DIF€CHVE.couiiiiiiiiiiiiie ittt ettt a b e et e e e e e bne e e e 290
6 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
12.4.2 An Example of the ROMS DIFECHIVE.eiiiiiiiiiiie ettt et e st et 290
12.5 THE SECTIONS DiIECHVE. ... e iteeitie ettt ettt ettt ettt et e sttt ekt e e bt e s beeeateeeaeeeabeeemeeanbeeambeenneeanbeesseeenbeeseeeenneennnean 292
12.6 The Load Image Format (--10ad_image OPtioN)........c.c.ueiiiiiiiiiie et 293
12.6.1 Load Image SeCtion FOrMEAtioN..........coiiiii ittt e e et s e e e e ebneenaee 293
12.6.2 Load IMage CharaCleriStiCS.cco ittt e ettt e e bt e e s b e e ebe e e e eane e e et e e e ente e e nanees 293
12.7 EXCIUAING @ SPECITIEA SECHON. ...ttt e b et e s e e e bb e e et e e nanes 294
12.8 AsSIgNING OULPUL FIlENAMES. ...ttt b ettt e aa et e et e e s bt e e e st e e e ebe e e e naneas 294
12.9 Image Mode and the —-fill OPHION........cou it e e bt e et e e e nte e nanees 295
12.9.1 Generating @ MEMOTY IMAGE.ccouuiiiiiiii it e e e et e e bb e e e e s b et e eb bt e e eaa e e sbe e e enteeenanees 295
12.9.2 SPECITYING @ Fill VAIUE........eeiiei ettt ettt e bt e et st e bt e e et e e snee e e naneeas 295
12.9.3 Steps to Follow in USING IMage MOGE.........c..oiiiiiiiiiie ettt et e i e 296
12.10 Array OUIPUL FOMMAL. ..ottt et s bt e a e e e e a b et e e st e e e rab e e e aabe e e ente e e saneeeebaeennee 296
12.11 Building a Table for an On-Chip BOOt LOGAETccoiuuiiiiiiiiii ettt 297
12.11.1 Description of the BOOt TaDIE........ccoouiiiiiii e neee s 297
12.11.2 The BOOt TablE FOMMAL....... .ttt e et e ettt e s bt e e aa et e ebe e e e aaneeesneee s 297
12.11.3 How t0 BUIld the BOOt TADIE.......cooiiiiiiiiee ettt eenr e 297
12.11.4 Booting From @ DevViCe PeriPREral.............ooiiiiiiiiiiii ettt s 298
12.11.5 Setting the Entry Point for the Boot Table...........cc.oiiiiiii s 298
12.11.6 USIiNG the ARM BOOt LOGUET.......cueiiiiiiie ettt b ettt e ra e et e st e e e b e e eteeeenees 299
12.12 Using Secure Flash Boot on TMS320F2838X DEVICES.........uutiiiuiiiiiiiieiiiee ettt ettt 302
12.13 Controlling the ROM DEVICE AGQAIESS.uuiiiiiiiiiiit ettt ettt et e st e e sttt e e raa e e e aabe e e sbbe e e saneeeabeeennee 303
12.14 Control Hex Conversion ULility DIagnOSHCS.c.uiiiiiiiiiie ittt ettt 304
12.15 Description of the ODJECE FOIMALS........oouiiiiiiii ittt e et e e et e s ne e e sabeeeas 305
12.15.1 ASCII-Hex Object Format (--asCii OPLON)........ciiuiiiiiiiiiiiii et 305
12.15.2 Intel MCS-86 Object Format (--int€l OPLioN).......ccueiiiiiieiiiii et 306
12.15.3 Motorola Exorciser Object Format (--motorola Oplion).........ccoiiiiiiiiiiiee e 307
12.15.4 Extended Tektronix Object Format (--tektronix OPtion)..........ccueiiiiiiiiiiiiii e 308
12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)..........cccovveeiiiiiiiiieiiniieccce e 309
12.15.6 TI-TXT Hex Format (—-ti_tXt OPHON)........oiiiiiieeii ettt e e e e 310
13 Sharing C/C++ Header Files With ASSembly SOUICEe............cccoiiiiiiiiiii e 311
13.1 Overview Of the .CAECIS DIFECHIVE.cooiiiiiiii ettt ettt e st e et eennbe e e e 312
13.2 NOLES ON C/CH+ CONVEISIONS.eiiitiiiitiee it ee ettt ettt e ettt e ettt e e b e et e aa bt e e e bttt e ohb e e e aa b et e sst e e e eabeeeanbeeeenteeesabeeeabbeennee 313
LS 22 B 00T 4310 1 =T | T PRSP PR PPPI 313
13.2.2 Conditional Compilation (Fif/#elSe/HTATIEIC.)......ouii e 313
LRIl o - To |0 1 = T PSPPSRI 313
13.2.4 The #error and #Warning DIrECHVES.ooiiiii ettt 313
13.2.5 Predefined symbol _ ASM_HEADER ...ttt ettt et e b 313
13.2.6 Usage Within C/C++ asm() STatemeENtS........coouiiiiiiii et 313
13.2.7 The FNCIUAE DIFECLIVE.cuueeiiiitiie ettt ettt e et e r b et e e b et e s bt e e sabe e e e b e e e aabe e e sneeeeaibeeenane 313
13.2.8 ConVversion Of #AETINE IMACTOS.........coiiiiiiiiii ettt e bt e b e e et e e raa e e e e be e e ante e e nanees 314
13.2.9 The HUNAET DIFECHIVE.ci ittt h et e ettt e s bttt e e st e e et e e e snt e e e sabeeeenbneeenee 314
T3.2.10 ENUMEBIALIONS. ...ttt ettt a e e ettt e ekt e e sttt e 2ab e e ook bt e e ea ket e e bttt e sa bt e e eabe e e enee e e sabeeeenbneeeaee 315
{27 b B O {1 o PSPPSR 315
13.2.12 C/CH+ BUII-IN FUNCHONS. ...ttt ettt b et e bt e eab e e s beeenbeesae e e beesneeesbeeanneenneean 315
13.2.13 SErUCIUIES @NA UNIONS......utiiiiitiie ittt ettt ettt oa e e et et e e at e e rab et e et bt e e s te e e sabe e e e s b e e e ambe e e sneeeeasbeeenans 315
13.2.14 FUNCON/VAriable ProtOtyPES.coiuiiiiiiiieitiee ettt e e b e e 316
13.2.15 C CONSTANT SUIXES. ...ttt b e ea e e s bt e e sttt e eab et e s bt e e st e e e nneeeannnee s 316
LRI Lol = = EY o 071 08 e Y/ o 1= T TSP OP P 316
13.3 Notes 0N C+ SPECITIC CONVEISIONS.uiiiiiieiitii ettt ettt e ettt e eaa e e et et e sbbe e e rabe e e abe e e aante e e sabeeeebneennee 317
13.3.1 NAME MANGIING. ...ttt ettt e bt e e sttt e sab et e ook bt e e ea bt e e bt e e e na bt e e eabe e e sante e e sabeeeenbneenanee 317
T3.3.2 DEIIVEA ClIASSES......eiiiueiiiiiitiee ettt ettt a et oottt e o bt e e sttt e oab et e o b bt e e eab et e eabe e e e eh bt e e aabe e e nnte e e eabe e e ebneenaee 317
LR R TR T 1= 1 1 To] F=1 (S PSPPSRI 317
13.3.4 VIrtUAI FUNCHONS. ...ttt h ettt e e bt oo ab et e e bt e e e sttt e eab et e e be e e e aab e e e nneeeannaee s 317
13.4 Special ASSEMDIET SUPPOIT.eiiiiiieie ettt e e bt e e e ab e e st et e e ab e e e sabe e e e bb e e e aate e e nanes 318
13.4.1 Enumerations (.enum/.emember/.@NAENUM).........ccuiiiiiiiiiii e e e 318
13.4.2 The .dEfiNE DIFECHIVE.ttt b e e e a et e et e s b et e e aab e e e sbne e s eaneeeanbeeenaes 318
13.4.3 The .UNdefiNe/.UN@SG DIFECHIVES.coiiiiiiiiti ettt et e et e e eeensbeeenaee 318
13.4.4 The $$defined() BUilt=In FUNCHON.oiiiiiiieiiee ettt sttt e et este s e sbeenseeseensesneenneenes 319
13.4.5 The $$SIiZE0f BUilt=IN FUNCHON..........coiiiie ettt ettt et esae e e reeseesseesseeneesteenaesseenseneeans 319
13.4.6 Structure/Union Alignment and $SalIGNOf().......oooi ettt et 319
13.4.7 THE .CSENG DIFECLIVE. ...ttt ettt h e e st e ettt e e be et e aa b et e e s bt e e eabe e e sabe e e ente e e nanees 319
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 7
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
A Symbolic Debugging DIr€CLIVES.............ooiiiiiiiiii ettt sttt et e e st 321
A.1 DWARF DebUGGING FOIMAL.......oiiiiiiiiiiiiiii ettt ettt e bt e e sttt e s b e e e e ebb e e e ante e e nnee e e nanee s 322
A2 DEDUG DIMECHIVE SYNTAX......ueiiiiiiie ittt h e ettt et e et e ettt e e bt e e e ea bt e e e be e e s nb e e e aabe e e ente e e nnneas 322
B XML Link Information File DeSCriPtioN.............oooiiiiiiiii et 323
B.1 XML Information File EIEMENT TYPES......coouiiiiiiiiiiiiie ettt b et e e bt e et e sne e e e nanee s 324
B.2 DOCUMENT EIEMENTS. ...ttt ettt e ekt e e sttt oo b et e ek b et e eabe e e s bt e e e aab e e e e nteeennneas 324
B.2.1 HEAAET EIBMENES. ... ittt h e a et ettt e h e e e ea b et e e bttt e eab e e e sbe e e enb et e nanr e e e nnee s 324
P [o T a1 T A SO RU PP 325
B.2.3 ObjJeCt COMPONENT LIST.......uiiiiiiiiiieie ettt a e se e e et e s ae e e e sab e e e e bb e e s enteeenaneee s 326
A oo [o= |l € o T0] o I I SO PSPPSR 327
Sl - Lot T 01T o Y =T o PSPPSR 329
B.2.6 Far Call TrampPoOliNg LiSt.........coiiiiiiiiii ettt e bt e e bt e s bt e e e bb e e ate e e aab e e enn e e e e 330
P Y 01 oTo T I =1 o)1= SRR 331

C Hex Conversion Utility EXamMPIES.oooiiiiiiiiii ettt ettt et e st e s e e e nbne e e e 333
C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM...........cccccciiiiiiiiieiiniie e 334
Example C-1. Linker Command File and Link Map for SCENario 1..........cocuviiiiiiiiii e 335
Example C-2. Hex Conversion Command File for SCENArio T........coouiiiiiiiiiiii et 336
Example C-3. Contents of Hex Map File @XampleT.mXpD......oooiiiiiiiiiiieecee et 337

C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code............ccoouiiiiiiiiiiiiiie e 338
Example C-4. Linker Command File fOr SCENAIIO 2........ccuuiiiiiiiiiie ittt 339
Example C-5. Hex Conversion Command File fOr SCENAII0 2........c.cueiiiiiiiiiiiiiiiie et 340
Example C-6. Contents of Hex Map File @XampPle2.mXP......ccoiiiiiiiiiiiiiee et 340

C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMS..........c.ccccciiiiiiiiieiiniecceee e 341
Example C-7. Linker Command File fOr SCENAIIO 3.......ccouiiiiiiiiiie ittt e e 341
Example C-8. Hex Conversion Command File fOr SCENArio 3........cocuueiiiiiiiiiii it 342
Example C-9. Contents of Hex Map File @Xample3.mXpD.......coiiiiiiiiiiiee et 343

(D I T Lo ToL 7 | o OSSO P PRSPPI 345
(D 2 B 1=14 4Tl o] (o)/ PP TRP PR 345

E REVISION HISTOTY ...ttt b e oo a et eoa b et oot bt e oo a bt e e sab et e ebb e e e eab e e e aabeeennteeenannas 352

List of Figures

Figure 1-1. ARM Device Software DevelopmMeENt FIOW.ccoiiiii ittt e e 16
Figure 2-1. Partitioning Memory INto LOGICal BIOCKS............oiiiiiiiiiiie ettt 21
Figure 2-2. Using Sections DireCtives EXAMPIE...........oouiiiiiiiiiiee ettt ettt e ene e 25
Figure 2-3. Object Code Generated by the File in FIQUre 2-2 ... 26
Figure 2-4. Combining Input Sections to Form an Executable Object Module.............ccoociiiiiiiiiiiiii e 27
Figure 3-1. Bootloading Sequence (SIMPlIfied)..........eiiiiiii et e e 33
Figure 3-2. Bootloading Sequence with Secondary BOOHOAAET.............oooiiiiiiiii i 34
Figure 3-3. Autoinitialization @t RUN TimME.......couiiiii e e st e e st e s b e e e st e e nnr e e e nnneeas 38
Figure 3-4. Initialization @t LOAA TiME.........oiiiiiiiiii ettt e et e et e s et e e b bt e e aatr e e snneeeaeneeeans 38
Figure 4-1. The Assembler in the ARM Software Development FIOW............ooouiiiiiiiiiiiii e 42
Figure 4-2. Example ASSEMDIET LISTING.........ooiiiiiiiiiiii ettt st e et e e bt e e aa e e snn e e s ne e e 64
Figure 4-3. Example Assembler Listing (CONtINUEA)..........iiiuiiiiiiiiit ettt 65
Figure 5-1. The fIeld DIFECHIVE.eiiiiii ettt e ekt e et e s bt e e aa et e e bt e e e eae e e e et e e e nnne e e nannes 78
Figure 5-2. INitialiZation DiIrECHVES.coui ittt ettt a et e et e s b e e e sab e e e e bt e et et e saneeeebreeenee 79
Figure 5-3. The .aligN DIFECHIVE.eiiiiii ettt e e e et e ettt e s bt e e aa b et e ebe e e e ean e e e aab e e e nnne e e nanees 80
Figure 5-4. The .Space and .DES DIrECHVES.ccoiiiiiii et st e s bt e et e e snn e e nneee s 81
Figure 5-5. Double-Precision Floating-Point FOrMat............cooiiiii e 101
Figure 5-6. The .fIeld DIFECHVE.ottt e bt e e e bt e e e e s bt e e st et e nnr e e e abb e e e anne e e nane s 109
Figure 5-7. Single-Precision Floating-Point FOrMat.............ooiii e 110
Figure 5-8. The .USECE DIMECHIVE.ii ittt a e e e be e et n e e abe e et e nanes 152
Figure 7-1. The Archiver in the ARM Software Development FIOW...........c.cooiiiiiiiiiiie e 172
Figure 8-1. The Linker in the ARM Software Development FIOW...........cc.ciiiiiiiiiii e 178
Figure 8-2. Section Placement Defined by the SECTIONS Directive EXample...........ccccoiiiiiiiiiiiiic e 209
Figure 8-3. Run-Time Execution of Moving a Function from Slow to Fast Memory at Run Timecccccooeiiiiiiniicciiieene 222
Figure 8-4. Memory Allocation Shown in The UNION Statement and Separate Load Addresses for UNION Sections 223
Figure 8-5. CompPresSed COPY TaDIE......coouiii ittt e et e et eea e s et e e be e e e ab e e e e be e e nnre e nanees 248
FIgUure 8-6. HANAIEE TADI.......co ittt a et e bttt e e et e e ettt e e st et e e b et e e bb e e e ante e e nne e e e nareeean 249
Figure 8-7. CRC_TABLE CoNCEPUAl MOGEL..........cooiiiiiiiiie ittt et e et e et e s e e nnre e e 255
Figure 9-1. Absolute Lister DevelOpmMENt FIOW..........c..oi ittt e e e e 264
Figure 10-1. The Cross-Reference Lister Development FIOW...........cooiiiiiiiiiiii e 270
8 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
Figure 12-1. The Hex Conversion Utility in the ARM Software Development FIOW............coccoiiiiiiiiiiiiiiee e 280
Figure 12-2. Hex Conversion ULility ProCeSS FIOW.cciiuiiiiiiiiiiiie ettt 285
Figure 12-3. Object File Data and Memory WIAthS..........cooiiiii et 286
Figure 12-4. Data, Memory, and ROM WIAEhsS............uuiiiiiiiee ettt et e e e e et e e e e s et e e e e e sennaeeaaeean 288
Figure 12-5. The infile.out File Partitioned Into Four OUpUt FileS.........ccoiiiiiiiiiii e 290
Figure 12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI BOOL............cccoiiiiiiiiiii e 300
Figure 12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel Boot GP I/O............c.ccooooiiiiiiiie e, 301
Figure 12-8. ASCII-HEX ODJECT FOMMAL...... ..ottt a e sab et e e an e e nanes 305
Figure 12-9. Intel Hexadecimal ObJECT FOrMAL.........cooiiiiiiii e 306
Figure 12-10. MOTOrOla-S FOMMAL........ooiiiiii ittt b e ettt e s bt e b e e e et et e s bt e e e an b e e e abneesneeas 307
Figure 12-11. Extended Tekironix ObJECt FOMMAL........c.ocuiiiiiiiiiie e e 308
Figure 12-12. TI-Tagged ODJECE FOIMAL........ouuiiiiiiie ittt e bttt s bt e e s e e e sbneesneeas 309
Figure 12-13. TI-TXT ODBJECE FOMMIAL.......eeiiiieiei ettt et e e h et e et e st e e sa e e e e ba e e s enre e e e eas 310
Figure C-1. EPROM Memory System fOr SCENAIIO 1........ooi ittt bbbt snee e e aibe e 334
Figure C-2. Contents of Hex Output File @XampleT.NeX........coiiiiiiiiii e 337
Figure C-3. EPROM Memory System fOr SCENAIIO 2.........coouiiiiiiiiiiit ettt sbee e sabe e 338
Figure C-4. Contents of Hex Output File @Xample2.NeX........ccoiiiiiiiiiiiii e 340
Figure C-5. EPROM Memory System fOr SCENAIIO 3.........coouiiiiiiiiiiiie ittt snee e eabe e 341
Figure C-6. Contents of Hex Output File IOWEr16.Dit..........c.ooiiiiiiii e 343
Figure C-7. Contents of Hex Output File UPPErT1B.DIt...........oii i 343
List of Tables
Table 4-1. ARM ASSEMDIET OPLONS. ..ottt ettt e et e e et e e e bt e e e st et e sabe e e et bt e e aateeesbeeeeasreeeane 43
Table 4-2. ARM Processor SymDOliC CONSTANTS.uiiiiiiiiiei ettt e e b e s eae e 55
Table 4-3. ARM Register SymboIS With AlIBSES.........cooiuiiiiiiiiiii ettt st e e et esneeas 56
Table 4-4. ARM Status Registers @nd AlIGSES.........cocuiii ittt e e et e st e e nne e e e e e 57
Table 4-5. Operators Used in EXPressions (Pre@CEAENCE)..........uiiiiiiiiiii ittt e e eaee 59
Table 4-6. Expressions With Absolute and Relocatable Symbols............c.ooiiii e 60
Table 4-7. Built-In Mathematical FUNCONS...........ooiii et 62
Table 4-8. SYMDOI AHIIDULES.coiiiiiii ettt st e ettt e ettt e s b et e e sa et e et et e e ann e e e aab e e e enne e e nanees 67
Table 5-1. Directives that Control SECHON USE..........ooiiiiiiiii ettt 70
Table 5-2. Directives that Gather Sections into COMMON GrOUPS........ccuiiiiiiiiiiiie ettt e e 70
Table 5-3. Directives that Affect Unused Section Elimination.............c.oooiiiiiiiiii e 70
Table 5-4. Directives that Initialize Values (Data and MEmOIY)........c.ueiiiiiiiiiii e 70
Table 5-5. Directives that Perform Alignment and RESEIVEe SPaACE............eiiiiiiiiiiii i 71
Table 5-6. Directives that Change the INSIrUCHON TYPE........ooi it 71
Table 5-7. Directives that Format the OUpUt LiStING..........eeiiiii e 71
Table 5-8. Directives that Reference Other FlEs..........ooo i 72
Table 5-9. Directives that Affect Symbol Linkage and VisiDility..........ccoiiiiiiiii e 72
Table 5-10. Directives that Defing SYMDOISooiiiiii et s e e e e e e e 72
Table 5-11. Directives that Enable Conditional ASSEMDIY..........coouiiiiiiiiiii e e 72
Table 5-12. Directives that Define Union OF StrUCIUIE TYPES.....ccouiiiiiiii ettt 72
Table 5-13. Directives that Create or AffECt MACIOS. ..o 73
Table 5-14. Directives that Control DIagNOSHCS.uuiiiiiiiiii ettt e et e st e e s e e et e e nnee 73
Table 5-15. Directives that Perform Assembly SOUIrCE DEDUG........c.cuuiiiiiiiiiiii e 73
Table 5-16. Directives that Are Used by the ADSOIULE LISTEr............oiiiiiiiiii e 73
Table 5-17. Directives that Perform Miscellaneous FUNCHONS..........cocuii it 73
Table 6-1. Substitution Symbol Functions and Return Values...............oooiiiiiiiiiiiiii e 160
Table B-2. Cre@ting IMACTOS. ..ottt ettt h e e et e ottt e e a bt et et et e e sttt e oe bt e e e be e e e nt e e e asbe e e e br e e e enneeenaneee s 169
Table 6-3. Manipulating Substitution SYMDOIS. ... 169
Table 6-4. CONAIIONAI ASSEMIDIY.......eeiiiiiiii et e et e et e e s et e e b e e e e bt e e e s e e e s be e e enb e e e naneeesanneeeas 169
Table 6-5. Producing ASSembIY-TIimMeE MESSAGES.cuiiuiiiiiiieiii ettt b e et e s e e s be e s aare e nanee 169
Table 6-6. FOrmatting the LiStNG........ccooiiiiii ettt e e st e e st e e e nb e nne e e s naree s 169
Table 8-1. BasiC OPHONS SUMIMEAIY........uiiiiiiiiiii ittt e aa et e et et e e b et e e aa b e e e e be e e e aae e e e aabe e e ente e e sanneesnneeeas 180
Table 8-2. File Search Path OptionSs SUMMAIY.........oouiiiiiiiiii ettt snre e naree s 180
Table 8-3. Command File Preprocessing OptionSs SUMMAIY........ccocuuiiiiiiiiiiieeeiiee et 180
Table 8-4. DiagnoStic OPLIONS SUMMIAIY........oii ittt ettt s b e e sa et e et e e e e e s be e e ente e e naneeeanreeeas 180
Table 8-5. Linker Output OptioNS SUMIMAIY.......coiuiiiiiiieiiiee ettt ettt e rab e e e bt e s bt e e e se e e e abr e e nnneeenaneeeas 181
Table 8-6. Symbol Management OptioNS SUMMAIY.........cocuuii ittt e e e e e e s 181
Table 8-7. Run-Time Environment OPtioNS SUMMIAIY.........coiiiiiiiiiii it e e s 181
Table 8-8. Link-Time Optimization OptioNS SUMMAIY...........ciiiiiiiiiiii ettt ettt e et snee e neneeas 181
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 9

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I3 TEXAS

INSTRUMENTS

Table of Contents www.ti.com
Table 8-9. Miscellaneous OPLiONS SUMMIEIY.........uiiiiiiiiiiie ettt ettt b e s bt e e et et e e aae e e sb e e e ebb e e e anneeesbeeeeas 182
Table 8-10. Predefined ARM MaCIO NAMES.......ccoiuiiiiiiiieiiiie ettt ettt s e e e e et e e s aae e e e e b e e e ebneeeenneas 186
Table 8-11. Groups of Operators Used in EXpressions (PreCedeNCe)..........cocuiiiiiiiiiiiiieiiiie et 230
Table 10-1. Symbol Attributes in Cross-Reference LiStiNg............eiiiiiiiiiiiiiii e 272
Table 12-1. Basic Hex Conversion ULility OptiONS.oouiiiiiiiiiii et be e 282
B ol [o = oo o Mo = Lo L= @] o] 1] o - T PP P TP PRSP 297
Table 12-3. BOOt TabIe SOUICE FOIMMATS.eiiiiiii ittt e e et e et e e s b e e e st e e e nane e e s eareeeas 299
Table 12-4. BOOt TADIE FOIMAL.......coiiiiiiiiii ettt e et a e s e et e et e e e st e e e sabe e e e bt e e e anneeesaneee s 299
Table 12-5. Options for Specifying Hex CONVErsion FOMMALS.cuiiiiiiiiii et 305
Table A-1. Symbolic DEbUGGING DIFECHIVES.........oiiiiiiiiiie ettt ettt sab e et e st e e nanees 322
10 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Preface

Read This First

i3 TEXAS INSTRUMENTS

About This Manual

The ARM Assembly Language Tools User's Guide explains how to use the following Texas Instruments Code
Generation object file tools:

* Assembler

* Archiver

* Linker

» Library information archiver
* Absolute lister

» Cross-reference lister

» Disassembler

* Obiject file display utility
* Name utility

» Strip utility

* Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments object file and assembly language tools designed
specifically for the ARM® 32-bit devices. This book consists of four parts:

* Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the object
file and assembly language development tools. Chapter 2, in particular, explains object modules and how
they can be managed to help your ARM application load and run. It is highly recommended that developers
become familiar with what object modules are and how they are used before using the assembler and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information about
using the assembler. Chapter 4 and Chapter 5 explain how to invoke the assembler and discuss source
statement format, valid constants and expressions, assembler output, and assembler directives. Chapter 6
focuses on the macro language.

» Linker and other object file tools description, consisting of Chapter 7 through Chapter 12, describes in
detail each of the tools provided with the assembler to help you create executable object files. Chapter 7
provides details about using the archiver to create object libraries. Chapter 8 explains how to invoke the
linker, how the linker operates, and how to use linker directives. Chapter 11 provides a brief overview of some
of the object file utilities that can be useful in examining the content of object files as well as removing symbol
and debug information to reduce the size of a given object file. Chapter 12 explains how to use the hex
conversion utility.

» Additional Reference material, consisting of Appendix A through Appendix D, provides supplementary
information including symbolic debugging directives used by the ARM C/C++ compiler. It also provides hex
utility examples. A description of the XML link information file and a glossary are also provided.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 1
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Read This First www.ti.com

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a special typeface .
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from
items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:

#include <stdio.h>

main ()

{ printf ("hello world\n");
}

In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are in an
italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify

the information within the brackets. Unless the square brackets are in the bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter:

‘armcl [options] [filenames] [--run_linker [link_options] [object files]]

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not enter the
braces themselves. This is an example of a command with braces that are not included in the actual syntax
but indicate that you must specify either the --rom_model or --ram_model option:

armcl --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]

--library= libraryname

In assembler syntax statements, The leftmost character position, column 1, is reserved for the first character
of a label or symbol. If the label or symbol is optional, it is usually not shown. If it is a required parameter,

it is shown starting against the left margin of the box, as in the example below. No instruction, command,
directive, or parameter, other than a symbol or label, can begin in column 1.

‘symbol .usect "section name", size in bytes|, alignment] ‘

Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

‘ .byte parameter|, ... , parameter;] ‘

The TMS470 and TMS570 devices are collectively referred to as ARM.
The ARM 16-bit instruction set is referred to as 16-BIS.
The ARM 32-bit instruction set is referred to as 32-BIS.

Other symbols and abbreviations used throughout this document include the following:

Symbol Definition
B,b Suffix — binary integer
H, h Suffix — hexadecimal integer
LSB Least significant bit
MSB Most significant bit
0x Prefix — hexadecimal integer
Q. q Suffix — octal integer
12 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Read This First

Related Documentation From Texas Instruments
See the following resources for further information about the TI Code Generation Tools:

* Code Composer Studio: Documentation Overview
» Texas Instruments E2E Community: Software Tools Forum

You can use the following books to supplement this user's guide:

SPNU151 ARM Optimizing C/C++ Compiler User's Guide. Describes the ARM C/C++ compiler. This C/C++
compiler accepts ANSI standard C/C++ source code and produces assembly language source code
for the ARM platform of devices.

SPNU134 TMS470R1x User's Guide. Describes the TMS470R1x RISC microcontroller, its architecture
(including registers), ICEBreaker module, interfaces (memory, coprocessor, and debugger), 16-bit
and 32-bit instruction sets, and electrical specifications.

Trademarks
ARM® s a registered trademark of ARM Limited.
All trademarks are the property of their respective owners.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 13
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/ccs_documentation-overview.html
http://e2e.ti.com/support/development_tools/compiler/f/343
https://www.ti.com/lit/pdf/spnu151
https://www.ti.com/lit/pdf/spnu134
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Read This First www.ti.com
This page intentionally left blank.

14 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 1
Introduction to the Software Development Tools

i3 TEXAS INSTRUMENTS

The ARM® is supported by a set of software development tools, which includes an optimizing C/C++ compiler,
an assembler, a linker, and assorted utilities. This chapter provides an overview of these tools.

The ARM device is supported by the following assembly language development tools:

* Assembler

e Archiver

e Linker

» Library information archiver
* Absolute lister

» Cross-reference lister

» Obiject file display utility
» Disassembler

* Name utility

o Strip utility

* Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools. For
detailed information on the compiler and debugger, and for complete descriptions of the ARM device, refer to the
books listed in Related Documentation From Texas Instruments.

1.1 Software DevelopmeNnt TOOIS OVEIVIEW................iiiiiiiiiiiii ittt e et et e e s e e e ate e e s aane e e aaneeeaasreesennneesnneeeas 16
I Yo] Eo B T =T e T o1 o L= PSPPI 17
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 15

Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 shows the ARM device software development flow. The shaded portion highlights the most common
development path; the other portions are optional. The other portions are peripheral functions that enhance the

development process.

C/C++
source
files
Macro
source Gl
files compiler
C/C++ name
ASSSoeuTctger demangling
utility
Macro
lbrary Assembler

Object Librat.r){.-tbuild Delt)uglging
files utility ools
- Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

Cross-reference § Obiject file
programmer lister utilities

EPROM Absolute lister

Figure 1-1. ARM Device Software Development Flow

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

16 ARM Assembly Language Tools
Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Introduction to the Software Development Tools

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

The C/C++ compiler accepts C/C++ source code and produces ARM machine code object modules. See the

ARM Optimizing C/C++ Compiler User's Guide for more information. A shell program, an optimizer, and an

interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.

— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate code
produced by the compiler with your source code.

The assembler translates assembly language source files into machine language object modules. Source

files can contain instructions, assembler directives, and macro directives. You can use assembler directives

to control the assembly process, including the source listing format, data alignment, and section content. See

Chapter 4 through Chapter 6. See the TMS470R 1x User's Guide for detailed information on the assembly

language instruction set.

The linker combines object files into a single executable object module. It performs symbolic relocation and

resolves external references. The linker accepts relocatable object modules (created by the assembiler) as

input. It also accepts archiver library members and output modules created by a previous linker run. Link

directives allow you to combine object file sections, bind sections or symbols to addresses or within memory

ranges, and define global symbols. See Chapter 8.

The archiver allows you to collect a group of files into a single archive file, called a library. The most common

use of the archiver is to collect a group of object files into an object library. The linker extracts object library

members to resolve external references during the link. You can also use the archiver to collect several

macros into a macro library. The assembler searches the library and uses the members that are called as

macros by the source file. The archiver allows you to modify a library by deleting, replacing, extracting, or

adding members. See Section 7.1.

The library information archiver allows you to create an index library of several object file library variants,

which is useful when several variants of a library with different options are available. Rather than refer to

a specific library, you can link against the index library, and the linker will choose the best match from the

indexed libraries. See Section 7.5 for more information about using the archiver to manage the content of a

library.

You can use the library-build utility to build your own customized run-time-support library. See the ARM

Optimizing C/C++ Compiler User's Guide for more information.

The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or Tektronix

object format. Converted files can be downloaded to an EPROM programmer. See Chapter 12.

The absolute lister uses linked object files to create .abs files. These files can be assembled to produce a

listing of the absolute addresses of object code. See Chapter 9.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols, their

definition, and their references in the linked source files. See Chapter 10.

The main product of this development process is a executable object file that can be executed on a ARM

device. You can use one of several debugging tools to refine and correct your code. Available products

include:

— An instruction-accurate and clock-accurate software simulator

— An XDS emulator

In addition, the following utilities are provided to help examine or manage the content of a given object file:

The object file display utility prints the contents of object files and object libraries in either human readable
or XML formats. See Section 11.1.

The disassembler decodes the machine code from object modules to show the assembly instructions that it
represents. See Section 11.2.

The name utility prints a list of symbol names for objects and functions defined or referenced in an object file
or object archive. See Section 11.3.

The strip utility removes symbol table and debugging information from object files and object libraries. See
Section 11.4.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 17
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Introduction to the Software Development Tools www.ti.com
This page intentionally left blank.

18 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 2
Introduction to Object Modules

i3 TEXAS INSTRUMENTS

The assembler creates object modules from assembly code, and the linker creates executable object files from
object modules. These executable object files can be executed by an ARM device.

Object modules make modular programming easier because they encourage you to think in terms of blocks of
code and data when you write an assembly language program. These blocks are known as sections. Both the
assembler and the linker provide directives that allow you to create and manipulate sections.

This chapter focuses on the concept and use of sections in assembly language programs.

2.1 Object File Format SPecCifiCations................ccoiiiiiiiii ettt e et en e sneee s 20
2.2 EXecUtable OBJECE FilS......... ..ottt e bt e e e ittt et e e ekt e e aa bt e naan e e e nb e e enne e e nnnes 20
2.3 INtrodUCHION t0 SECHIONS..........oiiiiiii ettt ea e e e e ettt e e eab e e s abe e e e s bt e e enae e e eabeeesanbe e e eanes 20
2.4 How the Assembler Handles S@CLIONS.................ooiiiiiiiiiiii e e e e e e e e e e e e e st e e e e e s ensbeeaaeeanens 21
2.5 How the Linker HandIes SECLIONS.................ooiiiiiiii e et e e e e et e e e e e e e e e e e easanseeaeeeannsseneaeaan 26
P2 TSV 11 o] PR 27
2.7 SYMDOIIC REIOCALIONS............ ittt e et et e ettt e e e e e e he e e e ann et e nnn e e e ann e e s anneeenanns 30
R T Lo 1T I T o Yo |- 11 1T PP PSPPSR SRR 30
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 19
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.1 Object File Format Specifications

The object files created by the assembler and linker conform to the ELF (Executable and Linking Format) binary
format, which is used by the Embedded Application Binary Interface (EABI). See the ARM Optimizing C/C++
Compiler User's Guide (SPNU151) for information on the EABI ABI. The complete ARM ABI specifications can
be found in the ARM Information Center.

COFF object files and the legacy TIABI and TI ARM9 ABI modes are not supported in v15.6.0.STS and later
versions of the TI Code Generation Tools. If you would like to produce COFF output files, please use v5.2 of the
ARM Code Generation Tools and refer to SPNU151J for documentation.

The ELF object files generated by the assembler and linker conform to the December 17, 2003 snapshot of the
System V generic ABI (or gABI). This specification is currently maintained by SCO.

2.2 Executable Object Files

The linker produces executable object modules. An executable object module has the same format as object
files that are used as linker input. The sections in an executable object module, however, have been combined
and placed in target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into target system
memory. See Chapter 3 for details about loading and running programs.

2.3 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies contiguous
space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It represents a
contiguous region of target memory. It is a collection of sections that have the same property, such as writeable
or readable. An ELF loader needs the segment information, but does not need the section information. The ELF
standard allows the linker to omit ELF section information entirely from the executable object file.

Obiject files usually contain three default sections:

.text section Contains executable code '
.data section Usually contains initialized data
.bss Usually reserves space for uninitialized variables

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and .bss
sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections Contain data or code. The .text and .data sections are initialized; user-named sections created with
the .sect assembler directive are also initialized.

Uninitialized sections Reserve space in the memory map for uninitialized data. The .bss section is uninitialized; user-named
sections created with the .usect assembler directive are also uninitialized.

Several assembiler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file organized as
shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is called
placement. Because most systems contain several types of memory, using sections can help you use target
memory more efficiently. All sections are independently relocatable; you can place any section into any allocated
block of target memory. For example, you can define a section that contains an initialization routine and then
allocate the routine in a portion of the memory map that contains ROM. For information on section placement,

1 Some targets allow content other than text, such as constants, in .text sections.

20 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com/lit/pdf/spnu151J
http://sco.com/developers/gabi/
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

see the "Specifying Where to Allocate Sections in Memory" section of the ARM Optimizing C/C++ Compiler
User's Guide.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory. ROM may
be EEPROM, FLASH or some other type of physical memory in an actual system.

Object file Target memory
.bss g RAM
.data ™ RAM
dext | P> i
» ROM

Figure 2-1. Partitioning Memory Into Logical Blocks

2.3.1 Special Section Names

You can use the .sect and .usect directives to create any section name you like, but certain sections are treated
in a special manner by the linker and the compiler's run-time support library. If you create a section with the
same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

» .text -- Used for program code.

» .data -- Used for initialized non-const objects (global variables).

* .bss -- Used for uninitialized objects (global variables).

» .const -- Used for initialized const objects (string constants, variables declared const).
» .cinit -- Used to initialize C global variables at startup.

+ .stack -- Used for the function call stack.

* .sysmem - Used for the dynamic memory allocation pool.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of the
ARM Optimizing C/C++ Compiler User's Guide.

2.4 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section. The
assembler has the following directives that support this function:

* .bss

* .data
* .sect
« text

e .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create initialized
sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.4.6.

Note

If you do not use a section directive, the assembler assembles everything into the .text section.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 21
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.4.1 Uninitialized Sections

Uninitialized sections reserve space in ARM memory; they are usually placed in RAM. These sections have no
actual contents in the object file; they simply reserve memory. A program can use this space at run time for
creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

* The .bss directive reserves space in the .bss section.
» The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or the
user-named section. The syntax is:

.bss symbol , size in bytes[,alignment [,bank offsef]]

symbol .usect " section name ", size in bytes|,alignment],bank offsef]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The symbol corresponds to the
name of the variable for which you are reserving space. It can be referenced by any other section and can also be
declared as a global symbol (with the .global directive).

size in bytes is an absolute expression (see Section 4.9). The .bss directive reserves size in bytes bytes in the .bss section.
The .usect directive reserves size in bytes bytes in section name. For both directives, you must specify a size; there
is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the space allocated. The default
value is byte aligned; this option is represented by the value 1. The value must be a power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a specific memory bank
boundary. The bank offset measures the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

section name specifies the user-named section in which to reserve space. See Section 2.4.3.

Initialized section directives (.text, .data, and .sect) change which section is considered the current section

(see Section 2.4.4). However, the .bss and .usect directives do not change the current section; they simply
escape from the current section temporarily. Immediately after a .bss or .usect directive, the assembler resumes
assembling into whatever the current section was before the directive. The .bss and .usect directives can appear
anywhere in an initialized section without affecting its contents. For an example, see Section 2.4.7.

The .usect directive can also be used to create uninitialized subsections. See Section 2.4.6 for more information
on creating subsections.

The .common directive is similar to directives that create uninitialized data sections, except that common
symbols are created by the linker instead.

2.4.2 Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in the
object file and placed in ARM memory when the program is loaded. Each initialized section is independently
relocatable and may reference symbols that are defined in other sections. The linker automatically resolves
these references. The following directives tell the assembler to place code or data into a section. The syntaxes
for these directives are:

text
.data
.sect " section name "

The .sect directive can also be used to create initialized subsections. See Section 2.4.6, for more information on
creating subsections.

22 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

2.4.3 User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but each section with a distinct name is kept distinct during assembily.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text section
is allocated in memory as a single unit. Suppose there is a portion of executable code (perhaps an initialization
routine) that you want the linker to place in a different location than the rest of .text. If you assemble this segment
of code into a user-named section, it is assembled separately from .text, and you can use the linker to allocate it
into memory separately. You can also assembile initialized data that is separate from the .data section, and you
can reserve space for uninitialized variables that is separate from the .bss section.

These directives let you create user-named sections:

» The .usect directive creates uninitialized sections that are used like the .bss section. These sections reserve
space in RAM for variables.

» The .sect directive creates initialized sections, like the default .text and .data sections, that can contain code
or data. The .sect directive creates user-named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect " section name ", size in bytesl[,alignment[,bank offsef]]

.sect " section name "

The maximum number of sections is 232-1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section name can
refer to a subsection; see Section 2.4.6 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section. Each
time you invoke one of these directives with a name that was already used, the assembler resumes assembling
code or data (or reserves space) into the section with that name. You cannot use the same names with different
directives. That is, you cannot create a section with the .usect directive and then try to use the same section
with .sect .

2.4.4 Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently filling is the
current section. The .text, .data, and .sect directives change which section is considered the current section.
When the assembler encounters one of these directives, it stops assembling into the current section (acting as
an implied end of current section command). The assembler sets the designated section as the current section
and assembles subsequent code into the designated section until it encounters another .text, .data, or .sect
directive.

If one of these directives sets the current section to a section that already has code or data in it from earlier in
the file, the assembler resumes adding to the end of that section. The assembler generates only one contiguous
section for each given section name. This section is formed by concatenating all of the code or data which was
placed in that section.

2.4.5 Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are known as
section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembiler fills a section with code or data, it increments the appropriate SPC. If you resume
assembling into a section, the assembler remembers the appropriate SPC's previous value and continues
incrementing the SPC from that value.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 23
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

The assembler treats each section as if it began at address 0; the linker relocates the symbols in each section
according to the final address of the section in which that symbol is defined. See Section 2.7 for information on
relocation.

2.4.6 Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions of
larger sections. Subsections are themselves sections and can be manipulated by the assembler and linker.

The assembler has no concept of subsections; to the assembler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the assembler will
not combine subsections with their parent sections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately manipulated.
For instance, by placing each function and object in a uniquely-named subsection, the linker gets a finer-grained
view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather .text
and all subsections of .text into one large output section named ".text". You can instead use the SECTION
directive to control the subsection independently. See Section 8.5.5.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or .usect
directive.

The syntaxes for a subsection name are:

symbol .usect " section_name : subsection_name ", size in bytes[,alignment{,bank offset]]

.sect " section_name : subsection_name "

A subsection is identified by the base section name followed by a colon and the name of the subsection. The
subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text: func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text sections.

You can create two types of subsections:

» Initialized subsections are created using the .sect directive. See Section 2.4.2.
» Uninitialized subsections are created using the .usect directive. See Section 2.4.1.

Subsections are placed in the same manner as sections. See Section 8.5.5 for information on the SECTIONS
directive.

2.4.7 Using Sections Directives

Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back and forth
between the different sections. You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In the latter case, the assembler simply
appends the new code to the code that is already in the section.

The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A line in
a listing file has four fields:

Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.
24 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

See Section 4.12 for more information on interpreting the fields in a source listing.

Figure 2-2. Using Sections Directives Example

As Figure 2-3 shows, the file in Figure 2-2 creates five sections:

text contains six 32-bit words of object code.

.data contains seven 32-bit words of initialized data.

vectors is a user-named section created with the .sect directive; it contains two 32-bit words of initialized data.

.bss reserves ten bytes in memory.

newvars is a user-named section created with the .usect directive; it reserves eight bytes in memory.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 25
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

The second column shows the object code that is assembled into these sections; the first column shows the
source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

2.5 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses sections in object files as building
blocks; it combines input sections to create output sections in an executable output module. Second, the linker
chooses memory addresses for output sections; this is called placement. Two linker directives support these
functions:

* The MEMORY directive allows you to define the memory map of a target system. You can name portions of
memory and specify their starting addresses and their lengths.

* The SECTIONS directive tells the linker how to combine input sections into output sections and where to
place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify the location
of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the subsection is
combined with the other sections with the same base section name. See Section 8.5.5.1.

It is not always necessary to use linker directives. If you do not use them, the linker uses the target processor's
default placement algorithm described in Section 8.7. When you do use linker directives, you must specify them
in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:

» Section 8.5, Linker Command Files
Section 8.5.4, The MEMORY Directive
Section 8.5.5, The SECTIONS Directive
Section 8.7, Default Placement Algorithm

26 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

2.5.1 Combining Input Sections
Figure 2-4 provides a simplified example of the process of linking two files together.

Note that this is a simplified example, so it does not show all the sections that will be created or the actual
sequence of the sections. See Section 8.7 for the actual default memory placement map for ARM.

file1.obj
Executable
.bss object module Memory map
file1
fext (.bss) Space for
N variables
file2 (.bss)
.data (.bss)
Init o= file1 -
(named section) M 5 (.data) Imtclialtlzed
A0 ata
Bl file2 (.data)
(.data)
file1
file2.0bj L (-text) Executable
Obr—T "o, code
file2 (text)
.bss (text)
text) Init Init
.data) Tables Tables
Tables
(named section)

Figure 2-4. Combining Input Sections to Form an Executable Object Module

In Figure 2-4, file1.0bj and file2.obj have been assembled to be used as linker input. Each contains

the .text, .data, and .bss default sections; in addition, each contains a user-named section. The executable
object module shows the combined sections. The linker combines the .text section from file1.obj and the .text
section from file2.o0bj to form one .text section, then combines the two .data sections and the two .bss sections,
and finally places the user-named sections at the end. The memory map shows the combined sections to be
placed into memory.

2.5.2 Placing Sections

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to use
the default setup. For example, you may not want all of the .text sections to be combined into a single .text
section. Or you may want a user-named section placed where the .data section would normally be allocated.
Most memory maps contain various types of memory (RAM, ROM, EEPROM, FLASH, etc.) in varying amounts;
you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.4 and
Section 8.5.5. See Section 8.7 for the actual default memory allocation map for ARM.

2.6 Symbols

An object file contains a symbol table that stores information about symbols in the object file. The linker uses this
table when it performs relocation. See Section 2.7.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol can represent
things like the start address of a function, variable, section, or an absolute integer (such as the size of the stack).

Symbols are defined in assembly by adding a label or a directive such as .set .equ .bss, or .usect.

Symbols have a binding, which is similar to the C standard concept of linkage. ELF files may contain symbols
bound as local symbols, global symbols, and weak symbols.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 27
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

* Global symbols are visible to the entire program. The linker does not allow more than one global definition
of a particular symbol; it issues a multiple-definition error if a global symbol is defined more than once. (The
assembler can provide a similar multiple-definition error for local symbols.) A reference to a global symbol
from any object file refers to the one and only allowed global definition of that symbol. Assembly code must
explicitly make a symbol global by adding a .def, .ref, or .global directive. (See Section 2.6.1.)

* Local symbols are visible only within one object file; each object file that uses a symbol needs its own local
definition. References to local symbols in an object file are entirely unrelated to local symbols of the same
name in another object file. By default, a symbol is local. (See Section 2.6.2.)

* Weak symbols are symbols that may be used but not defined in the current module. They may or may not
be defined in another module. A weak symbol is intended to be overridden by a strong (non-weak) global
symbol definition of the same name in another object file. If a strong definition is available, the weak symbol
is replaced by the strong symbol. If no definition is available (that is, if the weak symbol is unresolved), no
error is generated, but the weak variable's address is considered to be null (0). For this reason, application
code that accesses a weak variable must check that its address is not zero before attempting to access the
variable. (See Section 2.6.3.)

Absolute symbols are symbols with a numeric value. They may be constants. To the linker, such symbols are
unsigned, but the integer may be treated as signed or unsigned depending on how it is used. The range of legal
values for an absolute integer is 0 to 2432-1 for unsigned treatment and -2231 to 2*31-1 for signed treatment.

In general, common symbols (see .common directive) are preferred over weak symbols.
See Section 4.8 for information about assembler symbols.
2.6.1 Global (External) Symbols

Global symbols are symbols that are either accessed in the current module but defined in another (an external
symbol) or defined in the current module and accessed in another. Such symbols are visible across object
modules. You must use the .def, .ref, or .global directive to identify a symbol as external:

.def The symbol is defined in the current file and may be used in another file.
.ref The symbol is referenced in the current file, but defined in another file.
.global The symbol can be either of the above. The assembler chooses either .def or .ref as appropriate for each symbol.

The following code fragments illustrate the use of the .global directive.

x: ADD RO, #56h ; Define x
.global x ; acts as .def x

Because x is defined in this module, the assembler treats ".global x" as ".def x". Now other modules can refer to
X.

B y ; Reference y
.global y ; .ref of y

Because y is not defined in this module, the assembler treats ".global y" as ".ref y". The symbol y must be
defined in another module.

Both the symbols x and y are external symbols and are placed in the object file's symbol table; x as a defined
symbol, and y as an undefined symbol. When the object file is linked with other object files, the entry for x will be
used to resolve references to x in other files. The entry for y causes the linker to look through the symbol tables
of other files for y’s definition.

The linker attempts to match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker from
creating an executable object module.

An error also occurs if the same symbol is defined more than once.

28 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to Object Modules

2.6.2 Local Symbols

Local symbols are visible within a single object file. Each object file may have its own local definition for a
particular symbol. References to local symbols in an object file are entirely unrelated to local symbols of the
same name in another object file.

By default, a symbol is local.
2.6.3 Weak Symbols
Weak symbols are symbols that may or may not be defined.

The linker processes symbols that are defined with a "weak" binding differently from symbols that are defined
with global binding. Instead of including a weak symbol in the object file's symbol table (as it would for a global
symbol), the linker only includes a weak symbol in the output of a "final" link if the symbol is required to resolve
an otherwise unresolved reference.

This allows the linker to minimize the number of symbols it includes in the output file's symbol table by omitting
those that are not needed to resolve references. Reducing the size of the output file's symbol table reduces the
time required to link, especially if there are a large number of pre-loaded symbols to link against.

You can define a weak symbol using either the .weak assembly directive or the weak operator in the linker
command file.

* Using Assembly: To define a weak symbol in an input object file, the source file can be written in assembly.
Use the .weak and .set directives in combination as shown in the following example, which defines a weak
symbol "ext_addr_sym":

.weak ext addr sym
ext addr_sym .set 0x12345678

Assemble the source file that defines weak symbols, and include the resulting object file in the link. The
"ext_addr_sym" in this example is available as a weak symbol in a final link. It is a candidate for removal if
the symbol is not referenced elsewhere in the application. See .weak directive.

* Using the Linker Command File: To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the output
file's symbol table if it is not referenced. In a linker command file, an assignment expression outside a
MEMORY or SECTIONS directive can be used to define a weak linker-defined symbol. For example, you can
define "ext_addr_sym" as follows:

weak (ext_addr_sym) = 0x12345678;

If the linker command file performs the final link, then "ext_addr_sym" is presented to the linker as a weak
symbol; it will not be included in the resulting output file if the symbol is not referenced. See Section 8.6.5.

* Using C/C++ code: See information about the WEAK pragma and weak GCC-style variable attribute in the
ARM Optimizing C/C++ Compiler User's Guide.

If there are multiple definitions of the same symbol, the linker uses certain rules to determine which definition
takes precedence. Some definitions may have weak binding and others may have strong binding. "Strong" in
this context means that the symbol has not been given a weak binding by either of the two methods described
above. Some definitions may come from an input object file (that is, using assembly directives) and others may
come from an assignment statement in a linker command file.

The linker uses the following guidelines to determine which definition is used when resolving references to a
symbol:

* A strongly bound symbol always takes precedence over a weakly bound symbol.

» If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker command file
takes precedence over a symbol defined in an input object file.

» If two symbols are both strongly bound and both are defined in an input object file, the linker provides a
symbol redefinition error and halts the link process.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 29
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Introduction to Object Modules www.ti.com

2.6.4 The Symbol Table
The assembler generates entries with global (external) binding in the symbol table for each of the following:

» Each .ref, .def, or .global directive (see Section 2.6.1)
* The beginning of each section

The assembler generates entries with local binding for each locally-available function.
For informational purposes, there are also entries in the symbol table for each symbol in a program.
2.7 Symbolic Relocations

The assembler treats each section as if it began at address 0. Of course, all sections cannot actually begin
at address 0 in memory, so the linker must relocate sections. Relocations are symbol-relative rather than
section-relative.

The linker can relocate sections by:

* Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

» Adjusting symbol values to correspond to the new section addresses

» Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a relocation
entry each time a relocatable symbol is referenced. The linker then uses these entries to patch the references
after the symbols are relocated. The following example contains a code fragment for a ARM device for which the
assembler generates relocation entries.

l R R R R R R R R R R R R
2 *x Generating Relocation Entries *x
3 R R R I Ik Ik bk b b b b b b b b b b b h b b b b b b b b b b b b b b b b b b i
4 .ref X

5 .def Y

6 00000000 .text

7 00000000 E0921003 ADDS R1, R2, R3

8 00000004 0OA000001 BEQ Y

9 00000008 E1C410BE STRH R1, [R4, #14]

10 0000000c EAFFFFEB! B X ; generates a relocation entry
11 00000010 E0821003 Y: ADD R1, R2, R3

In the previous example, both symbols X and Y are relocatable. Y is defined in the .text section of this module;
X is defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text section).
The assembler generates two relocation entries: one for X and one for Y. The reference to X is an external
reference (indicated by the ! character in the listing). The reference to Y is to an internally defined relocatable
symbol (indicated by the ' character in the listing).

After the code is linked, suppose that X is relocated to address 0x10014. Suppose also that the .text section is
relocated to begin at address 0x10000; Y now has a relocated value of 0x10010. The linker uses the relocation
entry for the reference to X to patch the branch instruction in the object code:

“EAFFFFFB! B X ‘ becomes ‘EAOOOOOO ”

2.8 Loading a Program

The linker creates an executable object file which can be loaded in several ways, depending on your execution
environment. These methods include using Code Composer Studio or the hex conversion utility. For details, see
Section 3.1.

30 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 3
Program Loading and Running

i3 TEXAS INSTRUMENTS

Even after a program is written, compiled, and linked into an executable object file, there are still many tasks that
need to be performed before the program does its job. The program must be loaded onto the target, memory
and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a program
performing some of its own initialization. Many of the necessary tasks are handled for you by the compiler and
linker, but if you need more control over these tasks, it helps to understand how the pieces are expected to fit
together.

This chapter will introduce you to the concepts involved in program loading, initialization, and startup.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation for
various device-specific aspects of bootstrapping.

B T I T T |3 PP P PSP PPPPR 32

BT 1V o 11 L PP PR PSSP 36

3.3 RUN-TIME INITANZALION............oooii ettt e e et e et e e et e e et a s b e e s aaeeeeeeeeeaeaaaaeaaaaeaeaesaaaaaaassssssssnsnrnns 37

3.4 ArguUMENES tO M@AIN..... ... ettt e e ettt e e e e e sttt e e 2 b et et a4 e 24 s e bt et e a4 e a e et e e e e e ane et e e e e e nnnneeeeean 39

3.5 RUN-TIME REIOCALION...........coii ettt e et et et et e et e e e e e aa et ateeeeeeeaaaaaaaaaaaaeaaaaeaaaaaaannnnnsnnsnsnsnsnnnnnennenn 39

3.6 Additional INfOrmMAtioN........... ...t e oo et eeee e e et e eeeeaaaaaaeaaaaaaaaaaaa e nnnnnnnnnrnnnnnes 40
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 31
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

3.1 Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and data. A
loader might be another program on the device, an external agent (for example, a debugger), or the device might
initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the /oad image in memory before the program starts. The load image
is the program's code and data in memory before execution. What exactly constitutes loading depends on the
environment, such as whether an operating system is present. This section describes several loading schemes
for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

* A debugger running on a connected host workstation. In a typical embedded development setup, the
device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The device is
connected with a communication channel such as a JTAG interface. CCS reads the program and writes the
load image directly to target memory through the communications interface.

* "Burning" the load image onto an EPROM module. The hex converter (armhex) can assist with this by
converting the executable object file into a format suitable for input to an EPROM programmer. The EPROM
is placed onto the device itself and becomes a part of the device's memory. See Chapter 12 for details.

+ Bootstrap loading from a dedicated peripheral, such as an I2C peripheral. The device may require a
small program called a bootloader to perform the loading from the peripheral. The hex converter can assist in
creating a bootloader.

* Another program running on the device. The running program can create the load image and transfer
control to the loaded program. If an operating system is present, it may have the ability to load and run
programs.

3.1.1 Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable data
in the program must be writable, and so must be located in writable memory, typically RAM. However, RAM is
volatile, meaning it will lose its contents when the power goes out. If this data must have an initial value, that
initial value must be stored somewhere else in the load image, or it would be lost when power is cycled. The
initial value must be copied from the non-volatile ROM to its run-time location in RAM before it is used. See
Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object as it exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code and
read-only data, such as the .const section. In this case, the program can read the data directly from the load
address. Sections that have no initial value, such as the .bss section, do not have load data and are considered
to have load and run addresses that are the same. If you specify different load and run addresses for an
uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data, such as
the .data section. The .data section's starting contents are placed in ROM and copied to RAM. This often occurs
during program startup, but depending on the needs of the object, it may be deferred to sometime later in the
program as described in Section 3.5.

Symbols in assembly code and object files almost always refer to the run address. When you look at an address
in the program, you are almost always looking at the run address. The load address is rarely used for anything
but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in the
object file metadata.

32 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

The load address determines where a loader places the raw data for the section. Any references to the section
(such as references to labels in it) refer to its run address. The application must copy the section from its load
address to its run address before the first reference of the symbol is encountered at run time; this does not
happen automatically simply because you specify a separate run address. For examples that specify load and
run addresses, see Section 8.5.6.1.

For an example that illustrates how to move a block of code at run time, see Moving a Function from Slow

to Fast Memory at Run Time. To create a symbol that lets you refer to the load-time address, rather than the
run-time address, see the .label directive. To use copy tables to copy objects from load-space to run-space at
boot time, see Section 8.8.

ELF format executable object files contain segments. See Section 2.3 for information about sections and
segments.

3.1.2 Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device supports
every bootloading mode, and using the bootloader is optional. This section discusses various bootloading
schemes to help you understand how they work. Refer to your device's data sheet to see which bootloading
schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data may be stored
in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary bootloader) built into the device
hardware starts automatically.

Figure 3-1. Bootloading Sequence (Simplified)

The primary bootloader is typically very small and copies a limited amount of memory from a dedicated location
in ROM to a dedicated location in RAM. (Some bootloaders support copying the program from an |/O peripheral.)
After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these programs
supply a more capable secondary bootloader. The primary bootloader loads the secondary bootloader and
transfers control to it. Then, the secondary bootloader loads the rest of the program and transfers control to it.
There can be any number of layers of bootloaders, each loading a more capable bootloader to which it transfers
control.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 33
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

Figure 3-2. Bootloading Sequence with Secondary Bootloader

3.1.2.1 Boot, Load, and Run Addresses
The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for .const data.
If they are different, the object's contents must be copied to the correct location before the object may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the raw data
to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a
convention shared by the bootloader and the program.

3.1.2.2 Primary Bootloader

The detailed operation of the primary bootloader is device-specific. Some devices have complex capabilities
such as booting from an 1/O peripheral or configuring memory controller parameters.

3.1.2.3 Secondary Bootloader

The hex converter assumes the secondary bootloader is of a particular format. The hex converter's model
bootloader uses a boot table. You can use whatever format you want, but if you follow this model, the hex
converter can create the boot table automatically.

3.1.2.4 Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records that instruct the
secondary bootloader to copy blocks of data contained in the table to specified destination addresses. The hex
conversion utility automatically builds the boot table for the secondary bootloader. Using the utility, you specify
the sections you want to initialize, the boot table location, and the name of the section containing the secondary
bootloader routine and where it should be located. The hex conversion utility builds a complete image of the
table and adds it to the program.

34 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record contains
a 4-byte field that indicates where the boot loader should branch after it has completed copying data. After the
header, each section that is to be included in the boot table has the following contents:

4-byte field containing the size of the section

4-byte field containing the destination address for the copy

* the raw data

0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field follows the last
section.

See Section 12.11.2 for details about the boot table format.
3.1.2.5 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up. For this
reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for FLASH Bootloading
on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example 3-1. Sample Secondary Bootloader Routine

; ======== boot c671x.562 ========
; global EMIF symbols defined for the c671x family
.include boot c671x.h62

.sect ".boot load"
.global Dboot

IR RS SRR SRR RS S SR SRR S SR SRR SRR SR

;* DEBUG LOOP - COMMENT OUT B FOR NORMAL OPERATION

KA Ak A h Ak k

_myloop: ; [!B1] B myloop
nop 5
myloopend: nop

R R R R R R R R R R

;* CONFIGURE EMIF

IR RS SRR SRR RS RS SRR SRR SRR SRR RS RSN
7

P R R R R R R L R R T R R S S Tk R
7

*EMIF_GCTL = EMIF_GCTL_V;
,-**
mvkl EMIF GCTL,A4
| mvkl EMIF GCTL_V,B4
mvkh EMIF GCTL, A4
| mvkh EMIF GCTL V,B4
stw B4, *A4

IR S S S S S SRR R SRR R SRR RS R SRR R R R R R R R R R E R R R R R R R R RS
7

*EMIF CEQ = EMIF CE0 V
;‘k************************
mvkl EMIF CEO,A4
N mvkl EMIF CEO V,B4
mvkh EMIF_CEO,A4
N mvkh EMIF CEO V,B4
stw B4, *A4

;‘k************************

*EMIF CEl = EMIF CEl1 V (setup for 8-bit async)
;**
mvkl EMIF CE1,A4
Il mvkl EMIF CEl V,B4
mvkh EMIF CE1l,A4
| mvkh EMIF CEl V,B4
stw B4, *A4

P R R R R R R R R T R S Sk R
7

*EMIF CE2 = EMIF CE2 V (setup for 32-bit async)
,-******?**********?***;**
mvkl EMIF CE2,A4
I mvkl EMIF CE2 V,B4
mvkh EMIF CE2,Ad

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 35
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRA999
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

I mvkh EMIF CE2 V,B4
stw B4, *A4
;**
*EMIF CE3 = EMIF CE3 V (setup for 32-bit async)
,-**
| mvkl EMIF CE3,A4
I mvkl EMIF CE3 V,B4 ;
mvkh EMIF CE3, A4
I | mvkh EMIF CE3 V,B4
stw B4, *A4d

s R AR Ak kA kA kA kA kA Ak kA kA Ak Ak Ak k kK&
7

*EMIF SDRAMCTL = EMIF SDRAMCTL V
;‘k************************
N mvkl EMIF SDRAMCTL, A4
N mvkl EMIF_SDRAMCTL V,B4 ;
mvkh EMIF_SDRAMCTL, A4
N mvkh EMIF SDRAMCTL V,B4
stw B4,*A4

;‘k************************

; *EMIF SDRAMTIM = EMIF SDRAMTIM V
;**
| mvkl EMIF_ SDRAMTIM, A4
| mvkl EMIF SDRAMTIM V,B4 ;
mvkh EMIF SDRAMTIM, A4d
| mvkh EMIF SDRAMTIM V,B4
stw B4, *A4
;**
*EMIF_SDRAMEXT = EMIF_ SDRAMEXT V
;**
| mvkl EMIF SDRAMEXT, A4
| mvkl EMIF SDRAMEXT V,B4 ;
mvkh EMIF SDRAMEXT, A4
| mvkh EMIF SDRAMEXT V,B4
stw B4, *A4d

e kAR Ak A Ak A A A A A A Ak Ak kA kA kA kA Ak Ak Ak Ak Ak kA Ak Ak Ak kk kK&
7

; copy sections
;**
mvkl COPY TABLE, a3 ; load table pointer
mvkh COPY TABLE, a3

ldw *a3++, bl ; Load entry point
copy_section top:
ldw *a3++, b0 ; byte count
1dw *a3++, a4 ; ram start address
nop 3
['b0] b copy done ; have we copied all sections?
nop 5
copy_loop:
1db *a3++,Db5
sub b0,1,b0 ; decrement counter
[bO] b copy_loop ; setup branch if not done
['b0] b copy section top
zero al
['b0] and 3,a3,al
stb b5, *ad++
[1'b0] and -4,a3,a5 ; round address up to next multiple of 4
[al] add 4,a5,a3 ; round address up to next multiple of 4

;**
; jump to entry point
;***~k~k***********************
copy done:

b .S2 bl

nop 5

3.2 Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the startup
routine. The startup routine is responsible for initializing and calling the rest of the program. For a C/C++
program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is loaded, the
value of the entry point is placed in the PC register and the CPU is allowed to run.

36 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You can
select a custom entry point; see Section 8.4.13. The device itself cannot read the entry point field from the object
file, so it has to be encoded in the program somewhere.

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

« If you are using an interrupt vector, the entry point is installed as the RESET interrupt handler. When RESET
is applied, the startup routine will be invoked.

« If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter (PC)
to the value of the entry point.

3.3 Run-Time Initialization

After the load image is in place, the program can run. The subsections that follow describe bootstrap initialization
of a C/C++ program. An assembly-only program may not need to perform all of these steps.

3.3.1 The _c_int00 Function

The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs all the
steps necessary for a C/C++ program to initialize itself.

The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets up
the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry point for C
programs by default. The compiler's run-time-support library provides a default implementation of _c_int00.

The startup routine is responsible for performing the following actions:

Switch to user mode and sets up the user mode stack

Set up status and configuration registers

Set up the stack

Process special binit copy table, if present.

Process the run-time initialization table to autoinitialize global variables (when using the --rom_model option)
Call all global constructors

Call the function main

Call exit when main returns

3.3.2 RAM Model vs. ROM Model

N ®ON =

Choose a startup model based on the needs of your application. The ROM model performs more work during the
boot routine. The RAM model performs more work while loading the application.

If your application is likely to need frequent RESETs or is a standalone application, the ROM model may be a
better choice, because the boot routine will have all the data it needs to initialize RAM variables. However, for a
system with an operating system, it may be better to use the RAM model.

In the EABI ROM model, the C boot routine copies data from the .cinit section to the run-time location of the
variables to be initialized.

In the EABI RAM model, no .cinit records are generated at startup.
3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the
linker with the --rom_model option.

The ROM model allows initialization data to be stored in slow non-volatile memory and copied to fast memory
each time the program is reset. Use this method if your application runs from code burned into slow memory or
needs to survive a reset.

For the ROM model , the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called __Tl_CINIT_Base that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by .cinit)
into the run-time location of the variables.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 37
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Program Loading and Running

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 3-3 illustrates autoinitialization at run time using the ROM model.

Object file

.cinit
section

Memory

C auto init
table and data

(ROM)

A

uninitialized

Boot
routine

.data

(RAM)

Figure 3-3. Autoinitialization at Run Time

3.3.2.2 Initializing Variables at Load Time (--ram_model)

The RAM model Initializes variables at load time. To use this method, invoke the linker with the --ram_model

option.

This model may reduce boot time and save memory used by the initialization tables.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's header.
This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no space in the

memory map.)

The linker sets Tl _CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

The loader copies values directly from the .data section to memory.

Figure 3-4 illustrates the initialization of variables at load time.

Object file

.data
section

Memory

.data section

(initialized)
(RAM)

Figure 3-4. Initialization at Load Time

38 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z —

Copyright © 2023 Texas Instruments Incorporated

SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Program Loading and Running

3.3.2.3 The --rom_model and --ram_model Linker Options
The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model option.

* The symbol _c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from the
appropriate run-time-support library.

* When you use the ROM model to autoinitialize at run time (--rom_model option):

— The linker defines a special symbol called Tl _CINIT_Base that points to the beginning of the
initialization tables in memory. When the program begins running, the C boot routine copies data from
the tables (pointed to by .cinit) into the run-time location of the variables.

* When you use the RAM model to initialize at load time (--ram_model option):

— Thelinker sets Tl _CINIT_Base equal to __TI_CINIT_Limit to indicate there are no .cinit records.

3.3.3 About Linker-Generated Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load address
to its run address. This function reads size and location information from copy tables. The linker automatically
generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays with copy tables. See Section 8.8.4 for details and examples.

Copy tables can be used by the linker to implement run-time relocations as described in Section 3.5, however
copy tables require a specific table format.

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the copying at
auto-initialization time. Refer to Section 8.8.4.2 for more about the BINIT copy table name. The BINIT copy table
is copied before .cinit processing.

3.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Section 3.3.2.1 for more about using the .cinit section
with the ROM model and Section 3.3.2.2 for more using it with the RAM model.

3.4 Arguments to main

Some programs expect arguments to main (argc, argv) to be valid. Normally this is not possible for an
embedded program, but the Tl runtime does provide a way to do it. The user must allocate an .args section
of an appropriate size using the --args linker option. It is the responsibility of the loader to populate the .args
section. It is not specified how the loader determines which arguments to pass to the target. The format of the
arguments is the same as an array of pointers to char on the target.

See Section 8.4 .4 for information about allocating memory for argument passing.
3.5 Run-Time Relocation

At times you may want to load code into one area of memory and move it to another area before running it.

For example, you may have performance-critical code in an external-memory-based system. The code must be
loaded into external memory, but it would run faster in internal memory. Because internal memory is limited, you
might swap in different speed-critical functions at different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the linker
to allocate a section twice: first to set its load address and again to set its run address. Use the load keyword
for the load address and the run keyword for the run address. See Section 3.1.1 for more about load and run
addresses. If a section is assigned two addresses at link time, all labels defined in the section are relocated to
refer to the run-time address so that references to the section (such as branches) are correct when the code
runs.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 39
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Program Loading and Running www.ti.com

If you provide only one allocation (either load or run) for a section, the section is allocated only once and loads
and runs at the same address. If you provide both allocations, the section is actually allocated as if it were two
separate sections. The two sections are the same size if the load section is not compressed.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The linker
allocates uninitialized sections only once; if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of run-time relocation, see Section 8.5.6.

3.6 Additional Information

See the following sections and documents for additional information:

Section 8.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.13, "Define an Entry Point (--entry_point Option)"

Section 8.5.6.1 ,"Specifying Load and Run Addresses"

Section 8.8, "Linker-Generated Copy Tables"

Section 8.11.1, "Run-Time Initialization"

Jlabel directive

Chapter 12, "Hex Conversion Utility Description"

"Run-Time Initialization" and "System Initialization" sections in the ARM Optimizing C/C++ Compiler User's
Guide

40 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 4
Assembler Description

i3 TEXAS INSTRUMENTS

The ARM assembler translates assembly language source files into machine language object files. These files
are object modules, which are discussed in Chapter 2. Source files can contain the following assembly language
elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the TMS470R1x User's Guide.
4.1 ASSEIMDBIET OVEIVIBW. ...ttt et e e et e e ettt e et b ee e ettt e s aee e e an b et e easte e e ns e e e anbe e e eaneeeeaaneeeanbeeesanneeesnneeeanbneenan 42
4.2 The Assembler's Role in the Software Development FIOW.....................cooiiiiii e 42
4.3 INVOKING the ASSEMDIETt et ettt e e e ettt e e e e e aabeee e e e e e saeeeeeaeannneeeaeeeannbeeeaaeaannas 43
4.4 Controlling Application Binary INterface................coooiiiiiiiiiiii e 44
4.5 Naming Alternate Directories for Assembler INput.................oooiiiiiii s 44
4.6 Source Statement FOIMAL.................cooiiiiii ettt e a e b e bt eeae e e b e e s b e e be e saneeeneesarees 46
4.7 LIteral CONSTANTS.oi ittt e et e ettt e e ettt e s b et e ek bt eeeme e e e e se e e e s bt e e easeeeenneeeanbeeeenteeeanneeeanbeeenans 50
4.8 ASSEMDIEr SYMBOIS. ... ettt et ettt e et e e an e e e e nte e e nn e e e ante et e neeeeannee e e teeeeanneeeanneeeanneeenn 52
I b o (=== o o L= 58
4.10 Built-in FUNCLIONS @Nd OPEIatOrsS.ooiiiiiiiiiii ittt e et s et e e aa e e e e s e e s enn e e e aab e e e e nn e e s enneeesneeean 62
4.11 Unified Assembly Language Syntax SUPPOIL.............ooouiiiiiiiiiiiii et ab e s nanees 63
A2 SOUICE LISHINGS.ottt e ettt e e et ettt e e e e e saateeeeeeaasbaeeeaeaanssaeeae e e nnnaeaaeeaanntaeeeeesansseaeaeeannns 63
4.13 Debugging ASSEMDBIY SOUICE.............ooiiiiiiiiiii ettt e ettt e ettt e e abbe e e ante e e saaeeeeanbeeeaaseeesnneeeanbeeeenneeesnnes 66
4.14 CroSS-ReferenCe LiStiNGS.oooiiiiiiiiiiie ettt e e e et e et e e amae e e et e e e naeeeanseeeannneeeanneeeanneeeannnes 67
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 41
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.1 Assembler Overview

The 2-pass assembler does the following:

Processes the source statements in a text file to produce a relocatable object file

Produces a source listing (if requested) and provides you with control over this listing

Allows you to divide your code into sections and maintain a section program counter (SPC) for each section
of object code

Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

Allows conditional assembly

Supports macros, allowing you to define macros inline or in a library

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights the
most common assembler development path. The assembler accepts assembly language source files as input,
both those you create and those created by the ARM C/C++ compiler.

C/C++
compiler

Assembler GilE> EnE

source

demangling
utility

Macro

library Assembler

Object Librar_y_-build Debugging
utility

files

]
b Run-time-
Library of support
object library
files
|
Executable
object file

Hex-conversion
utility

EPROM

Cross-reference | Object file
programmer lister utilities

Absolute lister

Figure 4-1. The Assembler in the ARM Software Development Flow

42

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Description

4.3 Invoking the Assembler

To invoke the assembler, enter the following:

‘ armcl input file [options]

armcl is the command that invokes the assembler through the compiler. The compiler considers any file with an .asm extension
to be an assembly file and invokes the assembler.

input file names the assembly language source file.

options identify the assembler options that you want to use. Options are case sensitive and can appear anywhere on the

command line following the command. Precede each option with one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Table 4-1. ARM Assembler Options

Option Alias Description

--absolute_listing -aa Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

--asm_define=name[=def] -ad Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1. See
Section 4.8.5.

--asm_dependency -apd Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

--asm_includes -api Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name as
the source file but with a .ppa extension.

--asm_listing -al Produces a listing file with the same name as the input file with a .Ist extension.

--asm_cross_reference_listing -ax

--asm_undefine=name -au
--cmd_file=filename -@

--code_state={16|32} -mt
--endian -me
--include_file=filename -ahi

--include_path=pathname -l

--quiet -q

--symdebug:dwarf or -g
--symdebug:none

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --asm_cross_reference_listing option, the assembler creates
a listing file automatically, naming it with the same name as the input file with a .Ist extension.
See Section 4.14.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a semicolon
(* or ;) at the beginning of a line in the command file to include comments. Comments that
begin in any other column must begin with a semicolon. Within the command file, filenames or
option parameters containing embedded spaces or hyphens must be surrounded with quotation
marks. For example: "this-file.asm"

--code_state=16 (or -mt) instructs the assembler to begin assembling instructions as 16-bit
instructions; UAL syntax (.thumb) for ARMv7 and non-UAL syntax (.state16) otherwise. By
default, the assembler begins assembling 32-bit instructions. You can reset the default behavior
by specifying --code_state=32. For information on indirect calls in 16-bit versus 32-bit code, see
the ARM Optimizing C/C++ Compiler User's Guide.

Produces object code in little-endian format. For more information, see the ARM Optimizing
C/C++ Compiler User's Guide.

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.5.1.

Suppresses the banner and progress information (assembler runs in quiet mode).

(DWAREF is the default) Enables assembler source debugging in the C source debugger. Line
information is output to the object module for every assembly source line. You cannot use this
option on assembly code that contains .line directives. See Section 4.13.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 43

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.4 Controlling Application Binary Interface

An Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. The ABI exists to allow ABI-compliant object code to link together,
regardless of its source, and allows the resulting executable to run on any system that supports that ABI. See
the ARM Optimizing C/C++ Compiler User's Guide (SPNU151) for information on the EABI ABI. The complete
ARM ABI specifications can be found in the ARM Information Center.

COFF object files and the legacy TIABI and TI ARM9 ABI modes are not supported in v15.6.0.STS and later
versions of the TI Code Generation Tools. If you would like to produce COFF output files, please use v5.2 of the
ARM Code Generation Tools and refer to SPNU151J for documentation.

All object files in an EABI application must be built for EABI. The linker detects situations where object modules
conform to different ABIs and generates an error.

Note that converting an assembly file from the COFF API to EABI requires some changes to the assembly code.
4.5 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and .include
directives tell the assembler to read source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 5 contains examples of the .copy, .include, and .mlib directives. The
syntax for these directives is:

.copy ["Ifilename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copy/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.

The assembler searches for the file in the following locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled when
the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option

3. Any directories named with the TI_ARM_C_DIR environment variable

4. Any directories named with the TI_ARM_C_DIR environment variable

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using the
--include_path option (described in Section 4.5.1) or the TI_ARM_A_DIR environment variable (described in
Section 4.5.2). The TI_ARM_C_DIR environment variable is discussed in the ARM Optimizing C/C++ Compiler
User's Guide.

Note

The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be used.
Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older TMS470_A DIR
environment variable if both are defined. If only TMS470_A_DIR is set, it will continue to be used.

4.5.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or macro
libraries. The format of the --include_path option is as follows:

armcl --include_path= pathname source filename [other options]

44 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com/lit/pdf/spnu151J
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying path
information. If the assembler does not find the file in the directory that contains the current source file, it
searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the following
directive statement:

.copy "copy.asm"

Assume the following paths for the copy.asm file:

UNIX: /tools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) ‘ armcl --include path=/tools/files source.asm ‘
Windows ‘armcl --include path=c:\tools\files source.asm ‘

The assembiler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

4.5.2 Using the TI_ARM_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses the
TI_ARM_C_DIR environment variable to name alternate directories that contain copy/include files or macro
libraries.

The assembler looks for the TI_ARM_A_DIR environment variable and then reads and processes it. If the
assembler does not find the TI_ARM_A_DIR variable, it then searches for TI_ARM_C_DIR. The processor-
specific variables are useful when you are using Texas Instruments tools for different processors at the same
time.

See the ARM Optimizing C/C++ Compiler User's Guide for details on TI_ARM_C_DIR.

Note

The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be used.
Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older TMS470_A_DIR
environment variable if both are defined. If only TMS470_A_ DIR is set, it will continue to be used.

The command syntax for assigning the environment variable is as follows:

Operating System Enter

UNIX (Bourne Shell) TI_ARM_A_DIR=" pathname, ; pathname, ; . . . "; export
TI_ARM_A_DIR

Windows set TI_ARM_A_DIR= pathname ; pathname, ; . . .

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must follow
these constraints:

« Pathnames must be separated with a semicolon.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 45
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after the
semicolon in the following is ignored:

set TI_ARM A DIR= c:\path\one\to\tools ; c:\path\two\to\tools

+ Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information. If the
assembler does not find the file in the directory that contains the current source file or in directories named by
the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl.asm"
.copy "copy2.asm"

Assume the following paths for the files:

UNIX: ltools/files/copy1.asm and /dsys/copy2.asm

Windows: c:\tools\files\copy1.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) TI_ARM A DIR="/dsys"; export TI _ARM A DIR
armcl --include_path=/tools/files source.asm
Windows TI _ARM A DIR=c:\dsys
armcl --include_path=c:\tools\files source.asm

The assembiler first searches for copy1.asm and copy2.asm in the current directory because source.asm is
in the current directory. Then the assembler searches in the directory named with the --include_path option
and finds copy1.asm. Finally, the assembler searches the directory named with TI_ARM_A_DIR and finds
copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of these
commands:

Operating System Enter
UNIX (Bourne shell) ‘unset TI_ARM A DIR

Windows ‘ set TI_ARM A DIR= ‘

4.6 Source Statement Format

Each line in a ARM assembly input file can be empty, a comment, an assembler directive, a macro invocation, or
an assembly instruction.

Assembly language source statements can contain four ordered fields (label, mnemonic, operand list, and
comment). The general syntax for source statements is as follows:

[label[:]lmnemonic [operand list][;comment]

Following are examples of source statements:

SYM1 .set 2 ; Symbol SYM1 = 2
Begin: MOV RO, #SYM1 ; Load RO with 2
.word 016h ; Initialize word (016h)
46 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

The ARM assembler reads an unlimited number of characters per line. Source statements that extend beyond
400 characters in length (including comments) are truncated in the listing file.

Follow these guidelines:

» All statements must begin with a label, a blank, an asterisk, or a semicolon.

* Labels are optional for most statements; if used, they must begin in column 1.

» One or more space or tab characters must separate each field.

» Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (* or;),
but comments that begin in any other column must begin with a semicolon.

Note

A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes and
assembler directive names without the . prefix are valid label names. Remember to always use
whitespace before the mnemonic, or the assembler will think the identifier is a new label definition.

The following sections describe each of the fields.
4.6.1 Label Field

A label must be a legal identifier (see Section 4.8.1) placed in column 1. Every instruction may optionally have a
label. Many directives allow a label, and some require a label.

A label can be followed by a colon (:). The colon is not treated as part of the label name. If you do not use a
label, the first character position must contain a blank, a semicolon, or an asterisk.

When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.8) with the
same name is created. Its value is the current value of the section program counter (SPC, see Section 2.4.5).
This symbol represents the address of that instruction. In the following example, the .word directive is used to
create an array of 3 words. Because a label was used, the assembly symbol Start refers to the first word, and
the symbol will have the value 40h.

9 * Assume some code was assembled
10 00000040 0000000A Start: .word 0OAh,3,7

00000044 00000003

00000048 00000007

A label on a line by itself is a valid statement. When a label appears on a line by itself, it points to the instruction
on the next line (the SPC is not incremented):

1 00000000 Here:
2 00000000 00000003 .word 3

A label on a line by itself is equivalent to writing:

Here: .equ $; $ provides the current value of the SPC

If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
4.6.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is interpreted
as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in column 1. The
mnemonic field contains one of the following items:

* Machine-instruction mnemonic (such as ADD, MUL, STR)
* Assembler directive (such as .data, .list, .equ)

* Macro directive (such as .macro, .var, .mexit)

* Macro invocation

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 47
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.6.3 Operand Field

The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:

» an immediate operand (usually a constant or symbol) (see Section 4.7 and Section 4.8)
* aregister operand

* a memory reference operand

* an expression that evaluates to one of the above (see Section 4.9)

An immediate operand is encoded directly in the instruction. The value of an immediate operand must be a
constant expression. Most instructions with an immediate operand require an absolute constant expression,
such as 1234. Some instructions (such as a call instruction) allow a relocatable constant expression, such as a
symbol defined in another file. (See Section 4.9 for details about types of expressions.)

A register operand is a special pre-defined symbol that represents a CPU register.

A memory reference operand uses one of several memory addressing modes to refer to a location in memory.
Memory reference operands use a special target-specific syntax defined in the appropriate CPU and Instruction
Set Reference Guide.

You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU and Instruction Set Reference Guide for your device family.

4.6.3.1 Operand Syntaxes for Instructions

The assembler allows you to specify that an operand should be used as an address, an immediate value, an
indirect address, a register, a shifted register, or a register list. The following rules apply to the operands of
instructions.

» # prefix — the operand is an immediate value. Using the # sign as a prefix causes the assembler to treat
the operand as an immediate value. This is true even if the operand is a register; the assembler treats the
register as a value instead of using the contents of the register. For example:

Label: ADD R1, R1, #123
; Add 123 (decimal) to the value of Rl and place the result in RI.

* Square brackets — the operand is an indirect address. If the operand is enclosed in square brackets,

the assembler treats the operand as an indirect address; that is, it uses the contents of the operand as an

address. Indirect addresses consist of a base and an offset. The base is specified by a register and is formed

by taking the value in the register. The offset can be specified by a register, an immediate value, or a shifted

register. Furthermore, the offset can be designated as one of the following:

— Pre-index, where the base and offset are combined to form the address. To designate a pre-index offset,
include the offset within the enclosing right bracket.

— Postindex, where the address is formed from the base, and then the base and offset are combined. To
designate a postindex offset, include the offset outside of the right bracket.

The offset can be added to or subtracted from the base. The following are examples of instructions that use
indirect addresses as operands:

A: LDR R1, [R1]

; Load from address in R1 into RI.

LDR R7, [R1l, #5]
; Form address by adding the value in R1 to 5. Load from address into R7.

STR R3, [R1l, -R2]
; Form address by subtracting the value in R2 from the value in R1. Store from R3
; to memory at address.

STR R14, [R1l, +R3, LSL #2]
; Form address by adding the value in R3 shifted left by 2 to the value in RI1.
; Store from R14 to memory at address.

LDR R1, [R1], #5
; Load from address in R1 into R1l, then add 5 to the address.

STR R2, [R1], R5
; Store value in R2 in the address in R1, then add the value in R5 to the address.

48 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

« ! suffix — write-back to register. If you use the ! sign as a suffix, the assembler writes the computed
address back to the base register. Write-back to register is used only with the indirect addressing mode
syntax.

This is an example of an instruction using the write back to register suffix:

LDR R1, [R4, #4]!
; Form address by adding the value in R4 to 4. Load from this address into RI,
; then replace the value in R4 with the address.

» M suffix — set S bit. If you use the * sign as a suffix, the assembler sets the S bit. The resulting
action depends on the type of instruction being executed and whether R15 is in the transfer list. For more
information, see the LDM and STM instructions in the TMS470R1x User's Guide.

LDMIA SP, {R4-R11, R15}"
; Load registers R4 through R11 and R15 from memory at SP. Load CPSR with SPSR.

» Shifted registers. If a register symbol is followed by a shift type, the computed value is the value in the
register shifted according to the type as defined below:

LSL Logical shift left

LSR Logical shift right
ASL Arithmetic shift left
ASR Arithmetic shift right
ROR Rotate right

RRX Rotate right extended

The shift type can be followed by a register or an immediate whose value defines the shift amount. The
following are examples of instructions that use shifted registers as operands:

B: ADD R1, R4, R5, LSR R2

; Logical shift right the value in R5 by the value in R2. Add the value in R5 to R4.
; Place result in RI.

LDR R1, [R5, R4, LSL #4]
; Form address by adding the value in R4 shifted left by 4 to the value in R5.
; Load from address into RI.

CMP R3, R4, RRX
; Compare the value in R3 with the value in R4 rotate right extend.

* Curly braces - the operand is a register list. If you surround registers with curly braces, the assembler
treats the operand as a list of registers. You can separate registers with commas or indicate a range of
registers with a dash. The following are examples of instructions that use register lists:

LDMEA R2, {R1l, R3, R6}

; Pre-decrement stack load. Load registers R1, R3 and R6 from memory at the address in
R2.

STMEFD R12, {R1l, R3-R5}
; Pre-increment stack store. Store from registers R1 and R3 through R5 to memory at the
; address in R12.

4.6.3.2 Immediate Values as Operands for Directives

You use immediate values as operands primarily with instructions. In some cases, you can use immediate
values with the operands of directives. For instance, you can use immediate values with the .byte directive to
load values into the current section.

It is not usually necessary to use the # prefix for directives. Compare the following statements:

ADD R1, #10
.byte 10

In the first statement, the # prefix is necessary to tell the assembler to add the value 10 to R1. In the second
statement, however, the # prefix is not used; the assembler expects the operand to be a value and initializes a
byte with the value 10.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

49

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

See Chapter 5 for more information on the syntax and usage of directives.
4.6.4 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain any
ASCII character, including blanks. Comments are printed in the assembly source listing, but they do not affect
the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a semicolon
(;) oran asterisk (*). Comments that begin anywhere else on the line must begin with a semicolon. The
asterisk identifies a comment only if it appears in column 1.

4.7 Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value that
represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:

* Binary integer literals

* Octal integer literals

* Decimal integer literals

* Hexadecimal integer literals
* Character literals

« Character string literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.
4.7.1 Integer Literals

The assembler maintains each integer literal internally as a 32-bit signless quantity. Literals are considered
unsigned values, and are not sign extended. For example, the literal 00FFh is equal to 00FF (base 16) or 255
(base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store OFFh in a .byte location,
the bits will be exactly the same as if you had stored -1. It is up to the reader of that location to interpret the
signedness of the bits.

4.7.1.1 Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary literals
of the form "O[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler right justifies the
value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 04 or O4¢
0100000b Literal equal to 3245 or 204¢
01b Literal equal to 149 or 14¢
11111000B Literal equal to 2484 or OF8¢
0b00101010 Literal equal to 4244 or 2A4g
0B101010 Literal equal to 424 or 2A4¢

4.7.1.2 Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (O through 7) followed by the suffix Q (or q). Octal literals
may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of valid octal
literals:

10Q Literal equal to 84 or 84¢
054321 Literal equal to 227374 or 58D14¢
100000Q Literal equal to 3276844 or 800046
226q Literal equal to 1504 or 964¢
50 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.7.1.3 Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These are
examples of valid decimal integer literals:

1000 Literal equal to 10004¢ or 3E84¢

-32768 Literal equal to -32 768 or -8000+¢

25 Literal equal to 254 or 194

4815162342 Literal equal to 4815162342 or 11F018BEG6+¢

4.7.1.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by 0x. A hexadecimal literal must begin with a decimal value (0-9) if it is indicated by the H or h suffix.

Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. If fewer than eight hexadecimal
digits are specified, the assembler right-justifies the bits.

These are examples of valid hexadecimal literals:

78h Literal equal to 1204 or 00784¢
0x78 Literal equal to 1204 or 007844
OFh Literal equal to 154¢ or 000F 1
37ACh Literal equal to 142524 or 37AC+g

4.7.1.5 Character Literals

A character literal is a single character enclosed in single quotes. The characters are represented internally as
8-bit ASCII characters. Two consecutive single quotes are required to represent each single quote that is part of
a character literal. A character literal consisting only of two single quotes is valid and is assigned the value 0.
These are examples of valid character literals:

Defines the character literal a and is represented internally as 614¢
'C' Defines the character literal C and is represented internally as 434¢
Defines the character literal 'and is represented internally as 274
Defines a null character and is represented internally as 004¢

Notice the difference between character literals and character string literals (Section 4.7.2 discusses character strings). A character literal
represents a single integer value; a string is a sequence of characters.

4.7.2 Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string varies and
is defined for each directive that requires a character string. Characters are represented internally as 8-bit ASCII
characters.

These are examples of valid character strings:

"sample program” defines the 14-character string sample program.
"PLAN ""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

» Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

« Data initialization directives, as in .byte "charstring"
* Operands of .string directives

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 51
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.7.3 Floating-Point Literals

A floating-point literal is a string of decimal digits followed by a required decimal point, an optional fractional
portion, and an optional exponent portion. The syntax for a floating-point number is:

[+]-1nnn.[nnn][Ele[+|-1nnn]

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a decimal
point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10. These are examples
of valid floating-point literals:

3.0

3.14

3.
-0.314el3
+314.5%9e-2

The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants, but the
$$strtod built-in mathematical function supports both. If you want to specify a floating-point literal using one of
those formats, use $$strtod. For example:

S$strtod(".3")
Sstrtod ("0x1.234p-5")

You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $$strtod to express these values.
The "NaN" and "Inf" strings are handled case-insensitively. See Section 4.10.1 for built-in functions.

$Sstrtod ("NaN")
$Sstrtod ("Inf")

4.8 Assembler Symbols

An assembler symbol is a named 32-bit signless integer value, usually representing an address or absolute
integer. A symbol can represent such things as the starting address of a function, variable, or section. The name
of a symbol must be a legal identifier. The identifier becomes a symbolic representation of the symbol's value,
and may be used in subsequent instructions to refer to the symbol's location or value.

Some assembler symbols become external symbols, and are placed in the object file's symbol table. A symbol
is valid only within the module in which it is defined, unless you use the .global directive or the .def directive to
declare it as an external symbol (see .global directive).

See Section 2.6 for more about symbols and the symbol tables in object files.
4.8.1 Identifiers

Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string of
alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character in an
identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you define are
case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct identifiers.

4.8.2 Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program. Labels
within a file must be unique.

Note

A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes and
assembler directive names without the . prefix are valid label names. Remember to always use
whitespace before the mnemonic, or the assembler will think the identifier is a new label definition.

52 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

Symbols derived from labels can also be used as the operands of .bss, .global, .ref, or .def directives.

.global f
LDR "Al, CON1
STR Al, [sp, #0]
BL _f
CON1: .field -269488145,32

4.8.3 Local Labels
Local labels are special labels whose scope and effect are temporary. A local label can be defined in two ways:

» $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See Example
4-1.

* name?, where name is any legal identifier as described above. The assembler replaces the question mark
with a period followed by a unique number. When the source code is expanded, you will not see the unique
number in the listing file. Your label appears with the question mark as it did in the source definition.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined by
directives.

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

» By changing sections (using a .sect, .text, or .data directive)

» By changing the state of generated code (using the .state16 or .state32 directives)
* By entering an include file (specified by the .include or .copy directive)

» By leaving an include file (specified by the .include or .copy directive)

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

Labell: CMP rl, #0 ; Compare rl to zero.
BCS S1 ; If carry is set, branch to $1;
ADDS r0, r0, #1 ; else increment to r0
MOVCS pc, 1lr ; and return.
S1: LDR r2, [r5], #4 ; Load indirect of r5 into r2
; with write back.
.newblock ; Undefine $1 so it can be used
; again.
ADDS rl, rl, r2 ; Add r2 to rl.
BPL $1 ; If the negative bit isn't set,
; branch to $1;
MVNS rl, rl ; else negate rl.
S1: MOV pc, 1lr ; Return.

The following code uses a local label illegally:

BCS S1 ; If carry is set, branch to $1;
ADDS r0, r0, #1 ; else increment to r0
MOVCS pc, 1lr ; and return.
S1: LDR r2, [r5], #4 ; Load indirect of r5 into r2
; with write-back.
ADDS rl, rl, r2 ; Add r2 to rl.
BPL $1 ; If the negative bit isn't set,
; branch to $1;
MVNS rl, rl ; else negate rl.
$1: MOV pc, 1lr ; Return.

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is redefined,
which is illegal.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 53
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

Local labels are especially useful in macros. If a macro contains a normal label and is called more than once, the
assembler issues a multiple-definition error. If you use a local label and .newblock within a macro, however, the
local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not limited.
After you undefine a local label, you can define it and use it again. Local labels do not appear in the object code
symbol table.

For more information about using labels in macros see Section 6.6.

4.8.4 Symbolic Constants

A symbolic constant is a symbol with a value that is an absolute constant expression (see Section

4.9). By using symbolic constants, you can assign meaningful names to constant expressions. The .set

and .struct/.tag/.endstruct directives enable you to set symbolic constants (see Define Assembly-Time Constant).
Once defined, symbolic constants cannot be redefined.

If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant and may be
used where a constant expression is expected. For example:

shift3 .set 3
MOV RO, #shift3

You can also use the .set directive to assign symbolic constants for other symbols, such as register names. In
this case, the symbolic constant becomes a synonym for the register:

AuxR1 .set RI1
LDR AuxR1l, [SP]

The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct directives.
It creates the symbolic constants K, maxbuf, item, value, delta, and i_len.

K .set 1024 ;constant definitions
maxbuf .set 2*K
item .struct ;item structure definition
.int value ;constant offsets value = 0
.int delta ;constant offsets delta =1
i len .endstruct
array .tag item jarray declaration
.bss array, i _len*K

The assembler also has many predefined symbolic constants; these are discussed in Section 4.8.6.
4.8.5 Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used in
place of a value in assembly source. The format of the --asm_define option is as follows:

armcl --asm_define= name[= value]

The name is the name of the symbol you want to define. The value is the constant or string value you want to
assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted string and keep
the quotation marks, do one of the following:

* For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""
* For UNIX, use --asm_define= name =" value ™. For example, --asm_define=car=""sedan
» For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

54 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

Once you have defined the name with the --asm_define option, the symbol can be used with assembly directives
and instructions as if it had been defined with the .set directive. For example, on the command line you enter:

armcl --asm define=SYMl=1 --asm define=SYM2=2 --asm define=SYM3=3 --asm define=SYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code. The
example at the end of this section shows how the value.asm file uses these symbols without defining them
explicitly.

In assembler source, you can test the symbol defined with the --asm_define option with these directives:

Type of Test Directive Usage

Existence .if $$isdefed(" name ")
Nonexistence .if $$isdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name 1= value

The argument to the $$isdefed built-in function must be enclosed in quotes. The quotes cause the argument to
be interpreted literally rather than as a substitution symbol.

This example uses symbolic constants that were defined on the command line earlier in this section:

IF 4: if SYM4 = SYM2 * SYM2
.byte SYM4 ; Equal values
.else
.byte SYM2 * SYM2 ; Unequal values
.endif

IF 5: .if SYM1 <= 10
.byte 10 ; Less than / equal
.else
.byte SYM1 ; Greater than
.endif

IF 6: Jif SYM3 * SYM2 != SYM4 + SYM2
.byte SYM3 * SYM2 ; Unequal value
.else
.byte SYM4 + SYM4 ; Equal values
.endif

IF 7: .if SYM1 = SYM2
.byte SYM1
.elseif SYM2 + SYM3 = 5
.byte SYM2 + SYM3
.endif

4.8.6 Predefined Symbolic Constants

The assembler has several types of predefined symbols.

$, the dollar-sign character, represents the current value of the section program counter (SPC).
In addition, the following predefined processor symbolic constants are available:

Table 4-2. ARM Processor Symbolic Constants

Macro Name Description
.TI_ARM Always set to 1
.TI_ARM_16BIS Set to 1 if the default state is 16 bit Thumb mode (the --code_state=16 option is used for an ARMv6 or
prior architecture); otherwise, set to 0.
.TI_ARM_32BIS Set to 1 if the default state is 32 bit (the --code_state=16 option is not used or the --code_state=32
option is used); otherwise, set to 0.
.TI_ARM_T2IS Set to 1 if the default state is Thumb-2 mode (the --code_state=16 option is used for an ARMv7 or
higher architecture); otherwise set to 0.
.TI_ARM_LITTLE Set to 1 if little-endian mode is selected (the --endian assembler option is used); otherwise, set to 0.
.TI_ARM_BIG Set to 1 if big-endian mode is selected (the --endian assembler option is not used); otherwise, set to 0.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 55
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Description

13 TEXAS
INSTRUMENTS

www.ti.com

Table 4-2. ARM Processor Symbolic Constants (continued)

Macro Name

Description

__TI_ARM7ABI_ASSEMBLER

__TI_ARM9ABI_ASSEMBLER

__TI_EABI_ASSEMBLER
_ _TI_NEON_SUPPORT_ _
_ _TILARM V4__

_ _TIARM_V5E__
__TILARM_V6__
__TILARM_V6MO_ _

_ _TLARM V7__
__TIARM_V7A8__

__TILARM_V7M3_ _

_ _TILARM_V7M4_ _

__TLARM_V7R4__

__TI_VFP_SUPPORT_ _
__TI_VFPV3_SUPPORT__

__TI_VFPV3D16_SUPPORT__

__TI_FPV4SPD16_SUPPORT__

Set to 1 if the TI ARM7 ABI is enabled (the --abi=tiabi option is used); otherwise, it is set to 0. (This
option is deprecated.)

Set to 1 if the TI ARM9 ABI is enabled (the --abi=ti_arm9_abi option is used); otherwise, it is set to 0.
(This option is deprecated.)

Set to 1 if the EABI ABI is enabled. EABI is now the only supported ABI; see Section 4.4.

Set to 1 if NEON SIMD extension is targeted (the --neon option is used); otherwise, it is set to 0.

Set to 1 if the v4 architecture (ARM?7) is targeted (the -mv4 option is used); otherwise, it is set to 0.
Set to 1 if the v5E architecture (ARMOE) is targeted (the -mv5e option is used); otherwise, it is set to 0.
Set to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used); otherwise, it is set to 0.

Set to 1 if the v6MO architecture (Cortex-MO0) is targeted (the -mv6MO option is used); otherwise, it is
setto 0.

Set to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is set to 0.

Set to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used); otherwise, it is set
to 0.

Set to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is used); otherwise, it is
setto 0.

Set to 1 if the v7M4 architecture (Cortex-M4) is targeted (the -mv7M4 option is used); otherwise, it is
setto 0.

Set to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is used); otherwise, it is
setto 0.

Set to 1 if the VFP coprocessor is enabled (any --float_support option is used); otherwise, it is set to 0.

Set to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3 option is used); otherwise, it is
setto 0.

Set to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3d16 option is used); otherwise, it
is set to 0.

Set to 1 if the FP coprocessor is enabled (the --float_support=fpv4spd16 option is used); otherwise, it
is set to 0.

4.8.7 Registers

In addition, control register names are predefined symbols.

The names of ARM registers and their aliases are register symbols, including:

Coprocessor registers, including C0-C15.
Coprocessor IDs, including PO-P15.

VFP registers, including D0-D31, S0-S31.
NEON registers, including D0-D31, Q0-Q15.

Table 4-3. ARM Register Symbols with Aliases

Register Name Alias Register Name Alias
RO A1 R8 V5

R1 A2 R9 V6
R2 A3 R10 V7
R3 A4 R11 V8
R4 V1 R12 V9, IP
R5 V2 R13 SP
R6 V3 R14 LR
R7 V4, AP R15 PC

Register symbols and aliases can be entered as all uppercase or all lowercase characters. For example, R13
could also be entered as r13, SP, or sp.

56

ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

Control register symbols can be entered in all upper-case or all lower-case characters.

See the "Register Conventions" section of the ARM Optimizing C/C++ Compiler User's Guide for details about
the registers and their uses.

Status registers can be entered as all uppercase or all lowercase characters; that is, CPSR could also be
entered as cpsr, CPSR_ALL, or cpsr_all.

Table 4-4. ARM Status Registers and Aliases

Register Alias Description

CPSR CPSR_ALL Current processor status register

CPSR_FLG Current processor status register flag bits only
SPSR SPSR_ALL Saved processor status register

SPSR_FLG Saved processor status register flag bits only

4.8.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to create aliases for character strings by equating
them to symbolic names. Symbols that represent character strings are called substitution symbols. When the
assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike symbolic
constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

.asg "SP", stack-pointer

; Assigns the string SP to the substitution symbol stack-pointer.
.asg "#0x20", block2

; Assigns the string #0x20 to the substitution symbol block2.
ADD stack-pointer, stack-pointer, block2
Adds the value in SP to #0x20 and stores the result in SP.

’

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution symbols

are used in macros:

addl .macro dest, src
; addl macro definition
ADDS dest, dest, src
; Add the value in register dest to the value in register src,
; and store the result in src.
BLCS reset_ctr
; Handle overflow.
.endm
*addl invocation
addl R4, RS
; Calls the macro addl and substitutes R4 for dest and R5 for src.
; The macro adds the value of R4 and the value of R5, stores the
result in R4, and handles overflow.

’

See Chapter 6 for more information about macros.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 57
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.9 Expressions
Nearly all values and operands in assembly language are expressions, which may be any of the following:

» a literal constant

* aregister

* aregister pair

* a memory reference

* asymbol

* a built-in function invocation

* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some instruction
operands accept limited types of expressions. For example, the .if directive requires its operand be an absolute
constant expression with an integer value. Absolute in the context of assembly code means that the value of the
expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.
An immediate operand will usually not accept a register or memory reference. It must be given a constant
expression. Constant expressions may be any of the following:

* a literal constant

* an address constant expression

* asymbol whose value is a constant expression

* a built-in function invocation on a constant expression

* a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands that
require an address value can accept a symbol plus an addend; for example, some branch instructions. The
symbol must have a value that is an address, and it may be an external symbol. The addend must be

an absolute constant expression with an integer value. For example, a valid address constant expression is
"array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time. Relocatable
means constant, but not known until link time. External symbols are relocatable, even if they refer to a symbol
defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In other
words, an absolute constant expression may be any of the following:

» a literal constant

* an absolute address constant expression

* asymbol whose value is an absolute constant expression

* a built-in function invocation whose arguments are all absolute constant expressions
« a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. For ELF, such expressions may contain
at most one external symbol. A relocatable constant expression may be any of the following:

* an external symbol

* arelocatable address constant expression

* asymbol whose value is a relocatable constant expression

* a built-in function invocation with any arguments that are relocatable constant expressions

« a mathematical or logical operation on one or more expressions, at least one of which is a relocatable
constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For example, a
relative displacement branch may branch to a label defined in the same section.

58 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Assembler Description

4.9.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must use the
correct number of operands and the operation must make sense. For example, you cannot take the XOR of a
floating-point value. In addition, well-defined expressions contain only symbols or assembly-time constants that

have been defined before they occur in the directive's expression.

Three main factors influence the order of expression evaluation:

Parentheses

Precedence groups

Left-to-right evaluation

Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({ }) or brackets ([]) for parentheses.

Operators, listed in Table 4-5, are divided into nine precedence groups. When parentheses do not determine

the order of expression evaluation, the highest precedence operation is evaluated first.

8+4/2=10(4/2is evaluated first)

When parentheses and precedence groups do not determine the order of expression evaluation, the
expressions are evaluated from left to right, except for Group 1, which is evaluated from right to left.

8/4*2=4,but8/(4*2) =1

Table 4-5 lists the operators that can be used in expressions, according to precedence group.

Table 4-5. Operators Used in Expressions (Precedence)

Group(") Operator Description(?)
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
& Bitwise AND
A Bitwise exclusive OR (XOR)
| Bitwise OR

(1) Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
(2) Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed during
assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow occurs. The

assembler does not check for overflow or underflow in multiplication.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools
v20.2.0.LTS

59

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.9.2 Relational Operators and Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially useful for
conditional assembly. Relational operators include the following:

= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to

Conditional expressions evaluate to 1 if true and 0 if false and can be used only on operands of equivalent types;
for example, absolute value compared to absolute value, but not absolute value compared to relocatable value.

4.9.3 Well-Defined Expressions

Some assembler directives, such as .if, require well-defined absolute constant expressions as operands. Well-
defined expressions contain only symbols or assembly-time constants that have been defined before they occur
in the directive's expression. In addition, they must use the correct number of operands and the operation must
make sense. The evaluation of a well-defined expression must be unambiguous.

This is an example of a well-defined expression:

1000h+X

where X was previously defined as an absolute symbol.
4.9.4 Relocatable Symbols and Legal Expressions

All legal expressions can be reduced to one of two forms:
relocatable symbol £ absolute symbol

or

absolute value

Unary operators can be applied only to absolute values; they cannot be applied to relocatable symbols.
Expressions that cannot be reduced to contain only one relocatable symbol are illegal.

Table 4-6 summarizes valid operations on absolute, relocatable, and external symbols. An expression cannot
contain multiplication or division by a relocatable or external symbol. An expression cannot contain unresolved
symbols that are relocatable to other sections.

Symbols that have been defined as global with the .global directive can also be used in expressions; in Table
4-6, these symbols are referred to as external.

Table 4-6. Expressions With Absolute and Relocatable Symbols

If Ais... and If B is..., then A +Bis... and A -Bis...
absolute absolute absolute absolute
absolute relocatable relocatable illegal
absolute external external illegal
relocatable absolute relocatable relocatable
relocatable relocatable illegal absolute(!)
relocatable external illegal illegal
external absolute external external
external relocatable illegal illegal
external external illegal illegal

(1) A and B must be in the same section; otherwise, adding relocatable symbols to relocatable symbols is illegal.

60 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.9.5 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use four
symbols that are defined in the same section:

.global extern_ 1 ; Defined in an external module

intern 1: .word '"D' ; Relocatable, defined in current
; module

LAB1: .set 2 ; LABL = 2

intern 2 ; Relocatable, defined in current
; module

intern_3 ; Relocatable, defined in current
; module

* Example 1

The statements in this example use an absolute symbol, LAB1, which is defined to have a value of 2. The
first statement loads the value 51 into RO. The second statement loads the value 27 into RO.

MOV RO, #LAB1 + ((4+3) * 7) ; R

MOV RO, #LAB1 + 4 + (3*7) ;RO
; +

* Example 2

The first statement in the following example is valid; the statements that follow it are invalid.

LDR R1, intern_ 1 - 10 ; Legal
LDR R1, 10-intern 1 ; Can't negate reloc. symbol

LDR R1, intern 1/10 ; / isn't additive operator
LDR R1, intern 1 + intern 2 ; Multiple relocatables

;
LDR R1, -(intern 1) ; Can't negate reloc. symbol
;

 Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is absolute
because they are in the same section. Subtracting one relocatable symbol from another reduces the
expression to relocatable symbol + absolute value. The second statement is illegal because the sum of

two relocatable symbols is not an absolute value.

LDR R1, intern_ 1 - intern 2 + intern_ 3 ; Legal
LDR R1, intern 1 + intern 2 + intern 3 ; Illegal

 Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of left-to-right
operator precedence; the assembler attempts to add intern_1 to extern_3.

LDR R1, intern_1 + intern 3 - intern 2 ; Illegal
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 61
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Description

13 TEXAS
INSTRUMENTS

www.ti.com

4.10 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

The built-in substitution symbol functions are discussed in Section 6.3.2.

4.10.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 4-7 describes
the built-in functions. The expr must be a constant value.

Table 4-7. Built-In Mathematical Functions

Function

Description

$$acos(expr)
$$asin(expr)
$$atan(expr)
$$atan2(expr, y)
$$ceil(expr)
$$cos(expr)
$$cosh(expr)
$$cvf(expr)
$$cvi(expr)
$$exp(expr)
$$fabs(expr)
$$floor(expr)
$$fmod(expr, y)
$$int(expr)
$$ldexp(expr, expr2)
$$log(expr)
$$log10(expr)
$$max(expri, expr2)
$$min(expr1, expr2)
$$pow(expri, expr2)
$$round(expr)
$$sgn(expr)
$$sin(expr)
$$sinh(expr)
$$sqrt(expr)
$$strtod(str)

$$tan(expr)
$$tanh(expr)
$$trunc(expr)

Returns the arccosine of expr as a floating-point value

Returns the arcsine of expr as a floating-point value

Returns the arctangent of expr as a floating-point value

Returns the arctangent of expr as a floating-point value in range [-m, 1]
Returns the smallest integer not less than expr

Returns the cosine of expr as a floating-point value

Returns the hyperbolic cosine of expr as a floating-point value
Converts expr to a floating-point value

converts expr to integer value

Returns the exponential function e€*P"

Returns the absolute value of expr as a floating-point value
Returns the largest integer not greater than expr

Returns the remainder of expr1 + expr2

Returns 1 if expr has an integer value; else returns 0. Returns an integer.
Multiplies expr by an integer power of 2. That is, expr1 x 2exPr2
Returns the natural logarithm of expr, where expr>0

Returns the base 10 logarithm of expr, where expr>0

Returns the maximum of two values

Returns the minimum of two values

Returns expriraised to the power of expr2

Returns expr rounded to the nearest integer

Returns the sign of expr.

Returns the sine of expr

Returns the hyperbolic sine of expr as a floating-point value
Returns the square root of expr, expr=0, as a floating-point value

Converts a character string to a double precision floating-point value. The string contains a properly-formatted
C99-style floating-point literal.

Returns the tangent of expr as a floating-point value
Returns the hyperbolic tangent of expr as a floating-point value

Returns expr rounded toward 0

62 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.11 Unified Assembly Language Syntax Support

Unified assembly language (UAL) is the new assembly syntax introduced by ARM Ltd. to handle the ambiguities
introduced by the original Thumb-2 assembly syntax and provide similar syntax for ARM, Thumb and Thumb-2.
UAL is backwards compatible with old ARM assembly, but incompatible with the previous Thumb assembly
syntax.

UAL syntax is the default assembly syntax beginning with ARMv7 architectures. When writing assembly code,
the .arm and .thumb directives are used to specify ARM and Thumb UAL syntax, respectively. The .state32

and .state16 directives remain to specify non-UAL ARM and Thumb syntax. The .arm and .state32 directives are
equivalent since UAL syntax is backwards compatible in ARM mode. Since non-UAL syntax is not supported

for Thumb-2 instructions, Thumb-2 instructions cannot be used inside of a .state16 section. However, assembly
code with .state16 sections that contain only non-UAL Thumb code can be assembled for ARMv7 architectures
to allow easy porting of older code.

See Section 5.3 for more information about the .state16, .state32, .arm, and .thumb directives.

A full description of the UAL syntax can be found in the ARM Ltd. documentation, but there are a few key
differences related to Thumb-2 syntax:

* The .W extension is used to indicate that an instruction should be encoded in a 32-bit form. A .N extension is
used to indicate that an instruction should be encoded in a 16-bit form; the assembler reports an error if this
is not possible. If no extension is used then the assembler uses a 16-bit encoding whenever possible.

* 16-bit Thumb ALU instructions that set status indicate this with a syntax that has a 'S' modifier. This is the
same as how ARM ALU instructions that set status have always been handled.

4.12 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke the
assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied by
the .title directive is printed on the title line. A page number is printed to the right of the title. If you do not use
the .title directive, the name of the source file is printed. The assembler inserts a blank line below the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in an
actual listing file.

Field 1: Source Statement Number
Line number

The source statement number is a decimal number. The assembler numbers source lines as it encounters them
in the source file; some statements increment the line counter but are not listed. (For example, .title statements
and statements following a .nolist are not listed.) The difference between two consecutive source line numbers

indicates the number of intervening statements in the source file that are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by the letter.
Nesting level number

A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named sections)
maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and directives use
this field to list object code. This field also indicates the relocation type associated with an operand for this line

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 63
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Description

13 TEXAS
INSTRUMENTS

www.ti.com

of source code. If more than one operand is relocatable, this column indicates the relocation type for the first
operand. The characters that can appear in this column and their associated relocation types are listed below:

! undefined external reference
text relocatable

+ .sect relocatable

.data relocatable

- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the spacing in
the source statement.

Figure 4-2 shows an assembler listing with each of the four fields identified.

Include file Line number
letter

1 00000000 .state32
2 .copy "macl.inc”

A 1 tolé .macro

A 2 ADD r0, pc, #1

A 3 BX r0

A 4 .statelé6

A 5

A 6 .endm
3
4 .global _ stack
5 ;***
6 ;* DEFINE THE USER MODE STACK **
7 ;***
8 00000200 STACKSIZE .set 512
9 00000000 _ stack: .usect ”.stack”, STACKSIZE, 4
10 ;***
11 ;* INTERRUPT VECTORS *x
12 ;***
13 .global reset
14 00000000 .sect ".intvecs”
15

16 00000000 EAFFFFFE’
17 00000004 00000000
18 00000008 00000000
19 0000000c 00000000
20 0000001000000000
21 00000014 00000000
22 0000001800000000
23 0000001c 00000000

25 00000000

31 00000000

35 00000000E10F0000
36 00000004 E3CO001F
37 00000008 E3800010
38 0000000cE129F000

__\F__/__WF__J__WF__J
Field1 ~ Field2 Field3

FRERKAKARAR KKK AR AR AR AR ARKAK AR AR AR IR IR I AR AR AR A XK x

B reset
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0

.text
.global dispatch
.global reset

;* RESET ROUTINE

FREFRAIRAKK AR IR IRAIRAIR AR ARA IR IR A IR AR AR * K

reset:

. %

* %

7

;* SET TO USER MODE

*

7
MRS r0, cpsr
BIC r0, r0, #0x1F ; Clear modes
ORR r0, r0, #0x10 ; Set user mode
MSR cpsr, r0

Field 4

Figure 4-2. Example Assembler Listing

64

ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

Assembler Description

INSTRUMENTS
www.ti.com
Nesting level
/number

40 s *
41 ;* CHANGE TO 16 BIT STATE
42 P *
43 00000010 tolé6

1 00000010 E28F0001 ADD r0, pc, #1

1 00000014 E12FFF10 BX ro0

1 00000018 .statel6

1
44
45 P *
46 ;* INITIALIZE THE USER MODE STACK
47 s
48 000000184802 LDR r0, stack
49 0000001a4685 MOV sp, r0
50 0000001c 4802 LDR r0, stacksz
51 0000001e 4485 ADD sp, r0
52
53 s *
54 ;* DISPATCH TASKS
55 Hd
56 00000020 F7FF! BL dispatch

00000022 FFEE

57 00000024 00000000- stack .long _ stack
58 00000028 00000200 stacksz .long STACKSIZE
59
60
61

| SR/ NN A ——"—

Field 1 Field 2 Field 3 Field 4

Figure 4-3. Example Assembler Listing (Continued)

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

ARM Assembly Language Tools 65

Copyright © 2023 Texas Instruments Incorporated

v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Description www.ti.com

4.13 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information that
allows you to step through your assembly code in a debugger rather than using the Disassembly window in
Code Composer Studio. This enables you to view source comments and other source-code annotations while
debugging. The default has the same behavior as using the --symdebug:dwarf option. You can disable the
generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed by
the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions named with
this syntax:

‘$ filename : starting source line : ending source line $ ‘

If you want to view your variables as a user-defined type in C code, the types must be declared and the variables
must be defined in a C file. This C file can then be referenced in assembly code using the .ref directive (see .ref
directive). The C example that follows shows the cvar.c program that defines a variable, svar, as the structure
type X. The svar variable is then referenced in the addfive.asm assembly program that follows, and 5 is added to
svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

armcl --symdebug:dwarf cvars.c addfive.asm --run linker --library=Ilnk.cmd
--library=rtsv4 A be eabi.lib --output file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor the
values in svar while stepping through main just as you would any regular C variable.

Viewing Assembly Variables as C Types C Program

typedef struct {
int ml;
int m2;

} X

X svar = { 1, 2 };

addfive.asm Assembly Program

; Tell the assembler we're referencing variable " svar", which is defined in
; another file (cvars.c).

; addfive() - Add five to the second data member of _svar
.text
.global addfive
addfive: .asmfunc
LDW .D2T2 *+Bl4 (_svar+4),B4 ; load svar.m2 into B4
RET .S2 B3 ; return from function
NOP 3 ; delay slots 1-3
ADD .D2 5,B4,B4 ; add 5 to B4 (delay slot 4)
STW .D2T2 B4, *+Bl4 (_svar+4) ; store B4 back into svar.m2
; (delay slot 5)
.endasmfunc
66 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Description

4.14 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke the
assembler with the --asm_cross_reference_listing option (see Section 4.3) or use the .option directive with the
X operand (see Select Listing Options). The assembler appends the cross-reference to the end of the source
listing. The following example shows the four fields contained in the cross-reference listing.

LABEL VALUE -DEFN REF

.TI_ARM 00000001 0

.TI_ARM 16BIS 00000000 0

.TI_ARM 32BIS 00000001 0

.TI_ARM BIG 00000001 0

.TI_ARM LITTLE 00000000 0

.ti arm 00000001 0

.ti_arm lébis 00000000 0

.ti_arm 32bis 00000001 0

.ti_arm big 00000001 0

.ti arm little 00000000 0

STACKSIZE 00000200 9 10 63

__stack 00000000~ 10 5 62

dispatch REF 29 60

reset 00000000 34 16 19 30

stack 00000024" 62 52

stacksz 00000028" 63 54
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the symbol) or a name that

describes the symbol's attributes. A value may also be preceded by a character that describes the symbol's
attributes. The following table lists these characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This column is blank for undefined
symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A blank in this column indicates

that the symbol was never used.

Table 4-8. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)
UNDF Undefined

Symbol defined in a .text section
" Symbol defined in a .data section
+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

The compiler also provides a similar --gen_cross_reference_listing option, which generates a listing file
containing reference information for identifiers in C/C++ source files. See the "Generating Cross-Reference
Listing Information" section in the ARM Optimizing C/C++ Compiler User's Guide

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 67
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Assembler Description www.ti.com
This page intentionally left blank.

68 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 5
Assembler Directives

i3 TEXAS INSTRUMENTS

Assembler directives supply data to the program and control the assembly process. Assembler directives enable
you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

+ Assemble conditional blocks

+ Define global variables

» Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.12) describes the directives
according to function, and the second part (Section 5.13) is an alphabetical reference.

5.1 DiIr@CLIVES SUMMAIYottt ettt e ekt e ettt e e a e e e 4a e e e e e et e e eae e e e 4a b et e e s et e e e an e e e e ne e e e nn e e e nanneesanneean 70
5.2 Directives that Define SECLIONS.............ooo i ettt e bt sae e e st e e ene e enees 74
5.3 Directives that Change the INStruction TYPe............cc.oo i et snaee e sanee s 77
5.4 Directives that INitialize ValUEs..................ooiiiiiiii ettt e e s et e e e e e e e e e s 77
5.5 Directives that Perform Alignment and ReServe SPace...............coociiiiiiiiiiiiii i e 80
5.6 Directives that Format the Output LiStINgGS. ... e 81
5.7 Directives that Reference Other Files...............oooii it esneee s 82
5.8 Directives that Enable Conditional ASSEmMDbIY...............oooiiiiiiiiiiii e 82
5.9 Directives that Define Union or STructure TYPES...........c..ooiiiiiiiiiiiiiii it e s nnaee s 83
5.10 Directives that Define ENUMeErated TYPES............cooiiuiiiiiiiiiiiiie et e et eee e s eaee e e anbeeeeneeeeennes 83
5.11 Directives that Define Symbols at Assembly TiMe..............oociiiiiiiiii e e e 83
5.12 MiSCellanN@OoUS DIF@CHIVES.cooo ittt e ettt e e e ettt e e e e e e anbeeee e e e nnseeeaeeeannsseeaeeaannnnneaaean 84
5.13 DIreCtives REFEIENCE. ettt et e e st e e b et e e e s e e e ne e e e ann e e e eann e e s annee s 85
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 69
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

I

TeExAS
INSTRUMENTS

www.ti.com

5.1 Directives Summary

Table 5-1 through Table 5-17 summarize the assembler directives. In addition to the directives documented here,
the ARM device software tools support the following directives:

» Macro directives are discussed in Chapter 6; they are not discussed in this chapter.
» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives; they

are not discussed in this chapter.

Note

Labels and Comments Are Not Shown in Syntaxes: Most source statements that contain a
directive can also contain a label and a comment. Labels begin in the first column (only labels and
comments can appear in the first column), and comments must be preceded by a semicolon, or an
asterisk if the comment is the only element in the line. To improve readability, labels and comments
are not shown as part of the directive syntax here. See the detailed description of each directive for

using labels with directives.

Table 5-1. Directives that Control Section Use

Mnemonic and Syntax Description See
.bss symbol, size in bytes[,alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[,bank offset]]
.data Assembles into the .data (initialized data) section .data topic
.sect " section name " Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect " section name ", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[,alignment{,bank offset]]

Table 5-2. Directives that Gather Sections into Common Groups
Mnemonic and Syntax Description See

.endgroup

.gmember section name

Ends the group declaration.

Designates section name as a member of the group.

.endgroup topic

.gmember topic

.group group section name group type : Begins a group declaration. .group topic
Table 5-3. Directives that Affect Unused Section Elimination
Mnemonic and Syntax Description See
.retain " section name " Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not
.retainrefs " section name " Instructs the linker to include any data object that references the .retain topic
current or specified section.
Table 5-4. Directives that Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.bits value/|, ... , valuey] Initializes one or more successive bits in the current section .bits topic
.byte value/], ... , value,] Initializes one or more successive bytes in the current section .byte topic
.char value/|, ... , value,) Initializes one or more successive bytes in the current section .char topic
.cstring {expr|" string; "},... , {expry|" string, "}] Initializes one or more text strings .string topic
.double valued, ... , value,] Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants
field value], size] Initializes a field of size bits (1-32) with value field topic
float value/|, ... , value,) Initializes one or more 32-bit, IEEE single-precision, floating-point .float topic
constants
.half value/, ... , value,] Initializes one or more 16-bit integers (halfword) .half topic

70 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
Table 5-4. Directives that Initialize Values (Data and Memory) (continued)
Mnemonic and Syntax Description See
.int value4|, ... , value,) Initializes one or more 32-bit integers .int topic
long value|, ..., value) Initializes one or more 32-bit integers .long topic
-short value[; ... , value] Initializes one or more 16-bit integers (halfword) .short topic
.string {expr4|" strings "},... , {expry|" string, "}] Initializes one or more text strings .string topic

.ubyte valueq|, ... , value,] Initializes one or more successive unsigned bytes in current section .ubyte topic
.uchar value, ... , valuey] Initializes one or more successive unsigned bytes in current section .uchar topic
.uhalf value[, ... , value,) Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic
.uint value/|, ..., value] Initializes one or more unsigned 32-bit integers .uint topic
.ulong value/, ..., value) Initializes one or more unsigned 32-bit integers .long topic
.ushort value[, ..., value) Initializes one or more unsigned 16-bit integers (halfword) .short topic
.uword value[, ... , value) Initializes one or more unsigned 32-bit integers .uword topic
.word value/|, ... , value,) Initializes one or more 32-bit integers .word topic
Table 5-5. Directives that Perform Alignment and Reserve Space
Mnemonic and Syntax Description See
.align [size in bytes] Aligns the SPC on a boundary specified by size in bytes, which .align topic
must be a power of 2; defaults to byte boundary
.bes size Reserves size bytes in the current section; a label points to the end .bes topic
of the reserved space
.space size Reserves size bytes in the current section; a label points to the .space topic
beginning of the reserved space
Table 5-6. Directives that Change the Instruction Type
Mnemonic and Syntax Description See
.arm Begins assembling ARM UAL instructions. Equivalent to .state32. .arm topic
.state16 Begins assembling non-UAL 16-bit instructions .state16 topic
.state32 Begins assembling 32-bit instructions (default) .state32 topic
.thumb Begins assembling Thumb or Thumb-2 UAL instructions .thumb topic
Table 5-7. Directives that Format the Output Listing
Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic

.drnolist Suppresses listing of certain directive lines .drnolist topic
felist Allows false conditional code block listing (default) fclist topic
fcnolist Suppresses false conditional code block listing fenolist topic
.length [page length] Sets the page length of the source listing length topic
Jlist Restarts the source listing list topic
.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
.nolist Stops the source listing .nolist topic
.option option4[, option, , . .. Selects output listing options; available options are A, B, H, M, N, .option topic
O,R, T, W, and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title " string ™ Prints a title in the listing page heading title topic
.width [page width] Sets the page width of the source listing .width topic

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 71
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
Table 5-8. Directives that Reference Other Files

Mnemonic and Syntax Description See

.copy ["Ifilename["] Includes source statements from another file .copy topic

.include ["]filename["] Includes source statements from another file .include topic

.mlib ["]filename["] Specifies a macro library from which to retrieve macro definitions .mlib topic

Table 5-9. Directives that Affect Symbol Linkage and Visibility
Mnemonic and Syntax Description See

.common symbol, size in bytes [, alignment]

Defines a common symbol for a variable.

.common symbol, structure tag [, alignment]

.common topic

.def symboly[, ... , symboly] Identifies one or more symbols that are defined in the current .def topic
module and that can be used in other modules.

.global symbol4[, ..., symbol,] Identifies one or more global (external) symbols. .global topic

.ref symbol,], ..., symboly) Identifies one or more symbols used in the current module that are .ref topic

.symdepend dst symbol namel, src symbol name]

defined in another module.

Creates an artificial reference from a section to a symbol.

.symdepend topic

.weak symbol name Identifies a symbol used in the current module that is defined in .weak topic
another module.
Table 5-10. Directives that Define Symbols
Mnemonic and Syntax Description See
.asg ["|character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .asg can be redefined.
.define ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.
symbol .equ value Equates value with symbol .equ topic
.elfsym name, SYM_SIZE(size) Provides ELF symbol information .elfsym topic
.eval expression , Performs arithmetic on a numeric substitution symbol .eval topic
substitution symbol
.label symbol Defines a load-time relocatable label in a section .label topic
.newblock Undefines local labels .newblock topic
symbol .set value Equates value with symbol .set topic
.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic
.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic
Table 5-11. Directives that Enable Conditional Assembly
Mnemonic and Syntax Description See
.if condition Assembles code block if the condition is true .if topic
.else Assembles code block if the .if condition is false. When using the .if .else topic
construct, the .else construct is optional.
.elseif condition Assembles code block if the .if condition is false and the .elseif .elseif topic
condition is true. When using the .if construct, the .elseif construct is
optional.
.endif Ends .if code block .endif topic
.loop [count] Begins repeatable assembly of a code block; the loop count is .loop topic
determined by the count.
.break [end condition] Ends .loop assembly if end condition is true. When using the .loop .break topic

.endloop

construct, the .break construct is optional.

Ends .loop code block

.endloop topic

Table 5-12. Directives that Define Union or Structure Types

Mnemonic and Syntax

Description

See

.cstruct

Acts like .struct, but adds padding and alignment like that which is
done to C structures

.cstruct topic

72 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995

— REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

Table 5-12. Directives that Define Union or Structure Types (continued)

Mnemonic and Syntax Description See
.cunion Acts like .union, but adds padding and alignment like that which is .cunion topic
done to C unions

.emember Sets up C-like enumerated types in assembly code Section 5.10
.endenum Sets up C-like enumerated types in assembly code Section 5.10
.endstruct Ends a structure definition .cstruct

topic, .struct topic
.endunion Ends a union definition .cunion

topic, .union topic
.enum Sets up C-like enumerated types in assembly code Section 5.10
.union Begins a union definition .union topic
.struct Begins structure definition .struct topic
.tag Assigns structure attributes to a label .cstruct

topic, .struct
topic .union topic

Table 5-13. Directives that Create or Affect Macros

Mnemonic and Syntax Description See
macname .macro [parameter][,... , parameter,] Begin definition of macro named macname .macro topic
.endm End macro definition .endm topic
.mexit Go to .endm Section 6.2
.mlib filename Identify library containing macro definitions .mlib topic
.var Adds a local substitution symbol to a macro's parameter list .var topic

Table 5-14. Directives that Control Diagnostics

Mnemonic and Syntax Description See

.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file

.mmsg string Sends user-defined messages to the output device .mmsg topic

.wmsg string Sends user-defined warning messages to the output device .wmsg topic

Table 5-15. Directives that Perform Assembly Source Debug

Mnemonic and Syntax Description See
.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic
.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc topic

Table 5-16. Directives that Are Used by the Absolute Lister

Mnemonic and Syntax Description See
.setsect Produced by absolute lister; sets a section Chapter 9
.setsym Produced by the absolute lister; sets a symbol Chapter 9

Table 5-17. Directives that Perform Miscellaneous Functions

Mnemonic and Syntax Description See

.cdecls [options ,]" filename "[, " filename2 ", ...] Share C headers between C and assembly code .cdecls topic

.end Ends program .end topic
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 73
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not attempt
to use these directives:

DWAREF directives listed in Section A.1

The .battr directive is used to encode build attributes for the object file.

The .bound directive is used internally.

The .comdat directive is used internally.

The .compiler_opts directive indicates that the assembly code was produced by the compiler, and which
build model options were used for this file.

5.2 Directives that Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

.

.

The .bss directive reserves space in the .bss section for uninitialized variables.

The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

The .retain directive can be used to indicate that the current or specified section must be included in the
linked output. Thus even if no other sections included in the link reference the current or specified section, it
is still included in the link.

The .retainrefs directive can be used to force sections that refer to the specified section. This is useful in the
case of interrupt vectors.

The .sect directive defines an initialized named section and associates subsequent code or data with that
section. A section defined with .sect can contain code or data.

The .text directive identifies portions of code in the .text section. The .text section usually contains executable
code.

The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to

the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

74

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

The example that follows shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values. (Each
section has its own program counter, or SPC.) When code is first placed in a section, its SPC equals 0. When
you resume assembling into a section after other code is assembled, the section's SPC resumes counting as if
there had been no intervening code.

The directives in this example perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the specified
amount of space, and then the assembler resumes assembling code or data into the current section.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 75
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
1 KAk khkhkhkhkhkhkhkhkhhkhhkhkhkhkhhkhhkhkhkhkhhkhkhkhhkhkhkhkhkkhkhkhkhkhkhkhkkhkhrkkhkhhkkhhkxx
2 * Start assembling into the .text section *
3 R R R R R R R R R R R R R R R R I R R I R i
4 00000000 .text
5 00000000 00000001 .word 1,2
00000004 00000002
6 00000008 00000003 .word 3,4
0000000c 00000004
7
8 KAk khkhhkhkhkhkhkhk Ak hhkhkhkhkhkhkhhkhkhkhkhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkkhkhhkkhhkxkx
9 * Start assembling into the .data section *
lo R R R R R I R R R R R R R R R R R I R R R I i
11 00000000 .data
12 00000000 00000009 .word 9, 10
00000004 0000000A
13 00000008 0000000B .word 11, 12
0000000c 0000000OC
14
15 Khkhkkhkhkhkhkhkhkhkkhkhhkhkhkhkhkkhkhkhkhhkhhkhkhkhkhhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkkhhkk*k
16 * Start assembling into a named, *
17 * initialized section, var_defs *
18 khkhkkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkkhkhhkhhkhkhkhkhkkhkhhkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhkkhhkx*k
19 00000000 .sect "var defs"
20 00000000 00000011 .word 17, 18
00000004 00000012
21
22 R I R R R
23 * Resume assembling into the .data section *
24 R IR Ik Ik b b b b Sk b 3
25 00000010 .data
26 00000010 0000000D .word 13, 14
00000014 0000000E
27 00000000 .bss sym, 19 ; Reserve space in .bss
28 00000018 0000000F .word 15, 16 ; Still in .data
0000001c 00000010
29
30 Khkhkkhkhkhkhkhkkhkhkkhkhhkhkhkhkhkkhkhkhkhhkhkhkkhkhkkhkhhkhkhhkhkkhkhkhkhkhkkhkhrkkhkhkhkhkhkkhhkx*k
31 * Resume assembling into the .text section *
32 R I R I
33 00000010 .text
34 00000010 00000005 .word 5, 6
00000014 00000006
35 00000000 usym .usect "xy", 20 ; Reserve space in xy
36 00000018 00000007 .word 7, 8 ; Still in .text
0000001c 00000008
76 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

5.3 Directives that Change the Instruction Type

By default, the assembler begins assembling all instructions in a file as 32-bit instructions. You can change the
default action by using the --code_state=16 assembler (see Section 4.3) option, which causes the assembler to
begin assembling all instructions in a file as 16-bit instructions. You can also use four directives that change how
the assembler assembles instructions starting at the point where the directives occur:

* The .arm directive tells the assembler to begin assembling ARM UAL syntax 32-bit instructions starting at the
location of the directive. The .arm directive performs an implicit word alignment before any instructions are
written to the section to ensure that all 32-bit instructions are word aligned. The .arm directive also resets any
local labels defined. The .arm directive is equivalent to the .state32 directive.

* The .state16 directive causes the assembler to begin assembling non-UAL 16-bit instructions starting at the
location of the directive. The .state16 directive performs an implicit halfword alignment before any instructions
are written to the section to ensure that all 16-bit instructions are halfword aligned. The .state16 directive also
resets any local labels defined.

* The .state32 directive tells the assembler to begin assembling 32-bit instructions starting at the location of
the directive. The .state32 directive performs an implicit word alignment before any instructions are written to
the section to ensure that all 32-bit instructions are word aligned. The .state32 directive also resets any local
labels defined.

* The .thumb directive tells the assembler to begin assembling Thumb or Thumb-2 UAL syntax instructions
starting at the location of the directive. The .thumb directive performs an implicit word alignment before any
instructions are written to the section to ensure that all instructions are word aligned. The .thumb directive
also resets any local labels defined.

5.4 Directives that Initialize Values
Several directives assemble values for the current section. For example:

» The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current section.
These directives are similar to .word, .int, and .long, except that the width of each value is restricted to 8 bits.

» The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one or
more floating-point values and stores them in two consecutive words in the current section. The .double
directive automatically aligns to the double-word boundary.

» The .field and .bits directives place a single value into a specified number of bits in the current word.
With .field, you can pack multiple fields into a single word; the assembler does not increment the SPC until
a word is filled. If a field will not fit in the space remaining in the current word, .field will insert zeros to fill
the current word and then place the field in the next word. The .bits directive is similar but does not force
alignment to a field boundary. See the .field topic and .bits topic.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 77
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that the
SPC does not change for the first three fields (the fields are packed into the same word):

1 00000000 60000000 .field 3, 3
2 00000000 64000000 .field 8, 6
3 00000000 64400000 .field 16, 5
4 00000004 01234000 .field 01234h, 20
5 00000008 00001234 .field 01234h, 32
field 3,3
313029
011
3 bits
field 8,6
31 2827 262524 23 0

[o1 1001000

6 bits

field 16,5
31 2221201918 0

[o011001000[10000

5 bits
field 01234h,20
31302928272625242322212019181716151413 12 0
00000001001T000110100
20 bits

field 01234h,32
31 0

00000O00OOOOOO0COOOOOOO1T0O01T0O0O01T10100

Figure 5-1. The .field Directive

The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

The .half and .short directives place one or more 16-bit values into consecutive 16-bit fields (halfwords) in
the current section. The .half and .short directives automatically align to a short (2-byte) boundary.

The .int, .long, and .word directives place one or more 32-bit values into consecutive 32-bit fields (words) in
the current section. The .int, .long, and .word directives automatically align to a word boundary.

The .string and .cstring directives place 8-bit characters from one or more character strings into the current
section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each consecutive
byte of the current section. The .cstring directive adds a NUL character needed by C; the .string directive
does not add a NUL character.

The .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, and .uword directives are provided as unsigned versions
of their respective signed directives. These directives are used primarily by the C/C++ compiler to support
unsigned types in C/C++.

Note
Directives that Initialize Constants When Used in a .struct/.endstruct Sequence:
The .bits, .byte, .char, .int, .long, .word, .double, .half, .short, .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort
, .uword, .string, .float, and .field directives do not initialize memory when they are part of
a .struct/ .endstruct sequence; rather, they define a member’s size. For more information, see
the .struct/.endstruct directives.

78

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

Figure 5-2 compares the .byte, .char, .short, .int, .long, .float, .double, .word, and .string directives using the
following assembled code:

1 00000000 AA .byte 0AAh, 0BBh
00000001 BB
2 00000002 CC .char 0cCh
3 00000004 ABCD .short 0ABCDh
4 00000006 0000DDDD ~word 0DDDDh
5 0000000a EEEEFFFF .long OEEEEFFFFh
6 0000000e 0000DDDD .int 0DDDDh
7 00000012 3FFFFCBY .float 1.9999
8 00000016 3FFFFFF5 .double 1.99999
0000001a 83A53B8E
9 0000001e 48 .string "Help"
0000001f 65
00000020 6C
00000021 70
Byte Code
7 0
0 [A A | byte 0AAh
7 0
1 byte 0BBh
7 0
15 0
4 AB CD .short 0ABCDh
31 0
6 | 0000 | DDDD | word 0DDDDh
31 0
a | EEEE | FFFF | long OEEEEFFFFh
31 0
e | coooo | pooo | it opooon
31 0
12 | 3FFF | FCBOY | float 1.9999
31 0
16 | 3FFF | FFFE5 I double 1.99999
31 0
1a | 83 A5 | 3 BS8E I
7 0
1e string “Help”
H
4
a
2
I
:
p

Figure 5-2. Initialization Directives

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

79

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

5.5 Directives that Perform Alignment and Reserve Space
These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This ensures that the code following
the directive begins on the byte value that you specify. If the SPC is already aligned at the selected boundary,
it is not incremented. Operands for the .align directive must equal a power of 2 between 2° and 23, inclusive.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 00000000 40000000 .field 2,3

2 00000000 4000000B .field 11, 21

3 .align 2

4 00000004 45 .string "Errcnt"

00000005 72
00000006 72
00000007 63
00000008 6E
00000009 74

5 .align
6 0000000c 04 .byte 4
i ~~===" New SPC = 04h
02h after assembling
2 4 .align 2 directive
Current =7 bytes| |~]
SPC =03h 04h Y

—_——

(a) Result of .align 2

——

S~ S~
08h 'y
curent—""——— | | oo
SPC = 0Ah 1 word New SPC = O_Ch
after assembling
.align directive
0Ch ¥
”—5\\\ 7 ”—5\\\ 7
(b) Result of .align without an argument
Figure 5-3. The .align Directive
80 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

The .bes and .space directives reserve a specified number of bytes in the current section. The assembler
fills these reserved byres with 0s. You can reserve a specified number of words by multiplying the number of
bytes by 4.

— When you use a label with .space, it points to the first byte that contains reserved bits.

— When you use a label with .bes, it points to the /ast byte that contains reserved bits.

Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: .space 17

4 0000001c 0000000F .word 15

5 00000033 Res_2: .bes 20

6 00000034 BA .byte OBAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the space
reserved by .bes.

———

<+— Res_1=08h
17 bytes -
reserved

<+— Res_ 2 =33h
20 bytes -
reserved

~
~———”

Figure 5-4. The .space and .bes Directives

5.6 Directives that Format the Output Listings

These directives format the listing file:

The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off for
certain directives. You can use the .drnolist directive to suppress the printing of the following directives. You
can use the .drlist directive to turn the listing on again.

.asg .eval Jength .mnolist .var
.break felist .mlist .sslist .width
.emsg fenolist .mmsg .ssnolist .wmsg

The source code listing includes false conditional blocks that do not generate code. The .fclist and .fenolist
directives turn this listing on and off. You can use the .fclist directive to list false conditional blocks exactly as
they appear in the source code. You can use the .fcnolist directive to list only the conditional blocks that are
actually assembled.

The .length directive controls the page length of the listing file. You can use this directive to adjust listings for
various output devices.

The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to prevent
the assembler from printing selected source statements in the listing file. Use the .list directive to turn the
listing on again.

The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives turn
this listing on and off. You can use the .mlist directive to print all macro expansions and loop blocks to the
listing, and the .mnolist directive to suppress this listing.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 81
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

» The .option directive controls certain features in the listing file. This directive has the following operands:
turns on listing of all directives and data, and subsequent expansions, macros, and blocks.

limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, M, T, and W directives (turns off the limits of B, H, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

X s 4 ®m oz =T ®w >»

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing by invoking the assembler
with the --asm_cross_reference_listing option (see Section 4.14).

» The .page directive causes a page eject in the output listing.

» The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives turn this
listing on and off. You can use .sslist to print all substitution symbol expansions to the listing and .ssnolistto
suppress this listing. These directives are useful for debugging the expansion of substitution symbols.

* The .tab directive defines tab size.

* The .title directive supplies a title that the assembler prints at the top of each page.

» The .width directive controls the page width of the listing file, which you may want to adjust for various output
devices.

5.7 Directives that Reference Other Files
These directives supply information for or about other files that can be used in the assembly of the current file:

* The .copy and .include directives tell the assembler to begin reading source statements from another file.
When the assembler finishes reading the source statements in the copy/include file, it resumes reading
source statements from the current file. The statements read from a copied file are printed in the listing file;
the statements read from an included file are not printed in the listing file.

* The .def directive identifies a symbol that is defined in the current module and that can be used in another
module. The assembler includes the symbol in the symbol table.

* The .global directive declares a symbol external so that it is available to other modules at link time. (For more
information about global symbols, see Section 2.6.1). The .global directive does double duty, acting as a .def
for defined symbols and as a .ref for undefined symbols. The linker resolves an undefined global symbol
reference only if the symbol is used in the program. The .global directive declares a 16-bit symbol.

+ The .mlib directive supplies the assembler with the name of an archive library that contains macro definitions.
When the assembler encounters a macro that is not defined in the current module, it searches for it in the
macro library specified with .mlib.

* The .ref directive identifies a symbol that is used in the current module but is defined in another module. The
assembler marks the symbol as an undefined external symbol and enters it in the object symbol table so the
linker can resolve its definition. The .ref directive forces the linker to resolve a symbol reference.

» The .symdepend directive creates an artificial reference from the section defining the source symbol name
to the destination symbol. The .symdepend directive prevents the linker from removing the section containing
the destination symbol if the source symbol section is included in the output module.

* The .weak directive identifies a symbol that is used in the current module but is defined in another module. It
is equivalent to the .ref directive, except that the reference has weak linkage.

5.8 Directives that Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble conditional
blocks of code:

82 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

« The .ifl.elseifl.elsel/.endif directives tell the assembler to conditionally assemble a block of code according to the evaluation of an

expression.
.if condition marks the beginning of a conditional block and assembles code if the .if condition is true.
[-elseif condition] marks a block of code to be assembled if the .if condition is false and the .elseif condition is true.
.else marks a block of code to be assembled if the .if condition is false and any .elseif conditions are false.
.endif marks the end of a conditional block and terminates the block.

« The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code according to the evaluation of an

expression.
.loop [count] marks the beginning of a repeatable block of code. The optional expression evaluates to the loop count.
.break [end tells the assembler to assemble repeatedly when the .break end condition is false and to go to the code
condition] immediately after .endloop when the expression is true or omitted.
.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more information about relational
operators, see Section 4.9.2.

5.9 Directives that Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union types of
the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is more
easily accessed. These directives do not allocate space for any object. Objects must be separately allocated,
and the .tag directive must be used to assign the type to the object.

type .struct ; structure tag definition
X .int
Y .int

T LEN .endstruct

COORD .tag type

COORD .space T_LEN
LDR RO, COORD.Y

declare COORD (coordinate)
actual memory allocation
load member Y of structure
COORD into register RO.

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and padding
as if the structure were defined in analogous C code. This allows structures to be shared between C and
assembly code. See Chapter 13. For .struct and .union, element offset calculation is left up to the assembler, so
the layout may be different than .cstruct and .cunion.

5.10 Directives that Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names to
refer to compile-time constants. The types created are analogous to the enum type of the C language. This
allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.
5.11 Directives that Define Symbols at Assembly Time
Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

* The .asg directive assigns a character string to a substitution symbol. The value is stored in the substitution

symbol table. When the assembler encounters a substitution symbol, it replaces the symbol with its character

string value. Substitution symbols created with .asg can be redefined.

.asg "10, 20, 30, 40", coefficients
; Assign string to substitution symbol.
.byte coefficients
; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes in current section.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

83

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.

.

.

The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the symbol
with its character string value. Substitution symbols created with .define cannot be redefined.

The .eval directive evaluates a well-defined expression, translates the results into a character string, and
assigns the character string to a substitution symbol. This directive is most useful for manipulating counters:

.asg 1, x ;o x =1

.loop ; Begin conditional loop.

.byte x*10h ; Store value into current section.
.break x =4 ; Break loop if x = 4.

.eval x+1, x ; Increment x by 1.

.endloop ; End conditional loop.

The .label directive defines a special symbol that refers to the load-time address within the current section.
This is useful when a section loads at one address but runs at a different address. For example, you may
want to load a block of performance-critical code into slower off-chip memory to save space and move the
code to high-speed on-chip memory to run. See the .label topic for an example using a load-time address
label.

The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table and
cannot be redefined; for example:

The .unasg directive turns off substitution symbol assignment made with .asg.

The .undefine directive turns off substitution symbol assignment made with .define.

The .var directive allows you to use substitution symbols as local variables within a macro.

5.12 Miscellaneous Directives

These directives enable miscellaneous functions or features:

.

The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with the
compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between C and assembly code.

The .end directive terminates assembly. If you use the .end directive, it should be the last source statement of
a program. This directive has the same effect as an end-of-file character.

The .group, .gmember, and .endgroup directives define an ELF group section to be shared by several
sections.

The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a decimal
digit. They are defined when they appear in the label field. Local labels are temporary labels that can be used
as operands for jump instructions. The .newblock directive limits the scope of local labels by resetting them
after they are used. See Section 4.8.3 for information on local labels.

These three directives enable you to define your own error and warning messages:

The .emsg directive sends error messages to the standard output device. The .emsg directive generates
errors in the same manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg directive
functions in the same manner as the .emsg and .wmsg directives but does not set the error count or the
warning count. It does not affect the creation of the object file.

The .wmsg directive sends warning messages to the standard output device. The .wmsg directive functions
in the same manner as the .emsg directive but increments the warning count rather than the error count. It
does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

84

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

5.13 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one directive
per topic. Related directives (such as .if/.else/.endif), however, are presented together in one topic.

.align
Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2 , although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The size in bytes must
equal a power of 2; the value must be between 1 and 32,768, inclusive. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary

2 aligns SPC to halfword boundary

4 aligns SPC to word boundary

8 aligns SPC to doubleword boundary

128 aligns SPC to page boundary

Using the .align directive has two effects:

» The assembler aligns the SPC on an x-byte boundary within the current section.

» The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a
default .align.

1 00000000 04 .byte 4
2 .align 2
3 00000002 45 .string "Errorcnt"
00000003 72
00000004 72
00000005 6F
00000006 72
00000007 63
00000008 6F
00000009 74
4 .align
5 0000000c 60000000 .field 3,3
6 0000000c 6A000000 .field 5,4
7 .align 2
8 0000000c 62006000 .field 3,3
9 .align 8
10 00000010 50000000 .field 5,4
11 .align
12 00000014 04 .byte 4
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 85
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg " character string "', substitution symbol
.define " character string "', substitution symbol

.eval expression , substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a constant
value (which cannot be redefined) to a symbol, .asg assigns a character string (which can
be redefined) to a substitution symbol.

+ The assembler assigns the character string to the substitution symbol.

+ The substitution symbol must be a valid symbol name. The substitution symbol is up to
128 characters long and must begin with a letter. Remaining characters of the symbol
can be a combination of alphanumeric characters, the underscore (_), and the dollar

sign ($).

The .define directive functions in the same manner as the .asg directive, except

that .define disallows creation of a substitution symbol that has the same name as

a register symbol or mnemonic. It does not create a new symbol nhame space in

the assembler, rather it uses the existing substitution symbol name space. The .define
directive is used to prevent corruption of the assembly environment when converting C/C+
+ headers. See Chapter 13 for more information about using C/C++ headers in assembly
source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the expression and assigns the string
value of the result to the substitution symbol. The .eval directive is especially useful as a
counter in .loop/.endloop blocks.

» The expression is a well-defined alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an absolute
expression.

« The substitution symbol must be a valid symbol name. The substitution symbol is up to
128 characters long and must begin with a letter. Remaining characters of the symbol
can be a combination of alphanumeric characters, the underscore (_), and the dollar

sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

86 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.asg/.define/.eval (continued)

Assign a Substitution Symbol

Example This example shows how .asg and .eval can be used.

1 .sslist ; show expanded sub. symbols

2 ; using .asg and .eval

3

4 .asg R13, STACKPTR

5 .asg &, AND

6

7 00000000 E28DD018 ADD STACKPTR, STACKPTR, #280 AND 255
ADD R13, R13, #280 & 255

00000004 E28DD018 ADD STACKPTR, STACKPTR, #280 & 255
ADD R13, R13, #280 & 255

(o)

10 .asg 0, x
11 .loop 5
12 .eval x+1, x
13 .word x
14 .endloop
.eval x+1, x
.eval 0+1, x
00000008 00000001 .word x
.word 1
.eval x+1, x
.eval 1+1, x
0000000c 00000002 .word x
.word 2
.eval x+1, x
.eval 2+1, x
00000010 00000003 .word x
.word 3
.eval x+1, x
.eval 3+1, x
00000014 00000004 .word x
.word 4
.eval x+1, x
.eval 4+1, x
00000018 00000005 .word x
.word 5

SR S 2 SR R e 2 e e e e e e

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 87
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.asmfunc/.endasmfunc

Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code sections
to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The symbol is a label that must appear in the label field.
The .asmfunc directive has an optional parameter, stack_usage, which indicates that the
function may use up to num bytes.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the assembly source generates debug information for the user_func
section.
1 00000000 .sect ".text"
2 .global user_ func
3 .global printf
4
5 .align 4
6
7 00000000 .state32
8
9 user_ func: .asmfunc
10 00000000 E92D4008 STMFD SP!, {A4, LR}
11 00000004 E28F000C ADR A1, SL1
12 00000008 EBFFFFEC! BL printf
13 0000000c E3A00000 MOV Al, #0
14 00000010 E8BD4008 LDME'D SpP!, {A4, LR}
15 00000014 E12FFF1E BX IR
16 .endasmfunc
17
18 .align 4
19 00000018 48 SL1: .string "Hello World!",10,0
00000019 65
0000001a 6C
0000001b 6C
0000001c 6F
0000001d 20
0000001e 57
0000001f 6F
00000020 72
00000021 6C
00000022 64
00000023 21
00000024 0A
00000025 00
88 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.bits

Initialize Bits

Syntax .bits value], size in bits]

Description The .bits directive places a value into consecutive bits of the current section.

The .bits directive is similar to the .field directive (see .field topic). However, the .bits
directive does not force the value to be aligned to a field boundary. If the .bits directive is
followed by a different space-creating directive, the SPC is aligned to an appropriate value
for the directive that follows.

This directive has two operands:

+ The value is a required parameter; it is an expression that is evaluated and placed in
the current section at the current location. The value must be absolute.

» The size in bits is an optional parameter; it specifies a number from 1 to 32, which
is the number of bits in the value. The default size is 32 bits. If you specify a value
that cannot fit in size in bits, the assembler truncates the value and issues a warning
message. For example, .bits 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

**% WARNING! line 21: W0001l: Field value truncated to 1
.bits 3, 1

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 89
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com

.bss
Reserve Space in the .bss Section

Syntax .bss symbol , size in bytes|, alignment]

Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

This directive is similar to the .usect directive (see .usect topic); both simply reserve space

for data and that space has no contents. However, .usect defines additional sections that

can be placed anywhere in memory, independently of the .bss section.

» The symbol is a required parameter. It defines a symbol that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

+ The size in bytes is a required parameter; it must be an absolute constant expression.
The assembler allocates size bytes in the .bss section. There is no default size.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates must be set to a
power of 2 between 20 and 23, inclusive. If the SPC is already aligned at the specified
boundary, it is not incremented.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for two variables, TEMP and ARRAY.
The symbol TEMP points to four bytes of uninitialized space (at .bss SPC = 0). The
symbol ARRAY points to 100 bytes of uninitialized space (at .bss SPC = 04h). Symbols
declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared external.

l Ak hkkhkhkkhhkkhkhhkhhkhhkhhhkhkhkhhkhkhkhkhhkhkhkkhhkhkhhkhkhkhkhkhkhkkhkhkhhhkhr*k
2 ** Start assembling into the .text section. **
3 khkkhkkhkkhhhhxx
4 00000000 .text
5 00000000 E3A00000 MOV RO, #0
6
7 hAhkhkhkhkkhhkkhkhhkhkhkhhkhhhkhhhhrkhhkhkhkhkhkhrkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkr*k
8 wx Allocate 4 bytes in .bss for TEMP. wx
9 dkhkkhkkhkkhkkhkkhkkhhhkxx
10 00000000 Var 1: .bss TEMP, 4
11
12 dkhkkhkkhkkhkkhkhkkhhhhxx
13 o Still in .text. o
14 R R R R R S
15 00000004 E2801056 ADD R1, RO, #56h
16 00000008 E0020091 MUL R2, R1, RO
17
18 khkkhkkhkkhkkhkkhkkhkhkkhhhhxx
19 ** Allocate 100 bytes in .bss for the symbol **
20 *x named ARRAY. wx
21 dkhkkhkkhkkhkhkkhhhhxx
22 00000004 .bss ARRAY, 100, 4
23
24 dkhkkhkkhkkhkkhkkhkkhhhkxx
25 K Assemble more code into .text. *x
26 R R R R R
27 0000000c E1AOF0OE MoV PC, LR
28
29 R R R R
30 *x Declare external .bss symbols. *x
31 hAhkhkhkhkkhhkkhkhhkhhhhkhhhkhhhhkhhkhkhhkhkhrkhhkhkhhkhkhrhkhrkhkhkhkhkhhhkr*k
32 .global ARRAY, TEMP
33 .end
90 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.bytel.ubyte/.char/.uchar

Initialize Byte
Syntax .byte value/, ..., value,]
.ubyte value/, ... , value,]
.char value/, ... , value,]
.uchar valueq|, ... , value,]

Description The .byte, .ubyte, .char, and .uchar directives place one or more values into consecutive

bytes of the current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed nhumber

* A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second

byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The

assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive bytes
in memory with .char. The label STRX has the value Oh, which is the location of the first
initialized byte. The label STRY has the value 6h, which is the first byte initialized by
the .char directive.

1 00000000 .space 100h

2 00000100 0A STRX .byte 10, -1, "abc", 'a'
00000101 FF
00000102 61
00000103 62
00000104 63
00000105 61

3 00000106 08 STRY .char 8, -3, "def", 'b'
00000107 FD
00000108 64
00000109 65
0000010a 66
0000010b 62

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 91

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.cdecls

Share C Headers Between C and Assembly Code

Syntax Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]
Syntax Multiple Lines:
.cdecls [options]
%of
r* */
[* C/C++ code - Typically a list of #includes and a few defines */
r* */

%}

Description The .cdecls directive allows programmers in mixed assembly and C/C++ environments to
share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations
cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code; such as calling functions, allocating space, and
accessing structure members; using the equivalent assembly mechanisms. While function
and variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how
the .cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the opposite
of the C option.

NOLIST Do not include the converted assembly code in any listing file generated for
the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of the
NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %{, up to the closing block indicator %}, is treated
as C/C++ source and processed. Ordinary assembler processing then resumes on the
line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into assembly
language. Much of C language syntax, including function and variable definitions as
well as function-like macros, is not supported and is ignored during the conversion.

92 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.cdecls (continued)

Example

Share C Headers Between C and Assembly Code

However, all of what traditionally appears in C header files is supported, including function
and variable prototypes; structure and union declarations; non-function-like macros;
enumerations; and #defines.

The resulting assembly language is included in the assembly file at the point of the .cdecls
directive. If the LIST option is used, the converted assembly statements are printed in the
listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included.
The assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is not
inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.
C header file:

#define WANT_ID 10

#define NAME "John\n"

extern int a variable;

extern float cvt integer (int src);

struct myCstruct { int member a; float member b; };
enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:

.cdecls C,LIST, "myheader.h"
size: .int $$sizeof (myCstruct)
aoffset: .int myCstruct.member_ a
boffset: .int myCstruct.member b
okvalue: .int status_enum.OK
failval: .int status_enum.FAILED

.if $$defined (WANT_ ID)

id .cstring NAME

.endif

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 93

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS

INSTRUMENTS

www.ti.com

.cdecls (continued)

Share C Headers Between C and Assembly Code

Listing File:
1 .cdecls C,LIST, "myheader.h"
A 1 e
A 2 ; Assembly Generated from C/C++ Source Code
A 3 ;
A 4
A 5 ; =========== MACRO DEFINITIONS ===========
A 6 .define "10",WANT ID
A 7 .define """John\n""",NAME
A 8
A 9 ; =========== TYPE DEFINITIONS ===========
A 10 status_enum .enum
A 11 00000001 OK .emember 1
A 12 00000100 FAILED .emember 256
A 13 00000000 RUNNING .emember 0
A 14 .endenum
A 15
A 16 myCstruct .struct 0,4
17 ; struct size=(8 bytes|64 bits), alignment=4
A 18 00000000 member a .field 32
19 ; int member a - offset 0 bytes, size (4 bytes|32
bits)
A 20 00000004 member b .field 32
21 ; float member b - offset 4 bytes, size (4 bytes|32
bits)
A 22 00000008 .endstruct
23 ; final size=(8 bytes|64 bits)
A 24
A 25 ; =========== EXTERNAL FUNCTIONS ===========
A 26 .global cvt integer
A 27
A 28 ; =========== EXTERNAL VARIABLES ===========
A 29 .global _a variable
2 00000000 00000008 size: .int $$sizeof (myCstruct)
3 00000004 00000000 aoffset: .int myCstruct.member a
4 00000008 00000004 boffset: .int myCstruct.member b
5 0000000c 00000001 okvalue: .int status_enum.OK
6 00000010 00000100 failval: .int status_enum.FAILED
7 .if $$defined (WANT ID)
8 00000014 0000004A id .cstring NAME
00000015 0000006F
00000016 00000068
00000017 0000006E
00000018 0000000A
00000019 00000000
9 .endif

94

ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.common

Syntax

Description

Create a Common Symbol

.common symbol , size in bytes|[, alignment]

.common symbol , structure tagl, alignment]

The .common directive creates a common symbol in a common block, rather than placing
the variable in a memory section.

The benefit of common symbols is that generated code can remove unused variables that
would otherwise increase the size of the .bss section. (Uninitialized variables of a size
larger than 32 bytes are separately optimized through placement in separate subsections
that can be omitted from a link.)

This directive is used by the compiler when the --common option is enabled (the default),
which causes uninitialized file scope variables to be emitted as common symbols. This
optimization happens for C/C++ code by default unless you use the --common=off
compiler option.

» The symbol is a required parameter. It defines a name for the symbol created by this
directive. The symbol nhame must correspond to the variable that you are reserving
space for.

« The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the section used for common symbols. There is no
default size.

» A structure tag can be used in place of a size to specify a structure created with
the .struct directive. Either a size or a structure tag is required for this argument.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary must be set to a power of 2
between 20 and 215, inclusive. If the SPC is already aligned at the specified boundary,
it is not incremented.

Common symbols are symbols that are placed in the symbol table of an ELF object file.
They represent an uninitialized variable. Common symbols do not reference a section.
(In contrast, initialized variables need to reference a section that contains the initialized
data.) The value of a common symbol is its required alignment; it has no address and
stores no address. While symbols for an uninitialized common block can appear in
executable object files, common symbols may only appear in relocatable object files.
Common symbols are preferred over weak symbols. See the section on the "Symbol
Table" in the System V ABI specification for more about common symbols.

When object files containing common symbols are linked, space is reserved in an
uninitialized section (.common) for each common symbol. A symbol is created in place
of the common symbol to refer to its reserved location.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 95

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy " filename "

.include " filename "

The .copy and .include directives tell the assembler to read source statements from
a different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:

1. Stops assembling statements in the current source file

2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
quotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/file1.asm). If you do not specify a
full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

For more information about the --include_path option and TI_ ARM_A DIR, see Section
4.5. For more information about TI_ARM_C_DIR, see the ARM Optimizing C/C++
Compiler User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code to
identify the level of copying. A indicates the first copied file, B indicates a second copied
file, etc.

In this example, the .copy directive is used to read and assemble source statements from
other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte.asm ** In word.asm

.copy "byte.asm" .byte 32,1+ 'A' .word OABCDh, 56qg
** Back in original file .copy "word.asm"

.string "done" ** Back in byte.asm
.byte 67h + 3qg

96

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.copyl/.include (continued)

Copy Source File
Listing file:
1 00000000 .space 29
2 .copy "byte.asm"
A 1 ** In byte.asm
A 2 0000001d 20 .byte 32,1+ 'A'
0000001e 42
A 3 .copy "word.asm"
B 1 ** In word.asm
B 2 00000020 0000ABCD .word OABCDh, 56g
00000024 0000002E
A 4 ** Back in byte.asm
A 5 00000028 6A .byte 67h + 3g
3
4 ** Back in original file
5 00000029 64 .string "done"
0000002a 6F
0000002b 6E
0000002c 65
Example 2 In this example, the .include directive is used to read and assemble source statements

from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the

listing file.
include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
.space 29 ** In byte2.asm ** In word2.asm
.include "byte2.asm" .byte 32,1+ 'A' .word OABCDh, 569
** Back in original file .include "word2.asm"
.string "done" ** Back in byte2.asm
.byte 67h + 3qg
Listing file:
1 00000000 .space 29
2 .include "byte2.asm"
3
4 ** Back in original file

5 00000029 64 .string "done"
0000002a 6F
0000002b 6E
0000002c 65

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 97
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.cstruct/.cunion/.endstruct/.endunion/.tag

Syntax

Description

Declare C Structure Type

[stag] .cstruct|.cunion [expr]

[memg] element [expro]
[mem4] element [expry]

[mem,] .tag stag [expra]
[memy] element [expra]
[size] .endstruct|.endunion

label .tag stag

The .cstruct and .cunion directives have been added to support ease of sharing

of common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler for
C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. lts value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the global
symbol table with the value of their absolute offset from the top of the structure. The
stag is optional for .struct, but is required for .tag.

» The element is one of the following
descriptors: .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and .field.
All of these except .tag are typical directives that initialize memory. Following a .struct
directive, these directives describe the structure element's size. They do not allocate
memory. A .tag directive is a special case because stag must be used (as in the
definition of stag).

» The expris an optional expression indicating the beginning offset of the structure. The
default starting point for a structure is 0.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The size is an optional label for the total size of the structure.

98 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.cstruct/.cunion/.endstruct/.endunion/.tag (continued)

Declare C Structure Type

Example This example illustrates a structure in C that will be accessed in assembly code.
typedef struct STRUCT1
5 int i0; /* offset 0 */
; short sO; /* offset 4 */
; } structl; /* size 8, alignment 4 */
; typedef struct STRUCT2
P structl stl; /* offset 0 */
; short sl1; /* offset 8 */
; } struct2; /* size 12, alignment 4 */
; The structure will get the following offsets once the C compiler lays out the
structure
; elements according to the C standard rules:
; offsetof (structl, i0) = 0
; offsetof (structl, s0) = 4
; sizeof (structl) = 8
; offsetof (struct2, sl) =0
; offsetof (struct2, il) = 8
; sizeof (struct2) =12
; Attempts to replicate this structure in assembly using the .struct/.union
directives will not
; create the correct offsets because the assembler tries to use the most
compact arrangement:
structl .struct
i0 .int ; bytes 0-3
s0 .short; bytes 4-5
structllen .endstruct ; size 6, alignment 4
struct2 .struct
stl .tag structl ; bytes 0-5
sl .short ; bytes 6-7
endstruct2 .endstruct ; size 8, alignment 4
.sect "datal"
.word structl.iO ; 0
.word structl.sO ;4
.word structllen ;6
.sect "data2"
.word struct2.stl ;0
.word struct2.sl ;6
.word endstruct2 ; 8
; The .cstruct/.cunion directives calculate offsets in the same manner as the C
compiler. The resulting
; assembly structure can be used to access the elements of the C structure.
Compare the difference
; in the offsets of those structures defined via .struct above and the offsets
for the C code.
cstructl .cstruct
i0 .int ; bytes 0-3
s0 .short; bytes 4-5
cstructllen .endstruct ; size 8, alignment 4
cstruct2 .cstruct
stl .tag cstructl ; bytes 0-7
sl .short; bytes 8-9
cendstruct2 .endstruct ; size 12, alignment 4
.sect "data3"
.word cstructl.i0O, structl.iO ;0
.word cstructl.s0, structl.sO ; 4
.word cstructllen, structllen ; 8
.sect "data4"
.word cstruct2.stl, struct2.stl ; O
.word cstruct2.sl, struct2.sl ; 8
.word cendstruct2, endstruct2 ; 12
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 99

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Assembler Directives www.ti.com
.data

Assemble Into the .data Section
Syntax .data
Description The .data directive sets .data as the current section; the lines that follow will be

assembled into the .data section. The .data section is normally used to contain tables

of data or preinitialized variables.

For more information about sections, see Chapter 2.
Example In this example, code is assembled into the .data and .text sections.

00000000
00000000

O JoyUd WN -

10 00000000

12 00000000

17 000000cc
18 000000cc

21 00000040

27 00000004
28 00000004
29 00000008
30 0000000c
31 00000010

36 000000d1

00000000
E3A00000

FFFFFFFF

FEF

oooooocc"
E51F100C
E5912000
E0802002

R R R R R S

xR Reserve space in .data. *x
khkkhkkhkkhkkhkkhkkhhhkhx
.data

.space 0CCh

R R R R S

*x Assemble into .text. K
Ak hkhkhkhkkhkhhkhkhkhkhkkhhhkhhkhkhkhhkhkhhkhkhkhkrkhkhkhkhkhkhkrkhhkhkhhkhdxkhkxk*

.text ; Constant into .data
INDEX .set 0

MOV RO, #INDEX
Ak Ak hkhkkhkhkkhkhhkhkhkhhkhhhkhhhkhkhkhhhhkhkrkhhkhkhkhkhkhrhhrkhkhhhdkhxkx*k
*x Assemble into .data. *x
hhkhkhkhkhkhkhhhhkhkhkhhkhkhhrhhhhkhkhhhkhkhrhrrhhhkhkkhkhkhkhhrhhhkhkhkhk*k
Table: .data

.word -1 ; Assemble 32-bit

; constant into .data.

.byte OFFh ; Assemble 8-bit
; constant into .data.

dkhkkhkhkhkkhkkhhhhhkx

*x Assemble into .text. *x
R R R R R R
.text
con: .field Table, 32
LDR R1, con
LDR R2, [R1]
ADD R2, RO, R2

R R R R

** Resume assembling into the .data section **

** at address OFh. E
dAhhkhkhkkhkhhkhhkhkhkhhkhkhhkhhhkhkkhhhkhhhkrkhhkhhkhkhkhrhhrkhkhhhhkhxkkx*k
.data

100 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives

.double
Initialize Double-Precision Floating-Point Value

Syntax .double value; |, ..., value,)

Description The .double directive places the IEEE double-precision floating-point representation of
one or more floating-point values into the current section. Each value must be an absolute
constant expression with an arithmetic type or a symbol equated to an absolute constant
expression with an arithmetic type. Each constant is converted to a floating-point value in
IEEE double-precision 64-bit format. Double-precision floating point constants are aligned
to a double word boundary.

The 64-bit value is stored in the format shown in Figure 5-5.
[SEEEEEEEEEEEMMMMMMMMMMMMMMMMMM M M|
31 20 0
|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl
31 0
Legend: S =sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)
Figure 5-5. Double-Precision Floating-Point Format
When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.
Example This example shows the .double directive.
1 00000000 C5308B2A .double -2.0e25
00000004 2C280291
2 00000008 40180000 .double 6
0000000c 00000000
3 00000010 407C8000 .double 456
00000014 00000000
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 101

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS

INSTRUMENTS

www.ti.com

.drlist/.drnolist

Control Listing of Directives
Syntax .drlist
.drnolist
Description Two directives enable you to control the printing of assembler directives to the listing file:
The .drlist directive enables the printing of all directives to the listing file.
The .drnolist directive suppresses the printing of the following directives to the listing file.
The .drnolist directive has no affect within macros.
+ .asg « .fenolist * .ssnolist
* .break « .mlist « var
*« .emsg * .mmsg ¢ .wmsg
« .eval * .mnolist
« felist + .sslist
By default, the assembler acts as if the .drlist directive had been specified.
Example This example shows how .drnolist inhibits the listing of the specified directives.
Source file:
.asg 0, x
.loop 2
.eval x+1, x
.endloop
.drnolist
.asg 1, x
.loop 3
.eval x+1, x
.endloop
Listing file:
3 .asg 0, x
4 .loop 2
5 .eval x+1, x
6 .endloop
1 .eval 0+1, x
1 .eval 1+1, x
7
8 .drnolist
12 .loop 3
13 .eval x+1, x
14 .endloop
102 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.elfsym
ELF Symbol Information
Syntax .elfsym name , SYM_SIZE(size)
Description The .elfsym directive provides additional information for symbols in the ELF format. This

directive is designed to convey different types of information, so the type(value) syntax is
used for each type. Currently, this directive supports only the SYM_SIZE type.

Note

SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.
.sect ".examp"
.align 4
.elfsym ex sym, SYM SIZE(4)
ex_sym:
.word 0
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 103

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.emsg/.mmsg/.wmsg

Define Messages

Syntax .emsg string
.mmsg string
.wmsg string
Description These directives allow you to define your own error and warning messages. When
you use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.
The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.
The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.
The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the error
count, however. It does not prevent the assembler from producing an object file.
Example This example sends the message ERROR -- MISSING PARAMETER to the standard
output device.
Source file:
MSG_EX .macro parml
Lif $$symlen (parml) = 0
.emsg "ERROR -- MISSING PARAMETER"
.else
ADD parml, r7, r8
.endif
.endm
MSG_EX RO
MSG_EX
Listing file:
1 MSG_EX .macro parml
2 Jif $$symlen (parml) = 0
3 .emsqg "ERROR -- MISSING PARAMETER"
4 .else
5 ADD parml, r7, r8
6 .endif
7 .endm
8
9 00000000 MSG_EX RO
1 Jif $$symlen (parml) = 0
1 .emsqg "ERROR -- MISSING PARAMETER"
1 .else
1 00000000 E0870008 ADD RO, r7, r8
1 .endif
10
11 00000004 MSG_EX
1 Jif $$symlen (parml) = 0
1 .emsqg "ERROR -- MISSING PARAMETER"
*HxKxxx USER ERROR ***** — : ERROR —-- MISSING PARAMETER
1 .else
1 ADD parml, r7, r8
1 .endif
1 Error, No Warnings
104 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.emsg/.mmsg/.wmsg (continued)

Define Messages

In addition, the following messages are sent to standard output by the assembler:

%* ERROR! line 11: FHxxkx JSER ERROR *** — : ERROR —-- MISSING PARAMETER
.emsqg "ERROR -- MISSING PARAMETER" 11

1 Error, No Warnings

Errors in source - Assembler Aborted

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 105
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.end
End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when you
are debugging and you want to stop assembling at a specific point in your code.
Note
Ending a Macro
Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.
Example This example shows how the .end directive terminates assembly. Any source statements

that follow the .end directive are ignored by the assembler.

Source file:
START: .space 300
TEMP .set 15
.bss LOC1, 48h
LOCL n .word LOC1
MVN RO, RO
ADD RO, RO, #TEMP
LDR R4, LOCL n
STR RO, [R4]
.end
.byte 4
.word CCCh
Listing file:
1 00000000 START: .space 300
2 0000000F TEMP .set 15
3 00000000 .bss LOC1l, 48h
4 0000012c 00000000- LOCL n .word LOC1
5 00000130 E1E00000 MVN RO, RO
6 00000134 E280000F ADD RO, RO, #TEMP
7 00000138 E51F4014 LDR R4, LOCL n
8 0000013c E5840000 STR RO, [R4]
9 .end

106 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Assembler Directives

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist

fcnolist

Two directives enable you to control the listing of false conditional blocks:

The .fclist directive allows the listing of false conditional blocks (conditional blocks that do

not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive had

been used.

This example shows the assembly language and listing files for code with and without the
conditional blocks listed.

Source file:
AAA .set 1
BBB .set 0
.fclist
Jif AAA
ADD RO, RO, #1024
.else
ADD RO, RO, #1024*10
.endif
.fcnolist
Jif AAA
ADD RO, RO, #1024
.else
ADD RO, RO, #1024*10
.endif
Listing file:
ARM
1 00000001 AAA .set 1
2 00000000 BBB .set 0
3 .fclist
4
5 Jif AAA
6 00000000 E2800BO1 ADD RO, RO,
7 .else
8 ADD RO, RO,
9 .endif
10
11 .fcnolist
12
14 00000004 E2800BO1 ADD RO, RO,

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools 107

v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

field

Syntax

Description

Initialize Field

field value|, size in bits]

The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

+ The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

» The size in bits is an optional value from 1 to 32, which is the number of bits in the
field. The default size is 32 bits. If you specify a value that cannot fit in size in bits, the
assembler truncates the value and issues a warning message. For example, .field 3,1
causes the assembler to truncate the value 3 to 1 and print this message:

**% WARNING! line 21: W0001l: Field value truncated to 1
.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current word. Fields are packed starting at the most significant part of the word, moving
toward the least significant part as more fields are added. If the assembler encounters a
field size that does not fit into the current word, it writes out the word, and begins packing
fields into the next word.

The .field directive is similar to the .bits directive (see the .bits topic). However, the .bits
directive does not force alignment to a field boundary and does not automatically
increment the SPC when a word boundary is reached.

Use the .align directive to force the next .field directive to begin packing a new word.
If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

108 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

field (continued)

Initialize Field

Example This example shows how fields are packed into a word. The SPC does not change until a
word is filled and the next word is begun.
l KA AR KKK
2 o Initialize a 14-bit field. *x*
3 R R
4 00000000 2AF00000 .field O0ABCh, 14
5
6 R R R
7 o Initialize a 5-bit field o
8 *x in the same word. *x
9 R R R R
10 00000000 2AF14000 I, F: .field O0ah, 5
11
12 R R R R
13 K Write out the word. K
14 hhkhkhkhkhkhkhkhhhkhkhkhhkhkhkdrhrhhhkhkkhkhhkhhhrhhkhkhkhk*k
15 .align 4
16
17 hhkhkhkhkhkhkhkhhhkhkhkhhkhkhrdrhrhhhkkhkkhkhhkhhhhhkhkhkhk*k
18 il Initialize a 4-bit field. il
19 ** This fields starts a new word. **
20 hhkhkhkhkhkhkhhhhkhkhkhhkhkhhrhrhkhhkhkkhkhhkhhhhhkhkhkhk*k
21 00000004 C0000000 x: .field 0Ch, 4
22
23 hhkhkhkhkhkhkhhhhkhkhkhhkhkhhrhrhkhhkhkkhkhhkhhhhhkhkhkhk*k
24 *x 32-bit relocatable field Hx
25 K in the next word. wx
26 hhkhkhkhkhkhkhhhhkhkhkhhkhkhhrhrhkhhkhkkhkhhkhhhhhkhkhkhk*k
27 00000008 00000004" .field x
28
29 hhkhkhkhkhkhhkhhhkhkhkhhkhkhkdrhrhhhkhkkhkhhhkhrhhhkhkhkhk*k
30 wx Initialize a 32-bit field. *x
31 KA AKX K KK
32 0000000c 00004321 .field 04321h, 32

Figure 5-6 shows how the directives in this example affect memory.

Word Code
0 field OABCh, 14
3130292827262524232221201918 0

[00101010111100 |

14-bit field
0 field 00Ah, 5
31 181716 1514 13 0
[0o0101010111100[01010 |
%/—/ .
5-bit field -align 4
1 field 00Ch, 5
31302928 0
[1100 |
——
4-bit field
2 field x
31 0

|O 000000O0OO0COOOOOOOOOOOOOOOOOOOOGO 1 0|

3 field 04321, 32
31 0

|0 000O0OO0O0OOOOOOOOOOOOOTOOOO1T1TOOOO 1|

Figure 5-6. The .field Directive

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 109
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

float

Initialize Single-Precision Floating-Point Value

Syntax float value], ..., value,]

Description The .float directive places the IEEE single-precision floating-point representation of a
single floating-point constant into a word in the current section. The value must be an
absolute constant expression with an arithmetic type or a symbol equated to an absolute
constant expression with an arithmetic type. Each constant is converted to a floating-point
value in IEEE single-precision 32-bit format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second, and
least significant byte of fraction third, in the format shown in Figure 5-7.

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMM MM M
31 23 0

value = (_1)SX (10 + mantissa) X (z)exponent-127

Legend: S =sign (1 bit)

E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

Figure 5-7. Single-Precision Floating-Point Format

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:

1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123

110 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol4|, ... , symbol,]
.def symbol4|, ... , symbol,]

.ref symbol[, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears as
a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide
a similar multiple-definition error for local symbols.) The .ref directive always creates a
symbol table entry for a symbol, whether the module uses the symbol or not; .global,
however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

+ If the symbol is not defined in the current module (which includes macro, copy,
and include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an unresolved
reference error. At link time, the linker looks for the symbol's definition in other
modules.

+ If the symbol is defined in the current module, the .global or .def directive declares that
the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

This example shows four files. The file1.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The file1.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and make
it available to other modules; both files use the external symbols X, Y, and Z. Also, file1.Ist
uses the .global directive to identify these global symbols; file3.Ist uses .ref and .def to
identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and

Z and make them available to other modules; both files use the external symbol INIT.
Also, file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref
and .def to identify the symbols.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools M

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

I

TeExAS
INSTRUMENTS

www.ti.com

.global/.def/.ref (continued)
Identify Global Symbols

file1.lst
1 ; Global symbol defined in this file
2 .global INIT
3 ; Global symbols defined in file2.lst
4 .global X, Y, Z
5 00000000 INIT:
6 00000000 E2800056 ADD RO, RO, #56h
7 00000004 00000000! .word X
8 H
9 ;
10 ;
11 .end
file2.1st
1 ; Global symbols defined in this file
2 .global X, Y, Z
3 ; Global symbol defined in filel.lst
4 .global INIT
5 00000001 X: .set 1
6 00000002 Y: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ;
10 H
11 ; .
12 .end
file3.Ist
1 ; Global symbols defined in this file
2 .def INIT
3 ; Global symbol defined in file4d.lst
4 .ref X, Y, Z
5 00000000 INIT:
6 00000000 E2800056 ADD RO, RO, #56
7 00000004 00000000! .word X
8 ;
9 ;
10 ;
11 .end
filed.Ist
1 ; Global symbols defined in this file
2 .def X, Y, Z
3 ; Global symbol defined in file3.lst
4 .ref INIT
5 00000001 X: .set 1
6 00000002 Y: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ;
10 H
11 ; .
12 .end

112 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.group/.gmember/.endgroup

Define Common Data Section

Syntax .group group_section_name group_type
.gmember section_name
.endgroup
Description Three directives instruct the assembler to make certain sections members of an ELF
group section (see the ELF specification for more information on group sections).
The .group directive begins the group declaration. The group_section_name designates
the name of the group section. The group_type designates the type of the group. The
following types are supported:
0x0 Regular ELF group
0x1 COMDAT ELF group
Duplicate COMDAT (common data) groups are allowed in multiple modules; the linker
keeps only one. Creating such duplicate groups is useful for late instantiation of C++
templates and for providing debugging information.
The .gmember directive designates section_name as a member of the group.
The .endgroup directive ends the group declaration.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 113

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.half/.short/.uhalf/.ushort

Initialize 16-Bit Integers

Syntax .half value/[, ... , value, |
.short value, ... , value,]
.uhalf value/|, ... , value,]
.ushort value/|, ..., value,)]

Description The .half and .short directives place one or more values into consecutive halfwords in the
current section. A value can be either:

« An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

+ A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with Os.

The assembler truncates values greater than 16 bits.

If you use a label with .half or .short, it points to the location where the assembler places

the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the

section. This guarantees that data resides on a 16-bit boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 000A .half 10, -1, "abc", 'a’
00001002 FFFF
00001004 0061
00001006 0062
00001008 0063
0000100a 0061
3 0000100c 0008 STRN .short 8, -3, "def", 'b'
0000100e FFFD
00001010 0064
00001012 0065
00001014 0066
00001016 0062

114 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Assembler Directives

.ifl.elseifl.else/.endif

Assemble Conditional Blocks

Syntax .if condition
[.elseif condition)
[.else]
.endif
Description The .if directive marks the beginning of a conditional block. The condition is required.
+ If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).
+ If the expression evaluates to false (0), the assembler assembles code that follows
a .elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).
The .elseif directive identifies a block of code to be assembled when the .if expression
is false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif (if
no .elseif or .else is present). The .elseif is optional in a conditional block, and more than
one .elseif can be used. If an expression is false and there is no .elseif, the assembler
continues with the code that follows a .else (if present) or a .endif.
The .else directive identifies code the assembler assembles when the .if expression and
all .elseif expressions are false (0). The .else directive is optional; if an expression is
false and there is no .else statement, the assembler continues with the code that follows
the .endif. The .elseif and .else directives can be used in the same conditional block.
The .endif directive terminates a conditional block.
See Section 4.9.2 for information about relational operators.
Example This example shows conditional assembly:
1 00000001 SYM1 .set 1
2 00000002 SYM2 .set 2
3 00000003 SYM3 .set 3
4 00000004 SYM4 .set 4
5
6 If 4: .if SYM4 = SYM2 * SYM2
7 00000000 04 .byte SYM4 ; Equal values
8 .else
9 .byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 If 5: .if SYM1 <= 10
13 00000001 oA .byte 10 ; Less than / equal
14 .else
15 .byte SYM1 ; Greater than
16 .endif
17
18 If 6: .if SYM3 * SYM2 != SYM4 + SYM2
19 .byte SYM3 * SYM2 ; Unequal value
20 .else
21 00000002 08 .byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If 7: .if SYM1 = SYM2
25 .byte SsyM1
26 .elseif SYM2 + SYM3 = 5
27 00000003 05 .byte SYM2 + SYM3
28 .endif
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 115

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.int/.unint/.long/.ulong/.word/.uword
Initialize 32-Bit Integers

Syntax .int valueq[, ... , value,]

.uint value4|, ..., value,]

dong value/], ..., value,]

.ulong valueq|, ... , value,]

.word value4|, ..., value,]

.uword value4|, ..., value,]
Description The .int, .unint, .long, .ulong, .word, and .uword directives place one or more values

into consecutive words in the current section. Each value is placed in a 32-bit word by
itself and is aligned on a word boundary. A value can be either:

+ Expression the assembler evaluates and treats as a 32-bit signed or unsigned number

» Character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example 1 This example uses the .int directive to initialize words.
1 00000000 .space 73h
2 00000000 .bss PAGE, 128
3 00000080 .bss SYMPTR, 4
4 00000074 E3A00056 INST: MOV RO, #056h
5 00000078 00000002 .int 10, SYMPTR, -1, 35 + 'a', INST, "abc"

0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074"
0000008c 00000061
00000090 00000062
00000094 00000063

Example 2 This example shows how the .long directive initializes words. The symbol DAT1 points to
the first word that is reserved.

1 00000000 O0OOOABCD DAT1l: .long 0OABCDh, 'A' + 100h, 'g', 'o'
00000004 00000141
00000008 00000067
0000000c 0000006F

2 00000010 00000000" .long DAT1, OAABBCCDDh
00000014 AABBCCDD
3 00000018 DAT2:
116 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.int/.unint/.long/.ulong/.word/.uword (continued)
Initialize 32-Bit Integers
Example 3 In this example, the .word directive is used to initialize words. The symbol WORDX points

to the first word that is reserved.

1 00000000 00000C80 WORDX: .word 3200, 1 + 'AB', -0AFh, 'X'
00000004 00004242
00000008 FFFFFF51
0000000c 00000058

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 117
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

label

Syntax

Description

Example

Create a Load-Time Address Label

Jabel symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at

a different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address so
that references to the section (such as branches) are correct when the code runs. See
Section 3.5 for more information about run-time relocation.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of the
code that relocates the section.

This example shows the use of a load-time address label.

sect ".examp"
.label examp load ; load address of section

start: ; run address of section
<code>

finish: ; run address of section end
.label examp _end ; load address of section end

See Section 8.5.6 for more information about assigning run-time and load-time addresses
in the linker.

118

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.Ilength/.width
Set Listing Page Size
Syntax ength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.

The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.

» Default length: 60 lines. If you do not use the .length directive or if you use the .length
directive without specifying the page length, the output listing length defaults to 60
lines.

* Minimum length: 1 line

+ Maximum length: 32 767 lines

The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.

» Default width: 132 characters. If you do not use the .width directive or if you use
the .width directive without specifying a page width, the output listing width defaults to
132 characters.

* Minimum width: 80 characters

» Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value, and object
code are counted as part of the width of a line. Comments and other portions of a source
statement that extend beyond the page width are truncated in the listing.

The assembler does not list the .width and .length directives.

Example The following example shows how to change the page length and width.
RORAR R b R R R R R
wx Page length = 65 lines wx
*x Page width = 85 characters *x
RR AR R b R I
.length 65
.width 85
RAR AR R R b b b R R R I
*x Page length = 55 lines **
*x Page width = 100 characters *x
RARAR R b R R
.length 55
.width 100
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 119
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
Jdist/.nolist
Start/Stop Source Listing
Syntax Jdist
.nolist
Description Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.
The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.
The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the listing.
By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke the
assembler by including the --asm_listing option on the command line (see Section 4.3),
the assembler ignores the .list directive.
Example This example shows how the .copy directive inserts source statements from another file.
The first time this directive is encountered, the assembler lists the copied source lines
in the listing file. The second time this directive is encountered, the assembler does not
list the copied source lines, because a .nolist directive was assembled. The .nolist, the
second .copy, and the .list directives do not appear in the listing file. Also, the line counter
is incremented, even when source statements are not listed.
Source file:
.copy"copy2.asm"
* Back in original file
NOP
.nolist
.copy"copy2.asm"
.list
* Back in original file
.string"Done"
Listing file:
1 .copy "copy2.asm"
A 1 * In copy2.asm (copy file)
A 2 00000000 00000020 .word 32, 1 + 'A'
00000004 00000042
2 * Back in original file
3 00000008 E1A00000 NOP
7 * Back in original file
8 00000014 44 .string "Done"
00000015 6F
00000016 6F
00000017 65
120 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.loop/.endloop/.break

Assemble Code Block Repeatedly

Syntax

Description

loop [count]

.break [end-condition]

.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional count operand, if
used, must be a well-defined integer expression. The count indicates the number of loops
to be performed (the loop count). If count is omitted, it defaults to 1024. The loop will be
repeated count number of times, unless terminated early by a .break directive.

The optional .break directive terminates a .loop early. You may use .loop without

using .break. The .break directive terminates a .loop only if the end-condition expression
is true (evaluates to nonzero). If the optional end-condition operand is omitted, it defaults
to true. If end-condition is true, the assembler stops repeating the .loop body immediately;
any remaining statements after .break and before .endloop are not assembled. The
assembler resumes assembling with the statement after the .endloop directive. If end-

condition is false (evaluates to 0), the loop continues.

The .endloop directive marks the end of a repeatable block of code. When the loop
terminates, whether by a .break directive with a true end-condition or by performing
the loop count number of iterations, the assembler stops repeating the loop body and
resumes assembling with the statement after the .endloop directive.

Example

This example illustrates how these directives can be used with the .eval directive. The

code in the first six lines expands to the code immediately following those six lines.

I e S e e = i = SO SRSy

o UL WN

00000000 00000000

00000004 00000064

00000008 000000CS8

0000000c 0000012C

00000010 00000190

00000014 000001F4

COEF

.eval
.loop
.word
.eval
.break
.endloop
.word
.eval
.break
.word
.eval
.break
.word
.eval
.break
.word
.eval
.break
.word
.eval
.break
.word
.eval
.break

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools 121
v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Assembler Directives www.ti.com

.macro/.endm

Define Macro

Syntax macname .macro [parameter|, ... , parameter,]]

model statements or macro directives
.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in
an .include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source statement's
label field.

.macro identifies the source statement as the first line of a macro definition.
You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for
the .macro directive.

model statements are instructions or assembler directives that are executed each time
the macro is called.

macro directives are used to control macro expansion.

.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 6.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

122 ARM Assembly Language Tools
Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.mlib
Define Macro Library
Syntax .mlib " filename "
Description The .mlib directive provides the assembler with the filename of a macro library. A macro

library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

See Section 4.5 for more information about the --include_path option.

A .mlib directive causes the assembler to open the specified library and create a table of
the library's contents. The assembler stores names of library members in the opcode table
as library entries. This redefines any existing opcodes or macros with the same name. If
one of these macros is called, the assembler extracts the library entry and loads it into the
macro table. The assembler expands the library entry as with other macros, but it does
not place the source code in the listing. Only macros from the library are extracted, and
they are extracted only once. See Chapter 6 for details.

Example The code creates a macro library that defines two macros, inc4.asm and dec4.asm. The
file inc4.asm contains the definition of inc4 and dec4.asm contains the definition of dec4.
Macro for incrementing: inc4.asm Macro for decrementing: dec4.asm
inc4 .macro regl, reg2, reg3, reg4 dec4 .macro regl, reg2, reg3, regd
Add regl, regl, #1 SUB regl, regl, #1
ADD reg2, reg2, #1 SUB reg2, reg2, #1
ADD reg3, reg3, #1 SUB reg3, reg3, #1
ADD reg4, reg4, #1 SUB reg4, reg4, #1
.endm .endm
Use the archiver with a command line like the following to create a macro library:
armar -a mac inc4.asm dec4.asm
ar32 -a mac incé4.asm dec4.asm
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 123

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.mlib (continued)

Define Macro Library

Use .mlib to reference the macro library. Define the inc4.asm and dec4.asm macros:

= e

I

1
2
3

o U1

00000000
00000000
00000004
00000008
0000000c

00000010
00000010
00000014
00000018
0000001c

E2877001
E2866001
E2855001
E2844001

E2400001
E2411001
E2422001
E2433001

.mlib

; Macro cal
inc4

ADD

ADD

ADD

ADD

; Macro cal
dec4
SUB
SUB
SUB
SUB

"mac.lib"
1
R7, R6, R5, R4
R7, R7, #1
R6, R6, #1
R5, R5, #1
R4, R4, #1

1
RO, R1, R2, R3
RO, RO, #1
R1, R1, #1
R2, R2, #1
R3, R3, #1

124

ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.mlist/.mnolist

Syntax

Description

Example

Start/Stop Macro Expansion Listing

.mlist

.mnolist

Two directives enable you to control the listing of macro and repeatable block expansions

in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.

The .mnolist directive suppresses macro and .loop/.endloop block expansions in the

listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See
the .loop/.break/.endloop topic for information on conditional blocks.

This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was

assembled.

STR_3

DSw N

5 00000000
1 00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
0000000a
0000000b
6
7 0000000c
8
expansion.
9 00000018
1 00000018
00000019
0000001a
0000001b
0000001c
0000001d
0000001e
0000001f
00000020
00000021
00000022
00000023

P1l, P2,
tpl:",

.macro
.string
.endm

STR_3 llasll, III"’
.string ":pl:",

.mnolist
STR 3 "as",
.mlist

ngw,

STR73 llasll, III",
.string ":pl:",

P3
p2:",

":p3:"

"an" ;
"ip2:M, ":p3:"

; Suppress expansion.
Invoke STR 3 macro.

"am" ;
; Show macro

"am" ;

":p2:", tp3:"

Invoke STR 3 macro.

Invoke STR 3 macro.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools
v20.2.0.LTS

125

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.newblock
Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See Section 4.8.3 for more information on the use of local labels.
Example This example shows how the local label $1 is declared, reset, and then declared again.
1 00000000 E3510000 LABELl: CMP rl, #0
2 00000004 2A000001 BCS $1
3 00000008 E2900001 ADDS r0, r0, #1
4 0000000c 21A0F00E MOVCS pc, 1r
5 00000010 E4952004 $1: LDR r2, [r5], #4
6 .newblock ; Undefine $1 to use again.
7 00000014 E0911002 ADDS rl, rl, r2
8 00000018 5A000000 BPL $1
9 0000001c E1F01001 MVNS rl, rl
10 00000020 E1AQFO0E S$1: MOV pc, 1r
126 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.option

Select Listing Options

Syntax .option option4[, option, ,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. Options are not case
sensitive. These are valid options:

A turns on listing of all directives, data, subsequent expansions, macros, and blocks.
B limits the listing of .byte and .char directives to one line.
H limits the listing of .half and .short directives to one line.
L limits the listing of .long directives to one line.
M turns off macro expansions in the listing.
N turns off listing (performs .nolist).
o turns on listing (performs list).
R resets any B, H, M, T, and W (turns off the limits of B, H, M, T, and W).
T limits the listing of .string directives to one line.
w limits the listing of .word and .int directives to one line.
X produces a cross-reference symbol listing. You can also obtain this listing by invoking the
assembler with the --asm_cross_reference_listing option (see Section 4.14).
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 127

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.option (continued)

Select Listing Options

Example

This example limits listings of .byte, .char, .int, long, .word, and .string to one line each.

* *

* *

1

ER T R R e

2

3

4

ER T R R R

19

20

21

22

** Limit the listing of .byte, .char, .int, .long,

** .word, and .string directives to 1 line each.

.option B, W, T

00000000 BD .byte -'C', 0BOh, 5
00000003 BC .char -'D', 0COh, 6
00000008 0000000A .int 10, 35 + 'a', "abc"
0000001c AABBCCDD .long OAABBCCDDh, 536 + 'A'
00000024 000015AA .word 5546, 78h

0000002c 45 .string "Extended Registers"

E R R R R R T R

*x Reset the listing options. *x
LR E RS SRS E SRR E RS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
.option R

0000003e BD .byte -'C', 0BOh, 5

0000003f BO

00000040 05

00000041 BC .char -'D', 0COh, 6

00000042 CO

00000043 06

00000044 0000000A .int 10, 35 + 'a', "abc"

00000048 00000084

0000004c 00000061

00000050 00000062

00000054 00000063

00000058 AABBCCDD .long OAABBCCDDh, 536 + 'A'

0000005¢c 00000259

00000060 000015AA .word 5546, 78h

00000064 00000078

00000068 45
00000069 78
0000006a 74
0000006b 65
0000006¢c 6E
00000064 64
0000006e 65
0000006f 64
00000070 20
00000071 52
00000072 65
00000073 67
00000074 69
00000075 73
00000076 74
00000077 65
00000078 72
00000079 73

.string "Extended Registers"

128 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.page
Eject Page in Listing
Syntax .page
Description The .page directive produces a page eject in the listing file. The .page directive is not

printed in the source listing, but the assembler increments the line counter when it

encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.
Source file:
Source file (generic)
.title "Ax4x Page Directive Example ****"
.page
Listing file:
TMS470R1x Assembler Version x.xx Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
x*% Page Directive Example *x* PAGE 1
2 ;
3 ;
4 ; .
TMS470R1x Assembler Version x.xx Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
x*% Page Directive Example *x* PAGE 2
No Errors, No Warnings

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

ARM Assembly Language Tools 129
Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.retain / .retainrefs

Syntax

Description

Conditionally Retain Sections In Object Module Output

.retain[" section name "]

.retainrefs[" section name "]

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with
the --unused_section_elimination=off linker option.

The .retainrefs directive indicates that any sections that refer to the current or specified
section are not eligible for removal via conditional linking. For example, applications may
use an .intvecs section to set up interrupt vectors. The .intvecs section is eligible for
removal during conditional linking by default. You can force the .intvecs section and any
sections that reference it to be retained by applying the .retain and .retainrefs directives to
the .intvecs section.

The section name identifies the section. If the directive is used without a section name,
it applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section name :
subsection name.

The linker assumes that all sections by default are eligible for removal via conditional
linking. (However, the linker does automatically retain the .reset section.) The .retain
directive is useful for overriding this default conditional linking behavior for sections that
you want to keep included in the link, even if the section is not referenced by any other
section in the link. For example, you could apply a .retain directive to an interrupt function
that you have written in assembly language, but which is not referenced from any normal
entry point in the application.

130

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.sect

Assemble Into Named Section

Syntax .sect " section name "
.sect " section name " [{RO|RW}] [,{ALLOC|NOALLOC}]

Description The .sect directive defines a named section that can be used like the default .text
and .data sections. The .sect directive sets section name to be the current section; the
lines that follow are assembled into the section name section.

The section name identifies the section. The section name must be enclosed in double
quotes. A section name can contain a subsection name in the form section name :
subsection name. See Chapter 2 for more information about sections.

The sections can be marked read-only (RO) or read-write (RW). Also, the sections can
be marked for allocation (ALLOC) or no allocation (NOALLOC). These attributes can be
specified in any order, but only one attribute from each set can be selected. RO conflicts
with RW, and ALLOC conflicts with NOALLOC. If conflicting attributes are specified the
assembler generates an error, for example:

"t.asm", ERROR! at line 1:[E0000] Attribute RO cannot be combined with attr RW
.sect "illegal sect",RO,RW

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 131
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.sect (continued)

Assemble Into Named Section

Example This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.
1
hAhkhkhkhkkhhhkhhkhhhhkhkhhkhhhhkhhhkhhhhkhkhhkhhkhkhkhhkhkhkhkhkhkhkhkkhkhkkhkhkhhhkhh*k
2 *x Begin assembling into .text section.
* %
3
Ak hkhkhkhkkhkhkhkhkkhkhkhhkhkhhhkkhkhkhkhkhhkhhkhkhhkhhhkhdkhhkhkhkhkhkkhkhkkhkkkhkkkkkk
4 00000000 .text
5 00000000 E3A00078 MOV RO, #78h
6 00000004 E2801078 ADD R1, RO, #78h
7
Ak hkhkhkhhkhkhhkhhhhhkhhkhhhhkhhhkhkhhhkhkhhkhhkhkhhhkkhkhkhkhkhkhkhrhkhkhkhkhkhhkhr*x
8 *x Begin assembling into Sym Defs section.
* %
9
Ak hkhkhkhkkhkhkhkhkkhkhkhhkhkhkhkhkkhkhkkhkhkhhkhhkhkhkhkhhhkhkhkhhkhkhkhkhkhkhkhkkhkkkkkkkkxk
10 00000000 .sect "Sym Defs"
11 00000000 3D4CCCCD .float 0.05 ; Assembled into
Sym Defs
12 00000004 000000RA X: .word OAAh ; Assembled into
Sym_Defs
13 00000008 E2833028 ADD R3, R3, #28h ; Assembled into
Sym Defs
14
Ak hkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhkhhkhkhkkhkhhkhkhdkhhkhkhhkhkhkhkhkhkkkhkkkkkk
15 *x Begin assembling into Vars section.
* %
16
AR R E RS S S E S S S SRR SR SRR R SRR RS EEEEEEEEEEEEEEEEEEEEEEE
17 00000000 .sect "Vars"
18 00000010 WORD_LEN .set 16
19 00000020 DWORD_LEN .set WORD LEN * 2
20 00000008 BYTE LEN .set WORD_LEN / 2
21
khkhkhkhkhkkhkhkhkhkhkkhkhhkhkhkhkhhkhkhhkhhkhkhhkhhkhkhhkhhkhkhkhkrhkhkhkhkrhkhkhkhkrhkkhkxk
22 E Resume assembling into .text section.
* %
23
hAhkhkhkhkhhkhkhhkhhhhhhhkhhhhkhhhkhkhhhkhhhkhhkhkhrhhkhkhhkhkhkhkrkhkhkhkhkhhhkr*x
24 00000008 .text
25 00000008 E2802042 ADD R2, RO, #42h ; Assembled into .text
26 0000000c 03 .byte 3, 4 ; Assembled into .text
0000000d 04
27
hAhkhkhkhkkhhhkhhkhhkhhkhhhkhhhhkhhhkhhkhhkhkhhkhhkhkhrhkhkhkhhkhkhkhkhkkhkhkkhkhkhhhkhh*k
28 X Resume assembling into Vars section.
* %
29
Ak hkhkhkhkkhkhkhhkhkhkhkhkhkhkhhhkhkhkhkhhkhhhkhkkhkhhhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkkkkkkxk
30 00000000 .sect "Vars"
31 00000000 000D0O0OO .field 13, WORD_LEN
32 00000000 000DOAOO .field O0Ah, BYTE LEN
33 00000004 00000008 .field 10g, DWORD LEN
132 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.set/.equ

Define Assembly-Time Constant

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a .set/.equ symbol. The symbol
can then be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values. The .set and .equ directives are
identical and can be used interchangeably.
* The symbol is a label that must appear in the label field.
* The value must be a well-defined expression, that is, all symbols in the expression

must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is assigned
is also relocatable.
The value of the expression appears in the object field of the listing. This value is not part
of the actual object code and is not written to the output file.
Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 133

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
.set/.equ (continued)
Define Assembly-Time Constant
Example This example shows how symbols can be assigned with .set and .equ.
1
hAhkhkhhkkhkhkhkhhkhkhkhhkhkhhkhhkhhkhhhkhhkhhkhhkhhhkhkhkhhrkhkhhkhkhkhkrkhkhkkhkhkkhkxkhx
2 *x Equate symbol AUX Rl to register ARl and use
* *
3 E it instead of the register.
* *
4 KA AR AKXk
5 00000001 AUX Rl .set R1
6 00000000 E3A01056 MOV AUX R1, #56h
7
8
KA A, Kk
9 K Set symbol index to an integer expression.
* %
10 ** and use 1t as an immediate operand.
* *
11
KA AR A A A A A A A A A A A A A A A A A Ak k
12 00000035 INDEX .equ 100/2 +3
13 00000004 E2810035 ADD RO, AUX R1, #INDEX
14
15
Ak hkhkhkkhkhkhkhhkhkhkhhkhkhhkhhkhhkhhhkhhkhkhhhkhhhkhkhkhhrkhkhhkhkhkhkhrhkhkkhkhkkhkxkhx
16 ** Set symbol SYMTAB to a relocatable expression.
* *
17 ld and use it as a relocatable operand.
* *
18
Ak hkhkhkkhkhkhkhhkhkhkhhkhkhhkhhkhhkhhhkhhkhkhhhkhhhkhkhkhhrkhkhhkhkhkhkhrhkhkkhkhkkhkxkhx
19 00000008 0000000A LABEL .word 10
20 00000009" SYMTAB .set LABEL + 1
21
22
LR R RS S SR RS SR SRR R RS EEEEEE RS E R R R R R RS S SR
23 E Set symbol NSYMS equal to the symbol INDEX
* *
24 K INDEX and use it as you would INDEX.
* %
25
LR R R RS S S SRS SR SRR R R EEEEEEE SRR EEEEE R R R R R RS SR
26 00000035 NSYMS .set INDEX
27 0000000c 00000035 .word NSYMS
134 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.spacel.bes
Reserve Space
Syntax [label] .space size in bytes
[label] .bes size in bytes
Description The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to point
to the word following the reserved space.
When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the /ast byte reserved.
Example This example shows how memory is reserved with the .space and .bes directives .
l Ahkhkhkhkkhhkhkhhkhhhhkhhhkhhhhkhhkhkhhkhkhkhhkhhhkhkhkhhkkhkhkhkhkhkhkhrkhhkkhhxk
2 *x Begin assembling into the .text section. *x
3 khkkhhkhhxx
4 00000000 .text
5
6 khkkhkhkhkkhhhhxkx
7 E Reserve 0F0 bytes in the .text section. bk
8 B R S R R R R R
9 00000000 .space (0FOh
10 000000£0 00000100 .word 100h, 200h
000000f4 00000200
11 dhkkhkhkkhkkhhhkxx
12 E Begin assembling into the .data section. E
13 R R R R R S
14 00000000 .data

15 00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007

21 00000008
22 0000006¢
23 00000070

30 00000087
31 00000088
32 0000008c

0000000F
0oo00008"

00000036
00000087"

.string "In .data"

LR EEE SRS S SRR SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEE S
** Reserve 100 bytes in the .data section; RES 1 **

Hx points to the first byte that contains Hx
wx reserved bytes. wx
hAhkhkhkhkhhkkhkhhkhkhkhhkhkhhkhkhhhkhkhhkhhhkhrkhkhkhkhkhkhkhrkhkhhkhkhkhkrkhkhkkhhkkhkxkhx
RES 1: .space 100

.word 15

.word RES 1

LR EEEEE S S SRR E SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEE S
** Reserve 20 bits in the .data section; RES 2 **

wx points to the last byte that contains Hx
wx reserved bytes. K
Ak hkhkhkhkhkhkhhkhkhkhhkhhhkhhkhhkhhhkhkhkhkhrhhhkhhkhkhhhkkhkhkhkhkhkhkhrhhkkhxk
RES 2: .bes 20

.word 36h

.word RES_2

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

135

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.sslist/.ssnolist

Syntax

Description

Example

Control Listing of Substitution Symbols

.sslist

.ssnolist

Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The expanded
line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.

1 ADDL .macro dest, src
2 .global reset ctr
3 ADDS dest, dest, src
4 BLCS reset ctr
5 .endm
6
7 00000000 ADDL R4, R5
1 .global reset ctr
1 00000000 E0S944005 ADDS R4, R4, RS
1 00000004 2BFFFFFED! BLCS reset ctr
8 00000008 E5954000 LDR R4, [R5]
9 0000000c ADDL RO, R4
1 .global reset ctr
1 0000000c E0900004 ADDS RO, RO, R4
1 00000010 2BFFFFFA! BLCS reset ctr
10
11 .sslist
12
13 00000014 E5B53004 LDR R3, [R5, #4]!
14 00000018 E5954000 LDR R4, [R5]
15 0000001c ADDL R4, R3
1 .global reset ctr
1 0000001c E0944003 ADDS dest, dest, src
ADDS R4, R4, R3
1 00000020 2BFFFFF6! BLCS reset ctr

136 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.state16
Assemble 16-Bit Instructions (Non-UAL Syntax)
Syntax .state16
Description By default, the assembler begins assembling all instructions in a file as 32-bit instructions.
Use the .state16 directive to direct the assembler to begin assembling all instructions
at that point as 16-bit instructions. This directive and the .state32 directive allow you to
switch between the two assembly modes for non-UAL syntax. If you want to assemble an
entire file as 16-bit instructions for V6 and earlier architectures, use the -mt assembler
option, which instructs the assembler to begin the assembly process, assembling all
instructions as 16-bit instructions.
The .state16 directive performs an implicit halfword alignment before any instructions
are written to the section to ensure that all 16-bit instructions are halfword-aligned.
The .state16 directive also resets any local labels defined.
Example In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.
1 .global globl, glob2
2 KA KA A,k K
3 *x Begin assembling 16-bit instructions. wx
4 Ak hkhhkkhhhkhhkhhkhhhkhhhkhkhhkhhhkhkhhhkhhhkhkhkhhkhhhkhkhkhkhrkhkhkkhkhhhxkh*k
5 00000000 .statel6
6
7 00000000 4808 LDR r0, globl a
8 00000002 4909 LDR rl, glob2 a
9 00000004 6800 LDR r0, [r0]
10 00000006 6809 LDR rl, [rl]
11 00000008 0080 LSL r0, r0, #2
12 0000000a 3156 ADD rl, #56h
13 0000000c 4778 BX pc
14 0000000e 46CO NOP
15 khkkhkhkkhkhkkhkkhkkhhhxxx
16 i Switch to 32-bit instructions to use the i
17 wx 32-bit state long multiply instruction. wx
18 khkkhkhkkhkkhkkhkkhhhkxx
19 00000010 .state32
20
21 00000010 E0845190 UMULL 5, r4, r0, rl
22 00000014 E28FE001 ADD 1r, pc, #1
23 00000018 E12FFF1E BX 1r
24 dkhkkhkhkhkhkhkkhkkhhhkxx
25 bk Continue assembling 16-bit instructions. bk
26 KA KA AR A A A A A A A A A AR A A A KKk
27 0000001c .statel6
28
29 0000001c 1A2D SUB r5, r5, r0
30 0000001le D200 BCS $1
31 00000020 3C01 SUB rd, #1
32 00000022 $1
33 00000024 00000000! globl a .word globl
34 00000028 00000000! glob2 a .word glob2
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 137

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.state32/.arm

Syntax

Description

Example

Assemble 32-Bit Instructions

.state32

.arm

By default, the assembler begins assembling all instructions in a file as 32-bit instructions.
When you use the -mt assembler option or the .state16 directive to assemble 16-bit
instructions, you can use the .state32 or .arm directive to tell the assembler to begin
assembling all instructions after the .state32/.arm directive as 32-bit instructions.

When you are writing assembly code, the .arg directive is used to specify ARM UAL
syntax. The .state32 and .arm directives are equivalent since UAL syntax is backward
compatible.

These directives perform an implicit word alignment before any instructions are written to
the section to ensure that all 32-bit instructions are word-aligned. These directives also
reset any local labels defined.

In this example, the assembler assembles 32-bit instructions, begins assembling 16-bit
instructions, and returns to assembling 32-bit instructions.

1 .global globs, filter
2 KA KA A,k K
3 wx Begin assembling 32-bit instructions. wx
4 Ak Ak kA Ak hhhhhkhhkhkhkhhhhhhkhkhkhkhkhkhddrhhhhhkhkhkhkhrdrrhkhhhkkhkhhhhrhhkhk
5 00000000 .state32
6 00000000 E28F4001 ADD rd4, pc, #1
7 00000004 E12FFF14 BX r4
8 KA KA AR A A A A A A A A A A A KKk
9 wx Switch to 1l6-bit instructions to use wx
10 ld less code space. *x
ll KA KA AR A A A A A A A A A A A KKk
12 00000008 .statelé6
13 00000008 2200 MOV r2, #0
14 0000000a 2300 MOV r3, #0
15 0000000c 4CO0B LDR r4, globs a
16 0000000e 2500 MOV r5, #0
17 00000010 2600 MOV r6, #0
18 00000012 2700 MOV r7, #0
19 00000014 4690 MOV r8, r2
20 00000016 4691 MOV r9, r2
21 00000018 4692 MOV rl0, r2
22 0000001a 4693 MOV rll, r2
23 0000001c 4694 MOV rl2, r2
24 0000001e 4695 MOV rl3, r2
25 00000020 4778 BX pc
26 00000022 46CO NOP
27 AR R R R SRR RS SRR R R R R R R R R R R R R R R R RS
28 bk Continue assembling 32-bit instructions. bk
29 KA KA KKk
30 00000024 .state32
31 00000024 E4940004 LDR r0, [r4], #4
32 00000028 E5941000 LDR rl, [r4]
33 0000002c EBFFFFF3! BL filter
34 00000030 E1500001 CMP r0, rl
35 00000034 30804005 ADDCC r4, r0, r5
36 00000038 20464001 SUBCS rd, r6, rl
37 0000003c 00000000! globs _a .word globs

138 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.string/.cstring

Initialize Text

Syntax .string {expr; | " string; "} [, ... , {€xpr, | " string, "}]
.cstring {exprs|" string; "} [, ... , {expr, | " string, "}]

Description The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

* A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\\a \b \f\n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit on
a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see
the .struct/.endstruct/.tag topic.

Example In this example, 8-bit values are placed into consecutive bytes in the current section.

1 00000000 41 Str Ptr: .string "ABCD"
00000001 42
00000002 43
00000003 44
2 00000004 41 .string 41h, 42h, 43h, 44h
00000005 42
00000006 43
00000007 44
3 00000008 41 .string "Austin", "Houston", "Dallas"
00000009 75
0000000a 73
0000000b 74
0000000c 69
0000000d 6E
0000000e 48
0000000f 6F
00000010 75
00000011 73
00000012 74
00000013 6F
00000014 6E
00000015 44
00000016 61
00000017 6C
00000018 6C
00000019 o1
0000001a 73
4 0000001b 30 .string 36 + 12

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 139
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.struct/.endstruct/.tag

Syntax

Description

Declare Structure Type

[stag] .struct [expr]

[memy)] element [expro]
[memy] element [exprq]

[mem,] .tag stag [expra]

[memy] element [expr]
[size] .endstruct

label .tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The .struct
directive does not allocate memory; it merely creates a symbolic template that can be
used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Parameters used with the .struct, .endstruct, and .tag directives are:

+ The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the global
symbol table with the value of their absolute offset from the top of the structure. The
stag is optional for .struct, but is required for .tag.

« The expris an optional expression indicating the beginning offset of the structure. The
default starting point for a structure is 0.

+ The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The element is one of the following
descriptors: .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, .field,
and .tag. All of these except .tag are typical directives that initialize memory. Following
a .struct directive, these directives describe the structure element's size. They do not
allocate memory. The .tag directive is a special case because stag must be used (as in
the definition of stag).

* The expr,,y is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

+ The size is an optional label for the total size of the structure.

Note
Directives that Can Appear in a .struct/.endstruct Sequence: The only
directives that can appear in a .struct/.endstruct sequence are element
descriptors, conditional assembly directives, and the .align directive, which
aligns the member offsets on word boundaries. Empty structures are illegal.

140

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.struct/.endstruct/.tag (continued)

Declare Structure Type

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1
1 REAL_REC .struct ; stag
2 00000000 NOM .int ; memberl = 0
3 00000004 DEN .int ; member2 = 1
4 00000008 REAL LEN .endstruct ; real len = 4
5
6 00000000 E59F0004 LDR RO, REAL A
7 00000004 E5904004 LDR R4, [RO, #REAL_REC.DEN}
8 00000008 E0811004 ADD R1, R1, R4
9 00000000 .bss REAL, REAL_LEN ; allocate mem
rec
10 0000000c 00000000- REAL A .word REAL
11
Example 2
12 CPLX REC .struct
13 00000000 REALI .tag REAL REC ; stag
14 00000008 IMAGI .tag REAL REC ; memberl = 0
15 00000010 CPLX LEN .endstruct ; cplx len = 8
16
17 COMPLEX .tag CPLX REC ; assign
structure
18 ; attribute
19 00000010 COMPLEX .space CPLX LEN ; allocate space
20 00000020 E51F4018 LDR R4, COMPLEX.REALTI ; access
structure
21 00000024 E0811004 ADD R1, R1, R4
Example 3
1 .struct ; no stag puts mems
into
2 ; global symbol table
3 00000000 X .int ; create 3 dim
templates
4 00000004 Y .int
5 00000008 Z .int
6 0000000C .endstruct
Example 4
1 BIT REC .struct ; stag
2 00000000 STREAM .string 64
3 00000040 BIT7 .field 7 ; bit7 = 64
4 00000040 BIT8 .field 9 ; bit9 = 64
5 00000042 BIT10 .field 10 ; bitl0 = 64
6 00000044 X INT .int ; x_int = 68
7 00000048 BIT LEN .endstruct ; length = 72
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 141
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.symdepend

Syntax

Description

Create an Artificial Reference from a Section to a Symbol

.symdepend dst symbol name[, src symbol name]

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

A global symbol is defined in the same manner as any other symbol; that is, it appears as
a label or is defined by the .set, .equ, .bss or .usect directive. If a global symbol is defined
more than once, the linker issues a multiple-definition error. (The assembler can provide a
similar multiple-definition error for local symbols.)

The .symdepend directive creates a symbol table entry only if the module actually uses
the symbol. The .weak directive, in contrast, always creates a symbol table entry for a
symbol, whether the module uses the symbol or not (see .weak topic).

If the symbol is defined in the current module, use the .symdepend directive to declare
that the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

142

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Assembler Directives
.tab
Define Tab Size
Syntax .tab size
Description The .tab directive defines the tab size. Tabs encountered in the source input are
translated to size character spaces in the listing. The default tab size is eight spaces.
Example In this example, each of the lines of code following a .tab statement consists of a single

tab character followed by an NOP instruction.

Source file:

; default tab size
NOP
NOP
NOP
.tab 4
NOP
NOP
NOP
.tab 16
NOP
NOP
NOP

Listing file:

00000000
00000004
00000008

0000000c
00000010
00000014

12 00000018
13 0000001c
14 00000020

E1A00000
EI1A00000
E1A00000

EI1A00000
E1A00000
E1A00000

E1A00000
E1A00000
EIA00000

7

default tab size

NOP
NOP
NOP

NOP
NOP
NOP

NOP
NOP
NOP

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools
v20.2.0.LTS

143

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
text
Assemble Into the .text Section
Syntax text
Description The .text sets .text as the current section. Lines that follow this directive will be
assembled into the .text section, which usually contains executable code. The section
program counter is set to 0 if nothing has yet been assembled into the .text section. If
code has already been assembled into the .text section, the section program counter is
restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.
For more information about sections, see Chapter 2.
Example This example assembles code into the .text and .data sections.
l Ak hkhkhkhhkkhkhkhkhkhkkhhkhhhkhkhkkhhkhkhhkhkhkkhhkhhhkhkhkhkhkkhkhkkhxkhx
2 ** Begin assembling into .data section. **
3 khkkhkkhkkhkkhkhkkhkkxkx
4 00000000 .data
5 00000000 0A .byte 0Ah, OBh
00000001 0B
6 dAhkhkhhkhhkkhkhkhkhkhkhhkhkhhkhkhkkhhkhkhkhkhkhkkhhkhkhhkhkhkhkhrkhkhkkhxkhx
7 ** Begin assembling into .text section. **
8 khkkhkkhkkhkkhkkhhkhhkxx
9 00000000 .text
10 00000000 41 START: .string "A","B","C"
00000001 42
00000002 43
11 00000003 58 END: .string "X","Y","z"
00000004 59
00000005 5A
12 00000008 E3A01003 MOV R1, #END-START
13 0000000c E1A01181 MOV R1, R1, LSL #3
14
15 R R R
16 ** Resume assembling into .data section.**
17 Ak hkhhkkhhkkhkhkhkhkhkhhkhkhhkhkhkkhhkhkhhkhkhkkhhkhhkhkhkhkhkhkkhkhkkhxkhx
18 00000002 .data
19 00000002 0C .byte 0Ch, 0Dh
00000003 0D
20 R R R
21 ** Resume assembling into .text section.**
22 dAhkhkhkhkkhhkkhkhkhkhkhkhkhkhkhhkhkhkkhhhkhhkhkhkkhhkhhhkhkhkhkhkkhkhkkhxkhx
23 00000010 .text
24 00000010 51 .string "QUIT"
00000011 55
00000012 49
00000013 54
144 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.thumb

Assemble Thumb or Thumb-2 Instructions (UAL Syntax)

Syntax .thumb
Description You can use the .thumb directive to tell the assembler to begin assembling all instructions
after the .thumb directive using Thumb (32-bit) or Thumb-2 (16-bit or 32-bit) UAL syntax.
The assembler determines whether instructions are 16- or 32-bit instructions based on the
syntax structure of the code.
The .thumb directive performs an implicit halfword alignment before any instructions are
written to the section to ensure that all Thumb/Thumb-2 instructions are halfword aligned.
These directives also reset any local labels defined.
Example In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.
1 .global globl, glob2
2 KA KA AR A A A A A A A A A A A A A, Kk
3 K Begin assembling Thumb instructions. wx
4 Ahkhkhhkkhhkhkhhkhhkhhkhkhhkhkhkhhkhhhkhkhhhkhhhkhkhkhhkhhhkhkhkhkhrkhkhkkhkhkhkhxkr*x
5 00000000 . thumb
6
7 00000000 4808 LDR r0, globl a
8 00000002 4909 LDR rl, glob2 a
9 00000004 6800 LDR r0, [r0]
10 00000006 6809 LDR rl, [rl]
11 00000008 0080 LSLS r0, r0, #2
12 0000000a 3156 ADDS rl, #56h
13 0000000c 4778 BX pc
14 0000000e 46CO NOP
15 AR R R R SRR R SRR R R R R R R R R R R R R R R R R RS E R EE
16 xx Switch to ARM mode to use the long xx
17 wx multiply instruction. wx
18 AR R R R SRR R SRR R R R R R R R R R R R R R SRR EE
19 00000010 .arm
20
21 00000010 E0845190 UMULL 5, r4, r0, rl
22 00000014 E28FE001 ADD 1r, pc, #1
23 00000018 E12FFF1E BX 1r
24 AR R R SRR RS SR SRR R R R R R R R R R R R R RS
25 ks Continue assembling Thumb instructions. bk
26 KA KA A, kK
27 0000001c .thumb
28
29 0000001c 1A2D SUBS r5, r5, r0
30 0000001le D201 BCS $1
31 00000020 3C01 SUBS rd, #1
32 00000024 $1
33 00000024 00000000! globl a .word globl
34 00000028 00000000! glob2 a .word glob2
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 145

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Assembler Directives www.ti.com
title
Define Page Title
Syntax title " string ™
Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING! line x: WO000l: String is too long - will be truncated
The assembiler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the first
source statement must contain a .title directive.
Example In this example, one title is printed on the first page and a different title is printed on
succeeding pages.
Source file:
.title "**** Fast Fourier Transforms ****"
.title "xAx*x Floating-Point Routines ***x"
.page
Listing file:
TMS470R1x Assembler Version x.xx Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
**** Fast Fourier Transforms ***x* PAGE 1
2 ;
3 ;
4 ; .
TMS470R1x Assembler Version x.xx Day Time Year
Copyright (c) 1996-2011 Texas Instruments Incorporated
***x*x Floating-Point Routines ***x* PAGE 2
No Errors, No Warnings
146 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.unasg/.undefine

Turn Off Substitution Symbol

Syntax .unasg symbol

.undefine symbol

Description The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembily file.
See Section 4.8.8 for more information on substitution symbols.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 13 for more information about using
C/C++ headers in assembly source.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 147
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.union/.endunion/.tag

Syntax

Description

Declare Union Type

[utag] .union [expr]

[memy] element [expry]
[mem;] element [exprq]

[mem,] .tagutag [expr,]

[memy] element [expry]
[size] .endunion

label .tag utag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define several
alternate structures and then let the assembler calculate the element offset. This is similar
to a C union. The .union directive does not allocate any memory; it merely creates a
symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be nested.
The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label to simplify the
symbolic representation and provide the ability to define structures or unions that contain
other structures or unions. The .tag directive does not allocate memory. The structure or
union tag of a .tag directive must have been previously defined.

Parameters used with the .struct, .endstruct, and .tag directives are:

« The utag is the union's tag. is the union's tag. Its value is associated with the beginning
of the union. If no utag is present, the assembler puts the union members in the global
symbol table with the value of their absolute offset from the top of the union. In this
case, each member must have a unique name.

+ The expris an optional expression indicating the beginning offset of the union. Unions
default to start at 0. This parameter can only be used with a top-level union. It cannot
be used when defining a nested union.

+ The mem, is an optional label for a member of the union. This label is absolute
and equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

+ The element is one of the following
descriptors: .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and .field.
An element can also be a complete declaration of a nested structure or union, or a
structure or union declared by its tag. Following a .union directive, these directives
describe the element's size. They do not allocate memory.

* The expr,,y is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

+ The size is an optional label for the total size of the union.

148 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Assembler Directives

.union/.endunion/.tag (continued)

Declare Union Type

Note

Directives that Can Appear in a .union/.endunion Sequence: The only
directives that can appear in a .union/.endunion sequence are element
descriptors, structure and union tags, and conditional assembly directives.

Empty structures are illegal.

These examples show unions with and without tags.

Example 1 .
1 .global employid
2 xample .union ; utag
3 0000 ival .word ; memberl = int
4 0000 fval .float ; member2 = float
5 0000 sval .string ; member3 = string
6 0002 real len .endunion ; real len = 2
7
8 000000 .bss employid, real len ;allocate memory
9
10 employid .tag xample ; name an instance
11 000000 0000- ADD employid.fval, A ; access union element
Example 2 .
2 ; utag
3 0000 x .long ; memberl = long
4 0000 vy .float ; member2 = float
5 0000 =z .word ; member3 = word
6 0002 size u .endunion ; real len = 2
7

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools
v20.2.0.LTS

149

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect " section name ", size in bytes[, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive (see .bss topic); both simply reserve space for data
and that space has no contents. However, .usect defines additional sections that can be
placed anywhere in memory, independently of the .bss section.

» The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

* The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

» The size in bytes is an expression that defines the number of bytes that are reserved in
section name.

« The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary can be set to any power of 2.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the symbol
to that location.

Initialized sections directives (.text, .data, and .sect) tell the assembler to pause
assembling into the current section and begin assembling into another section. A .usect
or .bss directive encountered in the current section is simply assembled, and assembly
continues in the current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, var1
and var2. The symbol ptr points to the first byte reserved in the var1 section. The symbol
array points to the first byte in a block of 100 bytes reserved in var1, and dflag points

to the first byte in a block of 50 bytes in var1. The symbol vec points to the first byte
reserved in the var2 section.

150

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.usect (continued)

Reserve Uninitialized Space

Figure 5-8 shows how this example reserves space in two uninitialized sections, var1 and

var2.
1
khkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhhkhkhhkhkhkhkhhkhhkhkhhkhhkhkhkhkrhkhkhkhkrhkkkkxk
2 el Assemble into the .text section.
* %
3
Ak hkhkhkhhkkhkhhkhhkhhkhhhkhkhhhkhhhkhkhhhkhhkhkhhkhkhkkhhkhkhhkhkhkhkhkkhkhkhkhkhhhkhr*x
4 00000000 .text
5 00000000 E3A01003 MOV R1, #03h
6
7
khkhkhkhkhkkhkhkhkhkhkkhkhhkhkhkhhhkhkhkhkhhkhkhhkhhkhkhhkhhkhkhhkhhkhkhkhkrkhkhkhkhkrhkkhkxk
8 e Reserve 1 byte in the varl section.
* %
9
hAhkhkhkhkhhkkhkhhkhhkhhkhkhhkhhhhkhhhkhhhhkhhkhkhhkhkhkhhkhkhhkhkhkhkhrkhkhkhkhkhkhhkhr*k
10 00000000 ptr .usect "varl", 1
11
12
Ak hkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhkhkhkkhkhhhkhkdkhhkhkhkdkhkhkhkhkhkhkkkkkkkkxk
13 *x Reserve 100 bytes in the varl section.
* %
14
khkhkhkhkhkkhkhkhkhkhkkhkhhkhkhhkhhkhkhkhkhhkhkhhkhhkhkhkhkhhkhkhhkhhkhkhkhkrhkhkhkhkrkhkkkkxk
15 00000001 array .usect "varl", 100
16
17 00000004 E281001F ADD RO, R1, #037 ; Still in .text
18
19
khkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhhkhkhhkhhkhkhkhkhhkhkhkhkrhkhkhkhkrhkhkhkhkrhkkkkxk
20 e Reserve 50 bytes in the varl section.
* %
21
Ak hkhkhkkhhkkhkhhkhkhkhhkhkhhkhhhhkhhhkhhhhkhhkhkhhkhkhkkhhkhkhkhkhkhkhkhkkhkhkkhkhkhkhhkhh*k
22 00000065 dflag .usect "varl", 50
23
24 00000008 E2812064 ADD R2, R1l, #dflag - array ; Still
in .text
25
26
Ak hkhkkhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhkhhkhhhkhkhkhhkhkhkhkhkkhkhkkhkkkhkkhkkxk
27 ** Reserve 100 bytes in the var2 section.
* %
28
khkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhhkhkhkhkhhkhkhhkhhkhkhkhkhhkhkhhkhhkhkhkhkrhkhkhkhkrkhkkhkxk
29 00000000 vec .usect "var2", 100
30
31 0000000c E0824000 ADD R4, R2, RO ; Still in .text
32
Ak hkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhhkhkhkhhkhkhkhkhhkhkhdkhhkhkhkhkhkhkhkhkkhkkkhkhkkkxk
33 wx Declare a .usect symbol to be external.
* %
34
khkhkhkhkhkkhkhkhkhkhkkhkhhkhkhhkhhkhkhhkhhkhkhhkhkhkhkhhkhhkhkhkhkrhkhkhkhkrhkhkhkhkhhkkhkxk
35 .global array
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 151
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.usect (continued)

Reserve Uninitialized Space

Section var1 Section var2
Pr —> [2 pytes ptr —»
array —»
100 bytes
100 bytes
100 bytes reserved
in var2

dflag —

50 bytes

152 bytes reserved
in var1

Figure 5-8. The .usect Directive

152

ARM Assembly Language Tools

v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Directives

.var
Use Substitution Symbols as Local Variables
Syntax .var symyq [, syms, ..., Symp |
Description The .var directive allows you to use substitution symbols as local variables within a
macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.
The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after expansion.
See Section 4.8.8 for more information on substitution symbols .See Chapter 6 for
information on macros.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 153
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Assembler Directives

13 TEXAS
INSTRUMENTS

www.ti.com

.weak

Syntax

Description

Identify a Symbol to be Treated as a Weak Symbol

.weak symbol name

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. Instead of
including a weak symbol in the output file's symbol table by default (as it would for a
global symbol), the linker only includes a weak symbol in the output of a "final" link if the
symbol is required to resolve an otherwise unresolved reference. See Section 2.6.3 for
details about how weak symbols are handled by the linker.

The .weak directive is equivalent to the .ref directive, except that the reference has weak
linkage.

The .weak directive always creates a symbol table entry for a symbol, whether the module
uses the symbol or not. The .symdepend directive, in contrast, creates an symbol table
entry only if the module actually uses the symbol (see .symdepend topic).

If a symbol is not defined in the current module (which includes macro, copy, and include
files), use the .weak directive to tell the assembler that the symbol is defined in an
external module. This prevents the assembler from issuing an unresolved reference error.
At link time, the linker looks for the symbol's definition in other modules.

For example, use the .weak and .set directives in combination as shown in the following
example, which defines a weak absolute symbol "ext_addr_sym":

.weak ext addr_sym
ext addr_sym .set 0x12345678

If you assemble such assembly source and include the resulting object file in the link, the
"ext_addr_sym" in this example is available as a weak absolute symbol in a final link. It is
a candidate for removal if the symbol is not referenced elsewhere in the application.

154

v20.2.0.LTS

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 6
Macro Language Description

i3 TEXAS INSTRUMENTS

The ARM device assembler supports a macro language that enables you to create your own instructions. This is
especially useful when a program executes a particular task several times. The macro language lets you:

* Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

* Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
* Manipulate strings within a macro

+ Control expansion listing

6.1 USING IMACTOS. ...ttt e ettt oo at et ettt £ st e e 4a R e a4 2 s bt e 2 as et e 4 e R e e a2 et e e e s et e s nn e e e anne e e anne e e ennes 156
(S 0 LT LT Te - Ve o L= PSPPSR 156
6.3 Macro Parameters/Substitution SYmDbOIS................cooiiiiiiiiiiii e e 158
6.4 MACKO LIDFATIES. ...t e et st e e b et e e ettt e sane e e e ahs e e s eane e e sana e e e abn e e s anne e e sanneeeanneeen 163
6.5 Using Conditional Assembly in IMACIOS...............oooiiiiiiiiiiie et e e e st e e et e e e anee e e aneeeeaneeeeanneeeannees 163
6.6 USIiNG Labels iN IMTACTOS.ottt et e e e e e e a sttt e e e e e aae et e e e e aanbeeeeaeaanneeeeeeeannsneeaeeeannnneas 165
6.7 Producing MeSSages iN ITACKOS.oi ittt e et e ettt ee e e e et e e sttt e sann e e e be e e aanneeenanneeaanneenans 166
6.8 Using Directives to Format the Output LiSting.................cooiiiiiiiiiiii e 167
6.9 Using Recursive and NeSted MACTOS.oiuiiiiiiiiiiii ettt e et e e e bb e e aabe e e sabeeeabbeeeaaneeesnneeean 168
6.10 MaCIO Dir€Ctives SUMMAIY............ooiiiiiiiiiiii ittt ettt e e ettt e ettt e e shbe e e eateeesaseee e s beeeenseeesaneeeaasbeeeannneesnneean 169
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 155
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.1 Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source statements for
a routine, you can define the routine as a macro, then call the macro in the places where you would normally
repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters within a
macro. This enables you to pass different information to the macro each time you call it. The macro language
supports a special symbol called a substitution symbol, which is used for macro parameters. See Section 6.3 for
more information.

Using a macro is a 3-step process.

1. Define the macro. You must define macros before you can use them in your program. There are two
methods for defining macros:

a. Macros can be defined at the beginning of a source file or in a copy/include file. See Section 6.2,
Defining Macros, for more information.

b. Macros can also be defined in a macro library. A macro library is a collection of files in archive format
created by the archiver. Each member of the archive file (macro library) may contain one macro
definition corresponding to the member name. You can access a macro library by using the .mlib
directive. For more information, see Section 6.4.

2. Call the macro. After you have defined a macro, call it by using the macro name as a mnemonic in the
source program. This is referred to as a macro call.

3. Expand the macro. The assembler expands your macros when the source program calls them. During
expansion, the assembler passes arguments by variable to the macro parameters, replaces the macro call
statement with the macro definition, then assembles the source code. By default, the macro expansions
are printed in the listing file. You can turn off expansion listing by using the .mnolist directive. For more
information, see Section 6.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This redefines
any previously defined macro, library entry, directive, or instruction mnemonic that has the same name as the
macro. This allows you to expand the functions of directives and instructions, as well as to add new instructions.

6.2 Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it. Macros
can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File); they can also
be defined in a macro library. For more information about macro libraries, see Section 6.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be defined
in the same file. Nested macros are discussed in Section 6.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter4] |, ... , parameter,]

model statements or macro directives

[.mexit]
.endm
macname names the macro. You must place the name in the source statement's label field. Only the first 128 characters
of a macro name are significant. The assembler places the macro name in the internal opcode table, replacing
any instruction or previous macro definition with the same name.
.macro is the directive that identifies the source statement as the first line of a macro definition. You must place .macro
in the opcode field.
parameter 4, are optional substitution symbols that appear as operands for the .macro directive. Parameters are discussed in
parameter , Section 6.3.
model statements are instructions or assembler directives that are executed each time the macro is called.
macro directives are used to control macro expansion.
156 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Macro Language Description
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when error testing confirms that

macro expansion fails and completing the rest of the macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in

the macro expansion, use an exclamation point to precede your comments. If you do want your comments to
appear in the macro expansion, use an asterisk or semicolon. See Section 6.7 for more information about macro
comments.

The following example shows the definition, call, and expansion of a macro.

Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, add3, with four parameters:

1 *
2
3 * add3
4 *
5 * ADDRP = P1 + P2 + P3
6
7 add3 .macro P1l, P2, P3, ADDRP
8
9 ADD ADDRP, P1l, P2
10 ADD ADDRP, ADDRP, P3
11 .endm
Macro call: The following code calls the add3 macro with four arguments:
12
13 00000000 add3 R1, R2, R3, RO

Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes R1, R2, R3, and RO for the P1, P2, P3, and ADDRP parameters of add3.

1

1 00000000 E0810002 ADD RO, R1, R2

1 00000004 E0800003 ADD RO, RO, R3
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 157
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within the
macro. The macro language supports a special symbol, called a substitution symbol, which is used for macro
parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be used
outside of macros to equate a character string to a symbol name (see Section 4.8.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder of the
symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define up to
32 local substitution symboils (including substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, see Section 6.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters without
corresponding arguments are set to the null string. If the number of arguments exceeds the number of
parameters, the last parameter is assigned the character-string equivalent of all remaining arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you must
surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

The following example shows the expansion of a macro with varying numbers of arguments.
Calling a Macro With Varying Numbers of Arguments

Macro definition:

Parms.macro a,b

Q

;

;

7 e}
.endm

o o
([
Qo w

Calling the macro:

Parms 100, label Parms 100, label, x,y
; a = 100 ; a = 100
; b = label ; b = label
; c="" ; c = X,y
Parms 100, , x Parms "100,200,300",x,y
; a = 100 ; a = 100,200,300
; b =m"" ; b = x
; c = x ; c =y
Parms """string""",x,y
; a = "string"
; b =x
; c =Yy
158 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.3.1 Directives That Define Substitution Symbols
You can manipulate substitution symbols with the .asg and .eval directives.
* The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler reads
characters up to the first comma and removes leading and trailing blanks. In either case, a character string is
read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

The .asg Directive shows character strings being assigned to substitution symbols.

The .asg Directive

.asg R13, stack ptr ; stack pointer

* The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the substitution
symbol. If the expression is not well defined, the assembler generates an error and assigns the null string to
the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

The .eval Directive shows arithmetic being performed on substitution symbols.

The .eval Directive

.asg 1, counter

.loop 100

.word counter

.eval counter + 1,counter
.endloop

In The .eval Directive, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you must
use .eval if you want to calculate a value from an expression. While .asg only assigns a character string to

a substitution symbol, .eval evaluates an expression and then assigns the character string equivalent to a
substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 159
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string value
of substitution symbols. These functions always return a value, and they can be used in expressions. Built-in
substitution symbol functions are especially useful in conditional assembly expressions. Parameters of these
functions are substitution symbols or character-string constants.

In the function definitions shown in Table 6-1, a and b are parameters that represent substitution symbols or
character-string constants. The term string refers to the string value of the parameter. The symbol ch represents
a character constant.

Table 6-1. Substitution Symbol Functions and Return Values

Function Return Value

$$symlen (a) Length of string a

$$symcmp (a,b) <0ifa<b;0ifa=b;>0ifa>b

$$firstch (a,ch) Index of the first occurrence of character constant ch in string a
$$lastch (a,ch) Index of the last occurrence of character constant ch in string a
$$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$$ismember (a,b) Top member of list b is assigned to string a

0 if b is a null string

$Siscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant

5 if string a is a decimal constant

$$isname (a) 1 if string a is a valid symbol name

0 if string a is not a valid symbol name

$$isreg (a) 1 if string a is a valid predefined register name

0 if string a is not a valid predefined register name

(1) For more information about predefined register names, see Section 4.8.6.
The following example shows built-in substitution symbol functions.

Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label
if ($$symcmp (ADDR, "label"™) = 0) ; evaluates to true
LDR R4, ADDR
.endif
.asg "x,y,z" , list ; list = x,vy,2
Lif ($$ismember (ADDR, list)) ; ADDR = x, list = vy,z
SUB R4, R4, #4 ; sub x
.endif
160 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding character
string. If that string is also a substitution symbol, the assembler performs substitution again. The assembler
continues doing this until it encounters a token that is not a substitution symbol or until it encounters a
substitution symbol that it has already encountered during this evaluation.

In the following example, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Recursive Substitution

wen

.asg "x",z ; declare z and assign z = "x
.asg "z",y ; declare y and assign y = "z"
.asg "y",x ; declare x and assign x = "y"
LDR RO, x

* LDR RO, x ; recursive expansion

6.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution operator,
which is a set of colons surrounding the symbol, enables you to force the substitution of a symbol's character
string. Simply enclose a symbol with colons to force the substitution. Do not include any spaces between the
colons and the symbol. The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Using the Forced Substitution Operator shows how the forced substitution operator is used.

Using the Forced Substitution Operator

1 force .macro
2 .asg 0,x
3 .loop 8

4 AUX:x: .set X
5 .eval x+1,x
6 .endloop
7 .endm

8
9

00000000 force
.asg 0
.loop 8
AUX:x: .set X
.eval x+1,x
.endloop
00000000 AUX0 .set 0
.eval 0+1,x
00000001 AUX1 .set 1
.eval 1+1,x
00000002 AUX2 .set 2
.eval 2+1,x
00000003 AUX3 .set 3
.eval 3+1,x
00000004 AUX4 .set 4
.eval 4+1,x
00000005 AUX5 .set 5
.eval 5+1,x
00000006 AUX6 .set 6
.eval 6+1,x
00000007 AUX7 .set 7
.eval 7+1,x

X

NNNNDNNDNNODNNNNDNNNNNNNNNNNNNRERRRRE

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 161
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access individual characters (substrings) of a substitution symbol by using subscripts with
the forced substitution operator (colons around symbol and subscripts). You can access substrings in two ways:

» :symbol (well-defined expression): This method of subscripting evaluates to a character string with one
character.

» :symbol (well-defined expression 4, well-defined expression »): In this method, expressions represents the
substring's starting position, and expression, represents the substring's length. You can specify exactly where
to begin subscripting and the exact length of the resulting character string. The index of substring characters
begins with 1, not 0.

The following examples show substitution symbol functions with subscripts. In the first example, subscripted
substitution symbols redefine the ADD instruction so that it handles short immediate values. In the second
example, the subscripted substitution symbol is used to find a substring strg1 beginning at position start in the
string strg2. The position of the substring strg1 is assigned to the substitution symbol pos.

Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro dst, imm
.var TMP
.asg :imm (1) :, TMP
Lif $$symcmp (TMP, "#") = 0
ADD dst, dst, imm
.else
.emsg "Bad Macro Parameter"
.endif
.endm
ADDX R9, #100 ; macro call
ADDX R9, RS8 ; macro call

Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl,strg2, pos
.var LEN1,LEN2, I, TMP
Lif $$symlen (start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval 1,1
.eval Ssymlen (strgl), LEN1
.eval $$symlen(strg2),LEN2
.loop
.break I = (LEN2 - LEN1 + 1)
.asg ":strg2(I,LEN1):",TMP
.eval i,pos
.break
.else
.eval I+ 1,1
.endif
.endloop
.endm
.asg 0,pos
.asg "arl ar2 ar3 ar4",regs
substr 1,"ar2", regs,pos
.word pos

6.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to define
up to 32 local macro substitution symbols (including parameters) per macro. The .var directive creates temporary
substitution symbols with the initial value of the null string. These symbols are not passed in as parameters, and

they are lost after expansion.

.var symq[,sym,, ... ,sym,]

The .var directive is used in the examples in Section 6.3.5.

162 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain macro
definitions. You must use the archiver to collect these files, or members, into a single file (called an archive).
Each member of a macro library contains one macro definition. The files in a macro library must be unassembled
source files. The macro name and the member name must be the same, and the macro filename's extension
must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro Library). The
syntax is:

.mlib filename ‘

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a table
of the library's contents. The assembler enters the names of the individual members within the library into the
opcode tables as library entries; this redefines any existing opcodes or macros that have the same name. If one
of these macros is called, the assembler extracts the entry from the library and loads it into the macro table.

The assembler expands the library entry the same way it expands other macros. See Section 6.1 for how the
assembler expands macros. You can control the listing of library entry expansions with the .mlist directive. For
information about the .mlist directive, see Section 6.8 and Start/Stop Macro Expansion Listing. Only macros that
are actually called from the library are extracted, and they are extracted only once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to contain
macro definitions. The assembler expects only macro definitions in a macro library; putting object code or
miscellaneous source files into the library may produce undesirable results. For information about creating a
macro library archive, see Section 7.1.

6.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be nested
within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used more than
once within a conditional assembly code block. When .elseif and .else are omitted and when the .if expression is
false (0), the assembler continues to the code following the .endif directive. See Assemble Conditional Blocks for
more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

.loop [well-defined expression]

[.break [well-defined expression]]

.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to be
performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler encounters

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 163
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Macro Language Description

13 TEXAS
INSTRUMENTS

www.ti.com

a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks Repeatedly for

more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code after

the .endloop directive. For more information, see Section 5.8.

The .loop/.break/.endloop Directives, Nested Conditional Assembly Directives, and Built-In Substitution Symbol
Functions in a Conditional Assembly Code Block show the .loop/.break/ .endloop directives, properly nested
conditional assembly directives, and built-in substitution symbol functions used in a conditional assembly code

block.

The .loop/.break/.endloop Directives

.asg 1,x

.loop

.break (x == 10) ; if x == 10, quit loop/break with expression
.eval x+1,x

.endloop

Nested Conditional Assembly Directives

.asg 1,x

0) ; 1if x == 10, quit loop
0) ; force break

Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

.fcnolist
*

*Double Add or Subtract

*

DBL .macro ABC, dsth, dstl, srch, srcl ; add or subtract double
if $$symecmp (ABC, "+")
ADDS dstl, dstl, srcl ; add double
ADC dsth, dsth, srch
.elseif $$symcmp (ABC,"-")
SUBS dstl, dstl, srcl ; subtract double
SUBS dsth, dsth, srch
.else
.emsg "Incorrect Operator Parameter"
.endif
.endm
*Macro Call
DBL -, R4, R5, R6, R7
164 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is illegal. The
macro language provides a method of defining labels in macros so that the labels are unique. Simply follow each
label with a question mark, and the assembler replaces the question mark with a period followed by a unique
number. When the macro is expanded, you do not see the unique number in the listing file. Your label appears
with the question mark as it did in the macro definition. You cannot declare this label as global. See Section 4.8.3
for more about labels.

The syntax for a unique label is:

label ?

Unique Labels in a Macro shows unique label generation in a macro. The maximum label length is shortened to
allow for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label length
is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125. The label

with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the assembler with the
--asm_cross_reference_listing option (see Section 4.14).

Unique Labels in a Macro

1 ; define macro to find minimum
2 MIN .macro dst, srcl, src2
3 CMP srcl, src2
4 BCC ml?
5 MOV dst, srcl
6 B m2°?
7
8 ml? MOV dst, src2
9 m2°?
10 .endm
11
12 ; call macro
13 00000000 .statelé6
14 00000000 MIN r4, rl, r2
1 00000000 4291 CMP rl, r2
1 00000002 D301 BCC ml?
1 00000004 1coOC MOV rd, rl
1 00000006 EO0O B m2°?
1
1 00000008 1C14 ml? MOV rd, r2
1 0000000a m2°?
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 165
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to your
needs. The last line of the listing file shows the error and warning counts. These counts alert you to problems in
your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same manner as the assembler,
incrementing the error count and preventing the assembler from producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same manner as the .emsg directive
but does not set the error count or prevent the creation of an object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same manner as the .emsg directive, but it
increments the warning count and does not prevent the generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the expansion
of the macro. An exclamation point in column 1 identifies a macro comment. If you want your comments to
appear in the macro expansion, precede your comment with an asterisk or semicolon.

Producing Messages in a Macro shows user messages in macros and macro comments that do not appear
in the macro expansion. For more information about the .emsg, .mmsg, and .wmsg assembler directives, see
Define Messages.

Producing Messages in a Macro

1 MUL I .macro X,y
2 .if ($Ssymlen (x) ==0)
3 .emsg "ERROR -- Missing Parameter"
4 .mexit
5 .elseif (Ssymlen(y) ==
6 .emsg "ERROR -- Missing Parameter"
7 .mexit
8 .else
9 MOV R1, x
10 MOV R2, y
11 MUL RO, R1, R2
12 .endif
13 .endm
14
15 00000000 MUL I #50, #51
1 LAf ($$symlen(x) ==0)
1 .emsg "ERROR -- Missing Parameter"
1 .mexit
1 .elseif ($$symlen(y) == 0)
1 .emsg "ERROR -- Missing Parameter"
1 .mexit
1 .else
1 00000000 E3A01032 MOV R1, #50
1 00000004 E3A02033 MOV R2, #51
1 00000008 E0000291 MUL RO, R1, R2
1 .endif
16
17 0000000c MUL I
1 .if ($Ssymlen(x) ==0)
1 .emsg "ERROR -- Missing Parameter"
xxx*% USER ERROR *#** — : ERROR -- Missing Parameter
1 .mexit
1 Error, No Warnings
166 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to see
this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You may
want to turn this listing off or on within your listing file. Four sets of directives enable you to control the listing of
this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.
For macro and loop expansion listing, .mlist is the default.
+ False conditional block listing
fclist causes the assembler to include in the listing file all conditional blocks that do not generate code (false conditional
blocks). Conditional blocks appear in the listing exactly as they appear in the source code.

fenolist suppresses the listing of false conditional blocks. Only the code in conditional blocks that actually assemble
appears in the listing. The .if, .elseif, .else, and .endif directives do not appear in the listing.

For false conditional block listing, .fclist is the default.
* Substitution symbol expansion listing
.sslist expands substitution symbols in the listing. This is useful for debugging the expansion of substitution symbols. The
expanded line appears below the actual source line.
.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

« Directive listing

.drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives
are .asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg, .mmsg, .length, .width,
and .break.

For directive listing, .drlist is the default.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 167
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Macro Language Description www.ti.com

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other macros in a
macro definition. You can nest macros up to 32 levels deep. When you use recursive macros, you call a macro
from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you pass
to macro parameters because the assembler uses dynamic scoping for parameters. This means that the called
macro uses the environment of the macro from which it was called.

Using Nested Macros shows nested macros. The y in the in_block macro hides the y in the out_block macro.
The x and z from the out_block macro, however, are accessible to the in_block macro.

Using Nested Macros

in_block .macro y,a

. ; visible parameters are y,a and x,z from the calling macro
.endm
out block .macrox,y,z

; visible parameters are x,Vy,z

in block x,y ; macro call with x and y as arguments
.endm
out block ; macro call

Using Recursive Macros shows recursive and fact macros. The fact macro produces assembly code necessary
to calculate the factorial of n, where n is an immediate value. The result is placed in data memory address loc.
The fact macro accomplishes this by calling fact1, which calls itself recursively.

Using Recursive Macros

fact .macro N, loc ; N is an integer constant. Register loc address = N!
Lif N < 2 ; 0 =11 =1
MOV loc, #1
.else
MOV loc, #N ; N >= 2 so, store N in loc.
.eval -1, N ; Decrement N, and do the factorial of N - 1.
factl ; Call fact with current environment.
.endm
factl .macro
Lif N> 1
MOV RO, #N ; N> 1 so, store N in RO.
MUL loc, RO, loc ; Multiply present factorial by present position.
.eval N -1, N ; Decrement position.
factl ; Recursive call.
.endif
.endm
168 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Macro Language Description

6.10 Macro Directives Summary

The directives listed in Table 6-2 through Table 6-6 can be used with macros. The .macro, .mexit, .endm and .var
directives are valid only with macros; the remaining directives are general assembly language directives.

Table 6-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 6.2 .endm
macname .macro [parametery ,... , parameter,) Define macro by macname Section 6.2 .macro
.mexit Go to .endm Section 6.2 Section 6.2
.mlib filename Identify library containing macro definitions Section 6.4 .mlib

Table 6-3. Manipulating Substitution Symbols
See

Mnemonic and Syntax Description Macro Use Directive
.asg ["|character string["], substitution symbol Assign character string to substitution symbol Section 6.3.1 .asg

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols Section 6.3.1 .eval

var symq [, symy, ..., Sym,] Define local macro symbols Section 6.3.6 .var

Table 6-4. Conditional Assembly

See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 6.5 .break
.endif End conditional assembly Section 6.5 .endif
.endloop End repeatable block assembly Section 6.5 .endloop
.else Optional conditional assembly block Section 6.5 .else
.elseif well-defined expression Optional conditional assembly block Section 6.5 .elseif
.if well-defined expression Begin conditional assembly Section 6.5 if
loop [well-defined expression] Begin repeatable block assembly Section 6.5 .loop
Table 6-5. Producing Assembly-Time Messages
See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 6.7 .emsg
.mmsg Send assembly-time message to standard output Section 6.7 .mmsg
.wmsg Send warning message to standard output Section 6.7 .wmsg
Table 6-6. Formatting the Listing
See
Mnemonic and Syntax Description Macro Use Directive
felist Allow false conditional code block listing (default) Section 6.8 felist
fenolist Suppress false conditional code block listing Section 6.8 fenolist
.mlist Allow macro listings (default) Section 6.8 .mlist
.mnolist Suppress macro listings Section 6.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 6.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 6.8 .ssnolist
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 169
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Macro Language Description www.ti.com
This page intentionally left blank.

170 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 7
Archiver Description

i3 TEXAS INSTRUMENTS

The ARM archiver lets you combine several individual files into a single archive file. For example, you can collect
several macros into a macro library. The assembler searches the library and uses the members that are called
as macros by the source file. You can use the archiver to collect a group of object files into an object library. The
linker includes in the library the members that resolve external references during the link. The archiver allows
you to modify a library by deleting, replacing, extracting, or adding members.

On architectures like ARM, it is often desirable to have multiple versions of the same object file libraries, each
built with different sets of build options. When several versions of a single library are available, the library
information archiver can be used to create an index library of all the object file library versions. This index library
is the used in the link step in place of a particular version of your object file library.

T4 ATCRIVEI OVEIVIBW. ...ttt ettt e ekt e oo sttt e 4R e et e e b et e et et e e s e e e e e a b et e e s e e e e emn e e e anneeeenne e e nnnes 172

7.2 The Archiver's Role in the Software Development FIOW.................ccoiiiiiiiiiiiiii s 172

7.3 INVOKING the AFCRHIVETooiiiiiiee ettt e e e et e e e e et ee e e e s ataaeeeeeesbaeeea e e e snteeaeeesnssaeeeeeansnaeaaean 173

3 X TNV gl o T 1 0] o] (= PRP 173

7.5 Library Information Archiver DeSCHIPtiON............c.ooi ittt et e e e et e e st e e eneeeesnneeeaneeeeenns 175
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 171
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Archiver Description www.ti.com

7.1 Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as input;
the assembler can use libraries that contain individual source files, and the linker can use libraries that contain
individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example, you can
write several arithmetic routines, assemble them, and use the archiver to collect the object files into a single,
logical group. You can then specify the object library as linker input. The linker searches the library and includes
members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You can
use the .mlib directive during assembly to specify that macro library to be searched for the macros that you call.
Chapter 6 discusses macros and macro libraries in detail, while this chapter explains how to use the archiver to
build libraries.

7.2 The Archiver's Role in the Software Development Flow

Figure 7-1 shows the archiver's role in the software development process. The shaded portion highlights the
most common archiver development path. Both the assembler and the linker accept libraries as input.

C/C++
source
files

C/C++

compiler

C/C++ name

Assembler

demanglin
source g'ing

utility

Macro

library Assembler

Object Librat_nI/_-tbuiId Dett)uglging
files utility ools
I]
h Run-time-
Library of support
object library
files
|
Executable
object file

Hex-conversion
utility

EPROM
programmer

Cross-reference | Object file

Qbsclitelistey lister utilities

Figure 7-1. The Archiver in the ARM Software Development Flow

172 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Archiver Description

7.3 Invoking the Archiver

To invoke the archiver, enter:

‘armar[-]command [options] libname [filenamey ... filename,,]

armar is the command that invokes the archiver.

[Flcommand tells the archiver how to manipulate the existing library members and any specified. A command can be preceded
by an optional hyphen. You must use one of the following commands when you invoke the archiver, but you can use
only one command per invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can use this command to avoid
limitations on command line length imposed by the host operating system. Use a ; at the beginning of a line
in the command file to include comments. (See Archiver Command File for an example using an archiver
command file.)

a adds the specified files to the library. This command does not replace an existing member that has the same
name as an added file; it simply appends new members to the end of the archive.

d deletes the specified members from the library.

r replaces the specified members in the library. If you do not specify filenames, the archiver replaces the library

members with files of the same name in the current directory. If the specified file is not found in the library, the
archiver adds it instead of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files are listed. If you do not specify
any filenames, the archiver lists all the members in the specified library.

X extracts the specified files. If you do not specify member names, the archiver extracts all library members.
When the archiver extracts a member, it simply copies the member into the current directory; it does not
remove it from the library.

options In addition to one of the commands, you can specify options. To use options, combine them with a command; for
example, to use the a command and the s option, enter -as or as. The hyphen is optional for archiver options only.
These are the archiver options:

-h provide command-line help
-q (quiet) suppresses the banner and status messages.

-S prints a list of the global symbols that are defined in the library. (This option is valid only with the a, r, and d
commands.)

-u replaces library members only if the replacement has a more recent modification date. You must use the r
command with the -u option to specify which members to replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an old library and its members.

libname names the archive library to be built or modified. If you do not specify an extension for libname, the archiver uses the
default extension ./ib.

filenames names individual files to be manipulated. These files can be existing library members or new files to be added to the
library. When you enter a filename, you must enter a complete filename including extension, if applicable.

Note
Naming Library Members: It is possible (but not desirable) for a library to contain several members
with the same name. If you attempt to delete, replace, or extract a member whose name is the same
as another library member, the archiver deletes, replaces, or extracts the first library member with that
name.

7.4 Archiver Examples
The following are examples of typical archiver operations:

» If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj, enter:

armar -a function sine.obj cos.obj flt.obj

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 173
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Archiver Description www.ti.com

The archiver responds as follows:

new archive 'function.lib'
building new archive 'function.lib'

You can print a table of contents of function.lib with the -t command, enter:

armar -t function

The archiver responds as follows:

SIZE DATE FILE NAME
4260 Thu Mar 28 15:38:18 2019 sine.obj
4260 Thu Mar 28 15:38:18 2019 cos.obj
4260 Thu Mar 28 15:38:18 2019 flt.obj

If you want to add new members to the library, enter:

armar -as function atan.obj

The archiver responds as follows:

symbol defined: ' sin'
symbol defined: '$sin'
symbol defined: ' cos'
symbol defined: 'S$Scos'
symbol defined: ' tan'

symbol defined: 'Stan'

symbol defined: ' atan

symbol defined: 'S$atan'
building archive 'function.lib'

VVVYVVYVYVYVYV

Because this example does not specify an extension for the libname, the archiver adds the files to the library
called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the archiver to list
the global symbols that are defined in the library.)

If you want to modify a library member, you can extract it, edit it, and replace it. In this example, assume there
is a library named macros.lib that contains the members push.asm, pop.asm, and swap.asm.

armar -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove push.asm
from the library. Now you can edit the extracted file. To replace the copy of push.asm in the library with the
edited copy, enter:

‘ armar -r macros push.asm

If you want to use a command file, specify the command filename after the -@ command. For example:

‘ armar -@modules.cmd

The archiver responds as follows:

‘ ==> Dbuilding archive 'modules.lib'

Archiver Command File is the modules.cmd command file. The r command specifies that the filenames given
in the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is in the
library.

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Archiver Description

Archiver Command File

; Command file to replace members of the
; modules library with updated files
; Use r command and u option:

ru

; Specify library name:

modules.lib

; List filenames to be replaced if updated:
align.asm

bss.asm

data.asm

text.asm

sect.asm

clink.asm

copy.asm

double.asm

drnolist.asm

emsg.asm

end.asm

7.5 Library Information Archiver Description

Section 7.1 through Section 7.4 explain how to use the archiver to create libraries of object files for use in the
linker of one or more applications. You can have multiple versions of the same object file libraries, each built
with different sets of build options. For example, you might have different versions of your object file library

for big and little endian, for different architecture revisions, or for different ABls depending on the typical build
environments of client applications. However, if you have several versions of a library, it can be cumbersome to
keep track of which version of the library needs to be linked in for a particular application.

When several versions of a single library are available, the library information archiver can be used to create an
index library of all of the object file library versions. This index library is used in the linker in place of a particular
version of your object file library. The linker looks at the build options of the application being linked, and uses
the specified index library to determine which version of your object file library to include in the linker. If one or
more compatible libraries were found in the index library, the most suitable compatible library is linked in for your
application.

7.5.1 Invoking the Library Information Archiver

To invoke the library information archiver, enter:

armlibinfo [options] --output=/ibname libname [libname; ... libname,,]

armlibinfo is the command that invokes the library information archiver.

options changes the default behavior of the library information archiver. These options are:
--output /ibname specifies the name of the index library to create or update. This option is required.
--update updates any existing information in the index library specified with the --output option

instead of creating a new index.

libnames names individual object file libraries to be manipulated. When you enter a libname, you must enter a complete
filename including extension, if applicable.

7.5.2 Library Information Archiver Example

Consider these object file libraries that all have the same members, but are built with different build options:

Object File Library Name Build Options

mylib_ARMv4_be.lib --code_state=32 --silicon_version=4 --endian=big

mylib_ARMv4_le.lib --code_state=32 --silicon_version=4 --endian=little

mylib_THUMBV4_be.lib --code_state=16 --silicon_version=4 --endian=big

mylib_THUMBV4_le.lib --code_state=16 --silicon_version=4 --endian=little

mylib_ THUMBV7A8_le.lib --code_state=16 --silicon_version=7A8 --endian=little
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 175
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Archiver Description www.ti.com

Using the library information archiver, you can create an index library called mylib.lib from the above libraries:

armlibinfo --output mylib.lib mylib ARMv4 be.lib mylib THUMBv4 be.lib
mylib THUMBv7A8 le.lib mylib ARMv4 le.lib mylib THUMBv4 le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.

+ Example 1 (ISA v7A8, little endian):

armcl-mv7A8 -me --mylib pruv3 be main.c -z -1 lnk.cmd ./mylib.lib
<Linking>
remark: linking in "mylib THUMBv7A8 le.lib" in place of "mylib.lib"

+ Example 2 (ISAv5, big endian):

armcl -mv5e --issue remarks main.c -z -1 lnk.cmd ./mylib.lib
<Linking>
remark: linking in "mylib ARMv4 be.lib" in place of "mylib.lib"

In Example 2, there was no version of the library for ISAv5, but an ISAv4 library was available and is
compatible, so it was used.

7.5.3 Listing the Contents of an Index Library

The archiver’s -t option can be used on an index library to list the archives indexed by an index library:

armar t mylib.lib
SIZE DATE FILE NAME

119 Mon Apr 23 12:45:22 2007 mylib ARMv4 be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib ARMv4 le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib THUMBv4 be.lib.libinfo
119 Mon Apr 23 12:45:22 2007 mylib THUMBv4 le.lib.libinfo
119 Mon Apr 23 12:45:22 2007 mylib THUMBv7A8 le.lib.libinfo

0 Mon Apr 23 12:45:22 2007 __TI_$SLIBINFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The __ TI_$$LIBINFO
member is a special member that designates mylib.lib as an index library, rather than a regular library.

If the archiver’s -d command is used on an index library to delete a .libinfo member, the linker will no longer
choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __TI_$$LIBINFO member, results
in undefined behavior, and is not supported.

7.5.4 Requirements
You must follow these requirements to use library index files:

» At least one application object file must appear on the linker command line before the index library.

« Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

* The linker expects the index library and all of the libraries it indexes to be in a single directory.

176 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 8
Linker Description

i3 TEXAS INSTRUMENTS

The ARM linker creates executable modules by combining object modules. This chapter describes the linker
options, directives, and statements used to create executable modules. Object libraries, command files, and
other key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 includes a detailed discussion of sections.

8.1 LINKEI OVEIVIBW. ...ttt e ekt e e e sttt oo et e ek st et e a e et e e Rt e e ook bt e e eab et e e et e e s b e e e emne e e nnneeeanneeeans 178
8.2 The Linker's Role in the Software Development FIOW.................ocoiiiiiiiiiii e 178
8.3 INVOKING the LINKET oottt et e e ettt e e e e e atateeeeeasateeeaee e nsseeeee e e nsnaeeaesaannsseaaeesanssaneaeeaanns 179
I T 1 GY @] o T 4 = RO 180
8.5 Linker ComMANd FileS......... ...ttt et e et e e st e e e et e e e e e e e amneeeeanaeeeanneeeanneeeanseeeaneeeeennen 202
8.6 LINKEI SYMDBOIS........ .. i ettt ettt e e e e ettt e e e e aate e e e e e e aabeeea e e e nbn et eae e e nnteeeeeeaannaneeeeeaannnneaaean 237
8.7 Default Placement AIGOrithm.................o it e et e et s e e e bt e e nte e e nnneeeanneees 241
8.8 Using Linker-Generated COopy TabIEs. ...ttt s e sbb e etn e snneas 242
8.9 Linker-Generated CRC TabIEs..............c.cooiiiiiiiii ettt e a e sae et e s e b e e e aneeanee s 253
8.10 Partial (INncremental) LINKING..........cccuoiiiiiiiiii ettt e e e she e e e sa e e e ntee e saneeeanbeeeenneeesnneeeanbeeenans 258
8.11 LINKING C/CHF COQE.........oooi ittt e et e e ettt e et e e aneeeeaasee e e aneeeeamseeeaneeeeanneeeamseeeanseeeannneeanseeeeanneeennnes 258
£ 0 7 I 1] =T gl == 114 =P 260
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 177
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.1 Linker Overview

The ARM linker allows you to allocate output sections efficiently in the memory map. As the linker combines
object files, it performs the following tasks:

» Allocates sections into the target system's configured memory
» Relocates symbols and sections to assign them to final addresses
* Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address binding.
The language supports expression assignment and evaluation. You configure system memory by defining and
creating a memory model that you design. Two powerful directives, MEMORY and SECTIONS, allow you to:

» Allocate sections into specific areas of memory
» Combine object file sections
» Define or redefine global symbols at link time

8.2 The Linker's Role in the Software Development Flow

Figure 8-1 illustrates the linker's role in the software development process. The linker accepts several types
of files as input, including object files, command files, libraries, and partially linked files. The linker creates an
executable object module that can be downloaded to one of several development tools or executed by a ARM
device.

C/C++
source
files

C/C++

compiler

C/C++ name
demangling
utility

Assembler
source

Macro

Assembler

library
. Library-build Debugging
w Of?ljeesd -
h Run-time-

Library of support

object library

files
p—

Executable
object file

Hex-conversion
utility

EPROM
programmer

Cross-reference | Object file

Absolute lister lister utilities

Figure 8-1. The Linker in the ARM Software Development Flow

178 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.3 Invoking the Linker

The general syntax for invoking the linker is:

‘armcl --run_linker [options] filename; filename,,

armcl --run_linker is the command that invokes the linker. The --run_linker option's short form is -z.

options can appear anywhere on the command line or in a linker command file. (Options are discussed in
Section 8.4.)

filename 4, filename can be object files, linker command files, or archive libraries. The default extensions for input files

are .c.obj (for C source files) and .cpp.obj (for C++ source files). Any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII file that contains linker
commands. The default output filename is a.out, unless you use the --output_file option to name the
output file.

Note

The default file extensions for object files created by the compiler have been changed. Object files
generated from C source files have the .c.obj extension. Object files generated from C++ source
files have the .cpp.obj extension. Object files generated from assembly source files still have the .obj
extension.

There are two methods for invoking the linker:

» Specify options and filenames on the command line. This example links two files, file1.c.obj and file2.c.obj,
and creates an output module named link.out.

‘ armcl --run_linker filel.c.obj file2.c.obj --output file=link.out ‘

» Put filenames and options in a linker command file. Filenames that are specified inside a linker command file
must begin with a letter. For example, assume the file linker.cmd contains the following lines:

‘ --output file=link.out filel.c.obj file2.c.obj ‘

Now you can invoke the linker from the command line; specify the command filename as an input file:

armcl --run_linker linker.cmd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

‘ armcl --run linker --map file=link.map linker.cmd file3.c.obj ‘

The linker reads and processes a command file as soon as it encounters the filename on the command line,
so it links the files in this order: file1.c.obj, file2.c.obj, and file3.c.obj. This example creates an output file
called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 8.11.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 179
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Linker Description

13 TEXAS
INSTRUMENTS

www.ti.com

8.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file. Linker
options must be preceded by a hyphen (-). Options can be separated from arguments (if they have them) by an

optional space.

Table 8-1. Basic Options Summary

Option Alias Description Section
--run_linker -z Enables linking Section 8.3
--output_file -0 Names the executable output module. The default filename is a.out. Section 8.4.25
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 8.4.20
places the listing in filename
--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 8.4.31
specifies the stack size. Default = 2K bytes
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 8.4.16
defines a global symbol that specifies the heap size. Default = 2K bytes
Table 8-2. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 8.4.18
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 8.4.9
--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 8.4.18.3
that symbol
--reread_libs -X Forces rereading of libraries, which resolves back references Section 8.4.18.3

--search_path

Alters library-search algorithms to look in a directory named with pathname
before looking in the default location. This option must appear before the
--library option.

Section 8.4.18.1

Table 8-3. Command File Preprocessing Options Summary

Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 8.4.11
--undefine Removes the preprocessor macro name. Section 8.4.11
--disable_pp Disables preprocessing for command files Section 8.4.11
Table 8-4. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 8.4.8
--diag_remark Categorizes the diagnostic identified by num as a remark Section 8.4.8
--diag_suppress Suppresses the diagnostic identified by num Section 8.4.8
--diag_warning Categorizes the diagnostic identified by num as a warning Section 8.4.8
--display_error_number Displays a diagnostic's identifiers along with its text Section 8.4.8
--emit_references:file[=file] Emits a file containing section information. The information includes section Section 8.4.8
size, symbols defined, and references to symbols.
--emit_warnings_as_errors -pdew Treats warnings as errors Section 8.4.8
--issue_remarks Issues remarks (nonserious warnings) Section 8.4.8
--no_demangle Disables demangling of symbol names in diagnostics Section 8.4.22
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 8.4.8
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 8.4.8
errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 8.4.8
--warn_sections -wW Displays a message when an undefined output section is created Section 8.4.35

180
v20.2.0.LTS

ARM Assembly Language Tools

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Linker Description
Table 8-5. Linker Output Options Summary
Option Alias Description Section
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither -- Section 8.4.3.1
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe
were specified.
--ecc={ on | off } Enable linker-generated Error Correcting Codes (ECC). The default is off. Section 8.4.12
Section 8.5.9
--ecc:data_error Inject the specified errors into the output file for testing Section 8.4.12
Section 8.5.9
--ecc:ecc_error Inject the specified errors into the Error Correcting Code (ECC) for testing Section 8.4.12
Section 8.5.9
--mapfile_contents Controls the information that appears in the map file. Section 8.4.21
--relocatable -r Produces a nonexecutable, relocatable output module Section 8.4.3.2
--generate_dead_funcs_list Writes a list of the dead functions that were removed by the linker to file fname. Section 8.4.15
--run_abs -abs Produces an absolute listing file Section 8.4.29
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 8.4.36
result of a link
Table 8-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 8.4.13
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 8.4.19
--hide Hides global symbols that match pattern Section 8.4.17
--localize Changes the symbol linkage to local for symbols that match pattern Section 8.4.19
--make_global -g Makes symbol global (overrides -h) Section 8.4.19.1
--make_static -h Makes all global symbols static Section 8.4.19.1
--no_symtable -s Strips symbol table information and line number entries from the output module Section 8.4.24
--retain Retains a list of sections that otherwise would be discarded Section 8.4.28
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 8.4.30
--symbol_map Maps symbol references to a symbol definition of a different name Section 8.4.32
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 8.4.34
--unhide Reveals (un-hides) global symbols that match pattern Section 8.4.17
Table 8-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 8.4.4
-be32 Forces the linker to generate BE-32 object code. Section 8.4.5
-be8 Forces the linker to generate BE-8 object code. Section 8.4.5
--cinit_hold_wdt={on|off} Hold (on) or do not hold (off) watchdog timer during cinit auto-initialization. Section 8.11.5
-fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 8.4.14
constant
--ram_model -cr Initializes variables at load time Section 8.4.27
--rom_model -C Autoinitializes variables at run time Section 8.4.27
--trampolines Generates far call trampolines; on by default Section 8.4.33
Table 8-8. Link-Time Optimization Options Summary
Option Alias Description Section
--cinit_compression Specifies the type of compression to apply to the C auto initialization data. Section 8.4.6
[=compression_kind] The default if this option is used with no kind specified is Izss for Lempel-Ziv-
Storer-Szymanski compression. Alternately, specify --cinit_compression=rle to
use Run Length Encoded compression, which generally provides less efficient
compression.
--compress_dwarf Aggressively reduces the size of DWARF information from input object files Section 8.4.7

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools 181
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Linker Description www.ti.com
Table 8-8. Link-Time Optimization Options Summary (continued)
Option Alias Description Section
--COpy_compression Compresses data copied by linker copy tables Section 8.4.6
[=compression_kind]
--unused_section_elimination Eliminates sections that are not needed in the executable module; on by Section 8.4.10
default
Table 8-9. Miscellaneous Options Summary
Option Alias Description Section
--linker_help -help Displays information about syntax and available options -
--minimize_trampolines Places sections to minimize number of far trampolines required Section 8.4.33.2
--preferred_order Prioritizes placement of functions Section 8.4.26
--trampoline_min_spacing When trampoline reservations are spaced more closely than the specified limit, Section 8.4.33.3
tries to make them adjacent
--zero_init Controls preinitialization of uninitialized variables. Default is on.Always off if Section 8.4.37

--ram_model is used.

8.4.1 Wildcards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark (?)
wildcards. Using * matches any number of characters and using ? matches a single character. Using wildcards
can make it easier to handle related objects, provided they follow a suitable naming convention. For example:

mp3*.0bj /* matches anything .obj that begins with mp3 */
task?.o* /* matches taskl.obj, task2.c.obj, taskX.o55, etc. */
SECTIONS
{

.fast code: { *.obj(*fast*) } > FAST MEM

.vectors : { vectors.c.obj(.vector:partl:*) > OxXFFFFFF0O0

.str code : { rts*.lib<str*.c.obj>(.text) } > S1ROM
}

8.4.2 Specifying C/C++ Symbols with Linker Options
The link-time symbol is the same as the high-level language name.

For more information on referencing symbol names, see the "Object File Symbol Naming Conventions
(Linknames)" section in the ARM Optimizing C/C++ Compiler User's Guide.

For information specifically about C++ symbol naming, see Section 13.3.1 in this document and the "C++ Name
Demangler" chapter in the ARM Optimizing C/C++ Compiler User's Guide.

See Section 8.6 for information about referring to linker symbols in C/C++ code.
8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the symbol's
address changes (Section 2.7).

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an absolute or a
relocatable output module. The --absolute_exe and --relocatable options may not be used together.

When the linker encounters a file that contains no relocation or symbol table information, it issues a warning
message (but continues executing). Relinking an absolute file can be successful only if each input file contains
no information that needs to be relocated (that is, each file has no unresolved references and is bound to the
same virtual address that it was bound to when the linker created it).

182 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)

If you use --absolute_exe without the --relocatable option, the linker produces an absolute, executable output
module. Absolute files contain no relocation information. Executable files contain the following:

« Special symbols defined by the linker (see Section 8.5.10.4)
* An header that describes information such as the program entry point
* No unresolved references

The following example links file1.c.obj and file2.c.obj and creates an absolute output module called a.out:

armcl --run_linker --absolute exe filel.c.obj file2.c.obj

Note
The --absolute_exe and --relocatable Options

If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you specified
--absolute_exe.

8.4.3.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the output
module is relocated (at load time) or relinked (by another linker execution), use --relocatable to retain the
relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the --absolute_exe

option. A file that is not executable does not contain special linker symbols or an optional header. The file can
contain unresolved references, but these references do not prevent creation of an output module.

This example links file1.c.obj and file2.c.obj and creates a relocatable output module called a.out:

armcl --run linker --relocatable filel.c.obj file2.c.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will be
relinked with other files is called partial linking. For more information, see Section 8.10.)

8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments from
the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size
The size is the number of bytes to be allocated in target memory for command-line arguments.

By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --arg_size=size, the
following occur:

* The linker creates an uninitialized section named .args of size bytes.
« The __c_args _ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c¢_args__ symbol to determine whether and

how to pass arguments from the host to the target program. See the ARM Optimizing C/C++ Compiler User's
Guide for information about the loader.

8.4.5 Changing Encoding of Big-Endian Instructions

When you are creating big-endian executable files, you can determine whether instruction encoding is in little

or big endian. The -be8 option produces big-endian executable modules with little-endian encoded instructions.

This is the default behavior for architecture version 6 and higher.

The -be32 option produces big-endian executable modules with big-endian encoded instructions. This is the
default behavior for architecture version 5 and lower.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

183

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.4.6 Compression (--cinit_compression and --copy_compression Option)

By default, the linker does not compress copy table (Section 3.3.3 and Section 8.8) source data sections. The
--cinit_compression and --copy_compression options specify compression through the linker.

The --cinit_compression option specifies the compression type the linker applies to the C autoinitialization copy
table source data sections. The default is Izss.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The
--copy_compression option controls the compression of the copy data tables.

The syntax for the options are:
--cinit_compression[=compression_kind)]
--copy_compression[=compression_kind)]

The compression_kind can be one of the following types:

» off. Do not compress the data.

* rle. Compress data using Run Length Encoding.

* lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression (the default if no compression_kind is
specified).

Compressed sections within initialization tables are byte aligned in order to reduce the occurrence of holes in
the .cinit table.

See Section 8.8.5 for more information about compression.
8.4.7 Compress DWAREF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating duplicate
information from input object files.

For ELF object files, which are used with EABI, the --compress_dwarf option eliminates duplicate information
that could not be removed through the use of ELF COMDAT groups. (See the ELF specification for information
on COMDAT groups.)

8.4.8 Control Linker Diagnostics

The linker honors certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic options
must be specified before the --run_linker option.

--diag_error=num Categorize the diagnostic identified by num as an error. To find the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate link. Then use --diag_error=num to
recategorize the diagnostic as an error. You can only alter the severity of discretionary diagnostics.

--diag_remark=num Categorize the diagnostic identified by num as a remark. To find the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate link. Then use --diag_remark=num
to recategorize the diagnostic as a remark. You can only alter the severity of discretionary diagnostics.

--diag_suppress=num Suppress the diagnostic identified by num. To find the numeric identifier of a diagnostic message, use
the --display_error_number option first in a separate link. Then use --diag_suppress=num to suppress
the diagnostic. You can only suppress discretionary diagnostics.

--diag_warning=num Categorize the diagnostic identified by num as a warning. To find the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate link. Then use --diag_warning=num
to recategorize the diagnostic as a warning. You can only alter the severity of discretionary diagnostics.

--display_error_number Display a diagnostic's numeric identifier along with its text. Use this option in determining which
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error,
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes
the suffix -D; otherwise, no suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

184 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

--emit_references:file [=flename] Emits a file containing section information. The information includes section size, symbols defined, and
references to symbols. This information allows you to determine why each section is included in the
linked application. The output file is a simple ASCII text file. The filename is used as the base name of
a file created. For example, --emit_references:file=myfile generates a file named myfile.txt in the current

directory.
--emit_warnings_as_ Treat all warnings as errors. This option cannot be used with the --no_warnings option. The
errors --diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.
--issue_remarks Issue remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppress warning diagnostics (errors are still issued).
--set_error_limit=num Set the error limit to num, which can be any decimal value. The linker abandons linking after this

number of errors. (The default is 100.)
--verbose_diagnostics Provide verbose diagnostics that display the original source with line-wrap and indicate the position of

the error in the source line
8.4.9 Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library. See the ARM
Optimizing C/C++ Compiler User's Guide for details on the automatic selection process.

8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)

To minimize the footprint, the ELF linker does not include sections that are not needed to resolve any references
in the final executable. Use --unused_section_elimination=0off to disable this optimization. The linker default
behavior is equivalent to --unused_section_elimination=on.

8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the command files
can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For example:

armcl --define=FO0=1 main.c --run_ linker --define=BAR=2 lnk.cmd

The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the usual way
(that is, macros defined in the parent are visible in the child). However, when a command file is invoked other
than through #include, either on the command line or by the typical way of being named in another command
file, preprocessing context is not carried into the nested file. The exception to this is --define and --undefine
options, which apply globally from the point they are encountered. For example:

--define GLOBAL

#define LOCAL

#include "incfile.cmd" /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are subject to

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 185
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

macro substitution, probably with unintended consequences. This effect can be defeated by quoting the symbol
name. For example:

--define MYSYM=123
--undefine MYSYM /* expands to --undefine 123 (!) */
--undefine "MYSYM" /* ahh, that's better */

The linker searches for an #include file in the following order until the file is found:

1. If the #include file name is in quotes (rather than <brackets>), search the directory that contains the current
file.

2. If the --include_path compiler option was used (before the --run_linker or -z option), search the path
specified with that option.

3. Ifthe TI_ARM_C_DIR environment variable is defined, search directories pointed to by that definition. See
Section 8.4.18.2.

There are two exceptions: relative pathnames (such as "../name") always search relative to the current directory,
and absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker provides the built-in macro definitions listed in Table 8-10. The availability of these macros within

the linker is determined by the command-line options used, not the build attributes of the files being linked. If
these macros are not set as expected, confirm that your project's command line uses the correct compiler option
settings.

Table 8-10. Predefined ARM Macro Names

Macro Name Description

_ DATE___ Expands to the compilation date in the form mmm dd yyyy

__FILE__ Expands to the current source filename

__TI_COMPILER_VERSION__ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not

contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros
are dropped to prevent the number being interpreted as an octal.

__TI_EABI__ Defined to 1 if EABI is enabled; otherwise, it is undefined.

__TI_ARM__ Always defined

__TI_ARM_V4__ Defined to 1 if the v4 architecture (ARM7) is targeted (the -mv4 option is used); otherwise, it is
undefined.

__TI_ARM_V5__ Defined to 1 if the v5E architecture (ARM9E) is targeted (the -mv5e option is used); otherwise,
it is undefined.

__TI_ARM_V6__ Defined to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used); otherwise, it
is undefined.

__TI_ARM_V6MO__ Defined to 1 if the v6MO architecture (Cortex-MO0) is targeted (the -mv6MO option is used);
otherwise, it is undefined.

__TI_ARM_V7__ Defined to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is undefined.

__TI_ARM_V7A8__ Defined to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used);
otherwise, it is undefined.

__TI_ARM_V7M__ Defined to 1 if any Cortex-M architecture is targeted; otherwise, it is undefined.

__TI_ARM_V7M3__ Defined to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is used);
otherwise, it is undefined.

__TI_ARM_V7M4__ Defined to 1 if the v7M4 architecture (Cortex-M4) is targeted (the -mv7M4 option is used);
otherwise, it is undefined.

__TI_ARM_V7R4__ Defined to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is used);
otherwise, it is undefined.

__TIME__ Expands to the compilation time in the form "hh:mm:ss"

186 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.4.12 Error Correcting Code Testing (--ecc Options)
Error Correcting Codes (ECC) can be generated and placed in separate sections by the linker command file.

To enable ECC support, include --ecc=on as a linker option on the command line. By default ECC generation
is off, even if the ECC directive and ECC specifiers are used in the linker command file. This allows you to fully
configure ECC in the linker command file while still being able to quickly turn the code generation on and off via
the command line. See Section 8.5.9 for details on linker command file syntax to configure ECC support.

ECC uses extra bits to allow errors to be detected and/or corrected by a device. ECC support provided by

the linker is compatible with ECC support in Tl Flash memory on various Tl devices. Tl Flash memory uses a
modified Hamming(72,64) code, which uses 8 parity bits for every 64 bits. Check the documentation for your
Flash memory to see if ECC is supported. (ECC for read-write memory is handled completely in hardware at run
time.)

After enabling ECC with the --ecc=on option, you can use the following command-line options to test ECC by
injecting bit errors into the linked executable. These options let you specify an address where an error should
appear and a bitmask of bits in the code/data at that address to flip. You can specify the address of the error
absolutely or as an offset from a symbol. When a data error is injected, the ECC parity bits for the data are
calculated as if the error were not present. This simulates bit errors that might actually occur and tests ECC's
ability to correct different levels of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax is:

--ecc:data_error=(symbol+offset|address) [,page],bitmask

The address is the location of the minimum addressable unit where the error is to be injected. A symbol+offset
can be used to specify the location of the error to be injected with a signed offset from that symbol. The page
number is needed to make the location non-ambiguous if the address occurs on multiple memory pages. The
bitmask is a mask of the bits to flip; its width should be the width of an addressable unit.

For example, the following command line flips the least-significant bit in the byte at the address 0x100, making it
inconsistent with the ECC parity bits for that byte:

armcl test.c --ecc:data_error=0x100,0x01 -z -o test.out

The following command flips two bits in the third byte of the code for main():

armcl test.c --ecc:data_error=main+2,0x42 -z -o test.out ‘

The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified location. Note
that the ecc_error option can therefore only specify locations inside ECC input ranges, whereas the data_error
option can also specify errors in the ECC output memory ranges. The syntax is:

--ecc:ecc_error=(symbol+offset|address) [,page],bitmask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must be exactly 8
bits. Mirrored copies of the affected ECC byte will also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run time in any of the
8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity information for the
byte at 0x200:

armcl test.c --ecc:ecc_error=0x200,0xff -z -o test.out

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the input range for an
ECC range. The compiler can only inject errors into initialized sections.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 187
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.4.13 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads a
program into target memory, the program counter (PC) must be initialized to the entry point; the PC then points
to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in which
the linker tries to use them. If you use one of the first three values, it must be an external symbol in the symbol
table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input files.
The external symbol name of C or C++ objects may be different than the name as declared in the source
language; refer to the ARM Optimizing C/C++ Compiler User's Guide.

* The value of symbol _c_int00 (if present). The _c_int00 symbol must be the entry point if you are linking code
produced by the C compiler.

* The value of symbol _main (if present)

* 0 (default value)

This example links file1.c.obj and file2.c.obj. The symbol begin is the entry point; begin must be defined as
external in file1 or file2.

armcl --run_linker --entry point=begin filel.c.obj file2.c.obj

See Section 8.6 for information about referring to linker symbols in C/C++ code.

8.4.14 Set Default Fill Value (--fill_value Option)

The -fill_value option fills the holes formed within output sections. The syntax for the option is:
-fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the linker
uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:

armcl --run_linker --fill value=0xABCDABCD filel.c.obj file2.c.obj

8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)

The --generate_dead_funcs_list option creates a list of functions that are never referenced (dead) and writes the
list to the specified file. If no filename is specified, the default filename dead_funcs.xml is used. The syntax for
the option is:

--generate_dead_funcs_list=filename

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the --generate_dead_funcs_list option
and the corresponding --use_dead_funcs_list option.

8.4.16 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax for the
--heap_size option is:

--heap_size= size

188 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

The size must be a constant. This example defines a 4K byte heap:

armcl --run_linker --heap size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol, Tl SYSMEM_SIZE, and assigns it a value equal to the size of the
heap. The default size is 2K bytes. See Section 8.6 for information about referring to linker symbols in C/C++
code.

8.4.17 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is used
to prevent name space clashes in a link unit (see Section 8.4.19), symbol hiding is used to obscure symbols
which should not be visible outside a link unit. Such symbol’s names appear only as empty strings or “no name”
in object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:
--hide=" pattern'
--unhide=' pattern'

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to match
zero or more characters.

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols matching the
pattern by changing the name to an empty string. A global symbol that is hidden is also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern defined
by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.

» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than Pattern B, if
Pattern A matches a narrower set than Pattern B.

* ltis an error if a symbol matches patterns from --hide and --unhide and one does not supersede the other.
Pattern A supersedes pattern B if A can match everything B can and more. If Pattern A supersedes Pattern
B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.

In map files these symbols are listed under the Hidden Symbols heading.
8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C_DIR)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for the file
in the current directory. For example, suppose the current directory contains the library object.lib. If this library
defines symbols that are referenced in the file file1.c.obj, this is how you link the files:

armcl --run linker filel.c.obj object.lib

To use a file that is not in the current directory, use the --library linker option. The --library option's short form is -I.
The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, object file, or linker command file. You can specify up to 128 search
paths.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 189
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The --library option is not required when one or more members of an object library are specified for input to an
output section. For more information about allocating archive members, see Section 8.5.5.5.

You can adjust the linker's directory search algorithm using the --search_path linker option or the
TI_ARM_C_DIR environment variable. The linker searches for object libraries and command files in this order:

1. Search directories named with the --search_path linker option. The --search_path option must appear before
the --library option on the command line or in a command file.

2. Search directories named with TI_ARM_C_DIR.

3. If TI_ARM_C _DIR is not set, search directories named with the TI_ARM_A_DIR environment variable.

4. Search the current directory.

Note

The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be used.
Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older TMS470_A DIR
environment variable if both are defined. If only TMS470_A DIR is set, it will continue to be used.

8.4.18.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's short
form is —I. The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker searches for files named with the --library option, it searches through directories named with --
search_path first. Each --search_path option specifies only one directory, but you can use several --search_path
options per invocation. If you use the --search_path option to name an alternate directory, it must precede any
--library option on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and Id2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment variable,
and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

UNIX (Bourne shell) armcl --run linker fl.c.obj f2.c.obj --search path=/ld --search path=/1d2
--library=r.lib --library=1ib2.1ib

Windows armcl --run linker fl.c.obj f2.c.obj --search path=\1ld --search path=\1d2
--library=r.lib --library=1ib2.1lib

8.4.18.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named TI_ARM_C _DIR to name alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) TI_ARM_C_DIR=" pathname, ; pathname, ; ... "; export T_ARM_C_DIR
Windows set TI_ARM_C_DIR= pathname; ; pathname, ; . . .

The pathnames are directories that contain input files. Use the --library linker option on the command line or in
a command file to tell the linker which library or linker command file to search for. The pathnames must follow
these constraints:

» Pathnames must be separated with a semicolon.

190 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after the
semicolon in the following is ignored:

‘ set TI_ARM C DIR= c:\path\one\to\tools ; c:\path\two\to\tools

+ Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

‘ set TI_ARM C DIR=c:\first path\to\tools;d:\second path\to\tools

In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and Id2 directories.
The table below shows how to set the environment variable, and how to use both libraries during a link. Select
the row for your operating system:

Operating System Invocation Command

UNIX (Bourne shell) TI_ARM C_DIR="/1ld ;/1ld2"; export TI_ARM C_DIR;
armcl --run linker fl.c.obj f2.c.obj --library=r.lib --library=1ib2.1lib

Windows TI_ARM C_DIR=\1d;\1d2
armcl —--run linker fl.c.obj f2.c.obj --library=r.lib --library=1ib2.1lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) [unset TI_ARM C DIR |
Windows ‘set TI_ARM C DIR= ‘

The assembler uses an environment variable named TI_ARM_A_DIR to name alternate directories that contain
copy/include files or macro libraries. If TI_ARM_C_DIR is not set, the linker searches for object libraries in the
directories named with TI_ ARM_A_DIR. For information about TI_ ARM_A_DIR, see Section 4.5.2. For more
information about object libraries, see Section 8.6.6.

8.4.18.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)
There are two ways to exhaustively search for unresolved symbols:

* Reread libraries if you cannot resolve a symbol reference (--reread_libs).
» Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on the
command line or in the command file. When an archive is read, any members that resolve references to
undefined symbols are included in the link. If an input file later references a symbol defined in a previously read
archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries until

no more references can be resolved. Linking using --reread_libs may be slower, so you should use it only as
needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a reference to a
symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the libraries twice, as in:

armcl --run linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:

armcl --run_linker --reread libs --library=a.lib --library=b.lib
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 191
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For example:

objfile references A
1libl defines B
1ib2 defines A, B; obj defining A references B

% armcl --run linker objfile 1libl 1ib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which resolves to
the B in lib2.

Under --priority, objfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved by
searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in other
libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rtsv4_A_be_eabi.lib
without providing a full replacement for rtsv4_A_be_eabi.lib. Using --priority and linking your new library before
rtsv4d_A_be_eabi.lib guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one
illustrated above occur.

8.4.19 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global symbols
that should not be widely visible, but must be global because they are accessed by several modules in the
library. The linker supports symbol localization through the --localize and --globalize linker options.

The syntax for these options are:
--localize=' pattern'
--globalize=' pattern '

The pattern is a "glob" (a string with optional ? or * wildcards). Use ? to match a single character. Use * to match
zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --globalize
option only affects symbols that are localized by the --localize option. The --globalize option excludes symbols
that match the pattern from symbol localization, provided the pattern defined by --globalize is more restrictive

than the pattern defined by --localize.

See Section 8.4.2 for information about using C/C++ identifiers in linker options such as --localize and
--globalize.

These options have the following properties:

* The --localize and --globalize options can be specified more than once on the command line.

» The order of --localize and --globalize options has no significance.

» A symbol is matched by only one pattern defined by either --localize or --globalize.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than Pattern B, if
Pattern A matches a narrower set than Pattern B.

» ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede other.
Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A supersedes
Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.

In map files these symbols are listed under the Localized Symbols heading.

192 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.4.19.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external symbols
with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to the
module in which they are defined, so no external references are possible. For example, assume file1.c.obj and
file2.c.obj both define global symbols called EXT. By using the --make_static option, you can link these files
without conflict. The symbol EXT defined in file1.c.obj is treated separately from the symbol EXT defined in
file2.c.obj.

armcl --run_linker --make_static filel.c.obj file2.c.obj

The --make_static option makes all global symbols static. If you have a symbol that you want to remain global
and you use the --make_static option, you can use the --make_global option to declare that symbol to be global.
The --make_global option overrides the effect of the --make_static option for the symbol that you specify. The
syntax for the --make_global option is:

--make_global= global _symbol

8.4.20 Create a Map File (--map_file Option)
The syntax for the --map_file option is:
--map_file= filename

The linker map describes:

* Memory configuration

* Input and output section allocation

* Linker-generated copy tables

e Trampolines

» The addresses of external symbols after they have been relocated
* Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three tables:

* A table shows the new memory configuration if the MEMORY directive specifies any non-default
configuration. The table has the following columns, which are generated from the MEMORY directive in
the linker command file. For information about the MEMORY directive, see Section 8.5.4.

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

R specifies that the memory can be read.
W specifies that the memory can be written to.
X specifies that the memory can contain executable code.

| specifies that the memory can be initialized.

» A table showing the linked addresses of each output section and the input sections that make up the output
sections (section placement map). This table has the following columns; this information is generated on the
basis of the information in the SECTIONS directive in the linker command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.
— Origin. The first origin listed for each output section is the starting address of that output section. The
indented origin value is the starting address of that portion of the output section.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 193
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

— Length. The first length listed for each output section is the length of that output section. The indented
length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the input
section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 8.5.5.
» A table showing each external symbol and its address sorted by symbol name.
» A table showing each external symbol and its address sorted by symbol address.

The following example links file1.c.obj and file2.c.obj and creates a map file called map.out:

armcl --run_linker filel.c.obj file2.c.obj --map_file=map.out

Output Map File, demo.map shows an example of a map file.
8.4.21 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax for
the --mapfile_contents option is:

--mapfile_contents= filter], filter]

When the --map_file option is specified, the linker produces a map file containing information about memory
usage, placement information about sections that were created during a link, details about linker-generated copy
tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is included in or
excluded from a map file. When you specify --mapfile_contents=help from the command line, a help screen
listing available filter options is displayed. The following filter options are available:

Attribute Description Default State
crctables CRC tables On
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:

--mapfile contents=copytables,noentry
--mapfile contents=all, nocopytables
--mapfile contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option is specified

are included. The filters specified in the --mapfile_contents options are processed in the order that they appear
in the command line. In the third example above, the first filter, none, clears all map file content. The second
filter, entry, then enables information about entry points to be included in the generated map file. That is, when
--mapfile_contents=none,entry is specified, the map file contains only information about entry points.

194 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in the
symbol list in addition to the run address (if the load address is different from the run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find it useful
to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the sym_defs section by
specifying the following --mapfile_contents option:

--mapfile contents=nosym name,nosym dp,nosym runaddr,sym defs

By default, information about global symbols defined in an application are included in tables sorted by name,
data page, and run address. If you use the --mapfile_contents=sym_defs option, static variables are also listed.

8.4.22 Disable Name Demangling (--no_demangile)
By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.cpp.obj

The --no_demangle option instead shows the linkname for symbols in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.cpp.obj

For information on referencing symbol names, see the "Object File Symbol Naming Conventions (Linknames)"
section in the ARM Optimizing C/C++ Compiler User's Guide.

For information specifically about C++ symbol naming, see the "C++ Name Demangler" chapter in the ARM
Optimizing C/C++ Compiler User's Guide.

8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate information
is commonly generated when a C program is compiled for debugging. For example:

-[header.h]-
typedef struct
{
<define some structure members>
} XYZ;
-[fl.c 1-
#include "header.h"

-[f2.c]-
#include "header.h"

When these files are compiled for debugging, both f1.c.obj and f2.c.obj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker eliminates the
duplicate entries automatically.

8.4.24 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line number
entries. The --no_sym_table option is useful for production applications when you do not want to disclose
symbolic information to the consumer.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 195
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

This example links file1.c.obj and file2.c.obj and creates an output module, stripped of line numbers and symbol
table information, named nosym.out:

armcl --run_linker --output file=nosym.out --no_symtable filel.c.obj file2.c.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Note
Stripping Symbolic Information

The --no_symtable option is deprecated. To remove symbol table information, use the armstrip utility
as described in Section 11.4.

8.4.25 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for the
output module, the linker gives it the default name a.out. If you want to write the output module to a different file,
use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links file1.c.obj and file2.c.obj and creates an output module named run.out:

armcl --run_linker --output file=run.out filel.c.obj file2.c.obj

8.4.26 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order= function specification

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the program cache layout tool, which is
impacted by --preferred_option.

8.4.27 C Language Options (--ram_model and --rom_model Options)

The --ram_model and --rom_model options cause the linker to use linking conventions that are required by the C
compiler. Both options inform the linker that the program is a C program and requires a boot routine.

* The --ram_model option tells the linker to initialize variables at load time.
* The --rom_model option tells the linker to autoinitialize variables at run time.

If you use a linker command line that does not compile any C/C++ files, you must use either the --rom_model or
--ram_model option. If your command line fails to include one of these options when it is required, you will see
"warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used, the
--rom_model or --ram_model option must follow the --run_linker option.

For more information, see Section 8.11, Section 3.3.2.1, and Section 3.3.2.2.
8.4.28 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is not
needed in the executable to resolve references. The --retain option tells the linker to retain a list of sections that
would otherwise not be retained. This option accepts the wildcards "' and '?'. When wildcards are used, the
argument should be in quotes. The syntax for this option is:

--retain=sym_or_scn_spec

196 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

The --retain option take one of the following forms:
» --retain= symbol_spec

Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:

--retain="init*'

You cannot specify --retain="".
» --retain= file_spec(scn_spec|, scn_spec, ...]

Specifying the file format retains sections that match one or more scn_spec from files matching the file_spec.
For example, this code retains .intvec sections from all input files:

--retain="*(.int*)"'

You can specify --retain="*(*)" to retain all sections from all input files. However, this does not prevent sections
from library members from being optimized out.
» -retain= ar_spec<mem_spec, [mem_spec, ...>(scn_spec|, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members matching one
or more mem_spec from archive files matching ar_spec. For example, this code retains the .text sections
from printf.c.obj in the rts32eabi.lib library:

--retain=rts32eabi.lib<printf.c.obj>(.text)

If the library is specified with the --library option (--library=rts32eabi.lib) the library search path is used to
search for the library. You cannot specify "<*>(*)".

8.4.29 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file linked. These files are named with the input filenames
and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols defined
in COMDAT sections. The --scan_libraries option helps determine those symbols that were actually chosen by
the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to a
definition when multiple definitions are available in the libraries.

8.4.31 Define Stack Size (--stack_size Option)

The ARM C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time stack. You can
set the size of this section in bytes at link time with the --stack_size option. The syntax for the --stack_size option
is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:

armcl --run_linker --stack size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any symbols
defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ Tl STACK_SIZE, and assigns
it a value equal to the size of the section. The default software stack size is 2K bytes. See Section 8.6 for
information about referring to linker symbols in C/C++ code.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 197
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.4.32 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name, which allows
functions to be overridden with alternate definitions. This can be used to patch in alternate implementations to
provide patches (bug fixes) or alternate functionality. The syntax for the --symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition foo_patch:

--symbol map=foo=foo_ patch

The --symbol_map option is supported even if --opt_level=4 was used when compiling.

The string passed with the --symbol_map option should contain no spaces and not be surrounded by quotes.
This allows the same linker option syntax to work on the command line, in a linker command file, and in an
options file.

8.4.33 Generate Far Call Trampolines (--trampolines Option)

The ARM device has PC-relative call and PC-relative branch instructions whose range is smaller than the
entire address space. When these instructions are used, the destination address must be near enough to the
instruction that the difference between the call and the destination fits in the available encoding bits. If the
called function is too far away from the calling function, the linker generates an error or generates a trampoline,
depending on the setting of the --trampolines option (on or off).

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load the
called address into a register, and call that register. This is often undesirable because it takes more instructions
(speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates calls that may require a trampoline if the destination is too far away. On some
architectures, this type of call is called a "near call."

The --trampolines option allows you to control the generation of trampolines. When set to "on", this option
causes the linker to generate a trampoline code section for each call that is linked out-of-range of its called
destination. The trampoline code section contains a sequence of instructions that performs a transparent long
branch to the original called address. Each calling instruction that is out-of-range from the called function is
redirected to the trampoline.

The syntax for this option is:
--trampolines[=on|off]
The default setting is on. For ARM, trampolines are turned on by default.

For example, in a section of C code the bar function calls the foo function. The compiler generates this code for
the function:

bar:

call foo ; call the function "foo"

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines the linker
changes the original call to foo into a call to foo_trampoline as shown:

bar:
call foo trampoline ; call a trampoline for foo
198 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

The above code generates a trampoline code section called foo_trampoline, which contains code that executes
a long branch to the original called function, foo. For example:

foo trampoline:
branch_long foo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls to the
called function be linked near the called function's trampoline.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines, then
the map file will contain statistics about what trampolines were generated to reach which functions. A list of calls
for each trampoline is also provided in the map file.

Note
The Linker Assumes R13 Contains the Stack Pointer

Assembly language programmers must be aware that the linker assumes R13 contains the stack
pointer. The linker must save and restore values on the stack in trampoline code that it generates. If
you do not use R13 as the stack pointer, you should use the linker option that disables trampolines,
--trampolines=off. Otherwise, trampolines could corrupt memory and overwrite register values.

8.4.33.1 Advantages and Disadvantages of Using Trampolines

The advantage of using trampolines is that you can treat all calls as near calls, which are faster and more
efficient. You will only need to modify those calls that do not reach. In addition, there is little need to consider
the relative placement of functions that call each other. Cases where calls must go through a trampoline are less
common than near calls.

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are generated
in @ more general manner, and may be slightly less efficient than inline code.

An alternative method to creating a trampoline code section for a call that cannot reach its called function is to
actually modify the source code for the call. In some cases this can be done without affecting the size of the
code. However, in general, this approach is extremely difficult, especially when the size of the code is affected by
the transformation.

8.4.33.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their callers,
so that the PC-relative offset to the callee is known when the caller is placed. By placing the callee first, its
address is known when the caller is placed so the linker can definitively know if a trampoline is required.

8.4.33.3 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

When a call is placed and the callee's address is unknown, the linker must provisionally reserve space for a far
call trampoline in case the callee turns out to be too far away. Even if the callee ends up being close enough, the
trampoline reservation can interfere with optimal placement for very large code sections.

When trampoline reservations are spaced more closely than the specified limit, use the --
trampoline_min_spacing option to try to make them adjacent. The syntax is:

--trampoline_min_spacing= size

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 199
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

A higher value minimizes fragmentation, but may result in more trampolines. A lower value may reduce
trampolines, at the expense of fragmentation and linker running time. Specifying 0 for this option disables
coalescing. The default is 16K.

8.4.33.4 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the code
from the load space to the run space is left to you.

A copy function must be executed before the real function can be executed in its run space. To facilitate this
copy function, the assembler provides the .label directive, which allows you to define a load-time address.
These load-time addresses can then be used to determine the start address and size of the code to be copied.
However, this mechanism will not work if the code contains a call that requires a trampoline to reach its called
function. This is because the trampoline code is generated at link time, after the load-time addresses associated
with the .label directive have been defined. If the linker detects the definition of a .label symbol in an input
section that contains a trampoline call, then a warning is generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 8.5.10.7). These
operators allow you to define symbols to represent the load-time start address and size inside the linker
command file. These symbols can be referenced by the copy code, and their values are not resolved until link
time, after the trampoline sections have been allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:

SECTIONS
{ .foo : load = ROM, run = RAM, start(foo start), size(foo size)
{ x.0bj(.text) }
.text: {} > ROM
.far : { --library=rts.lib(.text) } > FAR MEM
}

A function in x.c.obj contains an run-time-support call. The run-time-support library is placed in far memory and
so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker. The copy
code can refer to the symbols foo_start and foo_size as parameters for the load start address and size of the
entire .foo output section. This allows the copy code to copy the trampoline section along with the original x.c.obj
code in .text from its load space to its run space.

See Section 8.6 for information about referring to linker symbols in C/C++ code.
8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table. This
forces the linker to search a library and include the member that defines the symbol. The linker must encounter
the --undef_sym option before it links in the member that defines the symbol. The syntax for the --undef_sym
option is:

--undef_sym= symbol

For example, suppose a library named rtsv4_A_be_eabi.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output module
and you want to include the library member that defines symtab in this link. Using the --undef_sym option as
shown below forces the linker to search rtsv4_A_be_eabi.lib for the member that defines symtab and to link in
the member.

armcl --run_linker --undef sym=symtab filel.c.obj file2.c.obj rtsv4d_A be eabi.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
file1.c.obj or file2.c.ob;.

200 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not have a
corresponding output section defined in the SECTIONS directive, the linker combines input sections that have
the same name into an output section with that name. By default, the linker does not display a message to tell
you that this occurred.

Use the --warn_sections option to cause the linker to display a message when it creates a new output section.

For more information about the SECTIONS directive, see Section 8.5.5. For more information about the default
actions of the linker, see Section 8.7.

8.4.36 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option. This
option causes the linker to generate a well-formed XML file containing detailed information about the result of
a link. The information included in this file includes all of the information that is currently produced in a linker
generated map file. See Appendix B for specifics on the contents of the generated XML file.

8.4.37 Zero Initialization (--zero_init Option)

The C and C++ standards require that global and static variables that are not explicitly initialized must be set to
0 before program execution. The C/C++ compiler supports preinitialization of uninitialized variables by default. To
turn this off, specify the linker option --zero_init=off.

The syntax for the --zero_init option is:
--zero_init[={on|off}]

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur, is
used. If you use the --ram_model option for linking, the linker does not generate initialization records, and the
loader must handle both data and zero initialization.

Note
Disabling Zero Initialization Not Recommended: In general, disabling zero initialization is not
recommended. If you turn off zero initialization, automatic initialization of uninitialized global and static
objects to zero will not occur. You are then expected to initialize these variables to zero in some other

manner.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 201
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5 Linker Command Files

Linker command files allow you to put linker options and directives in a file; this is useful when you invoke the
linker often with the same options and directives. Linker command files are also useful because they allow you
to use the MEMORY and SECTIONS directives to customize your application. You must use these directives in a
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

* Input filenames, which specify object files, archive libraries, or other command files. (If a command file calls
another command file as input, this statement must be the /ast statement in the calling command file. The
linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

* The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 8.5.4). The SECTIONS directive controls how sections are built and allocated
(see Section 8.5.5.)

» Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the armcl --run_linker command and follow it with the name of the
command file:

armcl --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an object
file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and processing
commands from it. Command filenames are case sensitive, regardless of the system used.

Linker Command File shows a sample linker command file called link.cmd.

Linker Command File

a.c.obj /* First input filename */
b.c.obj /* Second input filename */
--output file=prog.out /* Option to specify output file */
--map file=prog.map /* Option to specify map file */

The sample file in Linker Command File contains only filenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

‘armcl --run_linker link.cmd

You can place other parameters on the command line when you use a command file:

‘armcl --run_linker --relocatable link.cmd x.c.obj y.c.obj

The linker processes the command file as soon as it encounters the filename, so a.c.obj and b.c.obj are linked
into the output module before x.c.obj and y.c.obj.

You can specify multiple command files. If, for example, you have a file called names.Ist that contains filenames
and another file called dir.cmd that contains linker directives, you could enter:

armcl --run_linker names.lst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command file
calls another command file as input, this statement must be the /ast statement in the calling command file.

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the format
of linker directives in a command file. Command File With Linker Directives shows a sample command file that
contains linker directives.

202 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */
--output_ file=prog.out /* Options x/
--map_file=prog.map
MEMORY /* MEMORY directive */
{

FAST MEM: origin = 0x0100 length = 0x0100

SLOW _MEM: origin = 0x7000 length = 0x1000
}
SECTIONS /* SECTIONS directive */

{
.text: > SLOW MEM
.data: > SLOW_MEM
.bss: > FAST MEM

For more information, see Section 8.5.4 for the MEMORY directive, and Section 8.5.5 for the SECTIONS
directive.

8.5.1 Reserved Names in Linker Command Files

The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do not
use them as symbol or section names in a command file.

ADDRESS_MASK ECC LAST NOLOAD RUN_START
ALGORITHM END LEN o SECTIONS
ALIAS f LENGTH ORG SIZE

ALIGN FILL LOAD ORIGIN START

ATTR GROUP LOAD_END PAGE TABLE
BLOCK HAMMING_MASK LOAD_SIZE PALIGN TYPE
COMPRESSION HIGH LOAD_START PARITY_MASK UNION

COPY INPUT_PAGE MEMORY RUN UNORDERED
CRC_TABLE INPUT_RANGE MIRRORING RUN_END VFILL

DSECT | (lowercase L) NOINIT RUN_SIZE

In addition, any section names used by the Tl tools are reserved from being used as the prefix for other names,
unless the section will be a subsection of the section name used by the Tl tools. For example, section names
may not begin with .debug.

8.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal, octal, or
hexadecimal constants (but not binary constants) used in the assembler (see Section 4.7) or the scheme used
for integer constants in C syntax.

Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20

8.5.3 Accessing Files and Libraries from a Linker Command File

Many applications use custom linker command files (or LCFs) to control the placement of code and data in target
memory. For example, you may want to place a specific data object from a specific file into a specific location

in target memory. This is simple to do using the available LCF syntax to reference the desired object file or
library. However, a problem that many developers run into when they try to do this is a linker generated "file not
found" error when accessing an object file or library from inside the LCF that has been specified earlier in the
command-line invocation of the linker. Most often, this error occurs because the syntax used to access the file on
the linker command-line does not match the syntax that is used to access the same file in the LCF.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 203
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

Consider a simple example. Imagine that you have an application that requires a table of constants called
"app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object

is defined in a .data section that resides in an object file, app_coeffs.c.obj. The app_coeffs.c.obj file is then
included in the object file library app_data.lib. In your LCF, you can control the placement of the "app_coeffs"
data object as follows:

SECTIONS
{

.coeffs: { app_data.lib<app coeffs.c.obj>(.data) } > DDR

}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you
are building the application. In order to gain access to app_data.lib from the build command-line, you can use
a combination of the —i and —I| options to set up a directory search path which the linker can use to find the
app_data.lib library:

%> armcl <compile options/files> -z -i ./lib -1 app data.lib mylnk.cmd <link options/files>

The —i option adds the lib sub-directory to the directory search path and the —I option instructs the linker to

look through the directories in the directory search path to find the app_data.lib library. However, if you do

not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and
generate a "file not found" error. The reason is that when the linker encounters the reference to app_data.lib
inside the SECTIONS directive, there is no —I option preceding the reference. Therefore, the linker tries to open
app_data.lib in the current working directory.

In essence, the linker has a few different ways of opening files:

« If there is a path specified, the linker will look for the file in the specified location. For an absolute path, the
linker will try to open the file in the specified directory. For a relative path, the linker will follow the specified
path starting from the current working directory and try to open the file at that location.

« If there is no path specified, the linker will try to open the file in the current working directory.

« If a—I option precedes the file reference, then the linker will try to find and open the referenced file in one of
the directories in the directory search path. The directory search path is set up via —i options and environment
variables (like C_DIR and).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable LCFs,
the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a —| option in front of the reference to app_data.lib in mylnk.cmd
to ensure that the linker will find and open the app_data.lib library when the application is built:

SECTIONS
{

.coeffs: { -1 app data.lib<app coeffs.c.obj>(.data) } > DDR

}

Another benefit to using the —| option when referencing a file from within an LCF is that if the location of the
referenced file changes, you can modify the directory search path to incorporate the new location of the file
(using —i option on the command line, for example) without having to modify the LCF.

204 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.4 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target memory
to accomplish this. The MEMORY directive allows you to specify a model of target memory so that you can
define the types of memory your system contains and the address ranges they occupy. The linker maintains the
model as it allocates output sections and uses it to determine which memory locations can be used for object
code.

The memory configurations of ARM systems differ from application to application. The MEMORY directive allows
you to specify a variety of configurations. After you use MEMORY to define a memory model, you can use the
SECTIONS directive to allocate output sections into defined memory. For more information, see Section 2.5.

8.5.4.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the ARM
architecture. This model assumes that the full 32-bit address space (232 locations) is present in the system and
available for use. For more information about the default memory model, see Section 8.7.

8.5.4.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and can be
used by a program. Each range has several characteristics:

« Name
» Starting address
* Length

* Optional set of attributes
» Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for the program
to access at run time. Memory defined by the MEMORY directive is configured; any memory that you do not
explicitly account for with MEMORY is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address range
in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a list of
memory range specifications enclosed in braces. The MEMORY directive in the example that follows defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external memory
at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also demonstrates
the use of memory range expressions as well as start/end/size address operators (see Origin and Length as
Expressions).

The MEMORY Directive

/**/

/* Sample command file with MEMORY directive */
/~k**********************************/
filel.c.obj file2.c.obj /* Input files */
--output file=prog.out /* Options */
MEMORY

{

0x00001000
0x00000800
0x00001000

FAST MEM (RX): origin
SLOW _MEM (RW): origin
EXT MEM (RX): origin

0x00000000 length
0x00001000 length
0x10000000 length

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 205
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Linker Description www.ti.com

The general syntax for the MEMORY directive is:

MEMORY

{

name 1 [(attr)] : origin = expr , length = expr [, fill = constant] [LAST(sym)]
name n [(attr)] : origin = expr , length = expr [, fill = constanf] [LAST(sym)]

}

name names a memory range. A memory name can be one to 64 characters; valid characters include A-Z, a-z, $, ., and _. The
names have no special significance to the linker; they simply identify memory ranges. Memory range names are internal
to the linker and are not retained in the output file or in the symbol table. All memory ranges must have unique names
and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional; when used, they must be
enclosed in parentheses. Attributes restrict the allocation of output sections into certain memory ranges. If you do not use
any attributes, you can allocate any output section into any range with no restrictions. Any memory for which no attributes
are specified (including all memory in the default model) has all four attributes. Valid attributes are:
R specifies that the memory can be read.
w specifies that the memory can be written to.
X specifies that the memory can contain executable code.
| specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or o. The value, specified in bytes, is a 32-bit
integer constant expression, which can be decimal, octal, or hexadecimal.

length specifies the length of a memory range; enter as length, len, or I. The value, specified in bytes, is a 32-bit integer constant
expression, which can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value is an integer constant and
can be decimal, octal, or hexadecimal. The fill value is used to fill areas of the memory range that are not allocated to a
section. (See Section 8.5.9.3 for virtual filling of memory ranges when using Error Correcting Code (ECC).)

LAST optionally specifies a symbol that can be used at run-time to find the address of the last allocated byte in the memory

range. See Section 8.5.10.8.

Note

Filling Memory Ranges: If you specify fill values for large memory ranges, your output file will be
very large because filling a memory range (even with 0s) causes raw data to be generated for all
unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of OFFFFFFFFh:

MEMORY

{

RFILE (RW) : o = 0x0020, 1 = 0x1000, £ = OxXFFFF
}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control placement of
output sections. For more information about the SECTIONS directive, see Section 8.5.5.

206 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.4.3 Expressions and Address Operators
Memory range origin and length can use expressions of integer constants with the following operators:

Binary operators: L% +-<<>> == =< <=>>= & | && ||

Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.
No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot be
used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Origin and Length as Expressions

/**/

/* Sample command file with MEMORY directive */
/**/

filel.c.obj file2.c.obj /* Input files */
--output_file=prog.out /* Options */

#define ORIGIN 0x00000000

#define BUFFER 0x00000200

#define CACHE 0x0001000

MEMORY

{

0x00001000 + BUFFER
0x00001800 - size (FAST MEM)
Size(FAST_MEM) - CACHE

FAST MEM (RX): origin
SLOW MEM (RW) : origin
EXT MEM (RX): origin

ORIGIN + CACHE length
end (FAST_MEM) length
0x10000000 length

8.5.4.4 The ALIAS Statement

Certain devices, such as the MSP432 Cortex M4, have a region of RAM that can be addressed by two different
memory buses--a system bus and an instruction bus. This RAM region, which is located in the DATA region of
the memory map (usually at 0x20000000), is internally aliased to the CODE region (usually at 0x01000000). This
aliasing takes advantage of the instruction bus to fetch code from RAM while freeing the other system buses. On
such devices, your linker command file should use the ALIAS statement so that placements to CODE and DATA
are made with no collisions.

In order to use the above capability, the linker must be aware of the two addresses that point to the same
memory. Use the following syntax within a MEMORY directive to create an ALIAS for a memory range. ALIAS
regions must have the same length.

MEMORY
{
ALIAS
{
SRAM CODE (RWX) : origin = 0x01000000
SRAM DATA (RW) : origin = 0x20000000
} length = 0x0001000
}
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 207
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.5 The SECTIONS Directive

After you use MEMORY to specify the target system's memory model, you can use SECTIONS to allocate
output sections into specific named memory ranges or into memory that has specific attributes. For example, you
could allocate the .text and .data sections into the area named FAST_MEM and allocate the .bss section into the
area named SLOW_MEM.

The SECTIONS directive controls your sections in the following ways:

» Describes how input sections are combined into output sections

» Defines output sections in the executable program

» Allows you to control where output sections are placed in memory in relation to each other and to the entire
memory space (Note that the memory placement order is not simply the sequence in which sections occur in
the SECTIONS directive.)

» Permits renaming of output sections

For more information, see Section 2.5, Section 2.7, and Section 2.4.6. Subsections allow you to manipulate
sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and allocating the
sections. Section 8.7 describes this algorithm in detail.

8.5.5.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by a list
of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

{
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section in the
output file.) Section names can refer to sections, subsections, or archive library members. (See Section 8.5.5.4
for information on multi-level subsections.) After the section name is a list of properties that define the section's
contents and how the section is allocated. The properties can be separated by optional commas. Possible
properties for a section are as follows:

* Load allocation defines where in memory the section is to be loaded. See Section 3.5, Section 3.1.1, and Section 8.5.6.

Syntax: load = allocation or
> allocation

* Run allocation defines where in memory the section is to be run.

Syntax: run = allocation or
run > allocation

* Input sections defines the input sections (object files) that constitute the output section. See Section 8.5.5.3.

Syntax: { input_sections }
208 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Description

» Section type defines flags for special section types. See Section 8.5.8.

Syntax: type = COPY
type = DSECT

type = NOLOAD

or

or

» Fill value defines the value used to fill uninitialized holes. See Section 8.5.11.

Syntax: fill = value

The following example shows a SECTIONS directive in a sample linker command file.

/*

filel.c.obj file2.c.obj

{
tl.c.obj(.intvecl)
t2.c.obj(.intvec2)

endvec = .;
}
.data:alpha: align = 16
.data:beta: align = 16

/**/

Sample command file with SECTIONS directive
/~k**********************/

*/

/* Input files

--output_ file=prog.out /* Options */
SECTIONS
{
.text: load = EXT_MEM, run = 0x00000800
.const: load = FAST MEM
.bss: load = SLOW_MEM
.vectors: load = 0x00000000

*/

Figure 8-2 shows the output sections defined by the SECTIONS directive in the previous example
(.vectors, .text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory
using the MEMORY directive given in Section 8.5.4.2.

0x00000000

FAST_MEM
.vectors
.const
0x00001000
SLOW_MEM
.bss
.data:alpha
.data:beta
0x00001800
0x10000000
EXT_MEM
text
0x10001000
OxFFFFFFFF

- Bound at 0x00000000

- Allocated in FAST_MEM

- Allocated in SLOW_MEM

- Aligned on 16-byte
boundary

- Aligned on 16-byte
boundary

- Empty range of memory
as defined in above

- Allocated in EXT_MEM

- Empty range of memory
as defined in above

The .vectors section is composed of the .intvec1
section from t1.obj and the .intvec2 section from
t2.0bj.

The .const section combines the .const sections
from file1.obj and file2.obj.

The .bss section combines the .bss sections from
file1.obj and file2.obj.

The .data:alpha subsection combines the .data:al-
pha subsections from file1.obj and file2.obj. The
.data:beta subsection combines the .data:beta
subsections from file1.obj and file2.obj. The linker
places the subsections anywhere there is space for
them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.

The .text section combines the .text sections from
file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

Figure 8-2. Section Placement Defined by the SECTIONS Directive Example

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

209

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.5.2 Section Allocation and Placement

The linker assigns each output section two locations in target memory: the location where the section will be
loaded and the location where it will be run. Usually, these are the same, and you can think of each section as
having only a single address. The process of locating the output section in the target's memory and assigning
its address(es) is called placement. For more information about using separate load and run placement, see
Section 8.5.6.

If you do not tell the linker how to allocate a section, it uses a default algorithm to place the section. Generally,
the linker puts sections wherever they fit into configured memory. You can override the default placement for a
section by defining it within a SECTIONS directive and providing instructions on how to allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists of a keyword,
an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If load and run
placement are separate, all parameters following the keyword LOAD apply to load placement, and those
following the keyword RUN apply to run placement. The allocation parameters are:

Binding allocates a section at a specific address.
‘.text: load = 0x1000 ‘

Named memory allocates the section into a range defined in the MEMORY directive with the specified name (like SLOW_MEM) or
attributes.

[-text: load > SLOW_MEM |

Alignment uses the align or palign keyword to specify the section must start on an address boundary.
‘.text: align = 0x100

Blocking uses the block keyword to specify the section must fit between two address aligned to the blocking factor. If a section is
too large, it starts on an address boundary.
‘.text: block (0x100)

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:

.text: > SLOW MEM
.text: {...} > SLOW_MEM
.text: > 0x4000

If more than one parameter is used, you can string them together as follows:

‘ .text: > SLOW _MEM align 16

Or if you prefer, use parentheses for readability:

‘ .text: load = (SLOW _MEM align(16))

You can also use an input section specification to identify the sections from input files that are combined to form
an output section. See Section 8.5.5.3.

8.5.5.2.1 Example: Placing Functions in RAM

The --ramfunc compiler option and ramfunc function attribute allow the compiler to specify that a function is to be
placed in and executed from RAM. Most newer Tl linker command files support the ramfunc option and function
attribute by placing such functions in the .Tl.ramfunc section. If you see a linker error related to this section,

you should add the .Tl.ramfunc section to your SECTIONS directive as follows. In these examples, RAM and
FLASH are names of MEMORY regions for RAM and Flash memory; the names may be different in your linker
command file.

For RAM-based devices:

.TI.ramfunc : {} > RAM
210 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

For Flash-based devices:

‘.Tl.ramfunc : {} load=FLASH, run=RAM, table (BINIT)

8.5.5.2.2 Binding

You can set the starting address for an output section by following the section name with an address:

‘ .text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be a
32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but they
cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues an error
message.

Note

Binding is Incompatible With Alignment and Named Memory: You cannot bind a section to an
address if you use alignment or named memory. If you try this, the linker issues an error message.

8.5.5.2.3 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see Section 8.5.4).
This example names ranges and links sections into them:

MEMORY
{
SLOW MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST MEM (RWIX) : origin = 0x03000000, length = 0x00000300
}
SECTIONS
{
.text : > SLOW_MEM
.data : > FAST MEM ALIGN (128)
.bss : > FAST_MEM
}

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output sections are
allocated into FAST_MEM. You can align a section within a named memory range; the .data section is aligned
on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a set of
attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive declaration,
you can specify:

SECTIONS

{
.text: > (X) /* .text --> executable memory */
.data: > (RI) /* .data --> read or init memory */
.bss : > (RW) /* .bss --> read or write memory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area because
both areas have the X attribute. The .data section can also go into either SLOW_MEM or FAST_MEM because
both areas have the R and | attributes. The .bss output section, however, must go into the FAST_MEM area
because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific address,
use binding instead of named memory.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 21
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by default.
Alternatively, you can cause the linker to allocate a section from high to low addresses within a memory range
by using the HIGH location specifier in the SECTION directive declaration. You might use the HIGH location
specifier in order to keep RTS code separate from application code, so that small changes in the application do
not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY

{
RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = OxEEEO
VECTORS : origin = OxFFEO, length = 0x00lE
RESET : origin = OxFFFE, length = 0x0002

}

and an accompanying SECTIONS directive:

SECTIONS

{
.bss : {} > RAM
.sysmem : {} > RAM
.stack : {} > RAM (HIGH)

The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate .stack into the
higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated into the lower
addresses within RAM. Example 8-1 illustrates a portion of a map file that shows where the given sections are
allocated within RAM for a typical program.

Example 8-1. Linker Placement With the HIGH Specifier

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.c.obj (.bss)
0000031a 00000088 : trgdrv.c.obj (.bss)
000003a2 00000078 : lowlev.c.obj (.bss)
0000041a 00000046 : exit.c.obj (.bss)
00000460 00000008 : memory.c.obj (.bss)
00000468 00000004 : _lock.c.obj (.bss)
0000046c 00000002 : fopen.c.obj (.bss)
0000046e 00000002 hello.c.obj (.bss)

. sysmem 0 00000470 00000120 UNINITIALIZED
00000470 00000004 rtsxxx .lib : memory.c.obj (.sysmem)

.stack 0 000008c0 00000140 UNINITIALIZED
000008c0 00000002 rtsxxx .lib : boot.c.obj (.stack)

As shown in Example 8-1, the .bss and .sysmem sections are allocated at the lower addresses of RAM (0x0200
- 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses are available.

212 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 8-2

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>
operator).

Example 8-2. Linker Placement Without HIGH Specifier

.bss 0 00000200 00000270 UNINITIALIZED
00000200 0000011a rtsxxx.lib : defs.c.obj (.bss)
0000031a 00000088 : trgdrv.c.obj (.bss)
000003a2 00000078 : lowlev.c.obj (.bss)
0000041a 00000046 : exit.c.obj (.bss)
00000460 00000008 : memory.c.obj (.bss)
00000468 00000004 : lock.c.obj (.bss)
0000046¢ 00000002 : fopen.c.obj (.bss)
000004 6e 00000002 hello.c.obj (.bss)

.stack 0 00000470 00000140 UNINITIALIZED
00000470 00000002 rtsxxx.lib : boot.c.obj (.stack)

. sysmem 0 00000500 00000120 UNINITIALIZED
000005b0 00000004 rtsxxx.lib : memory.c.obj (.sysmem)

8.5.5.2.5 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n is
a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls on a
32-byte boundary:

.text: load = align(32)

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The specified
block size must be a power of 2. For example, the following code allocates .bss so that the entire section is
contained in a single 128-byte block or begins on that boundary:

bss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and blocking
cannot be used together.

8.5.5.2.6 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte boundary,
where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size of the section is a
multiple of its placement alignment restrictions, padding the section size up to such a boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

.text: palign(2) {} > PMEM
.text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By default,
padding space is filled with a value of 0 (zero). However, if a fill value is specified for the output section then any
padding for the section is also filled with that fill value. For example, consider the following section specification:

.mytext: palign(8), fill = Oxffffffff {} > PMEM
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 213
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied. The contents
of .mytext are as follows:

addr content
0000 0x1234
0002 0x1234
0004 0x1234

0006 Oxffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has been
filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this code:

.mytext: palign(8), fill = Oxff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:

addr content
0000 0x1234
0002 0x1234
0004 0x1234
0006 OxO0O0ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that power of
2 as well. For example, consider the following section specification:

.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After applying
the palign(power2) operator, the .mytext output section will have the following properties:

.mytext 0x00010080 0x80 128

8.5.5.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output section.
In general, the linker combines input sections by concatenating them in the order in which they are specified.
However, if alignment or blocking is specified for an input section, all of the input sections within the output
section are ordered as follows:

» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.

214 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Example 8-3 shows the most common type of section specification; note that no input sections are listed.

Example 8-3. The Most Common Method of Specifying Section Contents

SECTIONS
{
.text:
.data:
.bss:

In Example 8-3, the linker takes all the .text sections from the input files and combines them into the .text output
section. The linker concatenates the .text input sections in the order that it encounters them in the input files. The
linker performs similar operations with the .data and .bss sections. You can use this type of specification for any
output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by its
filename and section name. If the filename is hyphenated (or contains special characters), enclose it within
quotes:

SECTIONS
{
.text /* Build .text output section */
{
fl.c.obj (.text) /* Link .text section from fl.c.obj */
f2.c.obj (secl) /* Link secl section from f2.c.obj */
"f3-new.c.obj" /* Link ALL sections from f3-new.c.obj */
f4.c.obj (.text,sec2) /* Link .text and sec2 from f4.c.obj */
f5.c.obj (.task??) /* Link .task00, .task01l, .taskXX, etc. from f5.c.obj */
f6.c.obj (* ctable) /* Link sections ending in " ctable" from f6.c.obj */
X*.c.obj (.text) /* Link .text section for all files starting with */
/* "X" and ending in ".c.obj" */
}
}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections, all of its sections are included in the output section. If

any additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the linker
found more .text sections in the preceding example and these .text sections were not specified anywhere in the
SECTIONS directive, the linker would concatenate these extra sections after f4.c.obj(sec2).

The specifications in Example 8-3 are actually a shorthand method for the following:

SECTIONS

{
.text: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }

}

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

* You want the output section to contain all input sections that have a specified name, but the output section
name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or commands
within the braces.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 215
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The following example illustrates the two purposes above:

SECTIONS
{
.text : {
abc.c.obj (xgt)
*(.text)
}
.data : {
*(.data)
fil.c.obj (table)
}
}

In this example, the .text output section contains a named section xqt from file abc.c.obj, which is followed by

all the .text input sections. The .data section contains all the .data input sections, followed by a named section
table from the file fil.c.obj. This method includes all the unallocated sections. For example, if one of the .text input
sections was already included in another output section when the linker encountered *(.text), the linker could not
include that first .text input section in the second output section.

Each input section acts as a prefix to gather longer-named sections. For example, the pattern *(.data)
matches .dataspecial. Thus, prefixes enable subsections, which are described in the following section.

8.5.5.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated by
colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a linker

command file specifying a base name, such as A, selects the section A as well as any subsections of A, such as
A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections beginning
with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of A. A and A:B
are supersections of A:B:C. Among a group of supersections of a subsection, the nearest supersection is the
supersection with the longest name. Thus, among {A, A:B} the nearest supersection of A:B:C:D is A:B. With
multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section of the
same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same name
or in the nearest existing supersection of such an output section. An exception to this rule is that during a
partial link (specified by the --relocatable linker option) a subsection is allocated only to an existing output
section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

216 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS {
nordic: {* (europe:north)
* (europe:central:denmark)} /* the nordic countries */
central: {*(europe:central)} /* france, germany *x/
therest: {* (europe)} /* spain, italy, malta */

}

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS {
islands: {* (europe:south:malta)

* (europe:north:iceland)} /* malta, iceland */
europe:north:finland : {} /* finland */
europe:north : {} /* norway, sweden */
europe:central : {} /* germany, denmark */
europe:central:france: {} /* france *x/

to

/* (italy, spain) go in a linker-generated output section "europe" */

Note
Upward Compatibility of Multi-Level Subsections

Existing linker commands that use the existing single-level subsection features and which do not
contain section names containing multiple colon characters continue to behave as before. However, if
section names in a linker command file or in the input sections supplied to the linker contain multiple
colon characters, some change in behavior could be possible. You should carefully consider the
impact of the rules for multiple levels to see if it affects a particular system link.

8.5.5.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section. Consider this
SECTIONS directive:

Example 8-4. Archive Members to Output Sections

SECTIONS

{

boot>BOOT1

{

-1 rtsXX.lib<boot.c.obj> (.text)

-1 rtsXX.lib<exit.c.obj strcpy.c.obj> (.text)

}
.rts>BO0T2

{
-1 rtsXX.lib (.text)

}
. text>RAM

(.text)

— ¥ -

In Example 8-4, the .text sections of boot.c.obj, exit.c.obj, and strcpy.c.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object that is
referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are to be placed
in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle brackets <
and > after the library name. Any object files separated by commas or spaces from the specified archive file are
legal within the angle brackets.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 217
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The --library option (which normally implies a library path search be made for the named file following the option)
listed before each library in Example 8-4 is optional when listing specific archive members inside < >. Using < >
implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the SECTIONS
directive. For example, the following collects all the .text sections from rtsv4_A_be_eabi.lib into the .rtstest
section:

SECTIONS

{
.rtstest { -1 rtsv4d A be eabi.lib(.text) } > RAM
}

Note
SECTIONS Directive Effect on --priority: Specifying a library in a SECTIONS directive causes that
library to be entered in the list of libraries that the linker searches to resolve references. If you use the
--priority option, the first library specified in the command file will be searched first.

8.5.5.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be allocated.
Consider the following example:

MEMORY

{
P MEM1 : origin = 0x02000, length = 0x01000
P MEM2 : origin = 0x04000, length = 0x01000
P MEM3 : origin = 0x06000, length = 0x01000
P MEM4 : origin = 0x08000, length = 0x01000

}

SECTIONS

{
.text : { } > P_MEMl | P_MEM2 | P_MEM4

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a whole
into the first memory range in which it fits. The memory ranges are accessed in the order specified. In this
example, the linker first tries to allocate the section in P_MEM1. If that attempt fails, the linker tries to place the
section into P_MEM2, and so on. If the output section is not successfully allocated in any of the named memory
ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section that
grows beyond the available space of the memory range in which it is originally allocated. Instead of modifying
the linker command file, you can let the linker move the section into one of the other areas.

8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the >> operator to
indicate that an output section can be split, if necessary, into the specified memory ranges:

MEMORY

{
P MEM1 : origin = 0x2000, 1length = 0x1000
P MEM2 : origin = 0x4000, length = 0x1000
P MEM3 : origin = 0x6000, length = 0x1000
P MEM4 : origin = 0x8000, length = 0x1000

}

SECTIONS

{
.text: { *(.text) } >> P_MEMl | P MEM2 | P_MEM3 | P_MEM4

}

218 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input section
boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEMS3 | P_MEM4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory range.
This functionality is useful when several output sections must be allocated into the same memory range, but the
restrictions of one output section cause the memory range to be partitioned. Consider the following example:

MEMORY
{

RAM : origin = 0x1000, length = 0x8000
}

SECTIONS

{
.special: { fl.c.obj(.text) } load = 0x4000
.text: { *(.text) } >> RAM

}

The .special output section is allocated near the middle of the RAM memory range. This leaves two unused
areas in RAM: from 0x1000 to 0x4000, and from the end of f1.c.obj(.text) to 0x8000. The specification for

the .text section allows the linker to split the .text section around the .special section and use the available space
in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a specified
attribute combination. For example:

MEMORY

{ P MEM1 (RWX) : origin = 0x1000, length = 0x2000
P MEM2 (RWI) : origin = 0x4000, length = 0x1000

éECTIONS

{ .text: { *(.text) } >> (RW)

}

The linker attempts to allocate all or part of the output section into any memory range whose attributes match the
attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS

{

.text: { *(.text) } >> P MEM1 | P_MEM2}
}

Certain sections should not be split:

« Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators provide
information about a section's load or run address, and size. Splitting the section may compromise the integrity
of the operation.

* The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)

If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 219
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.6 Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example, you may have
performance-critical code in slow external memory. The code must be loaded into slow external memory, but it
would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the linker to
allocate a section twice: once to set its load address and again to set its run address. For example:

.fir: load = SLOW_MEM, run = FAST MEM

Use the load keyword for the load address and the run keyword for the run address.
See Section 3.5 for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker to produce
a copy table; see Section 8.8.4.1.)

8.5.6.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the section
(such as labels in it) refer to its run address. See Section 3.1.1 for an overview of load and run addresses.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and loads
and runs at the same address. If you provide both allocations, the section is allocated as if it were two sections
of the same size. This means that both allocations occupy space in the memory map and cannot overlay each
other or other sections. (The UNION directive provides a way to overlay sections; see Section 8.5.7.2.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after the
appropriate keyword. Everything related to allocation after the keyword load affects the load address until the
keyword run is seen, after which, everything affects the run address. The load and run allocations are completely
independent, so any qualification of one (such as alignment) has no effect on the other. You can also specify run
first, then load. Use parentheses to improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:

‘ .data: load = SLOW MEM, align = 32, run = FAST MEM ‘

The following example uses parentheses, but has effects that are identical to the previous example:

‘ .data: load = (SLOW MEM align 32), run = FAST MEM ‘

The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allocations to 16 bits:

‘ .data: run = FAST MEM, align 32, load = align 16 ‘

For more information on run-time relocation see Section 3.5.

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address. The
linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker warns you
and ignores the load address. Otherwise, if you specify only one address, the linker treats it as a run address,
regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST MEM

220 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples have
the same effect. The .bss section is allocated in FAST_MEM.

.dbss: load = FAST MEM
.bss: run = FAST MEM
.bss: > FAST MEM

8.5.6.2 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol refers to its run-time address. However, it may be necessary at run time to
refer to a load-time address. Specifically, the code that copies a section from its load address to its run address
must have access to the load address. The .label directive defines a special symbol that refers to the section's
load address. Thus, whereas normal symbols are relocated with respect to the run address, .label symbols are
relocated with respect to the load address. See Create a Load-Time Address Label for more information on

the .label directive.

Moving a Function from Slow to Fast Memory at Run Time and Linker Command File for show the use of
the .label directive to copy a section from its load address in SLOW_MEM to its run address in FAST_MEM.
Figure 8-3 illustrates the run-time execution of Moving a Function from Slow to Fast Memory at Run Time.

If you use the table operator, the .label directive is not needed. See Section 8.8.4.1.

Moving a Function from Slow to Fast Memory at Run Time

.sect ".fir"

.label fir src ; load address of section
fir: ; run address of section

<code here> ; code for section

.label fir end ; load address of section end

text
LDR r4, fir s ; get fir load address start
LDR r5, fir e ; get fir load address stop
LDR r3, fir a ; get fir run address
S1: CMP r4, r5

LDRCC r0, [r4], #4 ; copy fir routine to its
; run address
STRCC r0, [r3], #4

B fir
fir a .word fir
fir_s .word fir start
fir e .word fir end

Linker Command File for Moving a Function from Slow to Fast Memory at Run Time

/**/

/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE */
[kK ok kK ok ok K ok ok K ok ok K ok ok X K ok kK ok ok K ok ok K ok ok K ok ok K ok ok X K ok kK ok kK ok ok Kk ok K kK x /
MEMORY

{
FAST MEM : origin 0x00001000, length 0x00001000
SLOW_MEM : origin = 0x10000000, length = 0x00001000

}
SECTIONS
{
.text: load = FAST MEM
.fir: load SLOW_MEM, run FAST MEM

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 221
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Linker Description www.ti.com
0x00000000
FAST_MEM
text
--------- a
r fir (relocated |
: torun here) |
__________ 4
0x00001000
0x10000000
SLOW_MEM
oo ’.
| fir (loads here) |
D ;
0x10001000
OXFFFFFFFF

Figure 8-3. Run-Time Execution of Moving a Function from Slow to Fast Memory at Run Time

See Section 8.6 for information about referring to linker symbols in C/C++ code.
8.5.7 Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION. Grouping sections
causes the linker to allocate them contiguously in memory. Unioning sections causes the linker to allocate them
to the same run address.

8.5.7.1 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously and in the
order listed, unless the UNORDERED operator is used. For example, assume that a section named term_rec
contains a termination record for a table in the .data section. You can force the linker to allocate .data and
term_rec together:

Allocate Sections Together

SECTIONS
{
.text /* Normal output section */
.bss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
term rec /* Allocated immediately after .data */
}
}

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single output
section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data is allocated
at 0x1000, and term_rec follows it in memory.

Note
You Cannot Specify Addresses for Sections Within a GROUP: When you use the GROUP option,
binding, alignment, or allocation into named memory can be specified for the group only. You cannot
use binding, named memory, or alignment for sections within a group.

222 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.7.2 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same address during
run time. For example, you may have several routines you want in fast external memory at different stages

of execution. Or you may want several data objects that are not active at the same time to share a block of
memory. The UNION statement within the SECTIONS directive provides a way to allocate several sections at
the same run-time address.

In The UNION Statement, the .bss sections from file1.c.obj and file2.c.obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The components
of a union remain independent sections; they are simply allocated together as a unit.

The UNION Statement

SECTIONS
{
.text: load = SLOW MEM
UNION: run = FAST MEM
{
.bss:partl: { filel.c.obj(.bss) }
.bss:part2: { file2.c.obj(.bss) }

.bss:part3: run = FAST MEM { globals.c.obj(.bss) }

Allocating a section as part of a union affects only its run address. Sections can never be overlaid for loading.

If an initialized section is a union member (an initialized section, such as .text, has raw data), its load allocation
must be separately specified. See Separate Load Addresses for UNION Sections. (There is an exception to this
rule when combining an initialized section with uninitialized sections; see Section 8.5.7.3.)

Separate Load Addresses for UNION Sections

UNION run = FAST MEM

{

.text:partl: load SLOW MEM, { filel.c.obj(.text) }

.text:part2: load SLOW MEM, { file2.c.obj(.text) }
}
FAST_MEM Sections can run FAST_MEM
as a union. This ;
bss:part2 7 is run-time alloca- text 2 (run) Slipgier;]seat
bss:part1 tion only. text 1 (run)
\o
.bss:part3 .bss:part3
SLOW_MEM SLOW_MEM
text . .text 1 (load)
Sections cannot
load as a union i\
.text 2 (load)

Figure 8-4. Memory Allocation Shown in The UNION Statement and Separate Load Addresses for UNION
Sections

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 223
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a union.
Therefore, each requires its own load address. If you fail to provide a load allocation for an initialized section
within a UNION, the linker issues a warning and allocates load space anywhere it can in configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load address
for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any one allocation
specified is considered a run address, and if both run and load addresses are specified, the linker issues a
warning and ignores the load address.

8.5.7.3 Using Memory for Multiple Purposes

One way to reduce an application's memory requirement is to use the same range of memory for multiple
purposes. You can first use a range of memory for system initialization and startup. Once that phase is complete,
the same memory can be repurposed as a collection of uninitialized data variables or a heap. To implement

this scheme, use the following variation of the UNION statement to allow one section to be initialized and the
remaining sections to be uninitialized.

Generally, an initialized section (one with raw data, such as .text) in a union must have its load allocation
specified separately. However, one and only one initialized section in a union can be allocated at the union's run
address. By listing it in the UNION statement with no load allocation at all, it will use the union's run address as
its own load address.

For example:

UNION run = FAST MEM
{ .cinit .bss }

In this example, the .cinit section is an initialized section. It will be loaded into FAST_MEM at the run address of
the union. In contrast, .bss is an uninitialized section. Its run address will also be that of the union.

8.5.7.4 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By nesting
GROUP and UNION statements, you can express hierarchical overlays and groupings of sections. Nesting
GROUP and UNION Statements shows how two overlays can be grouped together.

Nesting GROUP and UNION Statements

SECTIONS

{
GROUP 0x1000 : run = FAST MEM
{

UNION:
{
mysectl: load = SLOW_MEM
mysect2: load = SLOW_MEM
}
UNION:
{
mysect3: load = SLOW_MEM
mysect4: load = SLOW_MEM

}
}

For this example, the linker performs the following allocations:

* The four sections (mysect1, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region. This
assignment is determined by the particular load allocations given for each section.

» Sections mysect1 and mysect2 are assigned the same run address in FAST_MEM.

» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

224 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Linker Description

The run addresses of mysect1/mysect2 and mysect3/mysect4 are allocated contiguously, as directed by the
GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n

where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or union in the
linker control file without regard to nesting. Groups and unions each have their own counter.

8.5.7.5 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections. The
following rules are used:

Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions that are
not nested under any other groups or unions). The linker uses the run address of the top-level structure to
compute the run addresses of the components within groups and unions.

The linker does not accept a load allocation for UNIONSs.

The linker does not accept a load allocation for uninitialized sections.

In most cases, you must provide a load allocation for an initialized section. However, the linker does not
accept a load allocation for an initialized section that is located within a group that already defines a load
allocator.

As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations for every
initialized section or subgroup nested within the group. However, a load allocation is accepted for an entire
group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).

— The group is not nested inside another group that has a load allocator.

— The group does not contain a union containing initialized sections.

If the group contains a union with initialized sections, it is necessary to specify the load allocation for each
initialized section nested within the group. Consider the following example:

SECTIONS
{
GROUP: load = SLOW_MEM, run = SLOW_MEM
{
.textl:
UNION:
{
.text2:
.text3:
}
}
}

The load allocator given for the group does not uniquely specify the load allocation for the elements within
the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that these load
allocations be specified explicitly.

8.5.7.6 Naming UNIONs and GROUPs

You can give a name to a UNION or GROUP by entering the name in parentheses after the declaration. For
example:

GROUP (BSS_SYSMEM STACK_GROUP)
{

.bss {}

.sysmem :{}

.stack :{}
} load:D_MEM, run=D_MEM

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 225
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:

warning: LOAD placement ignored for "BSS SYSMEM STACK GROUP": object is uninitialized
UNION (TEXT CINIT UNION)
{

.const :{}load=D_MEM, table(tablel)
.pinit :{}load=D _MEM, table(tablel)
}run=°P_MEM

warning:table (tablel) operator ignored: table(tablel) has already been applied to a section
in the "UNION (TEXT_CINIT_UNION)" in which ".pinit" is a descendant

8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign the following special types to output sections: DSECT, COPY, NOLOAD, and NOINIT. These
types affect the way that the program is treated when it is linked and loaded. You can assign a type to a section
by placing the type after the section definition. For example:

SECTIONS
{
secl: load = 0x00002000, type = DSECT {fl.c.obj}
sec2: load = 0x00004000, type = COPY {f2.c.obj}
sec3: load = 0x00006000, type = NOLOAD {f3.c.obj}
secd: load = 0x00008000, type = NOINIT {fd4.c.obj}

}

* The DSECT type creates a dummy section with the following characteristics:

— ltis not included in the output section memory allocation. It takes up no memory and is not included in the
memory map listing.

— It can overlay other output sections, other DSECTSs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output module's
symbol table with the same value they would have if the DSECT had actually been loaded. These symbols
can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the output
module.

In the preceding example, none of the sections from f1.c.obj are allocated, but all the symbols are relocated
as though the sections were linked at address 0x2000. The other sections can refer to any of the global
symbols in sec1.

* A COPY section is similar to a DSECT section, except that its contents and associated information are written
to the output module. The .cinit section that contains initialization tables for the ARM C/C++ compiler has this
attribute under the run-time initialization model.

A NOLOAD section differs from a normal output section in one respect: the section's contents, relocation
information, and line number information are not placed in the output module. The linker allocates space for
the section, and it appears in the memory map listing.

* A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section as
needed.

8.5.9 Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker command
file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. To enable ECC generation,
you must include --ecc=on as a linker option on the command line. By default ECC generation is off, even if the
ECC directive and ECC specifiers are used in the linker command file. This allows you to fully configure ECC in
the linker command file while still being able to quickly turn the code generation on and off via the command line.

The ECC support provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl
devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64 bits.
Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-write memory is
handled completely in hardware at run time.)

226 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

You can control the details of ECC generation using the ECC specifier in the memory map (Section 8.5.9.1) and
the ECC directive (Section 8.5.9.2).

See Section 8.4.12 for command-line options that introduce bit errors into code that has a corresponding ECC
section or into the ECC parity bits themselves. Use these options to test ECC error handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, alongside code
and data, as a data section located at the appropriate address. No extra ECC generation step is required after
compilation, and the ECC can be uploaded to the device along with everything else.

8.5.9.1 Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to indicate which
memory range contains the Flash data that corresponds to this ECC data. If you have multiple memory ranges
for Flash data, you should add a separate ECC memory range for each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC data.

The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origin=0x00000000 length=0x000020
FLASHO : 0origin=0x00000020 length=0x17FFEO
FLASH1 : origin=0x00180000 length=0x180000
STACKS : origin=0x08000000 length=0x000500
RAM : origin=0x08000500 length=0x03FB00O

ECC_VEC : origin=0xf0400000 length=0x000004 ECC={ input_range=VECTORS }
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input range=FLASHO }
ECC_FLAl : origin=0xf0430000 length=0x030000 ECC={ input_range=FLASH1 }

The specification syntax for ECC memory ranges is as follows:

MEMORY {
<memory specifierl> : <memory attributes> [vfill=<fill value>]
<memory specifier2> : <memory attributes> ECC = ({
input range = <memory specifierl>
[algorithm <algorithm name>]
[£i11 [true, false]]

The "ECC" specifier attached to the ECC memory ranges indicates the data memory range that the ECC range
covers. The ECC specifier supports the following parameters:

input_range = <range> The data memory range covered by this ECC data range. Required.

algorithm = <ECC alg name> The name of an ECC algorithm defined later in the command file using the ECC directive. Optional
if only one algorithm is defined. (See Section 8.5.9.2.)

fill = true | false Whether to generate ECC data for holes in the initialized data of the input range. The default is
"true". Using fill=false produces behavior similar to the nowECC tool. The input range can be filled
normally or using a virtual fill (see Section 8.5.9.3).

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 227
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.9.2 Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must specify
parameters for the algorithm that generates ECC data. You might need multiple ECC algorithm specifications if
you have multiple Flash devices.

Each TI device supporting Flash ECC has exactly one set of valid values for these parameters. The linker
command files provided with Code Composer Studio include the ECC parameters necessary for ECC support on
the Flash memory accessible by the device. Documentation is provided here for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. The specification
syntax is as follows:

ECC {
<algorithm name> : parity mask = <8-bit integer>
mirroring = [F021, FO035]
address mask = <32-bit mask>
}
For example:
MEMORY {

FLASHO : origin=0x00000020 length=0x17FFEO
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input range=FLASHO algorithm=F021 }
}
ECC { F021 : parity mask = Oxfc
mirroring = F021 }

This ECC directive accepts the following attributes:

algorithm_name Specify the name you would like to use for referencing the algorithm.

address_mask = <32-bit mask> This mask determines which bits of the address of each 64-bit piece of memory are used in the
calculation of the ECC byte for that memory. Default is 0xffffffff, so that all bits of the address
are used. (Note that the ECC algorithm itself ignores the lowest bits, which are always zero for a
correctly-aligned input block.)

parity_mask = <8-bit mask> This mask determines which ECC bits encode even parity and which bits encode odd parity.
Default is 0, meaning that all bits encode even parity.

mirroring = F021 | FO35 This setting determines the order of the ECC bytes and their duplication pattern for redundancy.
Default is F021.

8.5.9.3 Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover any previously
uninitialized areas of memory. To generate ECC data for an entire memory range, the linker either needs to have
initialized data in the entire range, or needs to know what value uninitialized memory areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize the entire
range by specifying a fill value, you can use the "Vfill" specifier instead of a "fill" specifier to virtually fill the range:

MEMORY {
FLASH : origin=0x0000 length=0x4000 vfill=0xffffffff
}

The Vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC data to be
generated for areas of the input memory range that remain uninitialized. This has the benefit of reducing the size
of the resulting object file.

The Vfill specifier has no effect other than in ECC data generation. It cannot be specified along with a fill
specifier, since that would introduce ambiguity.

If fill is specified in the ECC specifier, but Vfill is not specified, vfill defaults to Oxff.

228 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.10 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at link
time. You can use this feature to initialize a variable or pointer to an allocation-dependent value. See Section 8.6
for information about referring to linker symbols in C/C++ code.

8.5.10.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C language:

symbol = expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol *= expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the symbol
table. The expression must follow the rules defined in Section 8.5.10.3. Assignment statements must terminate
with a semicolon.

The linker processes assignment statements affer it allocates all the output sections. Therefore, if an expression
contains a symbol, the address used for that symbol reflects the symbol's address in the executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols, Table1
and Table2. The program uses the symbol cur_tab as the address of the current table. The cur_tab symbol

must point to either Table1 or Table2. You could accomplish this in the assembly code, but you would need to
reassemble the program to change tables. Instead, you can use a linker assignment statement to assign cur_tab
at link time:

pProg.c.obj /* Input file */
cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.5.10.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC) during
allocation. The SPC keeps track of the current location within a section. The linker's . symbol is analogous to the
assembler's $ symbol. The . symbol can be used only in assignment statements within a SECTIONS directive
because . is meaningful only during allocation and SECTIONS controls the allocation process. (See Section
8.5.5))

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By using
the .global directive (see Identify Global Symbols), you can create an external undefined variable called Dstart in
the program. Then, assign the value of . to Dstart:

SECTIONS
{
.text:
.data:
.bss

start = .;}

— g~

}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . (dot) symbol. This adjusts the SPC within an output

section and creates a hole between two input sections. Any value assigned to . to create a hole is relative to the
beginning of the section, not to the address actually represented by the . symbol. Holes and assignments to . are
described in Section 8.5.11.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 229
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.10.3 Assignment Expressions

These rules apply to linker expressions:

Expressions can contain global symbols, constants, and the C language operators listed in Table 8-11.

All numbers are treated as long (32-bit) integers.

Constants are identified by the linker in the same way as by the assembler. That is, numbers are recognized
as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C language prefixes

are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin with a digit. No binary
constants are allowed.

Symbols within an expression have only the value of the symbol's address. No type-checking is performed.
Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols (and 0
or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute. If a symbol
is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value of an absolute
expression, it is absolute.

The linker supports the C language operators listed in Table 8-11 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 8-11, the linker also has an align
operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a power of 2).
For example, the following expression aligns the SPC within the current section on the next 16-byte boundary.
Because the align operator is a function of the current SPC, it can be used only in the same context as . —that
is, within a SECTIONS directive.

. = align(le6);

Table 8-11. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation
Group 2 Group 7
* Multiplication
/ Division Bitwise OR
% Modulus
Group 3 Group 8
+ Addition .
- Subtraction && Logical AND
Group 4 Group 9
>> Arithmetic right shift .
<< Arithmetic left shift I Logical OR
Group 5 Group 10 (Lowest Precedence)
'> Great?er than += A+=B is equivalent to A=A+B
< Less than -= A-=B is equivalent to A=A-B
<= Less than or equal to *= A*=B is equivalent to A=A*B
_ q /= A/=B is equivalent to A=A/B
> = Greater than or equal to
230 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.10.4 Symbols Automatically Defined by the Linker

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The linker automatically defines the following symbols for C/C++ support when the --ram_model or --rom_model
option is used.

__TI_STACK_SIZE is assigned the size of the .stack section.
_ TI_STACK_END is assigned the end of the .stack section.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section.

These linker-defined symbols can be accessed in any assembly language module if they are declared with
a .global directive (see Identify Global Symbols).

See Section 8.6 for information about referring to linker symbols in C/C++ code.
8.5.10.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory and
run it in another (faster) area. This is done by specifying separate load and run addresses for an output section
or group in the linker command file. Then execute a sequence of instructions (the copying code in Moving a
Function from Slow to Fast Memory at Run Time) that moves the program code from its load area to its run area
before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this feature.
One of these responsibilities is to determine the size and run-time address of the program code to be moved.
The current mechanisms to do this involve use of the .label directives in the copying code. A simple example is
illustrated in Moving a Function from Slow to Fast Memory at Run Time.

This method of specifying the size and load address of the program code has limitations. While it works fine

for an individual input section that is contained entirely within one source file, this method becomes more
complicated if the program code is spread over several source files or if the programmer wants to copy an entire
output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being moved may
have an associated far call trampoline section that needs to be moved with it.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 231
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.10.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output section. It
is interpreted like a PC. Whatever the current offset within the current section is, that is the value associated with
the dot. Consider an output section specification within a SECTIONS directive:

outsect:

{
sl.c.obj(.text)
end of sl = .7
start of s2 = .;
s2.c.obj (.text)
end of s2 = .;

This statement creates three symbols:

» end_of s1—the end address of .text in s1.c.obj
» start_of s2—the start address of .text in s2.c.obj
» end_of s2—the end address of .text in s2.c.obj

Suppose there is padding between s1.c.obj and s2.c.obj created as a result of alignment. Then start_of s2 is not
really the start address of the .text section in s2.c.obj, but it is the address before the padding needed to align
the .text section in s2.c.obj. This is due to the linker's interpretation of the dot operator as the current PC. It is
also true because the dot operator is evaluated independently of the input sections around it.

Another potential problem in the above example is that end_of s2 may not account for any padding that was
required at the end of the output section. You cannot reliably use end_of s2 as the end address of the output
section. One way to get around this problem is to create a dummy section immediately after the output section in
question. For example:

GROUP
{
outsect:

{

start of outsect = .;

}

dummy: { size of outsect = . - start of outsect; }

8.5.10.7 Address and Dimension Operators

Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit

START(sym)

LOAD_END(sym) Defines sym with the load-time end address of related allocation unit

END(sym)

LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit

SIZE(sym)

RUN_START(sym) Defines sym with the run-time start address of related allocation unit

RUN_END(sym) Defines sym with the run-time end address of related allocation unit

RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit

LAST(sym) Defines sym with the run-time address of the last allocated byte in the related memory range.
Note

Linker Command File Operator Equivalencies: LOAD_START() and START() are equivalent, as
are LOAD_END()/END() and LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

232 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

These address and dimension operators can be associated with several different kinds of allocation units,
including input items, output sections, GROUPs, and UNIONs. The following sections provide some examples of
how the operators can be used in each case.

These symbols defined by the linker can be accessed at runtime using the _symval operator, which is essentially
a cast operation. For example, suppose your linker command file contains the following:

.text: RUN_START (text run start), RUN SIZE(text run size) { *(.text) }

Your C program can access these symbols as follows:

extern char text run start, text run size;
printf (".text load start is $1x\n", _symval (&text run start));
printf (".text load size is %1x\n", _symval (&text run size));

See Section 8.6 for more information about referring to linker symbols in C/C++ code.
8.5.10.7.1 Input Items

Consider an output section specification within a SECTIONS directive:

outsect:

{
sl.c.obj (.text)
end of sl = .
start_of s2 = .;
s2.c.obj (.text)
end of s2 = .;

This can be rewritten using the START and END operators as follows:

outsect:
{
sl.c.obj(.text) { END(end of sl) }
s2.c.obj (.text) { START(start of s2), END(end of s2) }

The values of end_of s1 and end_of s2 will be the same as if you had used the dot operator in the original
example, but start_of s2 would be defined after any necessary padding that needs to be added between the
two .text sections. Remember that the dot operator would cause start_of s2 to be defined before any necessary
padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the operator
list. The operators in the list are applied to the input item that occurs immediately before the list.

8.5.10.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START (start of outsect), SIZE(size of outsect)
{

<list of input items>
}

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the output
section to conform to any alignment requirements that are imposed.

The syntax for specifying the operators with an output section does not require braces to enclose the operator
list. The operator list is simply included as part of the allocation specification for an output section.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 233
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.5.10.7.3 GROUPs
Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{
outsectl:
outsect?2:
} load = ROM, run

-}
e}
RAM, START (group start), SIZE(group size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying code
can use group_start and group_size as parameters for where to copy from and how much is to be copied. This
makes the use of .label in the source code unnecessary.

8.5.10.7.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a UNION's
load space and the size of the space where its constituents are going to be copied before they are run. Here is
an example:

UNION: run = RAM, LOAD START (union load addr),
LOAD SIZE (union 1ld sz), RUN SIZE (union run sz)
{
.textl: load
.text2: load

ROM, SIZE(textl size) { fl.c.obj(.text) }
ROM, SIZE (text2 size) { f2.c.obj(.text) }

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union. The
union_run_sz value is equivalent to the largest output section in the union. Both of these symbols incorporate
any padding due to blocking or alignment requirements.

8.5.10.8 LAST Operator

The LAST operator is similar to the START and END operators that were described previously. However, LAST
applies to a memory range rather than to a section. You can use it in a MEMORY directive to define a symbol
that can be used at run-time to learn how much memory was allocated when linking the program. See Section
8.5.4.2 for syntax details.

For example, a memory range might be defined as follows:

D MEM : org = 0x20000020 len = 0x20000000 LAST (dmem end)

Your C program can then access this symbol at runtime using the _symval operator. For example:

extern char dmem end;
printf ("End of D_MEM memory is $1x\n", _symval (&dmem end));

See Section 8.6 for more information about referring to linker symbols in C/C++ code.
8.5.11 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into them.
These areas are called holes. In special cases, uninitialized sections can also be treated as holes. This section
describes how the linker handles holes and how you can fill holes (and uninitialized sections) with values.

8.5.11.1 Initialized and Uninitialized Sections
There are two rules to remember about the contents of output sections. An output section contains either:

« Raw data for the entire section
¢« Noraw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at

234 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section) and sections defined with the .usect
directive (see Reserve Uninitialized Space) have no raw data (they are uninitialized). They occupy space in the
memory map but have no actual contents. Uninitialized sections typically reserve space in fast external memory
for variables. In the object file, an uninitialized section has a normal section header and can have symbols
defined in it; no memory image, however, is stored in the section.

8.5.11.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave extra
space between input sections within an output section. When such a hole is created, the linker must supply raw
data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such space is
not a hole. To fill the space between output sections, see Section 8.5.4.2.

To create a hole in an output section, you must use a special type of linker assignment statement within an
output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it, assigning
a greater value to it, or aligning it on an address boundary. The operators, expressions, and syntaxes of
assignment statements are described in Section 8.5.10.

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:

{
filel.c.obj (.text)

. += 0x0100 /* Create a hole with size 0x0100 */
file2.c.obj (.text)
. = align(l6); /* Create a hole to align the SPC */

file3.c.obj (.text)

The output section outsect is built as follows:

The .text section from file1.c.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.c.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.
Finally, the .text section from file3.c.obj is linked in.

oo~

All values assigned to the . symbol within a section refer to the relative address within the section. The linker
handles assignments to the . symbol as if the section started at address 0 (even if you have specified a
binding address). Consider the statement . = align(16) in the example. This statement effectively aligns the
file3.c.obj .text section to start on a 16-byte boundary within outsect. If outsect is ultimately allocated to start on
an address that is not aligned, the file3.c.obj .text section will not be aligned either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hole at the beginning */
.data: { *(.data)
. += 0x0100; } /* Hole at the end */
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 235
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

Another way to create a hole in an output section is to combine an uninitialized section with an initialized section
to form a single output section. In this case, the linker treats the uninitialized section as a hole and supplies data
for it. The following example illustrates this method:

SECTIONS
{
outsect:
{
filel.c.obj (.text)
filel.c.obj (.bss) /* This becomes a hole */
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several uninitialized
sections are linked together, the resulting output section is also uninitialized.

8.5.11.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills holes
with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines the fill value
as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTIONS
{ outsect:
{
filel.c.obj(.text)
file2.c.obj(.bss)= OxFFOOFFO0 /* Fill this hole with OxFFOOFFO00 */
}
}

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTIONS
{ outsect:fill = OxFFOOFFO0O /* Fills holes with OxFFOOFF00 */
{
. += 0x0010; /* This creates a hole */
filel.c.obj (.text)
filel.c.obj (.bss) /* This creates another hole */
}
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified with
the -fill_value option (see Section 8.4.14). For example, suppose the command file link.cmd contains the
following SECTIONS directive:

‘ SECTIONS { .text: { .= 0x0100; } /* Create a 100 word hole */ }

Now invoke the linker with the --fill_value option:

armcl --run_ linker --fill value=0xFFFFFFFF link.cmd

This fills the hole with OXFFFFFFFF.
4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills holes
with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map along
with the value the linker uses to fill it.

236 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.5.11.4 Expilicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTIONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Note
Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for the entire section in the
output file, your output file will be very large if you specify fill values for large sections or holes.

8.6 Linker Symbols

C/C++ source code may need to refer to symbols that are defined by the linker, not in C/C++ source code. For
linker-defined symbols that act like a function or array, you can often refer to such symbols in a straightforward
way in C/C++ code. For other purposes in C/C++ code, you typically need to use other techniques, such as

the _symval operator, to access linker-defined symbols. These techniques are described in the subsections that
follow.

8.6.1 Linker-Defined Functions and Arrays

In most cases, you can access linker-defined functions in the same way as C/C++ functions. Provide an extern
declaration (prototype) for that function, and access the function normally:

extern int linker defined function(void);
printf (“value is %d\n”, linker defined function());

In most cases, you can access linker-defined arrays in the same way as C/C++ arrays. Provide an extern
declaration for the array (which can omit the first dimension), and access the array normally:

extern int linker defined data[][10][10];
printf (“value is $d\n”, linker defined data[2][3][4]);

If you receive a relocation error because the function or array is outside the normal address range, use the
_symval operator as described in Section 8.6.4.

8.6.2 Linker-Defined Integer Values

To access linker symbols that represent integer values, use the _symval built-in operator, which is essentially a
cast operation.

For example, the linker symbol __TI_STACK_SIZE evaluates to a plain integer. To get the symbol's value as an
integer in C/C++ code, use the following syntax:

extern void _ TI STACK SIZE;
size t get stack size() { return symval(& TI STACK SIZE); }

The type in such extern declarations does not matter, because only the address of the symbol is needed. In strict
ANSI mode, you cannot declare this variable with a type of void, so use unsigned char instead.

Note
Do not attempt to use the __ TI_STACK_SIZE symbol by itself in C/C++. The symbol's value is
undefined, so the symbol's address is likely to be an invalid memory address.

To understand why the _symval operator is needed to access linker-defined integer values, see Section 8.6.4 for
information about how linker symbols differ from C identifiers.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 237
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.6.3 Linker-Defined Addresses

To access linker-defined symbols that represent addresses, use the _symval built-in operator to get the symbol's
value as a pointer value.

For example, the linker symbol Tl STACK_END evaluates to an address. To get the symbol's value as a
pointer value in C/C++ code, use the following syntax:

extern void TI STACK END;

void *get stack end() { return (void*) symval (& TI STACK END); }

Although the linker symbol __TI_STACK_END is an address, and thus looks a lot like a C/C++ pointer value, you
cannot simply define the C/C++ variable __ TI_ STACK_END as a pointer variable and omit taking the symbol's
address. See Section 8.6.4 for details. The following example is incorrect.

extern void * TI STACK END;
void *get stack end() { return _ TI STACK END; } // wrong, missing &

8.6.4 More About the _symval Operator

When you declare a variable such as int x = 1234; in C/C++, an object with the identifier (name) “x” is
created at address &x with the contents 1234. In addition, a related linker symbol named x is created. That linker
symbol represents just the address, not the object itself. References to the linker symbol x result in the linker
symbol’s value, which is the address. However, references to the C/C++ identifier x result in the contents 1234.
If you want the address of this C/C++ identifier, you need to use &x. Thus, the C/C++ expression &x has the
same value as the linker expression x, although the linker symbol does not have an associated type.

Suppose a linker-defined symbol represents an integer rather than an address, such as __ Tl STACK_SIZE.
There is no way to refer to an integer linker symbol directly in the compiler, so we use a trick. First, pretend this
linker symbol represents an address. Declare a fake variable with the same name in the C/C++ code. Now, refer
to & TI_STACK SIZE, an expression that has the same value as the linker symbol __ Tl STACK_SIZE. The
value does have the wrong type, which you can change with a cast as follows:

extern unsigned char _ TI STACK SIZE;
size t stack size = (size t) & TI STACK SIZE;

Leaving out _symval as shown in the above example works most of the time, but not always. In some cases,

a pointer value is not adequate to represent a linker symbol value. For example, some targets have a 16-bit
address space and thus 16-bit pointers. Tl linker symbols are 32 bits, so a linker symbol can have a value that
is larger than can be represented by a target pointer. In such cases, the expression &v reflects only the lower
16 bits of the actual value of the linker symbol “v”. To get around this problem, use the _symval built-in operator,
which causes all of the value bits of the linker symbol to be copied:

extern void v;
unsigned long value = (unsigned long) symval (&v);

For every kind of linker symbol, use this pattern:

extern void name;
desired type name = (desired type) symval (&name) ;

For example,

extern void farfunc;

void foo ()

{

void (*func) (void) = (void (*) (void))_ symval (&farfunc);
func () ;
}
238 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.6.5 Weak Symbols
Weak symbols are symbols that may or may not be defined.

See Section 2.6.3 for details about how weak symbols are processed by the linker.

8.6.5.1 Weak Symbol References

Weak symbol references may or may not have a definition after the final link is performed. If a symbol is
undefined, its address is considered to be 0. C/C++ code must check the address of weak references to make
sure the value is not 0 before attempting to use the contents of that variable.

extern _ attribute ((weak)) unsigned char * foo;
if (&foo != 0)
*foo = 1;

If the linker symbol corresponding to foo might not have a valid address (for instance, because the symbol
contains an integer value instead of an address) or might be beyond the 2 GB reach of PC-relative addressing,
use the _symval built-in operator as follows:

extern _ attribute ((weak)) unsigned char * foo;
if (_symval(&foo) != 0)

*foo = 1;

8.6.5.2 Weak Symbol Definitions

A weak symbol definition is a valid definition, but the definition is discarded in favor of a non-weak definition if
such a definition is found at link time. You can define weak symbols C/C++ or in the linker command file.

In C/C++, define a weak symbol as follows:

__attribute ((weak)) int bar;

In a linker command file, use an assignment expression outside a MEMORY or SECTIONS directive to define
a linker-defined symbol. To define a weak symbol in a linker command file, use the "weak" operator in an
assignment expression to designate that the symbol as eligible for removal from the output file's symbol table if
the symbol is not referenced. For example, you can define "ext_addr_sym" as follows:

weak (ext_addr sym) = 0x12345678;

When the linker command file is used to perform the final link, "ext_addr_sym" is presented to the linker as a
weak absolute symbol. This symbol is not included in the resulting output file if the symbol is not referenced.

8.6.6 Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of related
modules are grouped together into a library. When you specify an object library as linker input, the linker includes
any members of the library that define existing unresolved symbol references. You can use the archiver to build
and maintain libraries. Section 7.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object file that
contains a function is specified at link time, the file is linked whether the function is used or not; however, if that
same function is placed in an archive library, the file is included only if the function is referenced.

The order in which libraries are specified is important, because the linker includes only those members that
resolve symbols that are undefined at the time the library is searched. The same library can be specified as
often as necessary; it is searched each time it is included. Alternatively, you can use the --reread_libs option to
reread libraries until no more references can be resolved (see Section 8.4.18.3). A library has a table that lists all
external symbols defined in the library; the linker searches through the table until it determines that it cannot use
the library to resolve any more references.

The following examples link several files and libraries, using these assumptions:

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 239
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

« Input files f1.c.obj and f2.c.obj both reference an external function named clrscr.
« Input file f1.c.obj references the symbol origin.

« Input file f2.c.obj references the symbol fillclr.

* Member O of library libc.lib contains a definition of origin.

* Member 3 of library liba.lib contains a definition of fillclr.

* Member 1 of both libraries defines clrscr.

If you enter:

armcl --run_linker fl.c.obj f2.c.obj liba.lib libc.lib

then:

* Member 1 of liba.lib satisfies the f1.c.obj and f2.c.obj references to clrscr because the library is searched and
the definition of clrscris found.

* Member 0 of libc.lib satisfies the reference to origin.

* Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

armcl --run_linker fl.c.obj f2.c.obj libc.lib liba.lib

then the references to cirscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to force the
linker to include a library member. (See Section 8.4.34.) The next example creates an undefined symbol rout1 in
the linker's global symbol table:

armcl --run_linker --undef sym=routl libc.lib

If any member of libc.lib defines rout1, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see Section
8.5.5.

Section 8.4.18 describes methods for specifying directories that contain object libraries.

240 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.7 Default Placement Algorithm

The MEMORY and SECTIONS directives provide flexible ways to build, combine, and allocate sections.
However, any memory locations or sections you choose not to specify must still be handled by the linker. The
linker uses algorithms to build and allocate sections in coordination with any specifications you do supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though the
memory map and section definitions shown in Default Allocation for ARM Devices were used.

Default Allocation for ARM Devices

{

RAM : origin = 0x00000000, length = OxXFFFFFFFF
}
SECTIONS
{
.text : ALIGN(4) {} > RAM
.const: ALIGN(4) {} > RAM
.data : ALIGN(4) {} > RAM
.bss : ALIGN (4) {} > RAM
.cinit: ALIGN(4) {} > RAM /* -c option only */
.pinit: ALIGN (4) {} > RAM /* -c option only */

}

See Section 2.5.1 for information about default memory allocation.

All .text input sections are concatenated to form a .text output section in the executable output file, and all .data
input sections are combined to form a .data output section.

If you use a SECTIONS directive, the linker performs no part of this default allocation. Instead, allocation is
performed according to the rules specified by the SECTIONS directive and the general algorithm described next
in Section 8.7.1.

8.7.1 How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition
Method 2 By combining input sections with the same name into an output section that is not defined in a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines the
section's contents. (See Section 8.5.5 for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the linker
combines all such input sections that have the same name into an output section with that name. For example,
suppose the files f1.c.obj and f2.c.obj both contain named sections called Vectors and that the SECTIONS
directive does not define an output section for them. The linker combines the two Vectors sections from the input
files into a single output section named Vectors, allocates it into memory, and includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in the
SECTIONS directive. You can use the --warn_sections linker option (see Section 8.4.35) to cause the linker to
display a message when it creates a new output section.

After the linker determines the composition of all output sections, it must allocate them into configured memory.
The MEMORY directive specifies which portions of memory are configured. If there is no MEMORY directive,
the linker uses the default configuration as shown in Default Allocation for ARM Devices. (See Section 8.5.4 for
more information on configuring memory.)

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 241
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.7.2 Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be used
more efficiently and increases the probability that your program will fit into memory. The algorithm comprises
these steps:

1. Each output section for which you supply a specific binding address is placed in memory at that address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named area,
considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is placed
into the first available memory space, considering alignment where necessary.

8.8 Using Linker-Generated Copy Tables
The linker supports extensions to the linker command file syntax that enable the following:

» Make it easier for you to copy objects from load-space to run-space at boot time
* Make it easier for you to manage memory overlays at run time
» Allow you to split GROUPs and output sections that have separate load and run addresses

For an introduction to copy tables and their use, see Section 3.3.3.
8.8.1 Using Copy Tables for Boot Loading

In some embedded applications, there is a need to copy or download code and/or data from one location to
another at boot time before the application actually begins its main execution thread. For example, an application
may have its code and/or data in FLASH memory and need to copy it into on-chip memory before the application
begins execution.

One way to develop such an application is to create a copy table in assembly code that contains three elements
for each block of code or data that needs to be moved from FLASH to on-chip memory at boot time:

¢ The load address
¢ The run address
¢ The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section that has
a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size of
each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.

4. Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece
of code or data is added or removed from the application, you must repeat the process in order to keep the
contents of the copy table up to date.

242 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.8.2 Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and SIZE()
operators that are already part of the linker command file syntax. For example, instead of building the application
to generate a .map file, the linker command file can be annotated:

SECTIONS
{
.flashcode: { app_tasks.c.obj (.text) }
load = FLASH, run = PMEM,
LOAD START(flash code 1d start),
RUN_START (_flash code rn_start),
SIZE(_flash code size)

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create three
symbols:

Symbol Description

_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be updated
automatically each time the application is linked. This approach removes step 1 of the process described in
Section 8.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the copy
table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker would
generate the boot copy table automatically. This would avoid having to build the application twice and free you
from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 8.5.10.7.
8.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory overlay
is defined using a UNION in the linker command file as illustrated in Using a UNION for Memory Overlay:

Using a UNION for Memory Overlay

SECTIONS
{
UNION
{
GROUP
{
.taskl: { taskl.c.obj(.text) }
.task2: { task2.c.obj(.text) }
} load = ROM, LOAD START(_ taskl2 load start), SIZE(_ taskl2 size)
GROUP
{
.task3: { task3.c.obj(.text) }
.task4: { taskd.c.obj(.text) }
} load = ROM, LOAD_ START(_task34 load start), SIZE(_task 34 size)
} run = RAM, RUN_START(task run start)
}

The application must manage the contents of the memory overlay at run time. That is, whenever any services
from .task1 or .task2 are needed, the application must first ensure that .task1 and .task2 are resident in the
memory overlay. Similarly for .task3 and .task4.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 243
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

To affect a copy of .task1 and .task2 from ROM to RAM at run time, the application must first gain access to the
load address of the tasks (_task12_load_start), the run address (_task_run_start), and the size (_task12_size).
Then this information is used to perform the actual code copy.

8.8.4 Generating Copy Tables With the table() Operator
The linker supports extensions to the linker command file syntax that enable you to do the following:

» |dentify any object components that may need to be copied from load space to run space at some point
during the run of an application

* Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

* Instruct the linker to generate a symbol specified by you that provides the address of a linker-generated copy
table. For instance, Using a UNION for Memory Overlay can be written as shown in Produce Address for
Linker Generated Copy Table:

Produce Address for Linker Generated Copy Table

SECTIONS
{
UNION
{
GROUP
{
.taskl: { taskl.c.obj(.text) }
.task2: { task2.c.obj(.text) }
} load = ROM, table(taskl2 copy table)
GROUP
{
.task3: { task3.c.obj(.text) }
.task4: { taskd.c.obj(.text) }
} load = ROM, table(_ task34 copy table)
} run = RAM
}

Using the SECTIONS directive from Produce Address for Linker Generated Copy Table in the linker command
file, the linker generates two copy tables named: _task12_copy_table and _task34 copy_table. Each copy table
provides the load address, run address, and size of the GROUP that is associated with the copy table. This
information is accessible from application source code using the linker-generated symbols, _task12_copy_table
and _task34 copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can reference the
address of any copy table generated by the linker in C/C++ or assembly source code, passing that value to a
general purpose copy routine, which will process the copy table and affect the actual copy.

8.8.4.1 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be

applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular table()
specification can be accessed through a symbol specified by you that is provided as an argument to the table()
operator. The linker creates a symbol with this name and assigns it the address of the copy table as the value of
the symbol. The copy table can then be accessed from the application using the linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a table()
operator is applied to a GROUP, then none of that GROUP's members may be marked with a table()
specification. The linker detects violations of these rules and reports them as warnings, ignoring each offending
use of the table() specification. The linker does not generate a copy table for erroneous table() operator
specifications.

Copy tables can be generated automatically; see Section 8.8.4. The table operator can be used with
compression; see Section 8.8.5.

244 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.8.4.2 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time copy table.
This table is handled before the .cinit section is used to initialize variables at startup. For example, the linker
command file for the boot-loaded application described in Section 8.8.2 can be rewritten as follows:

SECTIONS
{
.flashcode: { app tasks.c.obj(.text) }
load = FLASH, run = PMEM,
table (BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, __binit__, which contains the list of all object components that need to be copied from their load location
to their run location at boot-time. If a linker command file does not contain any uses of table(BINIT), then the
__binit__symbol is given a value of -1 to indicate that a boot-time copy table does not exist for a particular
application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in the
context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to a
GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects violations of
these rules and reports them as warnings, ignoring each offending use of the table(BINIT) specification.

8.8.4.3 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object component
in multiple ways, you can apply more than one table() operator to it. Consider the linker command file excerpt in
Linker Command File to Manage Object Components:

Linker Command File to Manage Object Components

SECTIONS
{
UNION
{
.first: { al.c.obj(.text), bl.c.obj(.text), cl.c.obj(.text) }
load = EMEM, run = PMEM, table(BINIT), table(ifirstictbl)
.second: { a2.c.obj(.text), b2.c.obj(.text) }

load = EMEM, run = PMEM, table(_ second ctbl)

}
.extra: load = EMEM, run = PMEM, table (BINIT)

}

In this example, the output sections .first and .extra are copied from external memory (EMEM) into program
memory (PMEM) at boot time while processing the BINIT copy table. After the application has started executing
its main thread, it can then manage the contents of the overlay using the two overlay copy tables named:
_first_ctbl and _second_ctbl.

8.8.4.4 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy table
symbol is defined with the address value of the input section that contains the corresponding copy table.

The linker generates a unique name for each overlay copy table input section. For example, table(_first_ctbl)
would place the copy table for the .first section into an input section called .ovly:_first_ctbl. The linker creates a
single input section, .binit, to contain the entire boot-time copy table.

Controlling the Placement of the Linker-Generated Copy Table Sections illustrates how you can control the
placement of the linker-generated copy table sections using the input section names in the linker command file.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 245
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS
{
UNION
{
.first: { al.c.obj(.text), bl.c.obj(.text), cl.c.obj(.text) }
load = EMEM, run = PMEM, table(BINIT), table(first ctbl)
.second: { a2.c.obj(.text), b2.c.obj(.text) }
load = EMEM, run = PMEM, table(second ctbl)
}
.extra: load = EMEM, run = PMEM, table (BINIT)

.ovly: { } > BMEM
.binit: { } > BMEM

For the linker command file in Controlling the Placement of the Linker-Generated Copy Table Sections, the
boot-time copy table is generated into a .binit input section, which is collected into the .binit output section, which
is mapped to an address in the BMEM memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input
section and the _second_ctbl is generated into the .ovly: _second_ctbl input section. Since the base names of
these input sections match the name of the .ovly output section, the input sections are collected into the .ovly
output section, which is then mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in the
same output section. The linker does not allow a copy table section that was created from a partial link session
to be used as input to a succeeding link session.

8.8.4.5 Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker can access both
the load address and run address of every piece of a split object component. Using the table() operator, you

can tell the linker to generate this information into a copy table. The linker gives each piece of the split object
component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4 through
7 (using a UNION directive). The load placement of all of the tasks is split among four different memory areas
(LMEM1, LMEM2, LMEMS3, and LMEM4). The overlay is defined as part of memory area PMEM. You must move
each set of tasks into the overlay at run time before any services from the set are used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have all the
information needed to move either group of tasks into the memory overlay as shown in Creating a Copy Table to
Access a Split Object Component.

Creating a Copy Table to Access a Split Object Component

SECTIONS
{
UNION
{
.tasklto3: { *(.taskl), *(.task2), *(.task3) }
load >> LMEM1 | LMEMZ2 | LMEM4, table(_ taskl3 ctbl)
GROUP
{
.task4d: { *(.taskd4) }
.task5: { *(.taskbd) }
.task6: { *(.tasko6) }
.task7: { *(.task7) }
} load >> LMEM1 | LMEM3 | LMEM4, table (task47 ctbl)
} run = PMEM
.ovly: > LMEM4
}
246 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Split Object Component Driver illustrates a possible driver for such an application.

Split Object Component Driver

#include <cpy tbl.h>

extern far COPY_TABLE taskl3_ctbl;
extern far COPY_ TABLE task47 ctbl;
extern void taskl (void) ;

extern void task7(void);
main ()

{

copy in(&taskl3 ctbl);
taskl();
task2 () ;
task3();

copy_in(&task47_ctbl);
task4d () ;

()
tasko6 () ;
()

}

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.

The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for each piece of the split
section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3 is copied
from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs the
GROUP split by applying the split operator to each member of the GROUP in order. The copy table for the
GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP. These pieces
are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or UNION
member. The linker does not permit a split operator to be applied to the run placement of either a UNION or of
a UNION member. The linker detects such violations, emits a warning, and ignores the offending split operator
usage.

8.8.5 Compression

When automatically generating copy tables, the linker provides a way to compress the load-space data. This can
reduce the read-only memory foot print. This compressed data can be decompressed while copying the data
from load space to run space.

You can specify compression in two ways:

* The linker command line option --copy_compression=compression_kind can be used to apply the specified
compression to any output section that has a table() operator applied to it.

» The table() operator accepts an optional compression parameter. The syntax is: .

table(name , compression= compression_kind)

The compression_kind can be one of the following types:

— off. Do not compress the data.

— rle. Compress data using Run Length Encoding.

— lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.

A table() operator without the compression keyword uses the compression kind specified using the command
line option --copy_compression.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 247
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker
compresses load data only when such compression reduces the overall size of the load space. In some cases
even if the compression results in smaller load section size the linker does not compress the data if the
decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of section1 by 30 bytes. Also assume the RLE
decompression routine takes up 40 bytes in load space. By choosing to compress section1 the load space is
increased by 10 bytes. Therefore, the linker will not compress section1. On the other hand, if there is another
section (say section2) that can benefit by more than 10 bytes from applying the same compression then both
sections can be compressed and the overall load space is reduced. In such cases the linker compresses both
the sections.

You cannot force the linker to compress the data when doing so does not result in savings.
You cannot compress the decompression routines or any member of a GROUP containing .cinit.
8.8.5.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression_kind. The size field of the copy record is
overloaded to support compression. Figure 8-5 illustrates the compressed copy table layout.

Rec size Rec cnt
Load address Run address |Size (0 if load data is compressed)l

Figure 8-5. Compressed Copy Table

In Figure 8-5, if the size in the copy record is non-zero it represents the size of the data to be copied, and also
means that the size of the load data is the same as the run data. When the size is 0, it means that the load data
is compressed.

8.8.5.2 Compressed Section Representation in the Object File

The linker creates a separate input section to hold the compressed data. Consider the following table() operation
in the linker command file.

SECTIONS
{

.taskl: load = ROM, run = RAM, table(_ taskl table)
}

The output object file has one output section named .task1 which has different load and run addresses. This is
possible because the load space and run space have identical data when the section is not compressed.

Alternatively, consider the following:

SECTIONS

{
.taskl: load = ROM, run = RAM, table(taskl table, compression=rle)

}

If the linker compresses the .task1 section then the load space data and the run space data are different. The

linker creates the following two sections:

» .task1 : This section is uninitialized. This output section represents the run space image of section task1.

» .task1.load : This section is initialized. This output section represents the load space image of the section
task1. This section usually is considerably smaller in size than .task1 output section.

The linker allocates load space for the .task1.load input section in the memory area that was specified for load
placement for the .task1 section. There is only a single load section to represent the load placement of .task1
- .task1.load. If the .task1 data had not been compressed, there would be two allocations for the .task1 input
section: one for its load placement and another for its run placement.

248 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.8.5.3 Compressed Data Layout

The compressed load data has the following layout:

8-bit index Compressed data

The first 8 bits of the load data are the handler index. This handler index is used to index into a handler table to
get the address of a handler function that knows how to decode the data that follows. The handler table is a list
of 32-bit function pointers as shown in Figure 8-6.

_TI_Handler_Table Base:

32-bit handler address 1

32-bit handler address N

_TI_Handler_Table Limit:

Figure 8-6. Handler Table

The linker creates a separate output section for the load and run space. For example, if .task1.load is
compressed using RLE, the handler index points to an entry in the handler table that has the address of the
run-time-support routine __ TI_decompress_rle().

8.8.5.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run space.
The address of the copy table is passed to this routine. First the routine reads the record count. Then it repeats
the following steps for each record:

Read load address, run address and size from record.

If size is zero go to step 5.

Call memcpy passing the run address, load address and size.
Go to step 1 if there are more records to read.

Read the first byte from the load address. Call this index.
Read the handler address from (& Tl _Handler_Base)[index].
Call the handler and pass load address + 1 and run address.
Go to step 1 if there are more records to read.

NN~

The routines to handle the decompression of load data are provided in the run-time-support library.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

249

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.8.5.5 Compression Algorithms

The following subsections provide information about decompression algorithms for the RLE and LZSS formats.
To see example decompression algorithms, refer to the following functions in the Run-Time Support library:

« RLE: The _ TI_decompress_rle() function in the copy_decompress_rle.c file.
* LZSS: The _ Tl _decompress_lzss() function in the copy_decompress_Izss.c file.

Run Length Encoding (RLE):

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using run length encoded (RLE) format. ARM uses a simple
run length encoding that can be decompressed using the following algorithm. See copy _decompress_rle.c for
details.

1. Read the first byte, Delimiter (D).
2. Read the next byte (B).
3. IfB!=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).
a. IfL==0, then length is either a 16-bit or 24-bit value or we’ve reached the end of the data, read the next
byte (L).
i. IfL==0, length is a 24-bit value or the end of the data is reached, read next byte (L).
1. If L==0, the end of the data is reached, go to step 7.
2. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
ii. ElseL <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. Elseif L >0 and L <4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.

The ARM run-time support library has a routine __ Tl _decompress_rle24() to decompress data compressed
using RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

Note
RLE Decompression Routine

The previous decompression routine, _ TI_decompress_rle(), is included in the run-time-support
library for decompressing RLE encodings that are generated by older versions of the linker.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

8-bit index ‘Data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The ARM run-time-support library
has the routine __ TI_decompress_lzss() to decompress the data compressed using LZSS. The first argument to
this function is the address pointing to the byte after the 8-bit Index, and the second argument is the run address
from the C auto initialization record.

See copy_decompress_lzss.c for details on the LZSS algorithm.

250 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Description

8.8.6 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This information is

included in a run-time-support library header file, cpy_tbl.h, which contains a C source representation of the copy

table data structure generated by the linker. ARM cpy_tbl.h File shows the copy table header file.

ARM cpy_tbl.h File

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it. Each

VAR AR A EEEEEEEEEE LA EEEEE R AR R E R

/* cpy tbl.h v##### */
/* Copyright (c) 2003 Texas Instruments Incorporated */
/* */
/* Specification of copy table data structures which can be automatically */
/* generated by the linker (using the table() operator in the LCF). */

VAR AR A EEEEEEEE RS EEEEE R AR EE R

#ifndef CPY TBL

#define _CPY TBL

#ifdef cplusplus

extern "C" namespace std {
#endif /* _ cplusplus */

VAR AR A EEEEEEEE RS L LR EEEEE R AR AR LR R R

/* Copy Record Data Structure */
/***/

typedef struct copy record

{
unsigned int load addr;
unsigned int run_addr;
unsigned int size;

} COPY_RECORD;

VAR AR EEEEEEEEEE LA EEEEE Rt EEE LR E R

/* Copy Table Data Structure */
/***/
typedef struct copy table
{

unsigned short rec_size;

unsigned short num recs;

COPY RECORD recs[1];
} COPY_ TABLE;

VAR AR EEEEEEEEEE LA EEEEE R AR R EE R

/* Prototype for general purpose copy routine. */
/***/
extern void copy in(COPY TABLE *tp);

#ifdef cplusplus

} /* extern "C" namespace std */

#ifndef CPP_STYLE HEADER

using std::COPY RECORD;

using std::COPY TABLE;

using std::copy in;

#endif /* CPP_STYLE HEADER */

#endif /* cplusplus */

#endif /* | CPY TBL */

COPY_RECORD contains at least the following information for the object component:

The load address
The run address
The size

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools

v20.2.0.LTS

251

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

The linker collects all COPY_RECORDs that are associated with the same copy table into a COPY_TABLE
object. The COPY_TABLE object contains the size of a given COPY_RECORD, the number of
COPY_RECORD:s in the table, and the array of COPY_RECORDs in the table. For instance, in the BINIT
example in Section 8.8.4.2, the .first and .extra output sections will each have their own COPY_RECORD entries
in the BINIT copy table. The BINIT copy table will then look like this:

COPY TABLE _ binit = { 12, 2,

{ <load address of .first>,
<run address of .first>,
<size of .first> },

{ <load address of .extra>,
<run address of .extra>,
<size of .extra> } };

8.8.7 General Purpose Copy Routine

The cpy_tbl.h file in ARM cpy_tbl.h File also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument: the
address of a linker-generated copy table. The routine then processes the copy table data object and performs
the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in Run-Time-
Support cpy_tbl.c File.

Run-Time-Support cpy_tbl.c File

/***/

/* cpy _tbl.c vH##### */
/* */
/* General purpose copy routine. Given the address of a linker-generated */
/* COPY TABLE data structure, effect the copy of all object components */
/* that are designated for copy via the corresponding LCF table() operator. */

/***/

#include <cpy tbl.h>
#include <string.h>
typedef void (*handler fptr) (const unsigned char *in, unsigned char *out)
/*********************;***/
/* COPY IN() */
/~k~k~k~k**I‘k~k***********************/
void copy in(COPY TABLE *tp)
{
unsigned short I;
for (I = 0; I < tp->num recs; I++)
{
COPY RECORD crp = tp->recs[i];
unsigned char *1d addr = (unsigned char *)crp.load addr;
unsigned char *rn_addr (unsigned char *)crp.run_addr;
if (crp.size)

{

/* __ */
/* Copy record has a non-zero size so the data is not compressed. */
/* Just copy the data. */
/* __ */

memcpy (rn_addr, 1ld addr, crp.size);

252 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

8.9 Linker-Generated CRC Tables

The linker supports extensions to the linker command file syntax to enable the verification of code or data by
means of Cyclic Redundancy Check (CRC). The linker computes a CRC value for the specified region at link
time, and stores that value in target memory so that it is accessible at boot or run time. The application code can
then compute the CRC for that region and ensure that the value matches the linker-computed value.

In a linker command file, you can cause CRC values to be generated for the following:
* CRC for a section: Use the crc_table() operator within the SECTIONS directive. See Section 8.9.1.

The run-time-support library does not supply a routine to calculate CRC values at boot or run time. Examples
that perform cyclic redundancy checking using linker-generated CRC tables are provided in the Tools Insider
blog in TI's E2ZE community.

8.9.1 Using the crc_table() Operator in the SECTIONS Directive

For any section that should be verified with a CRC, the linker command file must be modified to include the
crc_table() operator. The specification of a CRC algorithm is optional. The syntax is:

crc_table(user_specified_table_name][, algorithm= xxx])

The linker uses the CRC algorithm from any specification given in a crc_table() operator. If that specification is
omitted, the TMS570 CRC64_ISO algorithm is used. The linker includes CRC table information in the map file.
This includes the CRC value as well as the algorithm used for the calculation.

The CRC table generated for a particular crc_table() instance can be accessed through the table name provided
as an argument to the crc_table() operator. The linker creates a symbol with this name and assigns the address
of the CRC table as the value of the symbol. The CRC table can then be accessed from the application using the
linker-generated symbol.

The crc_table() operator can be applied to an output section, a GROUP, a GROUP member, a UNION, or a
UNION member. In a GROUP or UNION, the operator is applied to each member.

You can include calls in your application to a routine that will verify CRC values for relevant sections. You must
provide this routine. See below for more details on the data structures and suggested interface.

8.9.1.1 Restrictions when using the crc_table() Operator

It is important to note that the CRC generator used by the linker is parameterized as described in the crc_tbl.h
header file (see Example 8-9). Any CRC calculation routine employed outside of the linker must function in

the same way to ensure matching CRC values. The linker cannot detect a mismatch in the parameters. To
understand these parameters, see A Painless Guide to CRC Error Detection Algorithms by Ross Williams, which
is likely located at http://www.ross.net/crc/download/crc_v3.txt.

Only CRC algorithm names and identifiers in crc_tbl.h are supported. All other names and ID values are
reserved for future use. Systems may not include built-in hardware that computes these CRC algorithms.
Consult documentation for your hardware for details. These CRC algorithms are supported:

. CRC8_PRIME

- CRC16_ALT

- CRC16_802_15 4
- CRC_CCITT

.+ CRC24_FLEXRAY
- CRC32_PRIME
. CRC32.C

- CRC64_ISO

If no algorithm is specified, the default algorithm is TMS570 CRC64_ISO.

The TMS570_CRC64_ISO algorithm has an initial value of 0. The details of the algorithm are available in the
MCRC documentation.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 253
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://e2e.ti.com/blogs_/b/toolsinsider/archive/2017/02/27/from-the-experts-perform-cyclic-redundancy-checking-using-linker-generated-crc-tables
https://e2e.ti.com/blogs_/b/toolsinsider/archive/2017/02/27/from-the-experts-perform-cyclic-redundancy-checking-using-linker-generated-crc-tables
http://www.ross.net/crc/download/crc_v3.txt
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

There are also restrictions which will be enforced by the linker:

* CRC can only be requested at final link time.

* CRC can only be applied to initialized sections.

* CRC can be requested for load addresses only.

» Certain restrictions also apply to CRC table names. For example, BINIT may not be used as a CRC table
name.

8.9.1.2 Examples

The crc_table() operator is similar in syntax to the table() operator used for copy tables. A few simple examples
of linker command files follow.

Example 8-5. Using crc_table() Operator to Compute the CRC Value for .text Data

SECTIONS
{

.section to be verified: {al.c.obj(.text)} crc table(my crc table for al)

}

Example 8-5 defines a section named “.section_to_be_verified”, which contains the .text data from the a1.c.obj
file. The crc_table() operator requests that the linker compute the CRC value for the .text data and store that
value in a table named “my_crc_table_for_a1”. This table will contain all the information needed to invoke a user-
supplied CRC calculation routine, and verify that the CRC calculated at run time matches the linker-generated
CRC. The table can be accessed from application code using the symbol my crc_table for_a1, which should

be declared of type “extern CRC_TABLE”. This symbol will be defined by the linker. The application code might
resemble the following.

#include "crc_ tbl.h"
extern CRC_TABLE my crc_table for al;
verify al text contents()

{

/* Verify CRC value for .text sections of al.c.obj. */
if (my check CRC(&my crc table for al)) puts("OK");

The my_check_CRC() routine is shown in detail in Example 8-10.

Example 8-6. Specifying an Algorithm in the crc_table() Operator

SECTIONS
{

.section to be verified 2: {bl.c.obj (.text)} load=SLOW_MEM, run=FAST MEM,
crc_table(my crc table for bl, algorithm=TMS570 CRC64 ISO)
.TI.crctab: > CRCMEM
}

In Example 8-6, the CRC algorithm is specified in the crc_table() operator. The specified algorithm is used to
compute the CRC of the text data from b1.c.obj. The CRC tables generated by the linker are created in the
special section .Tl.crctab, which can be placed in the same manner as other sections. In this case, the CRC
table _my crc_table_for_b1 is created in section .Tl.crctab:_my crc_table for_b1, and that section is placed in
the CRCMEM memory region.

254 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Example 8-7. Using a Single Table for Multiple Sections

SECTIONS
{
.section to be verified 1: {al.c.obj(.text)}
crc_table(my crc table for al and cl)
.section_to be verified 3: {cl.c.obj(.text)}

crc_table(my crc_table for al and cl, algorithm=TMS570 CRC64_ ISO)

In Example 8-7 the same identifier, _my_crc_table _for_a1_and_c1, is specified for both a1.c.obj and c1.c.ob;j.
The linker creates a single table that contains entries for both text sections.

Example 8-8. Applying the crc_table() Operator to a GROUP or UNION

SECTIONS
{
UNION
{
sectionl: {} crc table(tablel)
section2:
} crc_table(table2)

When the crc_table() operator is applied to a GROUP or a UNION, the linker applies the table specification to
the members of the GROUP or UNION.

In Example 8-8 the linker creates two CRC tables, table1 and table2. table1 contains one entry for section1.
Because both sections are members of the UNION, table2 contains entries for section1 and section2. The order
of the entries in table2 is unspecified.

8.9.1.3 Interface When Using the crc_table() Operator

The CRC generation function uses a mechanism similar to the copy table functionality. Using the syntax shown
above in the linker command file allows specification of code/data sections that have CRC values computed and
stored in the run time image. This section describes the table data structures created by the linker, and how to
access this information from application code.

The CRC tables contain entries as detailed in the run-time-support header file crc_tbl.h, as illustrated in Figure
8-7.

table_name »| rec_size=8
(such as linker-generated symbol num_recs=2
my_crc_table_for_a1)
recs
—> | alg ID address data size CRC value
alg ID address data size CRC value

Figure 8-7. CRC_TABLE Conceptual Model

The crc_tbl.h header file is included in Example 8-9. This file specifies the C structures created by the
linker to manage CRC information. It also includes the specifications of the supported CRC algorithms. A full
discussion of CRC algorithms is beyond the scope of this document, and the interested reader should consult

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 255
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Linker Description

13 TEXAS
INSTRUMENTS

www.ti.com

the referenced document for a description of the fields shown in the table. The following fields are relevant to this
document.

Name — text identifier of the algorithm, used by the programmer in the linker command file.

ID — the numeric identifier of the algorithm, stored by the linker in the crc_alg_ID member of each table entry.

Order — the number of bits used by the CRC calculation.
Polynomial — used by the CRC computation engine.
Initial Value — the initial value given to the CRC computation engine.

Example 8-9. The CRC Table Header, crc_tbl.h

/***/

/* crc tbl.h */
/* - */
/* Specification of CRC table data structures which can be automatically */
/* generated by the linker (using the crc table() operator in the linker */
/* command file). */
/***/
/* */
/* The CRC generator used by the linker is based on concepts from the */
/* document: */
/* "A Painless Guide to CRC Error Detection Algorithms" */
/* */
/* Author : Ross Williams (ross@guest.adelaide.edu.au.). */
/* Date : 3 June 1993. */
/* Status : Public domain (C code) . */
/* */
/* Description : For more information on the Rocksoft”tm Model CRC */
/* Algorithm, see the document titled "A Painless Guide to CRC Error */
/* Detection Algorithms" by Ross Williams (ross@guest.adelaide.edu.au.). */
/* This document is likely to be in "ftp.adelaide.edu.au/pub/rocksoft" or */
/* at http:www.ross.net/crc/download/crc v3.txt. */
/* */
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adelaide, Australia. */
/‘k*************************/
#include <stdint.h> /* For uintXX t */
/***************************************:*************************************/
/* CRC Algorithm Specifiers */
/* */
/* The following specifications, based on the above cited document, are used */
/* by the linker to generate CRC values. */
/*
ID Name Order Polynomial Initial Ref Ref CRC XOR Zero
Value In Out Value Pad

10 "TMS570 CRC64 ISO", 64, 0x0000001b, 0x000000OO, O, 0, 0x00000000, 1

*/
/* Users should specify the name, such as TMS570_CRC64_ISO, in the linker */
/* command file. The resulting CRC_RECORD structure will contain the */
/* corresponding ID value in the crc_alg ID field. */

/***/

#define TMS570 CRC64 ISO 10

/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*;*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

/* CRC Record Data Structure */
/* NOTE: The list of fields and the size of each field */
/* varies by target and memory model. */

/***/

typedef struct crc record

{

uint64_t crc_value;
uint32 t crc_alg ID; /* CRC algorithm ID */
uint32 t addr; /* Starting address */
uint32 t size; /* size of data in bytes */
uint32 t padding; /* explicit padding so layout is the same */
- /* for ELF */
} CRC_RECORD;
256 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Example 8-10. General Purpose CRC Check Routine

In the CRC_TABLE struct, the array recs[1] is dynamically sized by the linker to accommodate the number of
records contained in the table (num_recs). A user-supplied routine to verify CRC values should take a table
name and check the CRC values for all entries in the table. An outline of such a routine is shown in the following
code.

/**/

/* General purpose CRC check routine. Given the address of a */
/* linker-generated CRC_TABLE data structure, verify the CRC */
/* of all object components that are designated with the */
/* corresponding LCF crc table() operator. */

/***********************I**************************************/

#include <crc_tbl.h>
/‘k‘k‘k‘k*******‘k‘k‘k‘k‘k*******‘k‘k‘k‘k********‘k‘k‘k‘k*******‘k‘k‘k‘k‘k******/

/* MY CHECK CRC() - returns 1 if CRCs match, 0 otherwise */
/****;*****;**/
unsigned int my check CRC(CRC_TABLE *tp)
{

int i;

for (i = 0; i < tp-> num_recs; i++)

{

CRC_RECORD crc rec = tp->recs[i];

/**/

/* COMPUTE CRC OF DATA STARTING AT crc_rec.addr */

/* FOR crc_rec.size UNITS. USE */
/* crc_rec.crc_alg ID to select algorithm. */
/* COMPARE COMPUTED VALUE TO crc_rec.crc_value. */

/*******************************;*******;**********/
}
if all CRCs match, return 1;
else return 0;

8.9.2 A Note on the TMS570_CRC64_ISO Algorithm

The MCRC module calculates CRCs on 64-bit chunks of data. This is accomplished by writing a long long
value to two memory mapped registers. In C this looks like a normal write of a long long to memory. The code
generated to read/write a long long to memory is something like the following, where R2 contains the most
significant word and R3 contains the least significant word. So the most significant word is written to the low
address and the least significant word is written to the high address:

LDM RO, {R2, R3}
STM R1, {R2, R3}

The CRC memory mapped registers are in the reverse order from how the compiler performs the store. The
least significant word is mapped to the low address and the most significant word is mapped to the high address.

This means that the words are actually swapped before performing the CRC calculation. It also means that the
calculated CRC value has the words swapped. The TMS570_CRC64_ISO algorithm takes these issues into
consideration and performs the swap when calculating the CRC value. The computed CRC value stored in the
table has the words swapped so the value is the same as it is in memory.

For the end user, these details should be transparent. If the run-time CRC routine is written in C, the long long
loads and stores will be generated correctly. The DMA mode of the MCRC module will also work correctly.

Another issue with the algorithm is that it requires the run-time CRC calculation to be done with 64-bit
chunks. The MCRC module allows smaller chunks of data, but the values are padded to 64-bits. The
TMS570_CRC64_ISO algorithm does not perform any padding, so all CRC computations must be done with
64-bit values. The algorithm will automatically pad the end of the data with zeros if it does not end on a 64-bit
boundary.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 257
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Linker Description www.ti.com

8.10 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial linking
or incremental linking. Partial linking allows you to partition large applications, link each part separately, and then
link all the parts together to create the final executable program. Follow these guidelines for producing a file that
you will relink:

» The intermediate files produced by the linker must have relocation information. Use the --relocatable option
when you link the file the first time. (See Section 8.4.3.2.)

* Intermediate files must have symbolic information. By default, the linker retains symbolic information in its
output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table strips
symbolic information from the output module. (See Section 8.4.24.)

* Intermediate link operations should be concerned only with the formation of output sections and not with
allocation. All allocation, binding, and MEMORY directives should be performed in the final link. Since the
ELF object file format is used, input sections are not combined into output sections during a partial link unless
a matching SECTIONS directive is specified in the link step command file.

» If the intermediate files have global symbols that have the same name as global symbols in other files and
you want them to be treated as static (visible only within the intermediate file), you must link the files with the
--make_static option (see Section 8.4.19.1).

» If you are linking C code, do not use --ram_model or --rom_model until the final linker. Every time you invoke
the linker with the --ram_model or --rom_model option, the linker attempts to create an entry point. (See
Section 8.4.27 , Section 3.3.2.1, and Section 3.3.2.2.)

The following example shows how you can use partial linking:

Step 1: Link the file file1.com; use the --relocatable option to retain relocation information in the output file out1.out.
‘armcl --run_linker --relocatable --output file=outl filel.com

file1.com contains:

SECTIONS
{
ssl: {

fl.c.obj
f2.c.obj
fﬁ:é.obj
}

}

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the output file out2.out.

‘armcl --run_linker --relocatable --output_file=out2 file2.com

file2.com contains:

SECTIONS
{

ss2: {
gl.c.obj
g2.c.obj
gn.c.obj
}
}

Step 3: Link out1.out and out2.out.
‘armcl --run_linker --map_file=final.map --output_file=final.out outl.out out2.out

8.11 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For example,
a C program consisting of modules prog1, prog2, etc., can be assembled and then linked to produce an
executable file called prog.out:

armcl --run_linker --rom model --output file prog.out progl.c.obj prog2.c.obj ...
rtsvd A be eabi.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++ environment.

258 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

The archive libraries shipped by Tl contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support functions
and variables that can be called and referenced from both C and C++ will have the same linkage.

For more information about the ARM C/C++ language, including the run-time environment and run-time-support
functions, see the ARM Optimizing C/C++ Compiler User's Guide.

8.11.1 Run-Time Initialization

C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap routine (the
boot.c.obj object module). The _c_int00 symbol is defined as the program entry point and is the start of the

C boot routine in boot.c.obj. Referencing _c_int00 ensures that boot.c.obj is automatically linked in from the
run-time-support library. When a program runs, it first executes boot.c.obj. The boot.c.obj symbol contains code
and data to initialize the run-time environment; it performs the following:

« Change from system mode to user mode

* Set up the user mode stack

« Process run-time .cinit initialization table and autoinitialize global variables (if --rom_model was used)
« Call main

The run-time-support object libraries contain boot.c.obj. You can:

» Use the archiver to extract boot.c.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts boot.c.obj
when you use the --ram_model or --rom_model option).

8.11.2 Object Libraries and Run-Time Support

The ARM Optimizing C/C++ Compiler User's Guide describes additional run-time-support functions that are
included in rts.src. If your program uses any of these functions, you must link the appropriate run-time-support
library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those library
members that resolve undefined references.

If you want to link object files created with the TI CodeGen tools with object files generated by other compiler
tool chains, the ARM standard specifies that you should define the _AEABI_PORTABILITY_LEVEL preprocessor
symbol as follows before #including any standard header files, such as <stdlib.h>.

#define AEABI PORTABILITY LEVEL 1

This definition enables full portability. Defining the symbol to 0 specifies that the "C standard" portability level
should be used.

8.11.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used by the
malloc() functions and the run-time stacks, respectively. You can set the size of these by using the --heap_size
or --stack_size option and specifying the size of the section as a 4-byte constant immediately after the option. If
the options are not used, the default size of the heap is 2K bytes and the default size of the stack is 2K bytes.

See Section 8.4.16 for setting heap sizes and Section 8.4.31 for setting stack sizes.
8.11.4 Initializing and Autolnitialzing Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the
linker with the --rom_model option. See Section 3.3.2.1 for details.

Initialization of variables at load time enhances performance by reducing boot time and saving memory used by
initialization tables. To use this method, invoke the linker with --ram_model. See Section 3.3.2.2 for details.

See Section 3.3.2.3 for steps performed when you invoke the linker with --ram_model or --rom_model.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 259
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Linker Description

13 TEXAS
INSTRUMENTS

www.ti.com

8.11.5 Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option on some devices to specify whether the watchdog timer should be held
(on) or not held (off) during cinit auto-initialization. Setting this option causes an RTS auto-initialization routine to
be linked in with the program to handle the desired watchdog timer behavior.

8.12 Linker Example

This example links three object files named demo.c.obj, ctrl.c.obj, and tables.c.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

The output sections are constructed in the following manner:

Address Range
0x0080 to 0x7000
0xC000 to 0xFF80

Address Range
0x0080 to OxOFFF
0x0060 to OXFFFF

Address Range

0x00000000 to 0x00001000
0x00001000 to 0x00002000
0x08000000 to 0x08000400

Contents
On-chip RAM_PG
On-chip ROM

Contents
RAM block ONCHIP

Mapped external
addresses EXT

Contents
SLOW_MEM
FAST_MEM
EEPROM

Executable code, contained in the .text sections of demo.c.obj, ctrl.c.obj, and tables.c.obj, must be linked into

FAST_MEM.

A set of interrupt vectors, contained in the .intvecs section of tables.c.obj, must be linked at address

FAST_MEM.

A table of coefficients, contained in the .data section of tables.c.obj, must be linked into EEPROM. The
remainder of block FLASH must be initialized to the value OxFFOOFFOO.
A set of variables, contained in the .bss section of ctrl.c.obj, must be linked into SLOW_MEM and

preinitialized to 0x00000100.

The .bss sections of demo.c.obj and tables.c.obj must be linked into SLOW_MEM.

260

ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linker Description

Linker Command File, demo.cmd shows the linker command file for this example. Output Map File, demo.map
shows the map file.

Linker Command File, demo.cmd

/~k***********************/

[xrK Specify Link Options *kx [
/***/
--entry point SETUP /* Define the program entry point */
--output file=demo.out /* Name the output file */
--map_ file=demo.map /* Create an output map file */
/****;*******************************~k***~k************************************/
V Specify the Input Files xxx/

/***/

demo.c.obj
ctrl.c.obj
tables.c.obj

VAR AR EEEEEEEEE LA EEEEE R AR AR E R

[xrK Specify the Memory Configurations *kk [
/***/
MEMORY
{
FAST_MEM : org 0x00000000 len 0x00001000 /* PROGRAM MEMORY (ROM) */
SLOW MEM : org = 0x00001000 len = 0x00001000 /* DATA MEMORY (RAM) */
EEPROM 1 org 0x08000000 len 0x00000400 /* COEFFICIENTS (EEPROM) */

}

/~k***********************/

/* Specify the Output Sections */

/***/
SECTIONS

.text : {} > FAST MEM /* Link all .text sections into ROM */
.intvecs : {} > 0xO0 /* Link interrupt vectors at 0x0 */
.data : /* Link .data sections */

{
tables.c.obj (.data)

. = 0x400; /* Create hole at end of block */
} > EEPROM, fill = OxFFOOFF0O0 /* Fill and link into EEPROM */
ctrl vars: /* Create new sections for ctrl variables */

{
ctrl.c.obj (.bss)
} > SLOW MEM, fill = 0x00000100 /* Fill with 0x100 and link into RAM */
.bss : {} > SLOW_MEM /* Link remaining .bss sections into RAM */
}

VAR AR R EEEEEEEEEE LA EEEEE Rt EEEE LR E R R

VA End of Command File *xx/
/***/

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 261
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Linker Description

13 TEXAS
INSTRUMENTS

www.ti.com

Invoke the linker by entering the following command:

armcl --run_linker demo.cmd

This creates the map file shown in Output Map File, demo.map and an output file called demo.out that can be

run on an ARM device.

Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL: "SETUP" address: 000000d4
MEMORY CONFIGURATION
name origin length attributes fill
FAST MEM 00000000 000001000 RWIX
SLOW_MEM 00001000 000001000 RWIX
EEPROM 08000000 000000400 RWIX
SECTION ALLOCATION MAP
output attributes/
section page origin length input sections
.text 0 00000020 00000138
00000020 000000a0 ctrl.c.obj (.text)
000000cO 00000000 tables.c.obj (.text)
000000cO 00000098 demo.c.obj (.text)
.intvecs 0 00000000 00000020
00000000 00000020 tables.c.obj (.intvecs)
.data 0 08000000 00000400
08000000 00000168 tables.c.obj (.data)
08000168 00000298 --HOLE-- [fill = £f00££f00]
08000400 00000000 ctrl.c.obj (.data)
08000400 00000000 demo.c.obj (.data)
ctrl var 0 00001000 00000500
00001000 00000500 ctrl.c.obj (.bss) [fill = 00000100]
.bss 0 00001500 00000100 UNINITIALIZED
00001500 00000100 demo.c.obj (.bss)
00001600 00000000 tables.c.obj (.bss)
GLOBAL SYMBOLS
address name
000000d4 SETUP
00000020 clear
000000b8 set
000000c0O x42
[4 symbols]

address name
00000020 clear
000000b8 set
000000c0O x42
000000d4 SETUP

262 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 9
Absolute Lister Description

i3 TEXAS INSTRUMENTS

The ARM absolute lister is a debugging tool that accepts linked object files as input and creates .abs files as
output. These .abs files can be assembled to produce a listing that shows the absolute addresses of object code.

Manually, this could be a tedious process requiring many operations; however, the absolute lister utility performs
these operations automatically.

9.1 Producing an Absolute Listing

.. 264
9.2 INVOKING the ADSOIULE LIScooiiiiiiiiii ettt e h bt e ettt e s bt e e sa et e ann e e s snneeeanbneenans 265
9.3 ADSOIULE LiSTOr EXAMIPIE.ccco ittt et e e ettt e e e ettt e e e e eanteeeeeeansaeeeee e e nsneeeaeeaannsaeaaeeaanssanaaesanns 266
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 263
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Absolute Lister Description www.ti.com

9.1 Producing an Absolute Listing

Figure 9-1 illustrates the steps required to produce an absolute listing.

)
Step 1: Assembler First, assemble a source file.
source file

Assembler

file

Absolute
lister

Figure 9-1. Absolute Lister Development Flow

264 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Absolute Lister Description

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

‘armabs [-options] input file

armabs is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive and can appear anywhere on
the command line following the command. Precede each option with a hyphen (-). The absolute lister options are as
follows:

-e enables you to change the default naming conventions for filename extensions on assembly files, C source files,
and C header files. The valid options are:

» ea|[.Jasmext for assembly files (default is .asm)
» ec[.]Jcext for C source files (default is .c)

» eh [.]Jhext for C header files (default is .h)

* ep [.]Jpext for CPP source files (default is cpp)

The . in the extensions and the space between the option and the extension are optional.
-q (quiet) suppresses the banner and all progress information.

input file names the linked object file. If you do not supply an extension, the absolute lister assumes that the input file has the
default extension .out. If you do not supply an input filename when you invoke the absolute lister, the absolute lister
prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the input
filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:
armcl --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the output files.
They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object file
contains the name of the source files used to build it. In this case, the absolute lister does not generate a
corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses the
assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging option
generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable file created is
called hello.out, the following command generates the proper .abs file:

armabs -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s, not the
C source file hello.csr.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 265
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Absolute Lister Description

13 TEXAS
INSTRUMENTS

www.ti.com

9.3 Absolute Lister Example

This example uses three source files. The files module1.asm and module2.asm both include the file globals.def.

module1.asm

.text

.bss dflag, 1

.bss array, 100
dflag _a .word dflag
array a .word array
offst_a .word offst

.copy globals.def

LDR r4, array a

LDR r5, offst a

LDR r3, dflag a

LDR r0, [r4, r5]

STR r0, [r3]

module2.asm

.text

.bss offst, 1
offst_a .word offst

.copy globals.def

LDR r4, offst a

STR r0, [r4]

globals.def

.global array

.global offst

.global dflag

The following steps create absolute listings for the files module1.asm and module2.asm:

Step 1: First, assemble module1.asm and module2.asm:

armcl modulel
armcl module2

This creates two object files called module1.obj and module2.obj.

Step 2: Next, link module1.obj and module2.obj using the following linker command file, called bttest.cmd:

--output file=bttest.out
--map_ file=bttest.map
modulel.obj

module?2.obj

MEMORY

{

0x00000000
0x00001000

0x00001000
0x00001000

len
len

org
org

P MEM :
D MEM :

}
SECTIONS
{
.data:
.text:
.bss:

>D MEM
>P MEM
>D_MEM

Invoke the linker:

‘armcl --run_linker bttest.cmd

This command creates an executable object file called bttest.out; use this file as input for the absolute lister.

266 ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Absolute Lister Description
Step 3: Now, invoke the absolute lister:

armabs bttest.out

This command creates two files called module1.abs and module2.abs:
module1.abs:

.nolist

array .setsym 000001001h

dflag .setsym 000001000h

offst .setsym 000001068h

.data .setsym 000001000h

edata .setsym 000001000h

.text .setsym 000000000h

etext .setsym 00000002ch

.bss .setsym 000001000h

end .setsym 00000106¢ch
.setsect ".text",000000000hn
.setsect ".data",000001000h
.setsect ".bss",000001000n
.list
.text
.copy "modulel.asm"

module2.abs:

.nolist

array .setsym 000001001h

dflag .setsym 000001000h

offst .setsym 000001068h

.data .setsym 000001000h

edata .setsym 000001000h

.text .setsym 000000000h

etext .setsym 00000002ch

.bss .setsym 000001000h

end .setsym 00000106¢ch
.setsect ".text",000000020hn
.setsect ".data",000001000h
.setsect ".bss",000001068h
.list
.text
.copy "module2.asm"

These files contain the following information that the assembler needs for Step 4:

* They contain .setsym directives, which equate values to global symbols. Both files contain global equates for the symbol
dflag. The symbol dflag was defined in the file globals.def, which was included in module1.asm and module2.asm.

* They contain .setsect directives, which define the absolute addresses for sections.

* They contain .copy directives, which defines the assembly language source file to include.

The .setsym and .setsect directives are useful only for creating absolute listings, not normal assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use the --absolute_listing option
when you invoke the assembler):

armcl --absolute listing modulel.abs
armcl --absolute listing module2.abs

This command sequence creates two listing files called module1.Ist and module2.Ist; no object code is produced. These
listing files are similar to normal listing files; however, the addresses shown are absolute addresses.
The absolute listing files created are module1.Ist (see module1.Ist) and module2.Ist (see module2.Ist).

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 267
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Absolute Lister Description

13 TEXAS
INSTRUMENTS

www.ti.com

module1.Ist

modulel.abs PAGE 1
15 00000000 .text
16 .copy "modulel.asm"
A 1 00000000 .text
A 2 00001000 .bss dflag, 1
A 3 00001001 .bss array, 100
A 4 00000000 00001000- dflag a .word dflag
A 5 00000004 00001001- array_a .word array
A 6 00000008 00001068! offst_a .word offst
A 7 .copy globals.def
B 1 .global array
B 2 .global offst
B 3 .global dflag
A 8
A 9 0000000c E51F4010 LDR r4, array a
A 10 00000010 E51F5010 LDR r5, offst a
A 11 00000014 ES51F301C LDR r3, dflag a
A 12 00000018 E7940005 LDR r0, [r4, r5]
A 13 0000001c E5830000 STR r0, [r3]
No Errors, No Warnings
module2.ist
module?2.abs PAGE 1
15 00000020 .text
16 .copy "module2.asm"
A 1 00000020 .text
A 2 00001068 .bss offst, 1
A 3 00000020 00001068- offst a .word offst
A 4 .copy globals.def
B 1 .global array
B 2 .global offst
B 3 .global dflag
A 5
A 6 00000024 E51F400C LDR r4, offst a
A 7 00000028 E5840000 STR r0, [r4]
No Errors, No Warnings
268 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 10
Cross-Reference Lister Description

i3 TEXAS INSTRUMENTS

The ARM cross-reference lister is a debugging tool. This utility accepts linked object files as input and produces
a cross-reference listing as output. This listing shows symbols, their definitions, and their references in the linked
source files.

10.1 Producing @ Cross-Reference LiSting..............ccooiiiiiiiiiiiiiii et 270

10.2 Invoking the Cross-ReferencCe LISTOr.............ooiiiiiiiiiiiii ettt e e e ene e e 271

10.3 Cross-Reference Listing EXAMPIE.............c.uoiiiiiiiiiiiii et e e e ettt e e e e et e e e e e asntaeeeeesnsaeeeeeeansnees 272
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 269
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Cross-Reference Lister Description www.ti.com
10.1 Producing a Cross-Reference Listing
Figure 10-1 illustrates the steps required to produce a cross-reference listing.
Figure 10-1. The Cross-Reference Lister Development Flow
270 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Cross-Reference Lister Description

10.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into

an executable file. Assemble the assembly language files with the --asm_cross_reference_listing option (see
Section 4.14). This option creates a cross-reference listing and adds cross-reference information to the object
file. By default, the assembler cross-references only global symbols, but if the assembiler is invoked with the
--output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

armxref [options] [input filename [output filename]]

armxref

options

input filename

is the command that invokes the cross-reference utility.
identifies the cross-reference lister options you want to use. Options are not case sensitive and can appear anywhere
on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format of the -I option is -lnum,
where num is a decimal constant. For example, -I30 sets the number of lines per page in the output file to 30.
The space between the option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).

is a linked object file. If you omit the input filename, the utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit the output filename, the default filename is the input

filename with an .xrf extension.
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 271
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Cross-Reference Lister Description www.ti.com
10.3 Cross-Reference Listing Example
These terms defined appear in the cross-reference listing in Cross-Reference Listing:
Symbol Name of the symbol listed
Filename Name of the file where the symbol appears
RTYP The symbol's reference type in this file. The possible reference types are:
STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.
EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.
AsmVal This hexadecimal number is the value assigned to the symbol at assembly time. A value may also be preceded by
a character that describes the symbol's attributes. Table 10-1 lists these characters and names.
LnkVal This hexadecimal number is the value assigned to the symbol after linking.
DefLn The statement number where the symbol is defined.
RefLn The line number where the symbol is referenced. If the line number is followed by an asterisk (*), then that

reference can modify the contents of the object. A blank in this column indicates that the symbol was never used.

Table 10-1. Symbol Attributes in Cross-Reference Listing

Character Meaning

Symbol defined in a .text section
" Symbol defined in a .data section
+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

Cross-Reference Listing is an example of cross-reference listing.

Cross-Reference Listing

File: Dbttest.out Wed Nov 13 17:07:42 xxxxPage: 1

Symbol: array

Filename RTYP AsmVal LnkVal DefLn Refln Refln Refln
modulel.asm EDEF -00000001 00001001 3 1A 5

Symbol: array a
Filename RTYP AsmVal LnkVal Defln Refln Refln Refln

modulel.asm STAT '00000004 00000004 5 9

Symbol: dflag
Filename RTYP AsmVal LnkVal DefLn Refln Refln Refln

modulel.asm EDEF -00000000 00001000 2 3A 4

Symbol: dflag a
Filename RTYP AsmVal LnkVal Defln Refln Refln Refln

modulel.asm STAT '00000000 00000000 4 11

Symbol: offst

Filename RTYP AsmVal LnkVal Defln Refln Refln Refln
modulel.asm EREF 00000000 00001068 2A 6
module2.asm EDEF -00000000 00001068 2 2A 3
Symbol: offst a
Filename RTYP AsmVal LnkVal Defln Refln Refln Refln
modulel.asm STAT '00000008 00000008 6 10
module2.asm STAT '00000000 00000020 3 6
272 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 11
Object File Utilities

i3 TEXAS INSTRUMENTS

This chapter describes how to invoke the following utilities:

The object file display utility prints the contents of object files, executable files, and/or archive libraries in
both text and XML formats.

The disassembler accepts object files and executable files as input and produces an assembly listing as
output. This listing shows assembly instructions, their opcodes, and the section program counter values.
The name utility prints a list of names defined and referenced in an object file, executable files, and/or
archive libraries.

The strip utility removes symbol table and debugging information from object and executable files.

The objcopy, objdump, readelf, and size utilities, which function like the corresponding Unix utilities. The
executable names for these utilities are as follows on Microsoft Windows. The Unix versions are the same but
without the .exe suffix.

— arm-none-eabi-objcopy.exe

— arm-none-eabi-objdump.exe

— arm-none-eabi-readelf.exe

— arm-none-eabi-size.exe

11.1 Invoking the Object File Display ULility................cooiiiiiiiiiiiii et e e e e 274

11.2 INVOKING the DISASSEMDIETcc.ooiiiiiie et e et e e e e e ettt e e e e et e et eaeeeaantaeaeeesansaaeeeeesannnees 275

11.3 Invoking the Name ULITity.............ooo ettt e e e ettt e e e e e e e e e e anbneeeeeeaanne 277

11.4 InvoKiNg the Strip Uility....... ..ottt e et e e et e e et e e e be e e e anee e e enneeeanneeeeanneeeennee 277
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 273
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Object File Utilities www.ti.com

11.1 Invoking the Object File Display Utility

The object file display utility, armofd, prints the contents of object files (.obj), executable files (.out), and/or
archive libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while localized
symbols are listed like any other local symbol.

To invoke the object file display utility, enter the following:

armofd [options] input filename [input filename])

armofd is the command that invokes the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file. The filename must contain an
extension.

options identify the object file display utility options that you want to use. Options are not case sensitive and can appear

anywhere on the command line following the command. Precede each option with a hyphen.

--call_graph Prints function stack usage and callee information in XML format. While the XML
output may be accessed by a developer, this option was primarily designed to be
used by tools such as Code Composer Studio to display an application’s worst case
stack usage.

--dwarf_display=attributes = Controls DWARF display filter settings by specifying a comma-delimited list of
attributes. Prefixing an attribute with no disables instead of enables. For example:

--dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The order of attributes is important (see --obj_display). The list of available display
attributes can be obtained by invoking armofd --dwarf_display=help.

--dynamic_info Outputs dynamic linking information.

--dwarf Appends DWARF debug information to program output.

--help Displays help

--output=filename Sends program output to filename rather than to the screen.

--obj_display attributes Controls object file display filter settings by specifying a comma-delimited list of

attributes. Prefixing an attribute with no disables instead of enables. For example:

--obj_display=rawdata,nostrings
--obj_display=all,norawdata
--obj_display=none,header

The order of attributes is important. For instance, in "--obj_display=none,header",
armofd disables all output, then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file header is enabled, then all
output is disabled, including the file header. Thus, nothing is printed to the screen
for the given files. The list of available display attributes can be obtained by invoking
armofd --obj_display=help.

--verbose Prints verbose text output.
--xml Displays output in XML format.
--xml_indent=num Sets the number of spaces to indent nested XML tags.

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in which
they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of the
input files on the console screen.

Note
Object File Display Format: The object file display utility produces data in a text format by default.
This data is not intended to be used as input to programs for further processing of the information.
XML format should be used for mechanical processing.

274 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Object File Utilities

11.2 Invoking the Disassembler

The disassembler, armdis, examines the output of the assembler or linker. This utility accepts an object file or
executable file as input and writes the disassembled object code to standard output or a specified file.

To invoke the disassembler, enter the following:

armdis [options] input filenamel.] [output filename]

armdis is the command that invokes the disassembler.

options identifies the name utility options you want to use. Options are not case sensitive and can appear anywhere on
the command line following the invocation. Precede each option with a hyphen (-). The name utility options are as
follows:

armdis is the command that invokes the disassembler.

options identifies the name utility options you want to use. Options are not case sensitive and can appear anywhere on
the command line following the invocation. Precede each option with a hyphen (-). The name utility options are as
follows:
-a disables printing of address along with label names within instructions.
-b displays data as bytes instead of words.
-be8 disassembles in BE-8 mode.
-c dumps the object file information.
--copy_tables (aliased as -y, or -Y) displays copy tables and the sections copied. The table information is

dumped first, then each record followed by its load and run data. See Example 11-3.

-d disables display of data sections.
-e displays integer values in hexadecimal.
-h shows the current help screen.

-i disassembles data sections as text.

-1 ‘ disassembles text as data.
-n dumps the symbol table.
-q (quiet mode) suppresses the banner and all progress information.
-qq (super quiet mode) suppresses all headers.
-r uses raw register IDs (RO, R1, etc.).
-R shows run-time address if different from load-time address.
-s suppresses printing of address and data words.
input filenamel.ext] is the name of the input file. If the optional extension is not specified, the file is searched for in this order:
1. infile

2. infile.out, an executable file
3. infile.obj, an object file

output filename is the name of the optional output file to which the disassembly will be written. If an output filename is not specified,
the disassembly is written to standard output.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 275
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Object File Utilities www.ti.com

When the example file in Example 11-1 is compiled, the assembler produces an object file, memcpy32.ob;j.

Example 11-1. Object File memcpy32.asm

.global C_MEMCPY
C MEMCPY: .asmfunc stack usage(12)

CMP r2, #0 ; CHECK FOR n ==
BXEQ 1r ;
STMFD sp!, {r0, 1lr} ; SAVE RETURN VALUE AND ADDRESS
TST rl, #0x3 ; CHECK ADDRESS ALIGNMENT
BNE _unaln ; IF NOT WORD ALIGNED, HANDLE SPECIALLY
TST r0, #0x3 ;
BNE _saln ;
_aln: CMP r2, #16 ; CHECK FOR n >= 16
BCC 116 ;

STMED sp!, {r4} :
SUB r2, r2, #16 H

As shown in Example 11-2, the disassembler can produce disassembly from the object file, memcpy32.obj. The
first two lines are entered on the command line.

Example 11-2. Disassembly From memcpy32.asm

TEXT Section .text, 0x180 bytes at 0xO0

000000: C_MEMCPY:

000000: .state32

000000: E3520000 CMP R2, #0
000004: O12FFF1E BXEQ R14

000008: E92D4001 STMFD R13!, {RO, R14}
00000c: E3110003 TST R1, #3
000010: 1A00002B BNE 0x000000C4
000014: E3100003 TST RO, #3
000018: 1A00002F BNE 0x000000DC
00001lc: E3520010 CMP R2, #16
000020: 3A000008 BCC 0x00000048
000024: E92D0010 STMFD R13!, {R4}
000028: E2422010 SUB R2, R2, #16

Example 11-3 provides an example of how the output would appear if a copy record refers to different load and
run sections and the --copy_table option is used.

Example 11-3. Partial Copy Record Output With Different Load and Run Address

COPY TABLE: data2 ctbl, 0x30 at O0x5E10, 1 record(s)
_data2 ctbl[0]: load addr=0x200158, size=0x12B, encoding=lzss
DATA Section .data2 scn.load, 0x12B bytes at 0x200158

200158: $d:
200158: 020£0000 .word 0x020£0000
20015c: beef0003 .word Oxbeef0003

~data2 ctbl[0]: run addr=0x52A0, size=0x960
DATA Section .datal scn, 0x960 bytes at 0x52A0
0052a0: datal:

0052a0: sd:

0052a0: .datal scn:

0052a0: 0000beef .word 0x0000beef
0052a4: 0000beef .word 0x0000beef

276 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Object File Utilities

11.3 Invoking the Name Utility

The name utility, armnm, prints the list of names defined and referenced in an object file, executable file, or
archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols are listed
as "" . To invoke the name utility, enter the following:

armnm [-options] [input filenames]

armnm
input filename

options

is the command that invokes the name utility.

is an object file (.obj), executable file (.out), or archive library (.lib).

identifies the name utility options you want to use. Options are not case sensitive and can appear anywhere on
the command line following the invocation. Precede each option with a hyphen (-). The name utility options are as

follows:

--all (-a)
--prep_fname (-f)
--global (-g)
--help (-h)
--format:long (-I)
--sort:value (-n)
--output (-o) file
--sort:none (-p)
--quiet (-q)
--sort:reverse (-r)
--dynamic (-s)

--undefined (-u)

11.4 Invoking the Strip Utility

The strip utility, armstrip, removes symbol table and debugging information from object and executable files. To

invoke the strip utility, enter the following:

prints all symbols.

prepends file name to each symbol.

prints only global symbols.

shows the current help screen.

produces a detailed listing of the symbol information.

sorts symbols numerically rather than alphabetically.

outputs to the given file.

causes the name utility to not sort any symbols.

(quiet mode) suppresses the banner and all progress information.
sorts symbols in reverse order.

lists symbols in the dynamic symbol table for an ELF object module.

only prints undefined symbols.

‘ armstrip [-p] input filename [input filename]

armstrip
input filename

options

is the command that invokes the strip utility.

is an object file (.obj) or an executable file (.out).

identifies the strip utility options you want to use. Options are not case sensitive and can appear anywhere on the
command line following the invocation. Precede each option with a hyphen (-). The strip utility option is as follows:

--help (-h)
--outfile (-o) filename
--postlink (-p)

=--rom

displays help information.
writes the stripped output to filename.

removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is
left in a state that cannot be linked. This option should be used only with
executable (.out) files.

Strip readonly sections and segments.

When the strip utility is invoked without the -o option, the input object files are replaced with the stripped version.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

277

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Object File Utilities www.ti.com
This page intentionally left blank.

278 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 12
Hex Conversion Utility Description

i3 TEXAS INSTRUMENTS

The ARM assembler and linker create object files which are in binary formats that encourage modular
programming and provide powerful and flexible methods for managing code segments and target system
memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an object file
into one of several standard ASCII hexadecimal formats, suitable for loading into an EPROM programmer. The
utility is also useful in other applications requiring hexadecimal conversion of an object file (for example, when
using debuggers and loaders).

The hex conversion utility can produce these output file formats:

» ASCII-Hex, supporting 16-bit addresses (see Section 12.15.1)

* Binary file in 8-bit format (see Section 12.3.2)

+ Extended Tektronix (Tektronix) (see Section 12.15.4)

* Intel MCS-86 (Intel) (see Section 12.15.2)

» Motorola Exorciser (Motorola-S), supporting 16-bit addresses (see Section 12.15.3)

» Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses (see Section 12.15.5)
» Texas Instruments TI-TXT format, supporting 16-bit addresses (see Section 12.15.6)

* Carrays

12.1 The Hex Conversion Utility's Role in the Software Development FIOW..................cccccoiiiiiiiiiiiii e 280
12.2 Invoking the Hex Conversion ULIlity...............coooiiiiiiiiiiii et e e 281
12.3 Understanding Memory WIAtRS.......... ...ttt e e e e et e e e e e et teeeeesaanaeeeeeeannnbeeaaeeaannes 285
12.4 The ROIMS DIFECHIVE.ooiiiiiieiiii ettt ettt s h et eae e ekt eeae e e bt e et e e bt e st e e eaeenan e e saneeaneenene 289
12.5 The SECTIONS DiIr€CHIVE.oiiiiiiiiiiii ittt ettt e bttt e e bt et e e b et ean e e shb e e ne e nan e nneeeaneenneas 292
12.6 The Load Image Format (--load_image OPLtion).......... ...t e e e e e e 293
12.7 Excluding @ Specified S@CHION.............oc.ooiiiiii et e et e e 294
12.8 AsSigning OUtPUL FIlENAMIES.ooiiiiiiiii ettt e e bt e e et e s e e e anb e e e eaneeeennes 294
12.9 Image Mode and the —-fill OPLION..............ooo i et e et e e e e st e e e e e e e sbeaeeaeeasntaeaaaeaannes 295
12.10 Array OULPUL FOPMAL.........coooiiiiiiiii ittt e ettt e s bt e e b e e e e at e e e sase e e e st e e e aaseeeanneeeenbeeeanneeesnnnee s 296
12.11 Building a Table for an On-Chip BOOt LOAETccc.oiiiiiiiiiii et e et e e e e e s e e aneeeeeneeeennneenn 297
12.12 Using Secure Flash Boot on TMS320F2838X DEVICES...........uuuiiiiiiiiiiiiiie e a e e 302
12.13 Controlling the ROM DeViCe AAUreSS............cooiiiiiiiiiiii ettt e et e s st e e sane e e abe e e sannee s saneeeannneenans 303
12.14 Control Hex Conversion Utility DiagnoStiCs.............ccoouiiiiiiiiiiiii e 304
12.15 Description of the ObJect FOrmMats.................ooiiiiiiiiiii ittt e e e sbne e 305
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 279
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I

Hex Conversion Utility Description

TeExAS
INSTRUMENTS

www.ti.com

12.1 The Hex Conversion Utility's Role in the Software Development Flow

Figure 12-1 highlights the role of the hex conversion utility in the software development process.

C/C++
source
files

Macro
source CiC++
files compiler

C/C++ name

Assembler

demanglin
source giing

utility

Macro
library Assembler
Object Librat_ryll_-tbuild
files utifity
- Run-time-
Library of A Support
object library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Cross-reference
lister

Object file

Absolute lister o
utilities

Debugging

Figure 12-1. The Hex Conversion Utility in the ARM Software Development Flow

280 ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.2 Invoking the Hex Conversion Utility
There are two basic methods for invoking the hex conversion utility:

» Specify the options and filenames on the command line. The following example converts the file
firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

armhex -t firmware -o firm.lsb -o firm.msb

» Specify the options and filenames in a command file. You can create a file that stores command line
options and filenames for invoking the hex conversion utility. The following example invokes the utility using a
command file called hexutil.cmd:

‘ armhex hexutil.cmd ‘

In addition to regular command line information, you can use the hex conversion utility ROMS and SECTIONS
directives in a command file.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 281
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

armhex [options] filename

armhex is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use options on the command line or
in a command file. Table 12-1 lists the basic options.
« All options are preceded by a hyphen and are not case sensitive.
» Several options have an additional parameter that must be separated from the option by at least one space.
» Options with multi-character names must be spelled exactly as shown in this document; no abbreviations are
allowed.
» Options are not affected by the order in which they are used. The exception to this rule is the --quiet option, which
must be used before any other options.
filename names an object file or a command file (for more information, see Section 12.2.2).
Table 12-1. Basic Hex Conversion Utility Options
Option Alias Description See
General Options
—byte -byte Z(;J(;‘r:é);}srirc:;tput locations by bytes rather than by target _
—-entrypoint=addr e ir;z?ri]fg the entry point at which to begin execution after boot Section 12.11.3
--e:g;un(?’:;{fname(sname) | —exclude \I:Iitlrsefige:;rjr;zgname) is omitted, all sections matching sname Section 12.7
-fill=value fill Fill holes with value Section 12.9.2
Display the syntax for invoking the utility and list available
--help -options, -h options. If the option is followed by another option or phrase, Section 12.2.2
detailed information about that option or phrase is displayed.
--image -image Select image mode Section 12.9.1
--linkerfill -linkerfill Include linker fill sections in images -
--map=filename -map Generate a map file Section 12.4.2
--memwidth=value -memwidth Define the system memory word width (default 16 bits) Section 12.3.2
--outfile=filename -0 Specify an output filename Section 12.8
--quiet -q Run quietly (when used, it must appear before other options) Section 12.2.2
Specify the ROM device width (default depends on format used).
--romwidth=value -romwidth This option is ignored for the TI-TXT, binary, and TI-Tagged Section 12.3.3
formats.
--zero -zero, -z Reset the address origin to 0 in image mode Section 12.9.3

Diagnostic Options

Section 12.14
Section 12.14
Section 12.14
Section 12.14
Section 12.14
Section 12.14
Section 12.14

--diag_error=id Categorizes the diagnostic identified by id as an error

--diag_remark=id Categorizes the diagnostic identified by id as a remark

--diag_suppress=id Suppresses the diagnostic identified by id

--diag_warning=id Categorizes the diagnostic identified by id as a warning

--display_error_number Displays a diagnostic's identifiers along with its text

--issue_remarks Issues remarks (nonserious warnings)

--no_warnings Suppresses warning diagnostics (errors are still issued)

Sets the error limit to count. The linker abandons linking after this

number of errors. (The default is 100.) Section 12.14

--set_error_limit=count

Boot Options
e Specify a file containing the CMAC key for use with secure flash .
cmac=file boot on TMS320F2838x devices. Section 12.12
282 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Hex Conversion Utility Description
Table 12-1. Basic Hex Conversion Utility Options (continued)
Option Alias Description See
Output Options
--array Select array output format Section 12.10
--ascii -a Select ASCII-Hex Section 12.15.1
--binary -b Select binary (Must have memory width of 8 bits.) -
--intel -i Select Intel Section 12.15.2
--motorola=1 -m1 Select Motorola-S1 Section 12.15.3
--motorola=2 -m2 Select Motorola-S2 Section 12.15.3
--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 12.15.3
--tektronix -X Select Tektronix (default format if no output option specified) Section 12.15.4
--ti_tagged -t Select TI-Tagged (Must have memory width of 16 bits.) Section 12.15.5
--ti_txt Select TI-Txt (Must have memory width of 8 bits.) Section 12.15.6
Load Image Options
--load_image Output a file with load image object format Section 12.6
--load_image:combine_sections Specify whether sections should be combined. The default is Section 12.6
=[truelfalse] true.
--load_image:endian=[big|little] Specify the object file endianness. If this option is omitted, the Section 12.6
endianness of the first file on the command line is used.
--load_image:file_type Specify a file type other than object files. Object files can be Section 12.6
=[relocatable|executable] linked with one another, but addresses are lost. Relocatable files
contain the address in the sh_addr field of a section. Executable
files maintain address bindings and can be directly loaded.
--load_image:format=[coff|elf] Specify the ABI format of the object file. If this option is omitted, Section 12.6
the format is determined from the first file on the command line.
--load_image:globalize=string Do not localize the specified symbol. The default can be set with Section 12.6
the --load_image:symbol_binding option.
--load_image:localize=string Make the specified symbol local. The default can be set with the Section 12.6
--load_image:symbol_binding option.
--load_image:machine=[ARM| Specify the object file machine type. If this option is omitted, the Section 12.6
C2000|C6000|C7X|MSP430|PRU] machine type from the first file on the command line is used.
--load_image:output_symbols Specify whether symbols should be output to the file. The default Section 12.6
=[truelfalse] is false.
--load_image:section_addresses Specify whether the load address should be written in the output ~ Section 12.6
=[truelfalse] file. Applies to relocatable files only. The default is true.
--load_image:section_prefix Specify a prefix for section names. The default is "image_". Section 12.6
=string
--load_image:symbol_binding Specify the default binding of symbols in the load image. Section 12.6
=[local|global]

The --section_name_prefix option is deprecated and replaced by --load_image:section_prefix. Undocumented
--host_image options have been replaced with --load_image options that are similar in many cases.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 283
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and options.
It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to customize the
conversion process.

Command files are ASCII files that contain one or more of the following:

» Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

* ROMS directive. The ROMS directive defines the physical memory configuration of your system as a list of
address-range parameters. (See Section 12.4.)

+ SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 12.5.)

* Comments. You can add comments to your command file by using the /* and */ delimiters. For example:

/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:
armhex command_filename

You can also specify other options and files on the command line. For example, you could invoke the utility by
using both a command file and command line options:

armhex firmware.cmd --map=firmware.mxp

The order in which these options and filenames appear is not important. The utility reads all input from the
command line and all information from the command file before starting the conversion process. However, if you
are using the -q option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help option is
followed by another option or phrase, detailed information about the option or phrase is displayed. For example,
to see information about options associated with generating a boot table use --help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

¢ Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
--ti-tagged /* TI-Tagged */
--outfile=firm.1lsb /* output file */
--outfile=firm.msb /* output file */

You can invoke the hex conversion utility by entering:

armhex firmware.cmd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output file is
one byte wide and 4K bytes long.

appl.out /* input file * /
--intel /* Intel format */
--map=appl .mxp /* map file */
ROMS

{
ROWl: origin=0x00000000 l1len=0x4000 romwidth=8
files={ appl.u0 appl.ul appl.u2 appl.u3 }
ROW2: origin=0x00004000 len=0x4000 romwidth=8
files={ appl.u4 appl.ud5 appl.u6 appl.u7 }
}

SECTIONS
{ .text, .data, .cinit, .sectl, .vectors, .const:
}
284 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify memory and
ROM widths. To use the hex conversion utility, you must understand how the utility treats word widths. Three
widths are important in the conversion process:

* Target width
* Memory width
+ ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.

Figure 12-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.
Raw data in object files is

/ represented in the target’s
addressable units. For the

(nputfle) ARM device, this is 32 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size
specified by the --romwidth option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase

(' outputfile(s))

Figure 12-2. Hex Conversion Utility Process Flow

12.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The width is fixed for each target and cannot
be changed. The ARM targets have a width of 32 bits.

12.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is physically the
same width as the target processor width: a 16-bit processor has a 32-bit memory architecture. However, some
applications require target words to be broken into multiple, consecutive, and narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 bits).
You can change the memory width (except for TI-TXT, binary, and TI-Tagged formats) by:

* Using the --memwidth option. This changes the memory width value for the entire file.

+ Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range. See
Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words into
consecutive, narrower memory words.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 285
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

Note
Binary Format is 8 Bits Wide: You cannot change the memory width of the Binary format. The Binary
hex format supports an 8-bit memory width only. See Section 12.15.6 for more about using the ROMS
directive with an 8-bit format.

Note
TI-TXT Format is 8 Bits Wide: You cannot change the memory width of the TI-TXT format. The
TI-TXT hex format supports an 8-bit memory width only. See Section 12.15.6 for more about using the
ROMS directive with the TI-TXT hex format.

Figure 12-3 demonstrates how the memory width is related to object file data.

Figure 12-3. Object File Data and Memory Widths

286 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.3.3 Partitioning Data Into Output Files

ROM width determines how the hex conversion utility partitions the data into output files. ROM width specifies
the physical width (in bits) of each ROM device and corresponding output file (usually one byte or eight bits).
After the object file data is mapped to the memory words, the memory words are broken into one or more output
files. The number of output files is determined by the following formulas:

* If memory width 2 ROM width:

number of files = memory width + ROM width
* If memory width < ROM width:

number of files = 1

For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single output file
containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each containing 16 bits of each
word.

The default ROM width that the hex conversion utility uses depends on the output format:

« All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.
* TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

Note
The TI-Tagged Format is 16 Bits Wide: You cannot change the ROM width of the Tl-Tagged format.
The TI-Tagged format supports a 16-bit ROM width only.

Note
TI-TXT Format is 8 Bits Wide: You cannot change the ROM width of the TI-TXT format. The TI-TXT
hex format supports only an 8-bit ROM width. See Section 12.15.6 for more about using the ROMS
directive with the TI-TXT hex format.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:

* Using the --romwidth option. This option changes the ROM width value for the entire object file.
» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value for a
specific ROM address range and overrides the --romwidth option for that range. See Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format, the utility simply writes
multibyte fields into the file. The --romwidth option is ignored for the TI-TXT and TI-Tagged formats.

Figure 12-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent values.
Thus, the byte ordering of the object file data is maintained throughout the conversion process. To refer to the
partitions within a memory word, the bits of the memory word are always numbered from right to left as follows:

--memwidth=32
AABBCCDD11223344
31 0
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 287
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Hex Conversion Utility Description www.ti.com
Figure 12-4. Data, Memory, and ROM Widths

288 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Hex Conversion Utility Description

12.4 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range
parameters. Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the linker's MEMORY directive: both define the memory map of the target
address space. Each line entry in the ROMS directive defines a specific address range. The general syntax is:

ROMS
{

romname :

romname :

ROMS

romname

origin

[origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename 4, filename ,, ...}]

[origin=value,] [length=value,] [romwidth=value,]
[memwidth=value,] [fill=value]
[files={ filename 4, filename ,, ...}]

begins the directive definition.

identifies a memory range. The name of the memory range can be one to eight characters in length. The name has
no significance to the program; it simply identifies the range, except when the output is for a load image in which
case it denotes the section name. (Duplicate memory range names are allowed.)

specifies the starting address of a memory range. It can be entered as origin, org, or o. The associated value must
be a decimal, octal, or hexadecimal constant. If you omit the origin value, the origin defaults to 0. The following table
summarizes the notation you can use to specify a decimal, octal, or hexadecimal constant:

Constant Notation Example

Hexadecimal 0x prefix or h suffix 0x77 or 077h

Octal

0 prefix 077

Decimal No prefix or suffix 77

length

romwidth

memwidth

fill

files

specifies the length of a memory range as the physical length of the ROM device. It can be entered as length, len, or
I. The value must be a decimal, octal, or hexadecimal constant. If you omit the length, it defaults to the length of the
entire address space.

specifies the physical ROM width of the range in bits (see Section 12.3.3). Any value specified here overrides the
--romwidth option. The value must be a decimal, octal, or hexadecimal constant that is a power of 2 greater than or
equal to 8.

specifies the memory width of the range in bits (see Section 12.3.2). Any value you specify here overrides the
--memwidth option. The value must be a decimal, octal, or hexadecimal constant that is a power of 2 greater than or
equal to 8. When using the memwidth parameter, you must also specify the paddr parameter for each section in the
SECTIONS directive. (See Section 12.5.)

specifies a fill value to use for the range. In image mode, the hex conversion utility uses this value to fill any holes
between sections in a range. A hole is an area between the input sections that comprises an output section that
contains no actual code or data. The fill value must be a decimal, octal, or hexadecimal constant with a width equal
to the target width. Any value you specify here overrides the -fill option. When using fill, you must also use the
--image command line option. (See Section 12.9.2.)

identifies the names of the output files that correspond to this range. Enclose a list of names in curly braces and
order them from least significant to most significant output file, where the bits of the memory word are numbered
from right to left. The number of file names must equal the number of output files the range generates. To calculate
the number of output files, see Section 12.3.3. The utility warns you if you list too many or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the commas and
equal signs are also optional. A range with no origin or length defines the entire address space. In image mode,
an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 289
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Hex

13 TEXAS
INSTRUMENTS

Conversion Utility Description www.ti.com

12.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire address
space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

12.

Program large amounts of data into fixed-size ROMs. When you specify memory ranges corresponding to
the length of your ROMs, the utility automatically breaks the output into blocks that fit into the ROMs.
Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion to

a certain segment or segments of the target address space. The utility does not convert the data that falls
outside of the ranges defined by the ROMS directive. Sections can span range boundaries; the utility splits
them at the boundary into multiple ranges. If a section falls completely outside any of the ranges you define,
the utility does not convert that section and issues no messages or warnings. Thus, you can exclude sections
without listing them by name with the SECTIONS directive. However, if a section falls partially in a range and
partially in unconfigured memory, the utility issues a warning and converts only the part within the range.

Use image mode. When you use the --image option, you must use a ROMS directive. Each range is filled
completely so that each output file in a range contains data for the whole range. Holes before, between,

or after sections are filled with the fill value from the ROMS directive, with the value specified with the -fill
option, or with the default value of 0.

4.2 An Example of the ROMS Directive

The ROMS directive in A ROMS Directive Example shows how 16K bytes of 16-bit memory could be partitioned

for

two 8K-byte 8-bit EPROMSs. Figure 12-5 illustrates the input and output files.

A ROMS Directive Example

{

infile.out
--image
--memwidth 16
ROMS

EPROM1: org = 0x00004000, len = 0x2000, romwidth = 8
files = { rom4000.b0, rom4000.bl}

EPROM2: org = 0x00006000, len = 0x2000, romwidth = 8,
fill = OxFFOOFFOO,
files = { rom6000.b0, rom6000.bl}

Figure 12-5. The infile.out File Partitioned Into Four Output Files

290

ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Hex Conversion Utility Description

The map file (specified with the --map option) is advantageous when you use the ROMS directive with multiple
ranges. The map file shows each range, its parameters, names of associated output files, and a list of contents

(section names and fill values) broken down by address. Map File Output From Showing Memory Ranges is a

segment of the map file resulting from the example in A ROMS Directive Example.

Map File Output From A ROMS Directive Example Showing Memory Ranges

OUTPUT FILES: rom4000.b0 [b0..b7]
rom4000.b1 [b8..bl5]
CONTENTS: 00004000..0000487f .text
00004880..00005b7f FILL = 00000000
00005b80..00005fff .data

OUTPUT FILES: rom6000.b0 [bO..b7]
rom6000.b1 [b8..bl5]
CONTENTS: 00006000..0000633f .data
00006340..000066ff FILL = £f00££f00
00006700..00007c7f .table
00007c80..00007fff FILL = £f00££00

EPROM1 defines the address range from 0x00004000 through 0x00005FFF with the following sections:

This section ... Has this range ...
text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0x00005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:

* rom4000.b0 contains bits 0 through 7
* rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...

.data 0x00006000 through 0x0000633F
.table 0x00006700 through
0x00007C7F

The rest of the range is filled with OxFFOOFFOO (from the specified fill value). The data from this range is
converted into two output files:

* rom6000.b0 contains bits 0 through 7
+ rom6000.b1 contains bits 8 through 15

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools 291
v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS directive.
You can also specify those sections that you want to locate in ROM at a different address than the /oad address
specified in the linker command file. If you:

* Use a SECTIONS directive, the utility converts only the sections that you list in the directive and ignores all
other sections in the object file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the configured
memory.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Note
Sections Generated by the C/C++ Compiler: The ARM C/C++ compiler automatically generates
these sections:
+ Initialized sections: .text, .const, .cinit, and .switch
* Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (See Section 12.2.2.) The general syntax is:

SECTIONS

{
oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(sname)|[:] [boot]

}

SECTIONS begins the directive definition.

oname identifies the object filename the section is located within. The filename is optional when only a single input file is
given, but required otherwise.

sname identifies a section in the input file. If you specify a section that does not exist, the utility issues a warning and
ignores the name.

paddr=value specifies the physical ROM address at which this section should be located. This value overrides the section load
address given by the linker. This value must be a decimal, octal, or hexadecimal constant. It can also be the word
boot (to indicate a boot table section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using paddr=boot. Boot sections have a

physical address determined by the location of the boot table. The origin of the boot table is specified with the
--bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in place of
the equal sign on the boot keyboard). For example, the following statements are equivalent:

‘SECTIONS { .text: .data: boot } ‘

‘SECTIONS { .text: .data = boot } ‘

In the example below, the object file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify this:

‘SECTIONS { .text: .data: } ‘

To configure both of these sections for boot loading, add the boot keyword:

‘SECTIONS { .text = boot .data = boot }
292 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.6 The Load Image Format (--load_image Option)

A load image is an object file that contains the load addresses and initialized sections of one or more executable
files. The load image object file can be used for ROM masking or can be relinked in a subsequent link step.

Several command-line options allow you to control the format of the file produced when --load_image is used.
Options allow you to do the following:

» Create a relocatable or executable output file with the --load_image:file_type option.

» Specify the ABI, machine type, and endianness with the -load_image:format, --load_image:machine, and
--load_image:endian options, respectively.

» Combine sections, add a prefix to section names, or include load addresses in the output file with the
--load_image:combine_sections, --load_image:section_prefix, and --load_image:section_addresses options.

» Choose whether to output symbols and specify their binding in the output with the
--load_image:output_symbols and --load_image:symbol_binding options.

» Control whether individual symbols are local or global with the -load_image:localize and
--load_image:globalize options.

These command-line options are described in Section 12.2.1.
12.6.1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There are
two ways the load image sections are formed:

* Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load image
section. The romname is the section name. The origin and length parameters are required. The memwidth,
romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the --load_image option, the --image option is required.

» Default Load Image Section Formation. If no ROMS directive is given, the load image sections are formed
by combining contiguous initialized sections in the input executables. Sections with gaps smaller than the
target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the --
load_image:section_prefix=prefix option can be used.

12.6.2 Load Image Characteristics

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run address of
the load image section is the load address of the first input section in the load image section. If the SECTIONS
directive was used and a different load address was given using the paddr parameter, this address will be used.

The load image format always creates a single load image object file. The format of the load image object file is
determined based on the input files. The file is not marked executable and does not contain an entry point. The
default load image object file name is ti_load_image.obj. This can be changed using the --outfile option. Only
one --outfile option is valid when creating a load image, all other occurrences are ignored.

Sections in one input image may not overlap with sections in another input image. The hex converter issues an
error message if sections overlap.

Note
Concerning Load Image Format: These options are invalid when creating a load image:
* --memwidth
e --romwidth
e --zero
* --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the ROMS
directive must be used.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 293
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.7 Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section.

If a SECTIONS directive is used, it overrides the --exclude option. For example, if a SECTIONS directive
containing the section name mysect is used and an --exclude mysect is specified, the SECTIONS directive takes
precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or end of
the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect* disqualifies all sections
that begin with the characters sect. If you specify the --exclude option on the command line with the * wildcard,
use quotes around the section name and wildcard. For example, --exclude"sect*". Using quotes prevents the *
from being interpreted by the hex conversion ultility. If --exclude is in a command file, do not use quotes.

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are excluded.
Wildcards cannot be used for the filename, but can appear within the parentheses.

12.8 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one or
more output files. When multiple files are formed by splitting memory words into ROM words, filenames are
always assigned in order from least to most significant, where bits in the memory words are numbered from right
to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you have
included a list of files (files = {. . .}) on that range, the utility takes the filename from the list. For example,
assume that the target data is 32-bit words being converted to four files, each eight bits wide. To name the
output files using the ROMS directive, you could specify:

ROMS

{
RANGE1l: romwidth=8, files={ xyz.b0 xyz.bl xyz.b2 xyz.b3 }

}

The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant bits to
xyz.b3.

2. It looks for the --outfile options. You can specify names for the output files with the --outfile option. If no
filenames are listed in the ROMS directive and you use --outfile options, the utility takes the filename from
the list of --outfile options. The following options have the same effect as the ROMS directive above:

--outfile=xyz.b0 --outfile=xyz.bl --outfile=xyz.b2 --outfile=xyz.b3

If both the ROMS directive and --outfile options are used, the ROMS directive overrides the --outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

a. A format character, based on the output format (see Section 12.15):

a for ASCII-Hex
i for Intel

m for Motorola-S
t for TI-Tagged
X for Tektronix

b. The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no ROMS
directive, or only one range, the utility omits this character.

294 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

c. The file number in the set of files for the range, starting with 0 for the least significant file.

For example, assume a.out is for a 32-bit target processor and you are creating Intel format output. With no
output filenames specified, the utility produces four output files named a.i0, a.i1, a.i2, a.i3.

If you include the following ROMS directive when you invoke the hex conversion utility, you would have eight

output files:
ROMS
{
rangel: o = 0x00001000 1 = 0x1000
range2: o = 0x00002000 1 = 0x1000
}
These output files ... Contain data in these locations ...
a.i00, a.i01, a.i02, a.i03 0x00001000 through 0x00001FFF
a.i10, a.i11, a.i12, a.i13 0x00002000 through 0x00002FFF

12.9 Image Mode and the --fill Option

This section points out the advantages of operating in image mode and describes how to produce output files
with a precise, continuous image of a target memory range.

12.9.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped ranges
specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all sections
are not adjacent: there are holes between sections in the address space for which there is no data. When such
a file is converted without the use of image mode, the hex conversion utility bridges these holes by using the
address records in the output file to skip ahead to the start of the next section. In other words, there may be

discontinuities in the output file addresses. Some EPROM programmers do not support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections are
filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the hexadecimal
formats require an address on each line. However, in image mode, these addresses are always contiguous.

Note
Defining the Ranges of Target Memory: If you use image mode, you must also use a ROMS
directive. In image mode, each output file corresponds directly to a range of target memory. You must
define the ranges. If you do not supply the ranges of target memory, the utility tries to build a memory
image of the entire target processor address space. This is potentially a huge amount of output data.
To prevent this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

12.9.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as an

integer constant following the --fill option. The width of the constant is assumed to be that of a word on the target

processor. For example, specifying -fill=0xFFFF results in a fill pattern of 0XO000FFFF. The constant value is
not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The --fill
option is valid only when you use --image; otherwise, it is ignored.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

295

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Hex Conversion Utility Description www.ti.com
12.9.3 Steps to Follow in Using Image Mode
Step 1: Define the ranges of target memory with a ROMS directive. See Section 12.4.
Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero option to reset the address origin

to O for each output file. If you do not specify a fill value with the ROMS directive and you want a value other than the default
of 0, use the -fill option.

12.10 Array Output Format

The --array option causes the output to be generated in C array format. In this format, data contained in
initialized sections of an executable file are defined as C arrays. Output arrays may be compiled along with a
host program and used to initialize the target at runtime.

Arrays are formed by collecting the initialized sections from the input executable. There are two ways arrays are
formed:

* With the ROMS directive. Each memory range that is given in the ROMS directive denotes an array. The
romname is used as the array name. The origin and length parameters of the ROM directive are required.
The memwidth, romwidth, and files parameters are invalid and are ignored.

* No ROMS directive (default). If no ROMS directive is given, arrays are formed by combining initialized
sections within each page, beginning with the first initialized section. Arrays will reflect any gaps that exist
between sections.

The default The --array:name_prefix option can be used to override the default prefix for array names. For
example, use --array:name_prefix=myarray to cause the

The data type for array elements is uint8_t..

296 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.11 Building a Table for an On-Chip Boot Loader

The ARM hex utility provides the ability to create a boot table for use with an on-chip boot loader. The supported
boot formats are intended for use on C28x devices with ARM cores. The boot table is stored in memory or
loaded from a device peripheral to initialize code or data.

See Section 3.1.2 for a general discussion of bootstrap loading.
12.11.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the on-chip loader to
copy blocks of data contained in the table to specified destination addresses. The table can be stored in memory
(such as EPROM) or read in through a device peripheral (such as a serial or communications port).

The hex conversion utility automatically builds the boot table for the boot loader. Using the utility, you specify the
sections you want the boot loader to initialize and the table location. The hex conversion utility builds a complete
image of the table according to the format specified and converts it into hexadecimal in the output files. Then,
you can burn the table into ROM or load it by other means.

12.11.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing a key value that indicates memory
width, entry point, and values for control registers. Each subsequent block has a header containing the size and
destination address of the block followed by data for the block. Multiple blocks can be entered. The table ends
with a header containing size zero.

12.11.3 How to Build the Boot Table
Table 12-2 summarizes the hex conversion utility options available for the boot loader.
Table 12-2. Boot-Loader Options

Option Description

--boot Convert all sections into bootable form (use instead of a SECTIONS directive).
--bootorg=address Specify the source address of the boot-loader table.

--cmac=file Specify a file containing the CMAC key for use with secure flash boot on TMS320F2838x devices.
--divsel value Specify the initial value for the DIVSEL register. This is valid only if -xintf8/16 is used. If no value

specified, uses 2.

--entrypoint=value Specify the entry point at which to begin execution after boot loading. The value can be an address or a
global symbol.

--gpio8
--gpio16

--lospcp=value

--plicr value

--sCi8
--spi8

--spibrr=value

--xintcnf2 value
--xintf8
--xintf16

--xtiming value

Specify the source of the boot-loader table as the GP I/O port, 8-bit mode. (This is aliased by --can8.)
Specify the source of the boot-loader table as the GP 1/O port, 16-bit mode.

Specify the initial value for the LOSPCP register. The value is used only for the spi8 boot table format
and is ignored for all other formats. A value greater than 0x7F is truncated to Ox7F.

Specify the initial value for the PLLCR register. This is valid only if --xintf8 or --xintf16 is used. If no value
is specified, uses 0.

Specify the source of the boot-loader table as the SCI-A port, 8-bit mode
Specify the source of the boot-loader table as the SPI-A port, 8-bit mode

Specify the initial value for the SPIBRR register. The value is used only for the spi8 boot table format
and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

Specify the initial value for the XINTCNF2 register. This is valid only if --xintf8 or --xintf16 is used.
Indicate use of parallel XINTF stream, 8-bit mode.

Indicate use of parallel XINTF stream, 16-bit mode.

Specify the initial value for the XTIMINGnh register. This is valid only if --xintf8 or --xintf16 is used.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools 297
v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Hex Conversion Utility Description www.ti.com
12.11.3.1 Building the Boot Table
To build the boot table, follow these steps:
Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the object file. Uninitialized sections

are not converted by the hex conversion utility (see Section 12.5).

When you select a section for placement in a boot-loader table, the hex conversion utility places the section's load address
in the destination address field for the block in the boot table. The section content is then treated as raw data for that block.
The hex conversion utility does not use the section run address. When linking, you need not worry about the ROM address
or the construction of the boot table; the hex conversion utility handles this.

Step 2: Identify the bootable sections. You can use the --boot option to tell the hex conversion utility to configure all sections for
boot loading. Or, you can use a SECTIONS directive to select specific sections to be configured (see Section 12.5). If you
use a SECTIONS directive, the --boot option is ignored.

Step 3: Set the boot table format. Specify the --gpio8, --gpio16, or --spi8 options to set the source format of the boot table. You
do not need to specify the memwidth and romwidth as the utility will set these formats automatically. If --memwidth and
--romwidth are used after a format option, they override the default for the format.

Step 4: Set the ROM address of the boot table. Use the --bootorg option to set the source address of the complete table.
Step 5: Set boot-loader-specific options. Set entry point and control register values as needed.
Step 6: Describe your system memory configuration. See Section 12.3 and Section 12.4.

12.11.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the boot
loader. The address of this section is the boot table origin. As part of the normal conversion process, the hex
conversion utility converts the boot table to hexadecimal format and maps it into the output files like any other
section.

Be sure to leave room in your system memory for the boot table, especially when you are using the ROMS
directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually, this is not
a problem; typically, a portion of memory in your system is reserved for the boot table. Simply configure this
memory as one or more ranges in the ROMS directive, and use the --bootorg option to specify the starting
address.

12.11.4 Booting From a Device Peripheral
You can choose the port to boot from by using the --gpio8, --gpio16, or --spi8 boot table format option.

The initial value for the LOSPCP register can be specified with the --lospcp option. The initial value for the
SPIBRR register can be specified with the --spibrr option. Only the --spi8 format uses these control register
values in the boot table.

If the register values are not specified for the --spi8 format, the hex conversion utility uses the default values
0x02 for LOSPCP and 0x7F for SPIBRR. When the boot table format options are specified and the ROMS
directive is not specified, the ASCII format hex utility output does not produce the address record.

12.11.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry point specified by the linker and
contained in the object file. By using the --entrypoint option with the hex conversion utility, you can set the entry
point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify --
entrypoint=0x0123 on the command line or in a command file. You can determine the --entrypoint address
by looking at the map file that the linker generates.

Note
Valid Entry Points

The value can be a constant, or it can be a symbol that is externally defined (for example, with
a .global) in the assembly source.

298 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Hex Conversion Utility Description

12.11.6 Using the ARM Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C28x devices with ARM

cores. The boot loader accepts the formats listed in Table 12-3.

Table 12-3. Boot Table Source Formats

Format Option
Parallel boot GP I/O 8 bit --gpio8
Parallel boot GP 1/0O 16 bit --gpio16
8-bit SPI boot --spi8

The ARM on C28x devices with ARM cores can boot through the SPI-A 8-bit, GP I/O 8-bit, or GP I/l 16-bit
interface. The format of the boot table is shown in Table 12-4.

Table 12-4. Boot Table Format

Description Bytes Content

Boot table header 1-2 Key value (0x10AA or 0x08AA)
3-18 Register initialization value or reserved for future use
19-22 Entry point

Block header 23-24 Block size in number of bytes (nl)
25-28 Destination address of the block

Block data 29-30 Raw data for the block (nl bytes)

Block header 31 +nl Block size in number of bytes

Destination address of the block

Block data Raw data for the block

Additional block headers and data, as Content as appropriate

required

Block header with size 0

0x0000; indicates the end of the boot table.

The ARM on C28x devices with ARM cores can boot through either the serial 8-bit or parallel interface with
either 8- or 16-bit data. The format is the same for any combination: the boot table consists of a field containing
the destination address, a field containing the length, and a block containing the data. You can boot only one
section. If you are booting from an 8-bit channel, 8-bit bytes are stored in the table with MSBs first; the hex

conversion utility automatically builds the table in the correct format. Use the following options to specify the boot

table source:

» To boot from a SPI-A port, specify --spi8 when invoking the utility. Do not specify --memwidth or --romwidth.

Use --lospcp to set the initial value for the LOSPCP register and --spibrr to set the initial value for the SPIBRR
register. If the register values are not specified for the --spi8 format, the hex conversion utility uses the default
value 0x02 for LOSPCP and 0x7F for SPIBRR.

» To load from a general-purpose parallel /O port, invoke the utility with --gpio8 or --gpio16. Do not specify

--memwidth or --romwidth.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

299

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Hex Conversion Utility Description

13 TEXAS
INSTRUMENTS

www.ti.com

The command file in Example 12-1 allows you to boot the .text and .cinit sections of test.out from a 16-bit-wide
EPROM at location 0x3FFCO00. The map file test.map is also generated.

Example 12-1. Sample Command File for Booting From 8-Bit SPI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test.out /* Input file */

--—ascii

-—-map=test.map
--outfile=test spi8.hex
--boot

--spi8

--lospcp=0x3F

-—entrypoint=0x3F0000

Select ASCII format */

Specify the map file */

Hex utility out file */

Consider all the input sections as boot sections */
Specify the SPI 8-bit boot format */

Set the initial value for the LOSPCP as 0x3F */

The -spibrr option is not specified to show that */
the hex utility uses the default value (0x7F) */
Set the entry point */

The command file in Example 12-1 generates the out file in Figure 12-6. The control register values are coded in
the boot table header and that header has the address that is specified with the --entrypoint option.

Figure 12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI Boot

300

ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

The command file in Example 12-2 allows you to boot the .text and .cinit sections of test.out from the 16-bit
parallel GP I/O port. The map file test.map is also generated.

Example 12-2. Sample Command File for ARM 16-Bit Parallel Boot GP I/O

/* ___ */
/* Hex converter command file */
/* ___ */
test.out /* Input file */

--ascii /* Select ASCII format */

--map=test.map /* Specify the map file */

--outfile=test gpiol6.hex /* Hex utility out file */

--gpiolé /* Specify the 16-bit GP I/O boot format */
SECTIONS

{
.text: paddr=BOOT
.cinit: paddr=BOOT

The command file in Example 12-2 generates the out file in Figure 12-7.

Figure 12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel Boot GP I/O

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 301
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.12 Using Secure Flash Boot on TMS320F2838x Devices

The hex conversion utility supports the secure flash boot capability provided by TMS320F2838x devices, which
have both C28 and ARM cores. The secure flash boot applies the Cipher-based Message Authentication
Protocol (CMAC) algorithm to verify CMAC tags for regions of allocated memory.

Secure flash boot is similar to the regular flash boot mode in that the boot flow branches to the configured
memory address in flash. The difference is that this branch occurs only after the flash memory contents have
been authenticated. The flash authentication uses CMAC to authenticate 16 KB of flash. The CMAC calculation
requires a 128-bit key that you define. Additionally, you must calculate a golden CMAC tag based on the 16

KB flash memory range and store it along with the application code at a hardcoded address in flash. During
secure flash boot, the calculated CMAC tag is compared to the golden CMAC tag in flash to determine the
pass/fail status of the CMAC authentication. If authentication passes, the boot flow continues and branches to
flash to begin executing the application. See the TMS320F2838x Microcontrollers Technical Reference Manual
(SPRUIIO) for further details about secure flash boot and the CMAC algorithm.

use the hex conversion utility as follows to apply the CMAC algorithm to regions in allocated memory:

* Use the --cmac=file option. The file should contain a 128-bit hex CMAC key. The CMAC key in the
file specified by the --cmac command-line option must use the format OxkeyOkey1key2key3 in order
to access the device registers for CMACKEYO0-3. For example, the following file contents represent
CMACKEY registers containing key0O= 0x7c0b7db9, key1= 0x811£10d0, key2= 0x0e476c7a, and key3=
0x0d92f6e0.

0x7c0b7db9811£f10d00ed476c7a0d92f6e0

* Use either the --image option or the --load_image option when using the --cmac option. If you use the --image
option, set both --memwidth and --romwidth to the same value.

« If you use the --boot option (and other boot table options described in Section 12.11) with the --cmac option,
the CMAC algorithm assumes that a fill value of 1 is used for gaps between boot table regions. Because of
this assumption, you should also set --fill=OxFFFFFFFF when using the --boot and --cmac options together.

» Specify a HEX directive with one entry that represents all the allocated flash memory. Use a 128-bit aligned
length and specify the optional fill value. (The default fill is set to 0’s.)

* Define the global CMAC tags in C code.

The CMAC feature uses four secure flash boot memory regions that are hardcoded for start/end/tag addresses,
and one flexible CMAC region. The flexible region can encompass the entire allocated region as input in the
HEX directive or user-specified start/end addresses defined in C code.

C code definitions like the following are required to reserve space for the CMAC tag symbols.

struct CMAC TAG
{ wuint8 t tagll6];

uint32 t start;

uint32_t end;
bi
#pragma RETAIN (cmac_sb 1)
#pragma LOCATION (cmac_sb 1, 0x00200004)
const uint8 t cmac sb 1[16] = { 0 };
#pragma RETAIN (cmac_sb 2)
#pragma LOCATION (cmac_sb 2, 0x00210004)
const uint8 t cmac sb 2[16] = { 0 };
#pragma RETAIN (cmac_sb 3)
#pragma LOCATION (cmac_sb 3, 0x00250004)
const uint8 t cmac sb 3[16] = { 0 };
#pragma RETAIN (cmac_sb 4)
#pragma LOCATION (cmac_sb 4, 0x0027C004)
const uint8 t cmac sb 4[16] = { 0 };
#pragma RETAIN (cmac_all)
#pragma LOCATION (cmac all, 0x00204004)
const struct CMAC TAG cmac_all = { { 0 }, 0x0, 0xO0};

The four secure flash boot region CMAC tags are stored in the cmac_sb_1 through cmac _sb_ 4 symbols. The
cmac_all symbol stores the CMAC tag for the flexible user-specified region. For cmac_all :

302 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUII0
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

* Ifthe start and end CMAC_TAG struct members are zero, then the CMAC algorithm runs over entire
memory region specified in the HEX directive. The hex conversion utility populates the start and end memory
locations with the addresses input from the HEX directive entry.

* Ifthe start and end members are non-zero, then the CMAC algorithm is instead applied between the
specified addresses.

RETAIN pragmas are required in the C code if these symbols are not accessed in the application code.

LOCATION pragmas are required to place symbols at the required memory locations. The LOCATION entries
for cmac_sb_ 1 through cmac sb 4 are at fixed addresses. The LOCATION address for cmac_all can be
user-specified. However, it must not be located within any secure flash boot regions, because the ROM CMAC
implementation on the devices does not support this.

The CMAC algorithm is applied prior to the hex conversion. No changes are made to the original input ELF
executable.

The hex conversion utility applies the CMAC algorithm only to CMAC regions that have global symbols defined.
So if an ELF executable defines only cmac _sb 1 and cmac_all , then only those two CMAC tags will be
generated and populated in the generated hex output file.

12.13 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each section.
However, many EPROM programmers offer direct control of the location in ROM in which the data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are listed from
low to high priority:

1. The linker command file. By default, the address field of the hex conversion utility output file is the load
address (as given in the linker command file) .

2. The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a section,
the hex conversion utility bypasses the section load address and places the section in the address specified
by paddr.

3. The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each output
file. Since each file starts at 0 and counts upward, any address records represent offsets from the beginning
of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in each
output file to be zero. If you specify the --zero option without the --image option, the utility issues a warning
and ignores the --zero option.

4. The --byte option. Some EPROM programmers may require the output file address field to contain a byte
count rather than a word count. If you use the —byte option, the output file address increments once for each
byte. For example, if the starting address is Oh, the first line contains eight words, and you use no —byte
option, the second line would start at address 8 (8h). If the starting address is Oh, the first line contains
eight words, and you use the —byte option, the second line would start at address 16 (010h). The data in
both examples are the same; —byte affects only the calculation of the output file address field, not the actual
target processor address of the converted data.

The --byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 303
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Hex Conversion Utility Description

13 TEXAS
INSTRUMENTS

www.ti.com

12.14 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated diagnostics.

--diag_error=id

--diag_remark=id

--diag_suppress=id

--diag_warning=id

--display_error_number

--issue_remarks
--no_warnings

--set_error_limit=count

--verbose_diagnostics

Categorizes the diagnostic identified by id as an error. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate link. Then use --
diag_error=id to recategorize the diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by id as a remark. To determine the numeric identifier of
a diagnostic message, use the --display_error_number option first in a separate link. Then use
--diag_remark=id to recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostics.

Suppresses the diagnostic identified by id. To determine the numeric identifier of a diagnostic message,
use the --display_error_number option first in a separate link. Then use --diag_suppress=id to suppress
the diagnostic. You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by id as a warning. To determine the numeric identifier of
a diagnostic message, use the --display_error_number option first in a separate link. Then use
--diag_warning=id to recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in determining which
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error,
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes
the suffix -D; otherwise, no suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to count, which can be any decimal value. The linker abandons linking after this
number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap and indicate the position of
the error in the source line

304 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.15 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 12-5 specifies the format options. They are
described in the following sections.

* You should use only one of these options on the command line. If you use more than one option, the last one
you list overrides the others.
* The default format is Tektronix (--tektronix option).

Table 12-5. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width
--ascii -a ASCII-Hex 32 8

--intel -i Intel 32 8
--motorola=1 -m1 Motorola-S1 16 8
--motorola=2 -m2 Motorola-S2 24 8
--motorola=3 -m3 Motorola-S3 32 8
--ti-tagged -t TI-Tagged 16 16
-ti_txt TI_TXT 8 8
--tektronix -X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with 16-bit
addresses support addresses up to 64K only. The utility truncates target addresses to fit in the number of
available bits.

The default width refers to the default romwidth if one is not specified. Note that the default width is not
necessarily the same as the length of the hex value printed in the address record. You can change the default
width by using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format (16-bit width only) or the TI-TXT format (8-bit width only).

12.15.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 32-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 12-8 illustrates the ASCII-Hex format.

Nonprintable
Nonprintable Address end code

start code jj Jj

"B $AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX. . ."C

Data byte

Figure 12-8. ASCII-Hex Object Format

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C, 03h).
Address records are indicated with $AXXXXXXX, in which XXXXXXXX is a hexadecimal address with at least 4
hexadecimal characters. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This creates
output that is simply a list of byte values.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 305
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.15.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of a
9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type), the
data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of the
first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a 32-bit
address; this value is concatenated with the value from the most recent 04 (extended linear address) record to
create a full 32-bit address. The checksum is the 2s complement (in binary form) of the preceding bytes in the
record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the address, the
record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a colon
(:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant 16 bits of
the address, and the checksum. The subsequent address fields in the data records contain the least significant
bytes of the address.

Figure 12-9 illustrates the Intel hexadecimal object format.

Start
character
Address

Extended linear
address record
Most significant 16 bits 5

:2000000000000100020003000400050006000700080009000A000B000CO00DO0O0OEOOOF0068
:2000200010001100120013001400150016001700180019001A001B001C001D001EO01F0048 | Data
:2000400000000100020003000400050006000700080009000A000B000C000DO00OEOOOF0028 records

:2000600010001100120013001400150016001700180019001A001B001C001D0O01EOOLIF0008

:00000001FF L

L1 TJ ‘ ‘
LlJfChecksum

Byte Record End-of-file

count type record

Figure 12-9. Intel Hexadecimal Object Format

306 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.15.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The formats
consist of a start-of-file (header) record, data records, and an end-of-file (termination) record. Each record
consists of five fields: record type, byte count, address, data, and checksum. The three record types are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by the
pairs of characters making up the byte count, address, and the code/data fields.

Figure 12-10 illustrates the Motorola-S object format.

Record Address Checksum

type
S00600004844521B _F Header record
S$32200DD
S31A0001FFEB00FA Data records
$70500000000FA “F Termination
record
Checksum
Byte count
Address for S3 records
Figure 12-10. Motorola-S Format
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 307
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Hex Conversion Utility Description www.ti.com
12.15.4 Extended Tektronix Object Format (--tektronix Option)

The Tektronix object format supports 32-bit addresses and has two types of records:

Data records contains the header field, the load address, and the object code.

Termination records signifies the end of a module.

The header field in the data record contains the following information:

Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %

Block type 1 6 = data record

8 = termination record
Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the

checksum itself.

The load address in the data record specifies where the object code will be located. The first digit specifies
the address length; this is always 8. The remaining characters of the data record contain the object code, two
characters per byte.

Figure 12-11 illustrates the Tektronix object format.

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

Block length o 2+0+2+0+2+0+2+0+2+0+2+

1ah = 26 jj I: Object code: 6 bytes

Header $15621810000000202020202020
character T T

Block type: 6 Length of
(data) load address

Load address: 10000000h

Figure 12-11. Extended Tektronix Object Format

308 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Description

12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including start-of-file

record, data records, and end-of-file record. Each data records consists of a series of small fields and is signified

by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)

m W © o N

Identifies the end of a data record
* Followed by a data byte (two characters)

Figure 12-12 illustrates the tag characters and fields in Tl-Tagged object format.

Start-of-file Load
record Program address Tag characters

identifier ‘

515 e s e S A A A A

KOOOOCOFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F | Data

BFFF }:}B\}: FF J:JB\J: FF J:JBH: FF J:JB\J: FF J:JB\}: FF rJBH: FF J:}B\}: FF J:JB\J: FF J:JB\}: FF J:J7\F24 SJF _ records
T [I I I I I I I]

End-of-file Data

record words Checksum

Figure 12-12. TI-Tagged Object Format

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields may

be expressed but not required for any data byte. The checksum field, preceded by the tag character 7, is the 2s
complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag character and ending

with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

309

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Description www.ti.com

12.15.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 8-bit hexadecimal data. It consists of section start addresses, data byte, and an
end-of-file character. These restrictions apply:

* The number of sections is unlimited.

» Each hexadecimal start address must be even.

» Each line must have 8 data bytes, except the last line of a section.
» Data bytes are separated by a single space.

* The end-of-file termination tag q is mandatory.

Because the TI-TXT format (along with the binary format) supports only an 8-bit physical memory width and an
8-bit ROM width, the ROMS directive needs to have the origin and length specifications doubled when moving
from a 16-bit format to an 8-bit format. If you receive a warning like the following, check the ROMS directive.

warning: section file.out(.data) at 07e000000h falls in unconfigured memory

For example, suppose the ROMS directive for a format that uses 16-bit ROM widths, such as ASCII-Hex with the
--romwidth=16 option used, is as follows:

ROMS {
FLASH: origin=0x3£f000000, length=0x1000
}

You would double the address and length in the ROMS directive when using an 8-bit ROM width:

ROMS {
FLASH: origin=0x7e000000, length=0x2000
}

The data record contains the following information:

Item Description

@ADDR Hexadecimal start address of a section
DATAN Hexadecimal data byte

q End-of-file termination character

Section
start

V—b\

@ADDR1
DATAO1l DATAO02 DATALG6
Data
bytes DATAl7 DATA32 ...coo.. DATA32
DATAM ...eovw. DATAnNn

Section —{ @ADDR2
St DATAOL it DATAn] Data
q bytes

LTJ

End-of-line
character

Figure 12-13. TI-TXT Object Format

Example 12-3. TI-TXT Object Format

@F000
31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

QFFFE
00 FO
Q
310 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Chapter 13
Sharing C/C++ Header Files With Assembly Source

i3 TEXAS INSTRUMENTS

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes between
C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations will cause
suitable assembly to be generated automatically, allowing you to reference the C/C++ constructs in assembly
code.

13.1 Overview of the .CAECIS DIr@CLIVE.................oeiiieeeee et e e e e e e e e e e e e e e e e ee e e e e e e e s e nnsnnnennnnnes 312

13.2 NOLES ON C/CHF CONVEISIONS.........ccoiiiiiiiiiiiitteeeeeeeeeeeeeeeeeeeeeeeteeaeaaaaaa e asssasssssssaasasasessasaaasaaaaesasasaaaaaanssssssnsnrnns B8

13.3 Notes on C++ SPECIfiC CONVEISIONS...........ccuiiiiiiiiiiiiiiee ettt e e e et e e e e e st e e e e setbaeeaeeeannaeeaeeesansaeeeaeaann 317

13.4 Special ASSEMDIEr SUPPOIL....... ..ottt e e e e ettt e e e eataaeeeeeaaataeeeeeaaasbaseaaeaasnseeaeeesansaeeeeesaanes 318
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 311
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Sharing C/C++ Header Files With Assembly Source www.ti.com

13.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used in

a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically. This
allows the programmer to reference the C/C++ constructs in assembly code — calling functions, allocating
space, and accessing structure members — using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to assembly: enumerations, (non
function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the C/C++
environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:

.cdecls C,NOLIST
s {
#define ASMTEST 1
s}
.cdecls C,NOLIST
%1
#ifndef ASMTEST
#warn "ASMTEST not defined!"™ /* will be issued */
#endif
s}

Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the assembly
source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header files
used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is not
included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNING - variable definition 'ABCD' ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings, either
the WARN parameter needs to be specified so the messages are displayed on STDERR, or else the LIST
parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++ source
code and C/C++ constructs may be simplified to a normalized form during the conversion process, but this
should not affect their final usage.

312 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Sharing C/C++ Header Files With Assembly Source

13.2 Notes on C/C++ Conversions

The following sections describe C and C++ conversion elements that you need to be aware of when sharing
header files with assembly source.

13.2.1 Comments
Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly file.
13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls block
using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif, and .endif
directives.

13.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted. They
have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and NOWARN parameter
discussion for where these warnings are created.

13.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of conversion. If
one of these directives is encountered, the appropriate error or warning message is emitted. These directives
are not converted to .emsg or .wmsg in the assembly output.

13.2.5 Predefined symbol __ASM_HEADER__

The C/C++ macro __ ASM_HEADER ___is defined in the compiler while processing code within .cdecls. This
allows you to make changes in your code, such as not compiling definitions, during the .cdecls processing.

Note
Be Careful With the __ ASM_HEADER___ Macro

You must be very careful not to use this macro to introduce any changes in the code that could
result in inconsistencies between the code processed while compiling the C/C++ source and while
converting to assembly.

13.2.6 Usage Within C/C++ asm() Statements
The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be generated.
13.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion step.
Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives .include

and .copy are not used or needed within a .cdecls. Use the command line --include_path option to specify
additional paths to be searched for included files, as you would for C compilation.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 313
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Sharing C/C++ Header Files With Assembly Source www.ti.com

13.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly representation and
so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to assembly (i.e., _ FILE__,
__TIME__, Tl COMPILER_VERSION__, etc.). For example, this code is converted to assembly because it is
an object-like macro:

‘ #define NAME Charley ‘

This code is not converted to assembly because it is a function-like macro:

‘#define MAX (x,y) (x>y 2?2 X : y) ‘

Some macros, while they are converted, have no functional use in the containing assembily file. For example,
the following results in the assembly substitution symbol FOREVER being set to the value while(1), although this
has no useful use in assembly because while(1) is not legal assembly code.

#define FOREVER while (1)

Macro values are not interpreted as they are converted. For example, the following results in the assembler
substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17. This happens
because the semantics of the C/C++ language require that macros are evaluated in context and not when they
are parsed.

#define OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as \n are
not converted to a single character in the converted assembly macro. See Section 13.2.11 for suggestions on
how to use C/C++ macro strings.

Macros are converted using the .define directive (see Section 13.4.2), which functions similarly to the .asg
assembler directive. The exception is that .define disallows redefinitions of register symbols and mnemonics to
prevent the conversion from corrupting the basic assembly environment. To remove a macro from the assembly
scope, .undef can be used following the .cdecls that defines it (see Section 13.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional macros
are not supported by this process, # is not supported either. The concatenation operator ## is only useful in

a functional context, but can be used degenerately to concatenate two strings and so it is supported in that
context.

13.2.9 The #undef Directive

Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

314 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Sharing C/C++ Header Files With Assembly Source

13.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:

enum state { ACTIVE=0x10, SLEEPING=0x01, INTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum
ACTIVE .emember 16
SLEEPING .emember 1
NTERRUPT .emember 256
POWEROFF .emember 257
LAST .emember 258
.endenum

The members are used via the pseudo-scoping created by the .enum directive.
The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within the
assembly environment.

13.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters Ox0A and 0x09 until their use in
a string constant in a C/C++ program, C macros whose values are strings cannot be represented as expected in
assembly substitution symbols. For example:

‘#define MSG "\tHI\n"

becomes, in assembly:

‘.define "UU\tHI\n""",MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I, newline,
NULL), but the .string assembler directive does not know how to perform the C escape conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly handled
as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5 characters of memory
being allocated, the same characters as would result if used in a C/C++ strong context. (See Section 13.4.7 for
the .cstring directive syntax.)

13.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if they
are used in macros. Also, their C expression values are not inserted into the resulting assembly macro because
macros are evaluated in context and there is no active context when converting the macros to assembly.

Suitable functions such as $$sizeof() are available in assembly expressions. However, as the basic types such
as int/char/float have no type representation in assembly, there is no way to ask for $$sizeof(int), for example, in
assembly.

13.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and member
offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++ structures, as well as
to facilitate debugging of the assembly code. For nested structures, the assembly .tag feature is used to refer to
other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the same
alignment as the C/C++ symbol. (See Section 13.2.3 for information about pragmas, which may attempt to

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 315
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Sharing C/C++ Header Files With Assembly Source www.ti.com

modify structures.) Because the alignment of structures is stored in the assembly symbol, built-in assembly
functions like $$sizeof() and $$alignof() can be used on the resulting structure name symbol.

When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a member; } mystrname;

This is really a shorthand way of writing:

struct temporary name { int a member; };
typedef temporary name mystrname;

The conversion processes the above statements in the same manner: generating a temporary name for the
structure and then using .define to output a typedef from the temporary name to the user name. You should use
your mystrname in assembly the same as you would in C/C++, but do not be confused by the assembly structure
definition in the list, which contains the temporary name. You can avoid the temporary name by specifying a
name for the structure, as in:

‘typedef struct a st name { ... } mystrname; ‘

If a shorthand method is used in C to declare a variable with a particular structure, for example:

extern struct a_name { int a _member; } a variable; ‘

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of the
external variable, such as:

‘;aivariable .tag a_st_name ‘

This allows you to refer to _a_variable.a_member in your assembly code.
13.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated for
each symbol found.

See Section 13.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the WARN/NOWARN
parameter discussion for where these warnings are created) for each, and they will not be represented in the
converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 13.2.13 for information on variables names which are of a structure/union type.
13.2.15 C Constant Suffixes

The C constant suffixes u, I, and f are passed to the assembly unchanged. The assembler will ignore these
suffixes if used in assembly expressions.

13.2.16 Basic C/C++ Types

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic types
such as int, char, or float are not converted or represented in assembly beyond any existing .int, .char, .float, etc.
directives that previously existed in assembly. Typedefs of basic types are therefore also not represented in the
converted assembly.

316 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Sharing C/C++ Header Files With Assembly Source

13.3 Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when sharing
header files with assembly source.

13.3.1 Name Mangling

C++ compilers use name mangling to avoid conflicts between identically named functions and variables. If name
mangling were not used, symbol name clashes can occur.

You can use the demangler (armdem) to demangle names and identify the correct symbols to use in assembily.
See the "C++ Name Demangler" chapter of the ARM Optimizing C/C++ Compiler User's Guide for details.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name with
different kinds of arguments) is not required, use the following syntax:

extern "C" void somefunc (int arg);

The above format is the short method for declaring a single function. To use this method for multiple functions,
you can also use the following syntax:

extern "C"
{
void somefunc (int arg);
int anotherfunc (int arg);

}

13.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to C+
+ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

class base
{
public:
int bl;
bi
class derived : public base
{
public:
int di;

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly structure
"derived", the members of the base class must be accessed using the name of the base class, such as
derived. b base.b1 rather than the expected derived.b1.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to signify it is
a base class name. That is why the example above is derived.__b_base.b1 and not simply derived.base.b1.

13.3.3 Templates
No support exists for templates.
13.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 317
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Sharing C/C++ Header Files With Assembly Source www.ti.com

13.4 Special Assembler Support
13.4.1 Enumerations (.enum/.emember/.endenum)

The following directives support a pseudo-scoping for enumerations:

ENUM_NAME .enum

MEMBER1 .emember [value]

MEMBER?2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.
To use a member's value, the format is ENUM_NAME.MEMBER, similar to using a structure member.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not specified, the
member takes a value one more than the previous member. As in C/C++, member names cannot be duplicated,
although values can be. Unless specified with .emember, the first enumeration member will be given the value 0
(zero), as in C/C++,

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because
the .endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed within
the .enum/.endenum sequence.

13.4.2 The .define Directive

The .define directive functions in the same manner as the .asg directive, except that .define disallows creation
of a substitution symbol that has the same name as a register symbol or mnemonic. It does not create a new
symbol name space in the assembler, rather it uses the existing substitution symbol name space. The syntax for
the directive is:

.define substitution string , substitution symbol name
The .define directive is used to prevent corruption of the assembly environment when converting C/C++ headers.
13.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg. This
directive will remove the named symbol from the substitution symbol table from the point of the .undef to the end
of the assembily file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a problem. Also
see Section 13.4.2, which covers the .define directive.

318 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Sharing C/C++ Header Files With Assembly Source

13.4.4 The $$defined() Built-In Function

The $$defined directive returns true/1 or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $$defined returns TRUE if the assembler
has any user symbol in scope by that name. This differs from $$isdefed in that $$isdefed only tests for
NON-substitution symbols. The syntax is:

$$defined(substitution symbol name)
A statement such as ".if $$defined(macroname)" is then similar to the C code "#ifdef macroname".
See Section 13.4.2 and Section 13.4.3 for the use of .define and .undef in assembly.
13.4.5 The $$sizeof Built-In Function

The assembly built-in function $$sizeof() can be used to query the size of a structure in assembly. It is an alias
for the already existing $$structsz(). The syntax is:

$$sizeof(structure name)
The $$sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $$sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $$sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Section 13.2.12, which notes that this conversion does not happen automatically if the C/C++ sizeof()
built-in function is used within a macro.

13.4.6 Structure/Union Alignment and $$alignofi()

The assembly .struct and .union directives take an optional second argument which can be used to specify a
minimum alignment to be applied to the symbol name. This is used by the conversion process to pass the
specific alignment from C/C++ to assembly.

The assembly built-in function $$alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by the
assembler.

13.4.7 The .cstring Directive

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly handled
as they would in C/C++.

.cstring "String with C escapes.\nWill be NULL terminated.\012"

See Section 13.2.11 for more information on the .cstring directive.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 319
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Sharing C/C++ Header Files With Assembly Source www.ti.com
This page intentionally left blank.

320 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Appendix A
Symbolic Debugging Directives

i3 TEXAS INSTRUMENTS

The assembler supports several directives that the ARM C/C++ compiler uses for symbolic debugging.

These directives are not meant for use by assembly-language programmers. They require arguments that can
be difficult to calculate manually, and their usage must conform to a predetermined agreement between the
compiler, the assembler, and the debugger. This appendix documents these directives for informational purposes
only.

A.1 DWARF Debugging FOIMAL..............ooiiiiiiiiiii ettt ettt e s e e e bt e s ean e e e s e e e e asne e e ennneeaneeean 322
A.2 DEDBUQG DIr@CtiVe SYNTAX........cco ittt ettt e s bt e e ettt e aas e e e o he e e e sttt e eanne e e abseeeanbe e e nnneeennnee s 322
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 321

Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Symbolic Debugging Directives www.ti.com

A.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that the
compiler creates for program analysis purposes. To list the complete set used for full symbolic debug, invoke the
compiler with the --symdebug:dwarf option, as shown below:

armcl --symdebug:dwarf --keep_asm input file ‘

The --keep_asm option instructs the compiler to retain the generated assembily file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none option:

armcl --symdebug:none --keep asm input file ‘

The DWARF debugging format consists of the following directives:

* The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info section.

* The .dwattr directive adds an attribute to an existing DIE.

* The .dwpsn directive identifies the source position of a C/C++ statement.

* The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

* The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

» The .dwcfi directive defines a call frame instruction for a CIE or FDE.

A.2 Debug Directive Syntax

Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++ compiler,
refer to the ARM Optimizing C/C++ Compiler User's Guide.

Table A-1. Symbolic Debugging Directives

Label Directive Arguments
.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
.dwcfi call frame instruction opcode[, operand], operand]]
CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number
DIE label .dwtag DIE tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
322 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Appendix B
XML Link Information File Description

i3 TEXAS INSTRUMENTS

The ARM linker supports the generation of an XML link information file via the --xml_link_info file option. This
option causes the linker to generate a well-formed XML file containing detailed information about the result
of a link. The information included in this file includes all of the information that is currently produced in a
linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that could
be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link information file.

B.1 XML Information File EI@mMent TYPES......... ..ottt et e s ne e e s e e enne e s annee s 324
B.2 DOCUMENE EIEMENES.........ooeeeiiiiiiiiiiiieie ettt e eeeeeeeeeeeeeeeeeeeaeaaa e s asasssasssasassaesssaaaaaaaaasaseaasaaaaaaannsnnnnsnns 324
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 323

Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

XML Link Information File Description www.ti.com

B.1 XML Information File Element Types
These element types will be generated by the linker:

» Container elements represent an object that contains other elements that describe the object. Container
elements have an id attribute that makes them accessible from other elements.

» String elements contain a string representation of their value.

» Constant elements contain a 32-bit unsigned long representation of their value (with a Ox prefix).

» Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element description.
For instance, the <link_time> element lists the time of the link execution (string).

B.2 Document Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that an XML
information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

* The <banner> element lists the name of the executable and the version information (string).

» The <copyright> element lists the Tl copyright information (string).

* The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

* The <output_file> element lists the name of the linked output file generated (string).

* The <entry_point> element specifies the program entry point, as determined by the linker (container) with
two entries:
— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

Header Element for the hi.out Output File

<banner>TMS320Cxx Linker Version x.xx (Jan 6 2008)</banner>
<copyright>Copyright (c) 1996-2008 Texas Instruments Incorporated</copyright>
<link time>0x43dfd8a4</link time>
<output_file>hi.out</output_ file>
<entry point>

<name> c_ int00</name>

<address>0xaf80</address>
</entry point>

324 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

TEXAS
INSTRUMENTS

www.ti.com

XML Link Information File Description

B.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a <input_file_list>

container element. The <input_file_list> can contain any number of <input_file> elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute that
can be referenced by other elements, such as an <object_component>. An <input_file> is a container element

enclosing the following elements:

The <path> element names a directory path, if applicable (string).
The <kind> element specifies a file type, either archive or object (string).
The <file> element specifies an archive name or filename (string).
The <name> element specifies an object file name, or archive member name (string).

Input File List for the hi.out Output File

<input_file list>

<input_file id="f1-1">
<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input file>

<input file id="f1l-2">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input file>

<input file id="f1-3">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input file>

<input file id="f1-4">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input file>

</input_file list>

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Assembly Language Tools
v20.2.0.LTS

325

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

XML Link Information File Description www.ti.com

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components that are
involved in the link. An example of an object component is an input section. In general, an object component is
the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any number of <object_component> elements.

Each <object_component> specifies a single object component. Each <object_component> has an id attribute
so that it can be referenced directly from other elements, such as a <logical_group>. An <object_component> is
a container element enclosing the following elements:

» The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).

» The <run_address> element specifies the run-time address of the object component (constant).

* The <size> element specifies the size of the object component (constant).

* The <input_file_ref> element specifies the source file where the object component originated (reference).

Object Component List for the fl-4 Input File

<object component id="oc-20">
<name>.text</name>
<load address>0Oxac00</load address>
<run_address>0xac00</run_address>
<size>0xc0</size>
<input file ref idref="f1-4"/>
</object component>
<object component id="oc-21">
<name>.data</name>
<load address>0x80000000</load address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input file ref idref="fl-4"/>
</object component>
<object component id="oc-22">
<name>.bss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>
<input_file ref idref="f1-4"/>
</object component>

326 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com XML Link Information File Description

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and UNION
output sections, which are not represented in a map file. There are three kinds of list items that can occur in a
<logical_group_list>:

The <logical_group> is the specification of a section or GROUP that contains a list of object components or
logical group members. Each <logical _group> element is given an id so that it may be referenced from other
elements. Each <logical_group> is a container element enclosing the following elements:
— The <name> element names the logical group (string).
— The <load_address> element specifies the load-time address of the logical group (constant).
— The <run_address> element specifies the run-time address of the logical group (constant).
— The <size> element specifies the size of the logical group (constant).
— The <contents> element lists elements contained in this logical group (container). These elements refer
to each of the member objects contained in this logical group:
» The <object_component_ref> is an object component that is contained in this logical group
(reference).
+ The <logical_group_ref> is a logical group that is contained in this logical group (reference).

The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that share the
same memory space (container). Each <overlay> element is given an id so that it may be referenced from
other elements (like from an <allocated_space> element in the placement map). Each <overlay> contains the
following elements:
— The <name> element names the overlay (string).
— The <run_address> element specifies the run-time address of overlay (constant).
— The <size> element specifies the size of logical group (constant).
— The <contents> container element lists elements contained in this overlay. These elements refer to each
of the member objects contained in this logical group:
» The <object_component_ref> is an object component that is contained in this logical group
(reference).
» The <logical_group_ref> is a logical group that is contained in this logical group (reference).

The <split_section> is another special kind of logical group that represents a collection of logical groups

that is split among multiple memory areas. Each <split_section> element is given an id so that it may be

referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The <logical_group_ref>
elements refer to each of the member objects contained in this split section, and each element referenced
is a logical group that is contained in this split section (reference).

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 327
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

XML Link Information File Description www.ti.com

Logical Group List for the fl-4 Input File

<logical group list>

<logical group id="1g-7">
<name>.text</name>
<load address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>
<object component ref idref="oc-34"/>
<object_component ref idref="oc-108"/>
<object component ref idref="oc-e2"/>

</contents>
</logical group>

<overlay id="1lg-b">
<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>
<object component ref idref="oc-45"/>
<logical group ref idref="1g-8"/>
</contents>
</overlay>

<split section id="1lg-12">
<name>.task_scn</name>
<size>0x120</size>
<contents>
<logical group ref idref="1g-10"/>
<logical group ref idref="1g-11"/>
</contents>

</logical group list>

328 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com XML Link Information File Description

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in the
application, including unused spaces between logical groups that have been placed in a particular memory area.

The <memory_area> is a description of the placement details within a named memory area (container). The
description consists of these items:

* The <name> names the memory area (string).

* The <page_id> gives the id of the memory page in which this memory area is defined (constant).

» The <origin> specifies the beginning address of the memory area (constant).

» The <length> specifies the length of the memory area (constant).

* The <used_space> specifies the amount of allocated space in this area (constant).

» The <unused_space> specifies the amount of available space in this area (constant).

» The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

» The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is specified
with the memory area (constant).

» The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate access to
the details of that logical group. All fragment specifications include <start_address> and <size> elements.
— The <allocated_space> element provides details of an allocated fragment within this memory area

(container):
» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).
+ The <logical_group_ref> provides a reference to the logical group that is allocated to this fragment
(reference).
— The <available_space element provides details of an available fragment within this memory area
(container):
+ The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

Placement Map for the fl-4 Input File

<placement_map>
<memory area>
<name>PMEM</name>
<page 1d>0x0</page id>
<origin>0x20</origin>
<length>0x100000</length>
<used space>0xb240</used space>
<unused space>0xf4dc0</unused space>
<attributes>RWXI</attributes>
<usage details>
<allocated space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical group ref idref="1g-7"/>
</allocated_space>
<available space>
<start address>0xb260</start address>
<size>0xf4dc0</size>
</available space>
</usage details>
</memory_area>

</placement map>

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 329
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

XML Link Information File Description www.ti.com

B.2.6 Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The linker supports the generation
of far call trampolines to help a call site reach a destination that is out of range. A far call trampoline function is
guaranteed to reach the called function (callee) as it may utilize an indirect call to the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker for a
particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline> elements. Each
<far_call_trampoline> is a container enclosing the following elements:

The <callee_name> element names the destination function (string).

The <callee_address> is the address of the called function (constant).

The <trampoline_object_component_ref> is a reference to an object component that contains the
definition of the trampoline function (reference).

The <trampoline_address> is the address of the trampoline function (constant).

The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function (container).
The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of these
items:

— The <caller_address> specifies the call site address (constant).

— The <caller_object_component_ref> is the object component where the call site resides (reference).

Fall Call Trampoline List for the fl-4 Input File

<far call trampoline list>

<far_call_trampoline>
<callee name> foo</callee name>
<callee address>0x08000030</callee address>
<trampoline object component ref idref="oc-123"/>
<trampoline address>0x2020</trampoline address>
<caller list>
<call site>
<caller_ address>0x1800</caller_ address>
<caller object component ref idref="oc-23"/>
</call site>
<call_site>
<caller address>0x1810</caller address>
<caller object component ref idref="oc-23"/>
</call_site>
</caller list>
</far call trampoline>

</far call trampoline list>

330 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com XML Link Information File Description

B.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list provides
information about a symbol's name and value. In the future, the symbol_table list may provide type information,
the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:

* The <name> element specifies the symbol name (string).
» The <value> element specifies the symbol value (constant).

Symbol Table for the fi-4 Input File

<symbol_ table>

<symbol>
<name> c int00</name>
<value>0xaf80</value>

</symbol>

<symbol>
<name> main</name>
<value>0xbleO</value>

</symbol>

<symbol>
<name> printf</name>
<value>0xac00</value>

</symbol>

</symbol table>

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 331
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

XML Link Information File Description www.ti.com
This page intentionally left blank.

332 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Appendix C
Hex Conversion Utility Examples

i3 TEXAS INSTRUMENTS

The flexible hex conversion utility offers many options and capabilities. Once you understand the proper ways to
configure your EPROM system and the requirements of the EPROM programmer, you will find that converting a
file for a specific application is easy.

The three scenarios in this appendix show how to develop a hex conversion command file for avoiding holes,
using 16-BIS (16-bit instruction set) code, and using multiple-EPROM systems. The scenarios use this assembly
code:

R R Ik Ih b b b b Sk b 3 3

* Assemble two words into section "secA" *
khkhkhkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhhkhkhkkhkkhkkhkhkhkhkhohkhkhkkhkkhkkhkkhkhkhhhhkkk
.sect "secA"
.word 012345678h
.word Oabcdl234h

R R Ik kb b b Sk b 3 3

* Assemble two words into section "secB" *
khkhkhkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkhkhkhohhkhkhkkhkkhkkhhhhhhhkk
.sect "secB"
.word 087654321h
.word 04321dcbah

Before you use this appendix, read Chapter 12 to understand how to use the hex conversion utility.

C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM.......................c.ccoccienne. 334

C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code..................ccoooiiiiiiiiiiiiiieceieee 338

C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMS..................cccocoeiiiiiiiiiincnnen. 341
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 333
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Examples www.ti.com

C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM

Scenario 1 shows how to build the hex conversion command file for converting an object file for the memory
system shown in Figure C-1. In this system, there is one external 128K x 8-bit EPROM interfacing with a
TMS470 target processor.

]

ARM CPU

128K 8
ROMO

Width: 32 bits \%

ROM width: 8 bits

;\/—/

EPROM system memory width: 8 bits
Figure C-1. EPROM Memory System for Scenario 1

A object file consists of blocks of memory (sections) with assigned memory locations. Typically, all sections
are not adjacent: there are holes between sections in the address space for which there is no data. Scenario
1 shows how you can use the hex conversion utility’s image mode to fill any holes before, between, or after
sections with a fill value.

For this scenario, the application code resides in the program memory (ROM) on the TMS470 CPU, but the data
tables used by this code reside in an off-chip EPROM.

The circuitry of the target board handles the access to the data; the native TMS470 address of 0x1000 accesses
location 0x0 on the EPROM.

To satisfy the address requirements for the code, this scenario requires a linker command file that allocates
sections and memory as follows:

» The program/application code (represented in this scenario by the secA section shown in Example C-1) must
be linked so that its address space resides in the program memory (ROM) on the TMS470 CPU.

« To satisfy the condition that the data be loaded on the EPROM at address 0x0 but be referenced by the
application code at address 0x1000, secB (the section that contains the data for this application) must be
assigned a linker load address of 0x1000 so that all references to data in this section will be resolved with
respect to the TMS470 CPU address. In the hex conversion utility command file, the paddr option must be
used to burn the section of data at EPROM address 0x0. This value overrides the section load address given
by the linker.

334 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Examples

Example C-1 shows the linker command file that resolves the addresses needed in the stated specifications.

Example C-1. Linker Command File and Link Map for Scenario 1

/**/

/* Scenario 1 Link Command */
/* */
/* Usage: armlnk <obj files...> -0 <out file> -m <map file> 1lnk32.cmd */
/* armcl <src files...> -z -o <out file> -m <map file> 1nk32.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) If the runtime-support library you are using is not */
/* named rts32.1ib, be sure to use the correct name here. x/

[KKK KA KKK KKK Kk k ok h kA AR AR A KKKk ok ok h kAR AR AA A Ak k ok ki hh kA A XA XA A Ak kk ok kh kA A * %/

-m examplel.map
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
I _MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (REAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

}
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

{
secA: load = P_MEM
secB: load = 0x1000

You must create a hex conversion command file to generate a hex output with the correct addresses and format
for the EPROM programmer.

In the memory system outlined in Figure C-1, only the application data is stored on the EPROM,; the data
resides in secB of the object file created by the linker. By default, the hex conversion utility converts all initialized
sections that appear in the object file. To prevent the conversion of the application code in secA, a SECTIONS
directive must be defined in the hex conversion command file to list explicitly the section(s) to be converted. In
this case, secB must be listed explicitly as the section to be converted.

The EPROM programmer in this scenario has the following system requirements:

» The EPROM programmer loads only a complete ROM image. A complete ROM image is one in which there
is a contiguous address space (there are no holes in the addresses in the converted file), and each address
in the range contains a known value. Creating a complete ROM image requires the use of the —image option
and the ROMS directive.

— Using the —image option causes the hex conversion utility to create an output file that has contiguous
addresses over the specified memory range and forces the utility to fill address spaces that are not
previously filled by raw data from sections defined in the input object file. By default, the value used to fill
the unused portions of the memory range is 0.

— Because the -image option operates over a known range of memory addresses, a ROMS directive is
needed to specify the origin and length of the memory for the EPROM.

» To burn the section of data at EPROM address 0x0, the paddr option must be used. This value overrides the
section load address given by the linker.

* In this scenario, the EPROM is 128K x 8 bits. Therefore, the memory addresses for the EPROM must range
from 0x0 to 0x20000.

» Because the EPROM memory width is eight bits, the memwidth value must be set to 8.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 335
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Examples www.ti.com

» Because the physical width of the ROM device is eight bits, the romwidth value must be set to 8.
* Intel format must be used.

Since memwidth and romwidth have the same value, only one output file is generated (the number of output files
is determined by the ratio of memwidth to romwidth). The output file is named with the -o option.

The hex conversion command file for Scenario 1 is shown in Example C-2. This command file uses the following
options to select the requirements of the system:

Option Description

-i Create Intel format

-image Generate a memory image

-map example1.mxp Generate example1.mxp as the map file of the conversion
-0 example1.hex Name example1.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-2. Hex Conversion Command File for Scenario 1

/* Hex Conversion Command file for Scenario 1 */
a.out /* linked object file, input */

-1 /* Intel format */

-image

-map examplel.mxp /* Generate a map of the conversion */
-0 examplel.hex /* Resulting hex output file */
-memwidth 8 /* EPROM memory system width */
-romwidth 8 /* Physical width of ROM */

ROMS

{
EPROM: origin = 0x0, length = 0x20000
}

SECTIONS
{
secB: paddr = 0x0 /* Select only section, secB, for conversion */
}
336 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Examples

Example C-3 shows the contents of the resulting map file (example1.mxp). Figure C-2 shows the contents of the
resulting hex output file (example1.hex). The hex conversion utility places the data tables, secB, at address 0
and then fills the remainder of the address space with the default fill value of 0. For more information about the
Intel MCS-86 object format, see Figure 12-9.

Example C-3. Contents of Hex Map File example1.mxp

R R R R R R R R R R I e I

TMS470 Hex Converter Version x.xx
KA AR AR AR AR AR Ak kKK
Mon Sep 18 15:57:00 1995
INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel
PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 8
Default output width: 8
OUTPUT TRANSLATION MAP

00000000..0001ffff Page=0 ROM Width=8 Memory Width=8 "EPROM"

OUTPUT FILES: examplel.hex [b0..b7]
CONTENTS: 00000000..00000007 Data Width=1 secB
00000007..0001ffff FILL = 00000000

Start character
L Address secB Tjatatables

[[|
:20000000876543214321DCBA0096
:20002000C0O
:20004000A0

.

.

:20FFE001
:020000040001F<}—— Extended linear address record

:2000E0
:20002000cCO0

.
.

.

:20FFC00021
:20FFE001

:00000001FE
‘T‘ Lﬁ End-of-file record Checksum
Record type
Byte count
Figure C-2. Contents of Hex Output File example1.hex
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 337
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Examples www.ti.com

C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code

Scenario 2 shows how to build the hex conversion command file to generate the correct converted file for the
application code and data that will reside on a single 16-bit EPROM. The EPROM memory system for this
scenario is shown in Figure C-3. For this scenario, the TMS470 CPU operates with the T control bit set, so the
processor executes instructions in 16-BIS mode.

]

128K 16
ROMO

ARM CPU

Width: 32 bits ———

ROM width: 16 bits

;\/—/

EPROM system memory width: 16 bits
Figure C-3. EPROM Memory System for Scenario 2

For this scenario, the application code and data reside on the EPROM: the lower 64K words of EPROM
memory are dedicated to application code space and the upper 64K words are dedicated to the data tables. The
application code is loaded starting at address 0x0 on the EPROM but maps to the TMS470 CPU at address
0x3000. The data tables are loaded starting at address 0x1000 on the EPROM and map to the TMS470 CPU
address 0x20.

338 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Examples

Example C-4 shows the linker command file that resolves the addresses needed for the load on EPROM and the
TMS470 CPU access.

Example C-4. Linker Command File for Scenario 2

/**/

/* Scenario 2 Link Command */
/* */
/* Usage: armlnk <obj files...> -0 <out file> -m <map file> lnkl6.cmd */
/* armcl <src files...> -z -o <out file> -m <map file> 1lnkl6.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rtsl6.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) If the runtime-support library you are using is not */
/* named rtsl6.lib, be sure to use the correct name here. */

[KKK KKK KKK KKK Kk ki ok ki h kA AR AR I Kk ok kh kA AR AA A A Ak k ok khh kA XXX XA Ak Ak k ok ok khh kA A *A* % /

-m example2.map
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
I _MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

}
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

{
secA: load = 0x3000
secB: load = 0x20

You must create a hex conversion command file to generate a hex output with the correct addresses and format
for the EPROM programmer. The EPROM programmer in this scenario has the following system requirements:

* Because the EPROM memory width is 16 bits, the memwidth value must be set to 16.
» Because the physical width of the ROM device is 16 bits, the romwidth value must be set to 16.
* Intel format must be used.

The EPROM programmer does not require a ROM image, so the addresses in the input hex output file do not
need to be contiguous.

Because memwidth and romwidth have the same value, only one output file is generated (the number of output
files is determined by the ratio of memwidth to romwidth). The output file is named with the -o option.

A ROMS directive is used in this scenario since the paddr option is used to relocate both secA and secB.

The hex conversion command file for Scenario 2 is shown in Example C-5. This command file uses the following
options to select the requirements of the system:

Option Description

-i Create Intel format

-map example2.mxp Generate example2.mxp as the map file of the conversion

-0 example2.hex Name example2.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 339
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Hex Conversion Utility Examples

I

TeExAS
INSTRUMENTS

www.ti.com

Example C-5. Hex Conversion Command File for Scenario 2

/* Hex Conversion Command file for Scenario 2 */
a.out /* linked object file, input */
-I /* Intel format */
/* The following two options are optional */
-map example2.mxp /* Generate a map of the conversion */
-0 example2.hex /* Resulting Hex Output file */
/* Specify EPROM system Memory Width and Physical ROM width */
-memwidth 16 /* EPROM memory system width */
-romwidth 16 /* Physical width of ROM */
ROMS

{
EPROM: origin = 0x0, length = 0x20000
}
SECTIONS
{
secA: paddr = 0x0
secB: paddr = 0x1000

Example C-6 shows the contents of the resulting map file (example2.mxp). Figure C-4 shows the contents of the

resulting hex output file (example2.hex).

Example C-6. Contents of Hex Map File example2.mxp

B R

TMS470 Hex Converter Version x.xx

Ak hkhkhkkhhhkhhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkrkhkhkhkhkhkhkrhkhkkhkhkhkhkhrhkhkhkhkhxk*x
Mon Sep 18 19:34:47 1995

INPUT FILE NAME: <a.out>

OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS

Default data width: 8
Default memory width: 16
Default output width: 16

OUTPUT TRANSLATION MAP

00000000..0001ffff Page=0 ROM Width=16 Memory Width=16 "EPROM"

OUTPUT FILES: example2.hex [b0..bl5]
CONTENTS: 00000000..00000003 Data Width=1 secA
00001000..00001003 Data Width=1 secB

Start character
Address Data

l l

[| [1
:0800000012345678ABCD123426

:08100000876543214321DCBAYE

:00000001FF Y Ghecksum
T o End-of-file record
Record type
Byte count

Figure C-4. Contents of Hex Output File example2.hex

340 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Examples

C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs

Scenario 3 shows how to build the hex conversion command file for converting a object file for the memory
system shown in Figure C-5. In this system, there are two external 64K x 16-bit EPROMSs interfacing with the
TMS470 target processor. The application code and data will be burned on the EPROM starting at address 0x20.
The application code will be burned first, followed by the data tables.

Upper 16 bits
Lower 16 bits

ARM CPU

64K 16 64K 16
ROMO ROM1

Width: 32 bits

ROM width: ROM width:
16 bits 16 bits

EPROM system memory width: 32 bits

Figure C-5. EPROM Memory System for Scenario 3

In this scenario, the EPROM load address for the application code and for the data also corresponds to the
TMS470 CPU address that accesses the code and data. Therefore, only a load address needs to be specified.

Example C-7 shows the linker command file for this scenario.

Example C-7. Linker Command File for Scenario 3

/‘k***********************/

/* Scenario 3 Link Command */
/* */
/* Usage: armlnk <obj files...> -o <out file> -m <map file> 1nk32.cmd */
/* armcl <src files...> -z -o <out file> -m <map file> 1nk32.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (2) If the runtime-support library you are using is not */
/* named rts32.1ib, be sure to use the correct name here. */

/‘k***********************/

-m example3.map
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
I _MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P _MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

}
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
secA: load = 0x20
secB: load = D MEM
}
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 341
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

Hex Conversion Utility Examples www.ti.com

You must create a hex conversion command file to generate a hex output with the correct addresses and format
for the EPROM programmer.

The EPROM programmer in this scenario has the following system requirements:

* In the memory system outlined in Figure C-5, the EPROM system memory width is 32 bits because each of
the physical ROMs provides 16 bits of a 32-bit word. Because the EPROM system memory width is 32 bits,
the memwidth value must be set to 32.

» Because the width of each of the physical ROMs is 16 bits, the romwidth value must be set to 16.

* Intel format must be used.

With a memwidth of 32 and a romwidth of 16, two output files are generated by the hex conversion utility (the
number of files is determined by the ratio of memwidth to romwidth). In previous scenarios, the output filename
was specified with the -0 option. Another way to specify the output filename is to use the files keyword within a
ROMS directive. When you use -o or the files keyword, the first output filename always contains the low-order
bytes of the word.

The hex conversion command file for Scenario 3 is shown in Example C-8. This command file uses the following
options to select the requirements of the system:

Option Description

-i Create Intel format

-map example3.mxp Generate example3.mxp as the map file of the conversion
-memwidth 32 Set EPROM system memory width to 32

-romwidth 16 Set physical ROM width to 16

The files keyword is used within the ROMS directive to specify the output filenames.

Example C-8. Hex Conversion Command File for Scenario 3

/* Hex Conversion Command file for Scenario 3 */
a.out /* linked object file, input */
-1 /* Intel format */
/* Optional Commands */
-map example3.mxp /* Generate a map of the conversion */
/* Specify EPROM system memory width and physical ROM width */
-memwidth 32 /* EPROM memory system width */
-romwidth 16 /* Physical width of ROM */
ROMS

{
EPROM: org = 0x0, length = 0x20000
files={ lowerl6.bit, upperl6.bit }

342 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Hex Conversion Utility Examples

Example C-9 shows the contents of the resulting map file (example3.mxp).

Example C-9. Contents of Hex Map File example3.mxp

R R R R R R R R R R R R R I I S

TMS470 Hex Converter Version x.xx
KA AR AR AR AR ARk Kk kKK
Tue Sep 19 07:41:28 1995
INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel
PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 32
Default output width: 16
OUTPUT TRANSLATION MAP

00000000..0001ffff Page=0 ROM Width=16 Memory Width=32 "EPROM"
OUTPUT FILES: lowerl6.bit [Db0..bl5]
upperl6.bit [bl6..b31]
CONTENTS: 00000020..00000021 Data Width=1 secA
00000028..00000029 Data Width=1 secB

The contents of the output files lower16.bit and upper16.bit are shown in Figure C-6 and Figure C-7,
respectively. The low-order 16 bits of the 32-bit output word are stored in the lower16.bit file, while the upper 16
bits are stored in the upper16.bit file.

Start character
Ad‘dress Data
1
M I
:0400200056781234CS8
:040028004321DCBADA

:00000001FF Ld Checksum

T . End-of-file record
Record type
Byte count

Figure C-6. Contents of Hex Output File lower16.bit

Start character
Address Data
M ‘ I ‘ 1

:040020001234ABCD1E

:040028008765432184

:00000001FF Ld Checksum

T .l End-of-file record
Record type
Byte count

Figure C-7. Contents of Hex Output File upper16.bit

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

343

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

Hex Conversion Utility Examples www.ti.com
This page intentionally left blank.

344 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Appendix D
Glossary

D.1 Terminology
ABI

absolute address

absolute constant
expression
absolute lister
address constant

expression

alignment

allocation

ANSI

archive library

archiver

ASCII

assembler

assembly-time

i3 TEXAS INSTRUMENTS

Application binary interface.
An address that is permanently assigned to a ARM memory location.

An expression that does not refer to any external symbols or any registers or memory
reference. The value of the expression must be knowable at assembly time.

A debugging tool that allows you to create assembler listings that contain absolute
addresses.

A symbol with a value that is an address plus an addend that is an absolute constant
expression with an integer value.

A process in which the linker places an output section at an address that falls on an
n-byte boundary, where n is a power of 2. You can specify alignment with the SECTIONS
linker directive.

A process in which the linker calculates the final memory addresses of output sections.

American National Standards Institute; an organization that establishes standards
voluntarily followed by industries.

A collection of individual files grouped into a single file by the archiver.

A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive
library.

American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

A software program that creates a machine-language program from a source file
that contains assembly language instructions, directives, and macro definitions. The
assembler substitutes absolute operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic addresses.

A symbol that is assigned a constant value with the .set directive.

constant
big endian ; ; i f f ; s
An addressing protocol in which bytes are numbered from left to right within a word.
More significant bytes in a word have lower numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also little endian
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 345

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Glossary www.ti.com
binding A process in which you specify a distinct address for an output section or a symbol.
BIS Bit instruction set.
block A set of statements that are grouped together within braces and treated as an entity.
-bss section One of the default object file sections. You use the assembler .bss directive to reserve
a specified amount of space in the memory map that you can use later for storing data.
The .bss section is uninitialized.
byte Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler

command file

comment

compiler program

conditional
processing

configured
memory

constant

constant
expression

cross-reference
lister

cross-reference
listing

.data section

directives

DWARF

A software program that translates C source statements into assembly language source
statements.

A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have
no effect on the object file.

A utility that lets you compile, assemble, and optionally link in one step. The compiler runs
one or more source modules through the compiler (including the parser, optimizer, and
code generator), the assembler, and the linker.

A method of processing one block of source code or an alternate block of source code,
according to the evaluation of a specified expression.

Memory that the linker has specified for allocation.

A type whose value cannot change.

An expression that does not in any way refer to a register or memory reference.

A utility that produces an output file that lists the symbols that were defined, what file they
were defined in, what reference type they are, what line they were defined on, which lines
referenced them, and their assembler and linker final values. The cross-reference lister
uses linked object files as input.

An output file created by the assembler that lists the symbols that were defined, what line
they were defined on, which lines referenced them, and their final values.

One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data
section.

Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

A standardized debugging data format that was originally designed along with ELF,
although it is independent of the object file format.

346 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Glossary

EABI

ELF

emulator
entry point

environment
variable

epilog
executable module

expression

external symbol

field

global symbol

GROUP

hex conversion
utility
high-level

language
debugging

hole

identifier
immediate operand

incremental linking

initialization at load
time

An embedded application binary interface (ABI) that provides standards for file formats,
data types, and more.

Executable and linking format; a system of object files configured according to the
System V Application Binary Interface specification.

A hardware development system that duplicates the ARM operation.
A point in target memory where execution starts.

A system symbol that you define and assign to a string. Environmental variables are often
included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

The portion of code in a function that restores the stack and returns.
A linked object file that can be executed in a target system.

A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

A symbol that is used in the current program module but defined or declared in a different
program module.

For the ARM, a software-configurable data type whose length can be programmed to be
any value in the range of 1-32 bits.

A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

A utility that converts object files into one of several standard ASCIl hexadecimal formats,
suitable for loading into an EPROM programmer.

The ability of a compiler to retain symbolic and high-level language information (such as
type and function definitions) so that a debugging tool can use this information.

An area between the input sections that compose an output section that contains no
code.

Names used as labels, registers, and symbols.

An operand whose value must be a constant expression.

Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of
the parts together.

An autoinitialization method used by the linker when linking C/C++ code. The linker uses

this method when you invoke it with the --ram_model link option. This method initializes
variables at load time instead of run time.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 347

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Glossary

13 TEXAS
INSTRUMENTS

www.ti.com

initialized section
input section

ISO

label

linker

listing file

literal constant

little endian

loader

macro

macro call
macro definition
macro expansion

macro library

map file

member
memory map

memory reference
operand

mnemonic

model statement

A section from an object file that will be linked into an executable module.

A section from an object file that will be linked into an executable module.

International Organization for Standardization; a worldwide federation of national
standards bodies, which establishes international standards voluntarily followed by
industries.

A symbol that begins in column 1 of an assembler source statement and corresponds to
the address of that statement. A label is the only assembler statement that can begin in

column 1.

A software program that combines object files to form an object module that can be
allocated into system memory and executed by the device.

An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

A value that represents itself. It may also be called a literal or an immediate value.

An addressing protocol in which bytes are numbered from right to left within a word.
More significant bytes in a word have higher numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also big endian

A device that places an executable module into system memory.

A user-defined routine that can be used as an instruction.

The process of invoking a macro.

A block of source statements that define the name and the code that make up a macro.
The process of inserting source statements into your code in place of a macro call.

An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension
of .asm.

An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the
symbols were defined for your program.

The elements or variables of a structure, union, archive, or enumeration.

A map of target system memory space that is partitioned into functional blocks.

An operand that refers to a location in memory using a target-specific syntax.

An instruction name that the assembler translates into machine code.

Instructions or assembler directives in a macro definition that are assembled each time a
macro is invoked.

348
v20.2.0.LTS

ARM Assembly Language Tools

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Glossary

named section
object file
object library
object module

operand

optimizer

options

output module
output section

partial linking

quiet run

raw data
register operand
relocatable

constant
expression

relocation

ROM width

run address

run-time-support
library

section

section program
counter (SPC)

sign extend

An initialized section that is defined with a .sect directive.

An assembled or linked file that contains machine-language object code.

An archive library made up of individual object files.

A linked, executable object file that can be downloaded and executed on a target system.

An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

A software tool that improves the execution speed and reduces the size of C programs.

Command-line parameters that allow you to request additional or specific functions when
you invoke a software tool.

A linked, executable object file that is downloaded and executed on a target system.

A final, allocated section in a linked, executable module.

Linking files in several passes. Incremental linking is useful for large applications because
you can partition the application, link the parts separately, and then link all of the parts
together.

An option that suppresses the normal banner and the progress information.

Executable code or initialized data in an output section.

A special pre-defined symbol that represents a CPU register.

An expression that refers to at least one external symbol, register, or memory location.
The value of the expression is not known until link time.

A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the
data into output files. After the target words are mapped to memory words, the memory
words are broken into one or more output files. The number of output files is determined
by the ROM width.

The address where a section runs.

A library file, rts.src, that contains the source for the run time-support functions.

A relocatable block of code or data that ultimately will be contiguous with other sections in
the memory map.

An element that keeps track of the current location within a section; each section has its
own SPC.

A process that fills the unused MSBs of a value with the value's sign bit.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools 349
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Glossary www.ti.com
simulator A software development system that simulates ARM operation.
source file

static variable

storage class

string table

structure

subsection

symbol

symbolic constant

symbolic
debugging

tag

target memory
.text section
unconfigured
memory

uninitialized
section

UNION

union
unsigned value
variable

veneer

A file that contains C/C++ code or assembly language code that is compiled or
assembled to form an object file.

A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is
resumed when the function or program is reentered.

An entry in the symbol table that indicates how to access a symbol.

A table that stores symbol names that are longer than eight characters (symbol names of
eight characters or longer cannot be stored in the symbol table; instead they are stored in
the string table). The name portion of the symbol's entry points to the location of the string
in the string table.

A collection of one or more variables grouped together under a single name.

A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give
you tighter control of the memory map.

A name that represents an address or a value.

A symbol with a value that is an absolute constant expression.

The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

An optional type name that can be assigned to a structure, union, or enumeration.
Physical memory in a system into which executable object code is loaded.

One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

Memory that is not defined as part of the memory map and cannot be loaded with code or
data.

A object file section that reserves space in the memory map but that has no actual
contents. These sections are built with the .bss and .usect directives.

An option of the SECTIONS directive that causes the linker to allocate the same address
to multiple sections.

A variable that can hold objects of different types and sizes.
A value that is treated as a nonnegative number, regardless of its actual sign.
A symbol representing a quantity that can assume any of a set of values.

A sequence of instructions that serves as an alternate entry point into a routine if a state
change is required.

350 ARM Assembly Language Tools

v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Glossary

well-defined A term or group of terms that contains only symbols or assembly-time constants that have

expression been defined before they appear in the expression.

word A 32-bit addressable location in target memory
SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023 ARM Assembly Language Tools 351
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

Revision History

i3 TEXAS INSTRUMENTS

Changes from March 11, 2020 to March 31, 2023 (from Revision Y (March 2020) to Revision Z

(March 2023)) Page
» Updated the numbering format for tables, figures, and cross-references throughout the document................ 11
* Removed references to the Processors wiki throughout the document...............cccoo 11
» Corrected name of the --asm_cross_reference_listing option wherever it appears...............ccccccvvvvveeeeeeeeennn. 67
» The --strict_compatibility linker option no longer has any effect and has been removed from the

Lo [oTeTN g aT=T o1 =1 (o] o FO PSPPSR PPPPTP 180
* Documented that the --absolute_exe and --relocatable options may not be used together............ccccc.......... 182
» Correct the description of the linker's include file search path............cccooiiiiiiii e, 185
* Removed quotes from example for the --symbol_map option..........cccuviiiiiiiiii e 198
» Clarified use of linker-defined symbols, including when and how to use the _symval() operator................... 237
* Documented additional Hex Conversion Ultility options related to image loading............ccccooveeiveereeiiiiiinnn, 282
* Documented additional Hex Conversion Ultility options related to image loading............ccccovvveeveereeiiiiiiinnn, 293
» State that sections from multiple input images may not overlap when using the hex conversion utility......... 293
» Corrected ASCII-hex output format address size and default width...................ccooiiiii e, 305

The following table lists changes made to this document prior to changes to the document numbering format.
The left column identifies the first version of this document in which that particular change appeared.

peEion Chapter Location Additions / Modifications / Deletions
Added
Program . . . o
SPNU118Y Loading Section 3.3.2.3 Corrected information about RAM and ROM model use of CINIT for initialization.
Clarified that either --rom_model or --ram_model is required if only the linker is being
SPNU118Y Linker Section 8.4.27 run, but --rom_model is the default if the compiler runs on C/C++ files on the same
command line.
SPNU118Y Linker Section 8.4.37 Clarified that zero initialization tgkeg place only if the --rom_model linker option is
used, not if the --ram_model option is used.
Section 8.5.4.2,) . .
SPNU118Y Linker Section 8.5.10.7, ;(chc)j:a(iel_dAbSTteoi;:]etr:éor;tlztizfgi;;}/r‘?ggl \éwth the run-time address of the last
and Section 8.5.10.8 y y range.
Hex
SPNU118Y Conversion Section 12.2.1 The binary output format for the hex conversion utility is now supported.
Utility
Hex . . ey
SPNU118Y Conversion Section 12.12 Boot tables can now be used with the hex conversion utility's Secure Flash Boot
" (--cmac) capability.
Utility
Hex
SPNU118Y Conversion Section 12.15.6 Prowded example sh(_)wm_g the effects of 8-bit memory width vs. 16-bit memory
Utility width on the ROMS directive syntax.
The default file extensions for object files created by the compiler have been
changed in order to prevent conflicts when C and C++ files have the same names.
SPNU118X -- throughout -- Obiject files generated from C source files have the .c.obj extension. Object files
generated from C++ source files have the .cpp.obj extension. Object files generated
from assembly source files still have the .obj extension.
352 ARM Assembly Language Tools SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Revision History
peiEion Chapter Location Additions / Modifications / Deletions
Added
Hex - .
SPNU118X Conversion Section 12.12 Add_ed support for the secure flash boot capability provided by TMS320F2838x
- devices.
Utility
SPNU118W | Object Modules | Section 2.6 Revised information about types of symbols for clarity.
SPNU118W | ASsembler bits topic Modified the description of the _bits directive.
Directives
Assembler .symdepend . N .
SPNU118W S . . Split .symdepend and .weak directive topics.
Directives topic, .weak topic
SPNU118W |Linker Section 8.4 Added the --emit_references:file linker option.
Section 8.4, Section o . . .
SPNU118V Linker 8.4.12, and Section Added the --ecc=on linker option, which enables ECC generation. Note that ECC
859 generation is now off by default.
SPNU118V Linker Section 8.5.7.3 Added linker syntax to combine initialized section with uninitialized sections.
SPNU118V Linker Section 8.5.10 4 Removed list of global symbols defined by the linker for COFF, since COFF is no
longer used.
Object File
SPNU118V Utilities Chapter 11 Added objcopy, objdump, readelf, and size utilities.
Hex Section 12.2.1 and
SPNU118U Conversion . Dy Added the --array option, which causes the array output format to be generated.
Utility Section 12.10
Linker . Provided a link to an E2E blog post that provides examples that perform cyclic
SPNUT18R Description Section 8.9 redundancy checking using linker-generated CRC tables.
SPNU118R Lmker. . Section 8.11.2 _AEABI_PORTABILITY._LEVEL can be defined to enable full object file portability
Description when headers files are included.
SPNU118Q L|nker. . Section 8.5.9 Documented revised behavior of ECC directives.
Description
Linker Several linker options have been deprecated, removed, or renamed. The linker
SPNU118P Descrintion Section 8.4 continues to accept some of the deprecated options, but they are not recommended
P for use.
SPNU118P Llnker_ _ Section 8.4.6 The default for --cinit_compression and --copy_compression has been changed from
Description RLE to LZSS.
SPNU1180 Llnker_ _ Section 8.5.3 Information about accessing files and libraries from a linker command file has been
Description added.
SPNU1180 Llnker_ . Section 8.9.1.1 The list of available CRC algorithms has been expanded.
Description
SPNU1180 Ot_>1_e_ct File Section 11.1 A —cg option has been a_\dded to_the_ Object File Display utility to display function
Utilities stack usage and callee information in XML format.
The COFF object file format is no longer supported. The ARM Code Generation
Tools now support only the Embedded Application Binary Interface (EABI) ABI,
which works only with object files that use the ELF object file format and the
. . DWAREF debug format. Sections of this document that referred to the COFF format
SPNUT18N | Object Modules | Section 2.1 have been removed or simplified. If you would like to produce COFF output files,
please use v5.2 of the ARM Code Generation Tools and refer to SPNU118M for
documentation.
The .clink directive and the --no_sym_merge linker option have been deprecated.
I\?I?)J:thes Section 2.6.3, .weak |Weak symbols can be declared using assembly or the linker command file. The
SPNU118N Directive‘s and topic, and Section linker removes weak symbols from the output file if the symbol is not required to
. ’ 8.6.5 resolve any references.
Linker
SPNU118N Linker Section 8.5.4.4 Added the ALIAS statement.
SPNU118N Linker Section 8.4.21 Added modules as a filter for the --mapfile_contents linker option.
SPNU118N Linker Section 8.5.5.2.1 Added an example for placing functions in RAM.
SPNU118M | Object Modules | Section 2.4.4 Added information about the current section and how directives interact with it.
SPNU118M | Object Modules gggt:g: gg an Added information about various types of symbols and about symbol tables.

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023
Submit Document Feedback

ARM Assembly Language Tools 353

v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spnu118m
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

13 TEXAS

INSTRUMENTS
Revision History www.ti.com
Version . . e .
Added Chapter Location Additions / Modifications / Deletions
SPNU11M | ASsembler Section 4.8.6 Added __TI_ ARM_V7M4__ predefined macro name for Cortex-M4.
Description
SPNU118M | Assembler Section 4.10.1 Built-in functions use a prefix of 3.
Description
Section 8.4.2,
SPNU118M Linker Section 8.5.10.7, Added information about referencing linker symbols.
and Section 8.6
SPNU118M Linker Section 8.4.11 Added a list of the linker's predefined macros.
SPNU118M |Linker Section 8.5.5.1 Removed invalid syntax for load and fill properties.
SPNU118M Linker Section 8.11.5 Added the --cinit_hold_wdt linker option.

354 ARM Assembly Language Tools
v20.2.0.LTS

SPNU118Z — SEPTEMBER 1995 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU118
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU118Z&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Object File Format Specifications
	2.2 Executable Object Files
	2.3 Introduction to Sections
	2.3.1 Special Section Names

	2.4 How the Assembler Handles Sections
	2.4.1 Uninitialized Sections
	2.4.2 Initialized Sections
	2.4.3 User-Named Sections
	2.4.4 Current Section
	2.4.5 Section Program Counters
	2.4.6 Subsections
	2.4.7 Using Sections Directives

	2.5 How the Linker Handles Sections
	2.5.1 Combining Input Sections
	2.5.2 Placing Sections

	2.6 Symbols
	2.6.1 Global (External) Symbols
	2.6.2 Local Symbols
	2.6.3 Weak Symbols
	2.6.4 The Symbol Table

	2.7 Symbolic Relocations
	2.8 Loading a Program

	3 Program Loading and Running
	3.1 Loading
	3.1.1 Load and Run Addresses
	3.1.2 Bootstrap Loading
	3.1.2.1 Boot, Load, and Run Addresses
	3.1.2.2 Primary Bootloader
	3.1.2.3 Secondary Bootloader
	3.1.2.4 Boot Table
	3.1.2.5 Bootloader Routine
	Example 3-1. Sample Secondary Bootloader Routine

	3.2 Entry Point
	3.3 Run-Time Initialization
	3.3.1 The _c_int00 Function
	3.3.2 RAM Model vs. ROM Model
	3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)
	3.3.2.2 Initializing Variables at Load Time (--ram_model)
	3.3.2.3 The --rom_model and --ram_model Linker Options

	3.3.3 About Linker-Generated Copy Tables
	3.3.3.1 BINIT
	3.3.3.2 CINIT

	3.4 Arguments to main
	3.5 Run-Time Relocation
	3.6 Additional Information

	4 Assembler Description
	4.1 Assembler Overview
	4.2 The Assembler's Role in the Software Development Flow
	4.3 Invoking the Assembler
	4.4 Controlling Application Binary Interface
	4.5 Naming Alternate Directories for Assembler Input
	4.5.1 Using the --include_path Assembler Option
	4.5.2 Using the TI_ARM_A_DIR Environment Variable

	4.6 Source Statement Format
	4.6.1 Label Field
	4.6.2 Mnemonic Field
	4.6.3 Operand Field
	4.6.3.1 Operand Syntaxes for Instructions
	4.6.3.2 Immediate Values as Operands for Directives

	4.6.4 Comment Field

	4.7 Literal Constants
	4.7.1 Integer Literals
	4.7.1.1 Binary Integer Literals
	4.7.1.2 Octal Integer Literals
	4.7.1.3 Decimal Integer Literals
	4.7.1.4 Hexadecimal Integer Literals
	4.7.1.5 Character Literals

	4.7.2 Character String Literals
	4.7.3 Floating-Point Literals

	4.8 Assembler Symbols
	4.8.1 Identifiers
	4.8.2 Labels
	4.8.3 Local Labels
	Example 4-1. Local Labels of the Form $n

	4.8.4 Symbolic Constants
	4.8.5 Defining Symbolic Constants (--asm_define Option)
	4.8.6 Predefined Symbolic Constants
	4.8.7 Registers
	4.8.8 Substitution Symbols

	4.9 Expressions
	4.9.1 Mathematical and Logical Operators
	4.9.2 Relational Operators and Conditional Expressions
	4.9.3 Well-Defined Expressions
	4.9.4 Relocatable Symbols and Legal Expressions
	4.9.5 Expression Examples

	4.10 Built-in Functions and Operators
	4.10.1 Built-In Math and Trigonometric Functions

	4.11 Unified Assembly Language Syntax Support
	4.12 Source Listings
	4.13 Debugging Assembly Source
	4.14 Cross-Reference Listings

	5 Assembler Directives
	5.1 Directives Summary
	5.2 Directives that Define Sections
	5.3 Directives that Change the Instruction Type
	5.4 Directives that Initialize Values
	5.5 Directives that Perform Alignment and Reserve Space
	5.6 Directives that Format the Output Listings
	5.7 Directives that Reference Other Files
	5.8 Directives that Enable Conditional Assembly
	5.9 Directives that Define Union or Structure Types
	5.10 Directives that Define Enumerated Types
	5.11 Directives that Define Symbols at Assembly Time
	5.12 Miscellaneous Directives
	5.13 Directives Reference

	6 Macro Language Description
	6.1 Using Macros
	6.2 Defining Macros
	6.3 Macro Parameters/Substitution Symbols
	6.3.1 Directives That Define Substitution Symbols
	6.3.2 Built-In Substitution Symbol Functions
	6.3.3 Recursive Substitution Symbols
	6.3.4 Forced Substitution
	6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	6.3.6 Substitution Symbols as Local Variables in Macros

	6.4 Macro Libraries
	6.5 Using Conditional Assembly in Macros
	6.6 Using Labels in Macros
	6.7 Producing Messages in Macros
	6.8 Using Directives to Format the Output Listing
	6.9 Using Recursive and Nested Macros
	6.10 Macro Directives Summary

	7 Archiver Description
	7.1 Archiver Overview
	7.2 The Archiver's Role in the Software Development Flow
	7.3 Invoking the Archiver
	7.4 Archiver Examples
	7.5 Library Information Archiver Description
	7.5.1 Invoking the Library Information Archiver
	7.5.2 Library Information Archiver Example
	7.5.3 Listing the Contents of an Index Library
	7.5.4 Requirements

	8 Linker Description
	8.1 Linker Overview
	8.2 The Linker's Role in the Software Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Wildcards in File, Section, and Symbol Patterns
	8.4.2 Specifying C/C++ Symbols with Linker Options
	8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)
	8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)
	8.4.3.2 Producing a Relocatable Output Module (--relocatable option)

	8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	8.4.5 Changing Encoding of Big-Endian Instructions
	8.4.6 Compression (--cinit_compression and --copy_compression Option)
	8.4.7 Compress DWARF Information (--compress_dwarf Option)
	8.4.8 Control Linker Diagnostics
	8.4.9 Automatic Library Selection (--disable_auto_rts Option)
	8.4.10 Do Not Remove Unused Sections (--unused_section_elimination Option)
	8.4.11 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
	8.4.12 Error Correcting Code Testing (--ecc Options)
	8.4.13 Define an Entry Point (--entry_point Option)
	8.4.14 Set Default Fill Value (--fill_value Option)
	8.4.15 Generate List of Dead Functions (--generate_dead_funcs_list Option)
	8.4.16 Define Heap Size (--heap_size Option)
	8.4.17 Hiding Symbols
	8.4.18 Alter the Library Search Algorithm (--library, --search_path, and TI_ARM_C_DIR)
	8.4.18.1 Name an Alternate Library Directory (--search_path Option)
	8.4.18.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)
	8.4.18.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	8.4.19 Change Symbol Localization
	8.4.19.1 Make All Global Symbols Static (--make_static Option)

	8.4.20 Create a Map File (--map_file Option)
	8.4.21 Managing Map File Contents (--mapfile_contents Option)
	8.4.22 Disable Name Demangling (--no_demangle)
	8.4.23 Disable Merging of Symbolic Debugging Information (--no_sym_merge Option)
	8.4.24 Strip Symbolic Information (--no_symtable Option)
	8.4.25 Name an Output Module (--output_file Option)
	8.4.26 Prioritizing Function Placement (--preferred_order Option)
	8.4.27 C Language Options (--ram_model and --rom_model Options)
	8.4.28 Retain Discarded Sections (--retain Option)
	8.4.29 Create an Absolute Listing File (--run_abs Option)
	8.4.30 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	8.4.31 Define Stack Size (--stack_size Option)
	8.4.32 Mapping of Symbols (--symbol_map Option)
	8.4.33 Generate Far Call Trampolines (--trampolines Option)
	8.4.33.1 Advantages and Disadvantages of Using Trampolines
	8.4.33.2 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
	8.4.33.3 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)
	8.4.33.4 Carrying Trampolines From Load Space to Run Space

	8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)
	8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections)
	8.4.36 Generate XML Link Information File (--xml_link_info Option)
	8.4.37 Zero Initialization (--zero_init Option)

	8.5 Linker Command Files
	8.5.1 Reserved Names in Linker Command Files
	8.5.2 Constants in Linker Command Files
	8.5.3 Accessing Files and Libraries from a Linker Command File
	8.5.4 The MEMORY Directive
	8.5.4.1 Default Memory Model
	8.5.4.2 MEMORY Directive Syntax
	8.5.4.3 Expressions and Address Operators
	8.5.4.4 The ALIAS Statement

	8.5.5 The SECTIONS Directive
	8.5.5.1 SECTIONS Directive Syntax
	8.5.5.2 Section Allocation and Placement
	8.5.5.2.1 Example: Placing Functions in RAM
	8.5.5.2.2 Binding
	8.5.5.2.3 Named Memory
	8.5.5.2.4 Controlling Placement Using The HIGH Location Specifier
	Example 8-1. Linker Placement With the HIGH Specifier
	Example 8-2. Linker Placement Without HIGH Specifier

	8.5.5.2.5 Alignment and Blocking
	8.5.5.2.6 Alignment With Padding

	8.5.5.3 Specifying Input Sections
	Example 8-3. The Most Common Method of Specifying Section Contents

	8.5.5.4 Using Multi-Level Subsections
	8.5.5.5 Specifying Library or Archive Members as Input to Output Sections
	Example 8-4. Archive Members to Output Sections

	8.5.5.6 Allocation Using Multiple Memory Ranges
	8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.5.6 Placing a Section at Different Load and Run Addresses
	8.5.6.1 Specifying Load and Run Addresses
	8.5.6.2 Referring to the Load Address by Using the .label Directive

	8.5.7 Using GROUP and UNION Statements
	8.5.7.1 Grouping Output Sections Together
	8.5.7.2 Overlaying Sections With the UNION Statement
	8.5.7.3 Using Memory for Multiple Purposes
	8.5.7.4 Nesting UNIONs and GROUPs
	8.5.7.5 Checking the Consistency of Allocators
	8.5.7.6 Naming UNIONs and GROUPs

	8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
	8.5.9 Configuring Error Correcting Code (ECC) with the Linker
	8.5.9.1 Using the ECC Specifier in the Memory Map
	8.5.9.2 Using the ECC Directive
	8.5.9.3 Using the VFILL Specifier in the Memory Map

	8.5.10 Assigning Symbols at Link Time
	8.5.10.1 Syntax of Assignment Statements
	8.5.10.2 Assigning the SPC to a Symbol
	8.5.10.3 Assignment Expressions
	8.5.10.4 Symbols Automatically Defined by the Linker
	8.5.10.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
	8.5.10.6 Why the Dot Operator Does Not Always Work
	8.5.10.7 Address and Dimension Operators
	8.5.10.7.1 Input Items
	8.5.10.7.2 Output Section
	8.5.10.7.3 GROUPs
	8.5.10.7.4 UNIONs

	8.5.10.8 LAST Operator

	8.5.11 Creating and Filling Holes
	8.5.11.1 Initialized and Uninitialized Sections
	8.5.11.2 Creating Holes
	8.5.11.3 Filling Holes
	8.5.11.4 Explicit Initialization of Uninitialized Sections

	8.6 Linker Symbols
	8.6.1 Linker-Defined Functions and Arrays
	8.6.2 Linker-Defined Integer Values
	8.6.3 Linker-Defined Addresses
	8.6.4 More About the _symval Operator
	8.6.5 Weak Symbols
	8.6.5.1 Weak Symbol References
	8.6.5.2 Weak Symbol Definitions

	8.6.6 Resolving Symbols with Object Libraries

	8.7 Default Placement Algorithm
	8.7.1 How the Allocation Algorithm Creates Output Sections
	8.7.2 Reducing Memory Fragmentation

	8.8 Using Linker-Generated Copy Tables
	8.8.1 Using Copy Tables for Boot Loading
	8.8.2 Using Built-in Link Operators in Copy Tables
	8.8.3 Overlay Management Example
	8.8.4 Generating Copy Tables With the table() Operator
	8.8.4.1 The table() Operator
	8.8.4.2 Boot-Time Copy Tables
	8.8.4.3 Using the table() Operator to Manage Object Components
	8.8.4.4 Linker-Generated Copy Table Sections and Symbols
	8.8.4.5 Splitting Object Components and Overlay Management

	8.8.5 Compression
	8.8.5.1 Compressed Copy Table Format
	8.8.5.2 Compressed Section Representation in the Object File
	8.8.5.3 Compressed Data Layout
	8.8.5.4 Run-Time Decompression
	8.8.5.5 Compression Algorithms

	8.8.6 Copy Table Contents
	8.8.7 General Purpose Copy Routine

	8.9 Linker-Generated CRC Tables
	8.9.1 Using the crc_table() Operator in the SECTIONS Directive
	8.9.1.1 Restrictions when using the crc_table() Operator
	8.9.1.2 Examples
	Example 8-5. Using crc_table() Operator to Compute the CRC Value for .text Data
	Example 8-6. Specifying an Algorithm in the crc_table() Operator
	Example 8-7. Using a Single Table for Multiple Sections
	Example 8-8. Applying the crc_table() Operator to a GROUP or UNION

	8.9.1.3 Interface When Using the crc_table() Operator
	Example 8-9. The CRC Table Header, crc_tbl.h
	Example 8-10. General Purpose CRC Check Routine

	8.9.2 A Note on the TMS570_CRC64_ISO Algorithm

	8.10 Partial (Incremental) Linking
	8.11 Linking C/C++ Code
	8.11.1 Run-Time Initialization
	8.11.2 Object Libraries and Run-Time Support
	8.11.3 Setting the Size of the Stack and Heap Sections
	8.11.4 Initializing and AutoInitialzing Variables at Run Time
	8.11.5 Initialization of Cinit and Watchdog Timer Hold

	8.12 Linker Example

	9 Absolute Lister Description
	9.1 Producing an Absolute Listing
	9.2 Invoking the Absolute Lister
	9.3 Absolute Lister Example

	10 Cross-Reference Lister Description
	10.1 Producing a Cross-Reference Listing
	10.2 Invoking the Cross-Reference Lister
	10.3 Cross-Reference Listing Example

	11 Object File Utilities
	11.1 Invoking the Object File Display Utility
	11.2 Invoking the Disassembler
	Example 11-1. Object File memcpy32.asm
	Example 11-2. Disassembly From memcpy32.asm
	Example 11-3. Partial Copy Record Output With Different Load and Run Address

	11.3 Invoking the Name Utility
	11.4 Invoking the Strip Utility

	12 Hex Conversion Utility Description
	12.1 The Hex Conversion Utility's Role in the Software Development Flow
	12.2 Invoking the Hex Conversion Utility
	12.2.1 Invoking the Hex Conversion Utility From the Command Line
	12.2.2 Invoking the Hex Conversion Utility With a Command File

	12.3 Understanding Memory Widths
	12.3.1 Target Width
	12.3.2 Specifying the Memory Width
	12.3.3 Partitioning Data Into Output Files

	12.4 The ROMS Directive
	12.4.1 When to Use the ROMS Directive
	12.4.2 An Example of the ROMS Directive

	12.5 The SECTIONS Directive
	12.6 The Load Image Format (--load_image Option)
	12.6.1 Load Image Section Formation
	12.6.2 Load Image Characteristics

	12.7 Excluding a Specified Section
	12.8 Assigning Output Filenames
	12.9 Image Mode and the --fill Option
	12.9.1 Generating a Memory Image
	12.9.2 Specifying a Fill Value
	12.9.3 Steps to Follow in Using Image Mode

	12.10 Array Output Format
	12.11 Building a Table for an On-Chip Boot Loader
	12.11.1 Description of the Boot Table
	12.11.2 The Boot Table Format
	12.11.3 How to Build the Boot Table
	12.11.3.1 Building the Boot Table
	12.11.3.2 Leaving Room for the Boot Table

	12.11.4 Booting From a Device Peripheral
	12.11.5 Setting the Entry Point for the Boot Table
	12.11.6 Using the ARM Boot Loader
	Example 12-1. Sample Command File for Booting From 8-Bit SPI Boot
	Example 12-2. Sample Command File for ARM 16-Bit Parallel Boot GP I/O

	12.12 Using Secure Flash Boot on TMS320F2838x Devices
	12.13 Controlling the ROM Device Address
	12.14 Control Hex Conversion Utility Diagnostics
	12.15 Description of the Object Formats
	12.15.1 ASCII-Hex Object Format (--ascii Option)
	12.15.2 Intel MCS-86 Object Format (--intel Option)
	12.15.3 Motorola Exorciser Object Format (--motorola Option)
	12.15.4 Extended Tektronix Object Format (--tektronix Option)
	12.15.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	12.15.6 TI-TXT Hex Format (--ti_txt Option)
	Example 12-3. TI-TXT Object Format

	13 Sharing C/C++ Header Files With Assembly Source
	13.1 Overview of the .cdecls Directive
	13.2 Notes on C/C++ Conversions
	13.2.1 Comments
	13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	13.2.3 Pragmas
	13.2.4 The #error and #warning Directives
	13.2.5 Predefined symbol __ASM_HEADER__
	13.2.6 Usage Within C/C++ asm() Statements
	13.2.7 The #include Directive
	13.2.8 Conversion of #define Macros
	13.2.9 The #undef Directive
	13.2.10 Enumerations
	13.2.11 C Strings
	13.2.12 C/C++ Built-In Functions
	13.2.13 Structures and Unions
	13.2.14 Function/Variable Prototypes
	13.2.15 C Constant Suffixes
	13.2.16 Basic C/C++ Types

	13.3 Notes on C++ Specific Conversions
	13.3.1 Name Mangling
	13.3.2 Derived Classes
	13.3.3 Templates
	13.3.4 Virtual Functions

	13.4 Special Assembler Support
	13.4.1 Enumerations (.enum/.emember/.endenum)
	13.4.2 The .define Directive
	13.4.3 The .undefine/.unasg Directives
	13.4.4 The $$defined() Built-In Function
	13.4.5 The $$sizeof Built-In Function
	13.4.6 Structure/Union Alignment and $$alignof()
	13.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Far Call Trampoline List
	B.2.7 Symbol Table

	C Hex Conversion Utility Examples
	C.1 Scenario 1 -- Building a Hex Conversion Command File for a Single 8-Bit EPROM
	Example C-1. Linker Command File and Link Map for Scenario 1
	Example C-2. Hex Conversion Command File for Scenario 1
	Example C-3. Contents of Hex Map File example1.mxp

	C.2 Scenario 2 -- Building a Hex Conversion Command File for 16-BIS Code
	Example C-4. Linker Command File for Scenario 2
	Example C-5. Hex Conversion Command File for Scenario 2
	Example C-6. Contents of Hex Map File example2.mxp

	C.3 Scenario 3 -- Building a Hex Conversion Command File for Two 8-Bit EPROMs
	Example C-7. Linker Command File for Scenario 3
	Example C-8. Hex Conversion Command File for Scenario 3
	Example C-9. Contents of Hex Map File example3.mxp

	D Glossary
	D.1 Terminology

	E Revision History

