ARM Optimizing C/C++ Compiler
v20.2.0.LTS

User’s Guide

Wi} TEXAS INSTRUMENTS

Literature Number: SPNU151W
JANUARY 1998 — REVISED MARCH 2023

https://www.ti.com/lit/pdf/SPNU151

Table of Contents

i3 TEXAS INSTRUMENTS

REAA This FirSt..... ... oottt ettt e oo ettt e oo 4 a bttt e e oo s h e et e e e e aab et e e e e et b et e e e e eabneeeeeeenaneneeeas 9
F Y oJo U A N T3V =T o U= PP POPP SRR 9
[N Lo e L[Ta T T I @0 a1V =T o1 (o] =SSR SPRR 9
Related DOCUMENTALION. ... ettt e e et e e e oo bttt e oo e ettt e e e e saa b e et e e e aaabbee e e e e e annneeeeeesnnee 10
Related Documentation From Texas INSIIUMENTS..........oooi e 10
JLILEZ e (10 0= T G PP P PP PRPP PP 11

1 Introduction to the Software Development TOOIS................ooiiiiiiiiiiie e e e s e e e e e e saraeee s 13
1.1 Software DevelopmeENt TOOIS OVEIVIEW............uiiiei it ettt e e et e e e e et e e e e e st e e e e e sasbaaeaeeesnsseeeeeesssseeeessasseeeaesaanes 14
LI O70) g] o111 il [0] (=T = LotV PSSO USURPPPPRTON 15
LRSI A S 1 IS T @ T =T Vo F= T o ST 15
L O U { o1V | 1= ORPPUPTN 16
ST 1T OSSPSR 16

2 USING the C/CH+ COMPIIET..........oooiiiii ettt e e e e et e e e e s e st et e e e e easaaeeaeeeasnsseeaeesasbaeeaeesasssseeaeesnnsrneeas 17
D Y o Yo 10 & £ TN 00 4o o1 L= OSSPSR 18
2.2 INVOKING the C/CH+ COMPIIET.......eeiiiiiiieiee ettt e e e e et e e e e e e et a e e e e e aasbeaeeeeeassaeeeeeesssaeeaeesassaseeaeeannnrneaeaans 18
2.3 Changing the Compiler's Behavior With OptioNS..........cc.uuiiiiiiiiii et e e e e e e e earaeea s 19

D Tt B 101 =T @ o) (oY - TSSO PPRRRON 25
2.3.2 Frequently USEd OPtiONS.uiiiiiiiiiiii ettt ettt e e e e ettt e e e e st e e e e e e s staaeeaeeasassaeeaeesansbaeeaeeeasneeeaeeeantreeeas 27
2.3.3 Miscellan@ous USETUI OPtIONS..........uiiiiiiiiiiiii ettt e e e e et e e e e et e e e e e e saataeeeeeessbaseeeesesseeeeeeeasnsseeaenanns 28
2.3.4 RUN-TIME MOAEI OPIIONS......ciiiiiiiiee ettt e et e e e e et e e e e e eeaae et e e e e e sataeeee e s ntaeeeaeseasssseeaesesnnseneaeseesnnees 29
2.3.5 Symbolic Debugging and Profiling OptioNS.............uiiiiiiiiiiee et e e e e e e e e re e e e e e arreea e e 31
2.3.6 SPECITYING FIlENAIMES.oeiii ittt ettt e e e e et e e e e e et et e eeeeeaataeeeeeeasbeeeaaeeasssaeeaeessntanseaesansnrees 31
2.3.7 Changing How the Compiler Interprets FIlENamMES..........ooouiiiiiii it e e 32
2.3.8 Changing How the Compiler ProCeSSES C FlES.......cciiuiiiiii ettt e e e e e e e e e ennae e e e e sannes 32
2.3.9 Changing How the Compiler Interprets and Names EXtENSIONS.ccoiiuiiiiiiiiiiiiii e 32
2.3.10 SPECITYING DIFBCIOMIES.....ccci e e ettt e et e e e e ettt e e e e ettt e e e e e abeeeee e s stsaeeaesaassseeeeeesansbeseeessanssaseeeseannsseeeas 33
b Tt N1 00T o = @ o) i o] o T TSP SPTPRR 33
2.3.12 DEPreCated OPtiONS..........uviiiieiiiiiie et e et e e e ettt e e e e e et e e e e e eeaba et eae e e s a—aeeaeeaaatbeeeeeeaataaeeaeeaannneeaeeeaannreeaeeeaanres 34
2.4 Controlling the Compiler Through Environment Variables...............cccuiiiiiiiiiiiii et 34
2.4.1 Setting Default Compiler Options (TI_ARM_C_OPTION)......coitiiiiiiiiiite ettt 34
2.4.2 Naming One or More Alternate Directories (TI_ARM_C_DIR).....c.utiiiiiiiiiieiie et 35
2.5 CONIIOIlING e PrEPIrOCESSO eieiieeeeeeteeee e et e e ettt e e e e ettt e e e e e et a et eee s e s aeeeeeeeasssseeaeeasassaeeeeesansasaeaesaanssseeaesannnsnneaaeaan 35
2.5.1 Predefin@d MaACTO NAMES.ottt ettt ettt s e e ettt e e an et e en st e e e bt e e e anteeesaseeeebeeeeanteeesnneeeensneeeanee 35
2.5.2 The Search Path fOr #HNCIUAE FilES...........ooiuiiiiii ettt sete e e st e e st e e e snneeas 39
2.5.3 Support for the #warning and #Warn DIF€CHVES.ccuuuiiiiii et e e e e a e e e e aaeeaeeseanees 40
2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)..........ccooiiiiiiiiiieiiiie e 40
2.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)...........ccceviiiiiiiiiiiie e 41
2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)...........ccccceviieeeinennnnne. 41
2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)...........ccccoceiviiiiinenneen. 41
2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)...........ccccoevieeriieeiiieeenieeenne 41
2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)............ccceiiiiiniiie e 41
2.5.10 Generating a List of Macros in a File (--preproc_macros OPtioN)...........c.ceiiiiiiiiiieeiiiee e 41
2.6 Passing Arguments 0 MAIN()......ceeiuueeeiiiie et et ettt et e e ettt e e sttt e s ate e e e asbe e e s seeeeaae e e e aabeeeaneeeeanneeeabeeeeanteeesnneeeeanneeean 41
2.7 Understanding DiagnNOStiC MESSAQES.uuuuuuuiiiiiiiiiiieieeeeee et e e ettt e eeeeteeaaaaaaaaeeeaeaeaasaaasasssssentssaseeeeneeaaaaaaeaeens 42
2.7.1 Controlling DiagnOStiC MESSAGES.uuiiiiiiiiiieieeiii et e ettt e e e e ettt e e e e e et e et e e e sataeeeaeeaasssaeaaeeaassaeeaeeesnstaeeeeesansssneaasaanes 43
2.7.2 How You Can Use Diagnostic SUPPression OPtioNS.uuiiiiiiiiiiiie ettt a e e et e e e e s esaaeaae s 44
2.8 OthEr IMESSAQES.ceueitieiee ettt ettt e ettt e e e e ettt e e e e e s ataeeeeesesbeeeeaeeassseeeeeesatseeeeesasssaeeeeeasasseeeeeesansaseeaeeeannsaeeaeeaanre 45
2.9 Generating Cross-Reference Listing Information (--gen_cross_reference_listing Option)..........ccooccveiiieeenieieniiee e, 45
2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)..........ccoiiiiiriiiiiiiee e 46
2.11 Using INliN€ FUNCHON EXPANSION......ciiiiiiiiiiiii oottt e et e e e e e e e e e e ee e e e e e e e s sasatsbebaeeeeeeeeeeaaaaaaeaeeeesessnanaannn 47
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 3
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
2.11.1 INliNING INEANSIC OPEIATOIS.eiiiiitiie ettt e et e sa b et e e b bt e e e abe e e s bt e e e sab e e e eabeeesneeaennneeean 48
2.11.2 INlNING RESIICHONS. ...ttt ettt ettt e e et e e sttt o1 bt e e eab bt e e eae e e e sabe e e e bbe e e naneeesneee s 48
2,12 USING INEEITIST. ..ottt h e et o ket oo h bt e e ekt e o sttt e ea b et e ek bt e e ant et e et e e e b e e e et e e nnneas 49
2.13 Controlling Application Binary INTEITACE.oiiiiiiii ettt e e s b e e 49
B YA S U o o] USRS 50
2.15 Enabling Entry Hook and Exit HOOK FUNCHONS.oiiiiiiii e 51
3 OPLIMIZING YOUE COUE.......c.iiiiiiiiiiit ettt ettt bt e e ettt e e bt e e e eh bt e e ea b et e e bt e e e sab e e e e be e e enbe e e saneeeeasreenanee 53
3.1 INVOKING OPHIMIZATION.coiitiiiiii ettt a e oottt e bttt oo ettt e e bt e e sttt e sabe e e e b bt e e ant e e e nneeeennneeeas 54
3.2 Controlling Code SiZe VEISUS SPEEA.........ooiiiiiiiiiii ittt h et et e e s e e et e e sne e e e aa b e e e etne e e ennees 55
3.3 Performing File-Level Optimization (-~Opt_IeVel=3 OPtiON)......cccuuiiiiii e 55
3.3.1 Creating an Optimization Information File (--gen_opt_info Option)...........cooriiiiiiiiiiiiie e 55
3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)............ccoeciiiiieiiiiiiiniceeeieeee 56
3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)............ccoiiiiiiiiiiiiieerie e 56
3.4.2 Optimization Considerations When Mixing C/C++ and ASSEMDIY.........cooiiiiiiiiiiiii e 57
3.5 Automatic Inline Expansion (--auto_inliNg OPON).........coiuiiiiiiiiiee e 58
3.6 Link-Time Optimization (--Opt_lEeVeI=4 OPLON)........coiiiiiiie et snee e s 59
R ST IO o] [T o F=T g o 110 To TR PP PRPTPR 59
3.6.2 INCOMPATIDIE TYPES. ..ttt bt a et e bt e e b et eea bt e e e bt e e e ek bt e e eab et e e bt e e e eh bt e e et et e nnr e e e naneeean 59
3.7 Using Feedback Directed OPtiMIZAtioN...........ooiiiiiiiiiiii ettt e e et sne e nnnee s 60
3.7.1 Feedback Directed OptimiIZation.............coiiiiiiiii ettt ettt e e sb e et e e ene e e snee e e e e 60
3.7.2 Profile DAt@ DECOET.........cciuiiiiitie ettt ettt ettt h e ettt o bt e e b bt e e ea b et e e bt e e e ek bt e e et et e eb et e e a e e e et e 62
3.7.3 Feedback Directed Optimization APL.........oo ittt rbb et e e 62
3.7.4 Feedback Directed Optimization SUMMATY..........ooiiiiiiiiiieiiee ettt st e st e e enn e e e aabee e 62
3.8 Using Profile Information to Analyze COde COVEIAgE.couuiiiiiiiiiiiie ittt sttt sttt e nnnee s 63
KR T B 0o To [@70 V=T =T [T SO PROTPIN 63
3.8.2 Related Features and Capabilii©S.cuiuiiiiiiie ettt et e e 64
3.9 Accessing Aliased Variables in OptiMiZed COGE..........uuiiiiiiiiiii ittt s 65
3.10 Use Caution With asm Statements in Optimized COde..........c.oiiiiiiiiiie e 65
3.11 Using the Interlist Feature With OptimizZation.............cooiiiiiiiii e 65
3.12 Debugging and Profiling OptimiZed COTE.........ccuuiiiiiiiiiiiie et e et enneas 66
3.12.1 Profiling OPtIMIZEA COUE........coiiiiiiiiiii ittt e bt e a e e e s bt e e ettt e e aabe e e sabe e e enbe e e nnneas 66
3.13 What Kind of Optimization Is Being Performed™?.............oi it 67
3.13.1 Cost-Based Register AlIOCALION.ii i ittt et e e e e s eenr e e naneas 67
3.13.2 AlIas DiSAMIDIGUALION. ...ttt e ettt ekt e e ea bt e e st et e e et e e e e abe e e e be e e e n et e nne e e nnnee s 67
3.13.3 Branch Optimizations and Control-FIow SimplifiCcation..............cooiiiiiiiiiii e 67
3.13.4 Data FIOW OPHMIZAtIONS.cooiuiiiiiiiie ettt ettt e e be e e e st e e sbe e e e ebb e e e st et e nnneeennneeeas 68
3.13.5 EXPression SimpPlfiCatioN............ooiiiiii et 68
3.13.6 Inline EXpanSion Of FUNCHONS.oiii et ettt et e e ettt e e neneeeas 68
3.13.7 FUNCHON SYMDOI ATIGSING.....ceiittiiiiteie ittt bt e e ettt sb et e e bt e ettt e sbe e e e aab e e e ete e e snneas 68
3.13.8 Induction Variables and Strength REAUCHION............cooiiiiiiii e 69
3.13.9 LoOP-INvariant Code IMOTION.oi ittt e ettt sb e ea et e ettt e s be e e e sab e e e etn e e s neeas 69

R I T [0 o) o) o] t= 1 [o o FH PSPPSR 69
3.13.11 INSIrUCHON SCREAUING. ...cee ittt h ettt e ea e e et e s b et e e eh b e e e et et e e nee e e aab e e e eneeeeennes 69

B R T 7 - 1V 1T ' 11T PP PP RR PP 69
3.13.13 AULOINCIEMENT AQUAIESSING. ... ee ettt ettt e st e e s bt e e e kbt e e eab et e sbe e e e asb e e e eneeesbneeeaabeeenas 69

B I T 3 = o Tt QL @ g To 117] o F=1 4 1o To 1 TP PP PPPUPPPPURI 70

B R T Lo = o] (oo I 1o o Tl o TS PSPPSRI 70
3.13.16 RemMOoViNG COMPATSONS 10 ZEIO.......ciiiuiiiiiiiee ettt ettt ettt e st e et e s s bt e e sa bt e e ebb e e s sne e e s b e e e eneeesnneas 70
3.13.17 Integer Division With CONSIANT DIVISOT.........cciiiiiiiiiie ettt et e e eas 70

R B T I = =g Tt @7 o =Tl 1o o PO U SRR 71

N I (1Yo 0T 0 0o T I T PRSP OUPPPTPROE 73
4.1 Invoking the Linker Through the Compiler (=Z OPLiION)........cocuiiiiiiiiii e 74
4.1.1 INVOKING the LINKEr SEP@Arately........cooiuiiiiiiii ittt ettt e e bt e st e e nne e e s baeeeaee 74
4.1.2 Invoking the Linker as Part of the Compile STEP.........uiiiiiiiii e e 75
4.1.3 Disabling the Linker (--compile_only Compiler OPiON)..........coouiiiiiiiiiii e 75
4.2 LiNKEr COdE OPtMIZATIONS.eiiiiiiiieiitie ettt ettt ettt e bt e e ettt oo b et e e e b bt e e ea b et e e st e e e ea bt e e eabeeeenbeeesabeeeebbeennee 76
4.2.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)..........ccooiiiiiiiiiiiieeiii e 76
4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)............ccoccvvineiiiiieciiiieeenene 76
4.3 Controlling the LINKING PrOCESS.ciiiiiii ittt et ettt eaab et sbe e e et bt e e eabe e e snaeeeanbeeeaaes 77
4.3.1 Including the RUN-TiMeE-SUPPOIT LIDIaIY........ooo ittt st et sne e e e e 77
4.3.2 RUN-TIME INIGIAIZATION.eeiiiee ettt et a et e st et e e bt e e e sab e e e e bb e e snb e e e saneeeebneenan 78
4 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
4.3.3 Initialization of Cinit and Watchdog Timer HOIG.ooiiiiiiii e 78
RS R M €1lo]o T 1@ o] [=Tot 07014 51 1 (U (o] 4= T PSP PRTPPP 78
4.3.5 Specifying the Type of Global Variable INitialization.................oooii e 78
4.3.6 Specifying Where to Allocate SeCtioNS iN IMEMOTY.........oouiiiiiiii ittt 79
4.3.7 A Sample Linker CoOmMMEaNGd File.......cooouuiiiiiiiiiieeee ettt ettt e b e et e e sne e e e nbneeeanee 80
5 C/C++ Language IMpPlementation................oooiiiiiiiiiii et 81
5.1 CharacteriStiCS Of ARIM C......... ittt h e oot s bt e e ah b et oottt e e ae et e sab et e es et e e eab e e e eabe e e enb e e e saneeesanneeeas 82
5.1.1 Implementation-DefiNe@d BENAVIOTuiii ittt e e e e et e e 83
5.2 CharacteriStiCS Of ARM G ittt e bt o bt e e e a bt e e et et e e st e e e sa bt e e e b bt e e eabe e e sabe e e enteeenaneas 87
5.3 USING MISRA € 2004 ... ettt sttt ettt e et e e ae e e bt e saeeea bt e aa et aabeese bt e abeeee b e e ebeeemteesb e e embeeeaeeenbeeamseebeeanteenneeents 88
5.4 USING the ULP AGQVISOT......coitiiiiiiiie ittt ettt ekt e e sttt o1 bt e e e b e e e e at et e e bt e e e s b e e e aabe e e eane e e e aabe e e eatneeennneas 89
LRI D - L=)Y/ o 1= T TSP PPP PSR RUPRPI 90
5.5.1 SIZE OF ENUM TYPES...c ittt h e a e oottt e o bt e e aa bt e e o bt e e ek bt e e eab et e ebe e e e ebb e e e eabe e e nnteeenaneeean 91
5.6 File ENcodings and CharacCter SEtS..........c..euiiiiiiiiiiiiii ettt ettt e e it e st e e s b e e e nne e e nanees 92
LI Ao o T O PRSPPI 92
5.7.1 THE CONST KEYWOIU. ...tttk ettt e bt e e sttt o1 b et e ek bt e e sttt e sa b et e es bt e e eat e e e sabe e e enbe e e naneas 92
5.7.2 The __iNterrUPt KEYWOIT.eiiiiiiiiie ettt b et e ettt s bt e e e b et e ettt e s bt e e e aab e e e e te e e nneeas 93
5.7.3 The VOIATIE KEYWOIT.oiiiiiii ittt ettt e bt e e et e e e e b et e oo b bt e ettt e e be e e e ea bt e e e bneesne s 94
5.8 CH+ EXCEPLON HANAIING. ... eiiiiiiii ettt a e e e bt e e sttt e s et e et bt e e ent et e s b e e e e aab e e e st eeenneeas 95
5.9 Register Variables and Parameters.o it 95
5.9.1 Local Register Variables and Parameters.............oooiiiiiiiiiiiiie ettt 95
5.9.2 Global ReGISEr Vari@bIEsS..........cooiiiiiiiiieiiee ettt e bbbt e s bt e e e bt e sbe e e s snneeeaabeeenan 96
5.10 The @S STAIEMIENT.ttt h e e oo bt e bttt oo a bt e e ek et e e sttt e sab e e e e b bt e e anbe e e saneeeenaneeean 97
5,11 Pragma DIFECHIVES. ...ttt ettt h e oot e bttt eh et e e et et e o bt e e o1k bt e e et et e en bt e e e ab et e et e e e et e nanee s 98
5.11.1 THE CALLS Pragmia.....coo oottt sttt ekttt oo a et e 4 sttt e e b bt e e ea bt e e o b et e est et e ease e e aabe e e enbeeesabeeeabneenans 99
5.11.2 The CHECK_IMISRA PragMa.......cciuieiuie ettt eiee st stee sttt stee s et esteesateasteessteesseeasbeesteeamseesteeanseesseeanteeaneeanbeesnseenseens 99
5.11.3 The CHECK _ULP Pragma........ccoo ittt ettt sttt sttt et e bttt e sete e beeenee e beeemteebeeambeesneeanbeesneeenneenens 99
5.11.4 The CODE_SECTION Pragma.......cccoeouii ittt ettt stee st s e sateesteeaseesteeanteesaeeanbeeaneeanseesnseaaseesnbeesseesnseesens 100
5.11.5 The CODE_STATE PragMa. ... iecteeiieeitieaieeitieateeseeatee et ateesateessesasteesteeabeesseeeseeaaseesbeeanseesseeanseesneeensessneeansensns 100
5.11.6 The DATA_ALIGN PragMal.......cc.oiiiieieeiiieriie et steeetee st e teestee e teeasee e besssteasseeambeesseeanbeessseanseesaseeabeesnseesbeeanseenseean 101
5.11.7 The DATA_SECTION Pragma......cciuieiee ettt siee et ettt teesaee bt e sseeanbeessteasaeesabeeaseesaseesbeeanseesbeeanseenneeanseesneeennes 101
5.11.8 The DiagnostiC MESSAQGE PragMas.cciiuiiiiiiiiiiiie ettt sttt et et e e e e et et e s ae e e sab e e e eteeesnees 102
5.11.9 The DUAL_STATE Pragima......cccuee ettt eitee ettt sttt sttt et esteesabee st eeambeesteeanteesaeeenbeeameeanbeeameeenneesnteenneesnnes 102
5.11.10 The FORCEINLINE PragMa........c.ccicuteitieiiiaiteeiitestie sttt e steeateesteeamteessesanteeaaeeanbeesseeanseesaseanseesnseesseesnseesseeansessnenan 103
5.11.11 The FORCEINLINE_RECURSIVE Pragma.........cccciutiiiiiiieiieiieesiie st stee sttt steessee e beeaseesneeanseesneesnneas 103
5.11.12 The FUNC_ALWAYS_INLINE PragmMa.........cccuteiieiiieitieeieentie st site st e seee st sieeesseesateesteesnteesteeanseesaeeanseesneeennens 104
5.11.13 The FUNC_CANNOT _INLINE Pragma.......cccoeiitiieeitieaiiesiie et see et sttt ettt teesaeeesteesnteesaeesneeesneesnbeesneesnneeses 104
5.11.14 The FUNC_EXT_CALLED Pragma.......ccceeouteiiieiieiitesiie et stee et e stee et esieeabeesaeeesseessbeesaeesnseesseeaseessseesseesnseesses 105
5.11.15 The FUNCTION_OPTIONS PragiMa........ccceutiitieiieaiteeaieenteeateesieeaseesieeaseessseesseesaseessesanseassessseessesssessseansesses 105
5.11.16 The INTERRUPT PragMa.......cccoiiiiieeiieiieeeie et siee et sttt stee sttt steessteesteeamteeabeeanseeaseeanbeesseeenbeesseeenseesseeenseesnneans 106
5.11.17 The LOCATION Pragma.......ccuioieiiiieitie ittt stee ettt e stee e beesaee e bt e sateeabeessbeambeesebeeseesaeeesbeeeneeebeeanseenneeanee 107
5.11.18 The MUST _ITERATE Pragma........cuoeiieiiiaiieiit e siie et stee ettt st e saee s beesseesabeeseeeanbeesbeeaseesaeeebeeaneeebeeanseeseeanne 107
5.11.19 The NOINIT and PERSISTENT Pragmas..........ccuueiuteiueeiieaieesiitasieeseeesteeseeessesseeessesssseesseesnseessesansessssesnseessneans 109
5.11.20 The NOINLINE PragMal.......ccceiceeiieeiieaieatee st estee st esteeaseeesteeaseesseeabeaasseabeeaaseeaseesnbeesaeeanseessseeseesnseesseesnseessns 110
5.11.21 The NO_HOOKS PragMa....c.eeeiiieiieetieaieeitieatee sttt etee sttt estee bt e steesateesteeabeesteeateesase e beeamseaseeanbeeaneesnbeesaeeenseesens 110
5.11.22 THE ONCE PragIMa.eiiiiiiiiiiiie ettt eh et ea et e o bt e e sttt e ea bt e e et et e e at e e e s e be e e e bb e e eanneeesane s 111
T I B I g L= o= Lo [e = o 44 F= T SO PP UU PP OPPRP PR 111
5.11.24 The PROB_ITERATE Pragma........cuooiiiiiiaiie it stee ettt ettt sttt et setesabeeseaeambeessaeateesaeeesbeesnseenbeeanteeneeanee 112
5.11.25 The RESET_MISRA Pragma.......cocctetiiiieeitie ittt ettt stee st esteesateesteeateesteeateessee e beeanseanbeeanbeeaseesnbeesaeeensessens 112
5.11.26 The RESET_ULP Pragma........ocooiiiiiie ittt ettt sttt et ettt e et esae e sn b e e smeeembeesmteeseesnbeesneeenneenees 113
5.11.27 The RETAIN Pragma......ooiueee ittt ettt ettt et e e st e 1a bt e e ek bt e e ate e e sabe e e e bt e e e anbeeesabeeeeanbeeens 113
5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas.cccoovueeriuiieriiee it sieee s 114
5.11.29 The SWI_ALIAS PragMa.ciiueeiieeiie ettt estee st tee e ettt e bt e saee e beeameeeabeeameeesaeesnbeeaaeeenbeesabeeseesnbeesneeenneenees 115
5.11.30 ThE TASK PragMa.cco ettt ettt ettt a et e bt e e bt e e e e bt e e e bt e e e b bt e e aab e e e ebb et e sane e e anbaeeeaneeeenanee 116
5.11.31 THE UNROLL Pragma.......cciei ettt ettt ettt ettt ste e st stee s steesbeeamteesteeanseesaeeenbeeanseenbeesmeeanbeesnbeenneesnneens 116
5.11.32 The WEAK PragIMa.oiiiiiiiiiiie ettt ettt h et e bt s bt e oo b bt e e ettt e e bt e e e sa bt e e ebb e e e anbeeesaneeeeabbeeen 117
5.12 The _Pragma OPEIaAtOr..........uii ittt ettt ettt b e e bt e oo a bt e a4ttt e e s bt e e ea bt e e oab et e e bt et e eabe e e e baeeenbeeenabeeesbneenan 117
5.13 ApPlication BiNary INTEITACE.coouiiie ettt e bt ettt s e e e b e e e e 118
5.14 ARM INSITUCHON INTIINSICS. ...eeiiiiiiitii ittt h ettt s e e eh e e e et et e eab e e e sane e e e bt e e e anteeenane s 118
5.15 Object File Symbol Naming Conventions (LINKNGMES).........ccuuiiiiiiiiiiiicii ettt 127
5.16 Changing the ANSI/ISO C/C++ Language MOGE............oiiiiiiiieiiiiee ettt ettt e e 128
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 5
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
I Lo B O Lo IS U o oo T A o1 1 TSRS 128
ST Lo O S TUT o o Yoy QG ot) PP 129
5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)...........ccccovoueriniiieiiieniniie e, 129
5.17 GNU , Clang, and ACLE Language EXIENSIONS.........cccuiiiiiiiiiiie ettt et e e as 130
T I I =04 (= TS o] 1S TP PSP OP P 130
5.17.2 FUNCHON ALTIDULES. ...ttt bt e e h et eab e e e e bt e e at et e rab e e e e abb e e e anteeenanees 132
5.17.3 FOr LOOP ALITIDULES. ...ttt ettt e e s bt e e s bt e e e bttt e e an e e e aabe e e ente e e nanees 133
5.17.4 Variable AHIIDULES. ...ttt et e e ettt e e ae e e s b e e e et bt e e et e e e sne e e e anbe e e 133
D175 TYPE ATTIDULES. ...ttt ettt a e e o bt e e sttt e s a et e e b et e e ab e e e sab e e e ettt e e ante e e nane s 134
5.17.6 BUIIE-IN FUNCHONS......ceiitee ettt ettt e bt e e et s bt e e a et e ettt e s bt e e e aa b e e e ebee e s nneeeanbeeenans 135
Lo B U O S 7Y USRS 136
5.1 COMPIIET LIMIES....eeei ettt et ekt e bttt o1 et e et e e e sttt e eab et e et bt e e st e e e sab e e e et e e aneas 136
6 RUN-TIME@ ENVIFONMENL. ...ttt e e bt e e st e o e bt e e e b et e e aa b et e s b et e e abb e e e eabe e e nneeeesabeeean 137
(ORI =T o g o VY. oo LY USSP PP SRR 138
L I IS T=Tex o 3 - T PO UPPOTPPP TSR 138
B.1.2 C/CH+ SYSEM STACK. ...ttt a e oot eee bt e oo ab et e et e e e es et e e eabe e e et bt e e aate e e saneeeebaeeeaaee 139
6.1.3 DYNamMIC MEMOTY AIOCATION.......ceiitieiiitit ettt ettt ekt e e ea bt e e s bt e e e b b e e e ettt e e ne e e e aab e e e enneeennneas 139
6.2 ODJECE REPIESENTALION. ...ttt a ettt e e bt e e sttt e sab et e et bt e e nte e e sab e e e ebr e e e naneas 140
B) = T Y o TSRS (o] - To [T PSPPSR OTPR 140
G = 1 T Lo TR SPRRRI 144
6.2.3 Character StriNG CONSTANTS.oi.uii ittt e et et e s bt e sab e e e et b e e e aate e e nabeeeebbeeeaaee 146
ORI S {CTo 151 (=T g 0] 0 V7= o1 1o] T PSS PP OP PR PP 147
6.4 Function Structure and Calling CONVENTIONS..........oitiiiiiiie ittt e e seb e e st et e s enreeesaneeeas 149
6.4.1 HOW @ FUNCHON MAKES @ Call.......eiiiiiiiiieee ettt sttt ettt et e e st e e s neeeeaabe e e e 150
6.4.2 How a Called FUNCHON RESPONAS.......ciiiiiiiiiiiiie ittt ettt ettt ettt e bt e s st st e e et e e e aate e e sabeeeebreeeaaee 151
6.4.3 C Exception Handler Calling CONVENTION.iiiiiiiiii et e e 151
6.4.4 Accessing Arguments and LOCal VariabIes.c.eoi i e 152
6.5 Accessing Linker SymboIs in € @nd C. ..o ittt 152
6.6 Interfacing C and C++ With ASSEMDIY LanQUAGE.c..oiiiiiiiiiiiieiie ettt 152
6.6.1 Using Assembly Language Modules With C/CH+ COUE.........uuiiiiiiiiiiiiiiiiee et 152
6.6.2 Accessing Assembly Language FUNCtions From C/CH+........ouiiiiiiiiiiiii et 153
6.6.3 Accessing Assembly Language Variables From C/C+H+.........iiiiiiiiiiiiie e e 153
6.6.4 Sharing C/C++ Header Files With ASSembly SOUICE...........cccooiiiiii e 155
6.6.5 Using INline ASSEMDIY LANGUAGE.eiiimiiiiitiie ittt ettt b e et e e e e et e e e aane e e sneeeenbneeenaee 155
6.6.6 Modifying ComMPIlEr OUIPUL..........oiiiiiiiiii ettt b e e as bt e e st e e bt e e e sab e e sate e e nanees 155
oA 101 Y4 U o] 8 F= T |1 T R PO RP PSP PPPR 155
6.7.1 Saving Registers DUMNG INTEITUDLS.oouiii ittt e e st e et e e e aane e e nanees 155
6.7.2 Using C/CH+ INTerrUPt ROUTINES.ooiiiiiiiiii ittt e bt e et e e bt e e an e e sneeeaneee s 156
6.7.3 Using Assembly Language INterrupt ROUTINES.oouuiiiiiiiiiii et 156
6.7.4 How to Map Interrupt Routines to INterrupt VECIOrS.coiiiiiiiiii e s 157
6.7.5 USING SOfWEAIE INTEITUPDLS. ..ottt et e bt e s bt e ettt e e eaa e e e s be e e snteeenaneas 158
6.7.6 Other INterrupt INFOrMATION.......oooi ettt et e e et e e eate e e nbe e e e bneeeaee 158
6.8 Intrinsic Run-Time-Support Arithmetic and Conversion ROULINES............coiiiiiiiiiiii e 159
6.8.1 CPSR Register and INterrupt INTrNSICS......coouiiiiiiiieiie e st 159
6.9 BUII-IN FUNCHONS. ...ttt e e bt e h et e 1 e bt e e et e e s et e e s ab et e et bt e e ant e e e sab e e e ebre e e naneas 160
6.10 SyStemM INIIANIZATION.......ei ittt ettt e et e a e sa bt e e e bt n b e et aneas 160
6.10.1 Boot Hook Functions for System Pre-Initialization................cooiiiiiiiiiii e 160
6.10.2 RUN-TIME STACK. ... ei ittt ettt s bt e e b et e ettt e e b bt e e sab e e e e bttt e sane e e et eeeente e e s 161
6.10.3 Automatic Initialization Of VariabIescooiiiiiiii e e 161
6.10.4 INItIANIZAtION TADIES......ei ittt et e bt e o he e e e ettt e eab et e e abb e e e aa b e e e snre e e nnnee s 167
6.11 Dual-State Interworking Under TIABI (DEPreCated).........coouuuiiiiiiiiiiiie ettt ettt 169
6.11.1 Level Of DUAI-STAte SUPPOI.......oo ittt e et sb e e sbb e e e et e e sneeeennneeas 169

L 2 T] o] =T g 1= a1 e= o o PP RPTPR 170

7 Using Run-Time-Support Functions and Building Libraries.................ccoccoiiii e 173
7.1 C and C++ RUN-TIME SUPPOIt LIDFATES. ...cc.uiiiiiiiiiiee ettt sttt et e e naneeas 174
7.1.1 Linking Code With the ODBJECt LIDrary...........eei it 174
A 1= To L= 1 TP PR PSP TPRIN 174
7.1.3 Modifying @ Library FUNCHON.oiiiiie ettt b e e e e sne e e s nnee s 175
7.1.4 Support fOr STHNG HANAING.cooiiiiee et b ettt e e et e e et e e sne e e enbbeeeaaee 175
7.1.5 Minimal Support for INternationaliZation...............c.uii e 175
7.1.6 Support for Time and CloCK FUNCLONS.iiiiii et s 176
6 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Table of Contents
7.1.7 Allowable NUMDEr Of OPEN FlES.......coiiiiiiiiii ettt e s b eare e naneas 177
7.1.8 Nonstandard Header Files in the SOUICE TreE.........ciiiiiiiiiiii et 177
7.1.9 Library Naming CONVENTIONS.ouiiiiiiiiiie ettt e et s et e e s ab et e et et e s bte e e sabe e e et b e e e aate e e sabeeeebaeenaaee 177
A N TN O VL@ B U] ed (o] S T PSPPSR PSRN 178
7.2.1 HIGh-LeVEI I/O FUNCHONS. ..ottt ettt e e e ettt e s bt e e s bt e e ettt e e ean e e e st e e e nnte e e naneas 179
7.2.2 Overview of Low-Level /O IMplementation............c..ooiiiiiiiiiit et e e 180
7.2.3 Device-Driver LeVel 1/ FUNCHONS.oo ittt et e ettt e et e s et e e sneeeeanneeeanee 183
7.2.4 Adding a User-Defined Device Driver fOr C 1/O.......cuii ittt 187
7.2.5 TRE AEVICE PrefiX. ..o ittt h e oottt s bt e e e et e et et e s bt e e e an b e e e sbee e s nneeeanbeeenans 188
7.3 Handling Reentrancy (_register_lock() and _register_unlock() FUNCHONS)..........ccoiiiiiiiiiiiiii e 190
7.4 LIDrary-Build PrOCESS.ciiiiiiiiiiie ettt ettt e et e bttt o1 h bt e e et e e e bttt e sab et e e bb e e e aate e e sneeeeanneeeanee 191
7.4.1 Required Non-Texas INStruments SOfWATIE.........ocuiiiiiiiii et 191
7.4.2 Using the LIibrary-Build PrOCESS.uii ittt ettt ettt e et e e st e e sane e e e baeeenee 191
FA RN = (=10 Lo [T aTe T a0 (L] o TR PR PSP TPRIN 194
8 CH+ NAME DEMEANGIET ...ttt oot bttt e ek bt e et et e o bttt e ea b et e ettt e e be e e e aabe e e ebeeeesnbeeeanbeeenan 195
8.1 Invoking the C++ NamMeE DEMANGIET.coiiiiiii ettt e e bt s st e e sab et e et et e s enr e e e sabeeeas 196
8.2 Sample Usage of the C++ Name DEMANGIET...........oiiiiiiiiiei ettt e et e sbe e e ebe e e e aabee e e 197
A UGIOSSANY.... ..tttk et bt oAb e oo bt o R e £ 4o AR b et e e b et e o b e et e R b et e e b et e e R e et e enbe e e ebee e e nnae e e abeeenan 199
N B [T 4 1311 g ol (o | PP OPPPUPROE 199
B REVISION HISTOTYo it h et e bt e e e et oa bt e ek bt e e e st et e sabe e e e ebb e e e aabe e e sneeeenaneeeas 206
List of Figures
Figure 1-1. ARM Software DevelOpmMENt FIOW.oouiiiiiii ittt e et e e e s e e e e e e 14
Figure 6-1. Char and Short Data Storage FOrMAL...........oooiiiiiiiiii et 141
Figure 6-2. 32-Bit Data Storage FOMMAL............oii ittt e et e et e e e e et 142
Figure 6-3. Double-Precision Floating-Point Data Storage FOrmat............c.coiiiiiiiiiiiii e 143
Figure 6-4. Bit-Field Packing in Big-Endian and Little-Endian FOrmats..............ccooouiiiiiiiiic e 145
Figure 6-5. Use of the Stack During @ FUNCHON Call............cooiiiiiiiii et 150
Figure 6-6. Autoinitialization @t RUN TimE.......oooiiii ettt e et e e anee e 162
Figure 6-7. Initialization @t LOAA TiME.........oiiiiiii ittt ettt e ek e et e sn et e e aab e e e ebeeenneeas 166
Figure 6-8. CONSITUCIOr TADIE........couiiiiiiiie ettt ettt e e a e e s bt e e sttt e s b e e e e be e e e anb et e nne e e e naneeeas 166
Figure 6-9. Format of Initialization Records in the .Cinit SECON............cciiiiiii e 167
Figure 6-10. Format of Initialization Records in the .pinit SECHON. ..o 168
List of Tables
Table 2-1. PrOCESSOr OPLIONS. .. .uuiiiiiiiiiiiiiiee e ettt e e et ettt eeeeaaaeaeeeeeesesasaa e s aaaassessasaseseeeeeeaeaaaaaeaeaeeaesesaaaaaaannnnnsnes 19
Table 2-2. OptMIZAtION OPHONST ... ettt e ee et et e e e e ee e e e e e e e e e e eee e e e e eee e 19
Table 2-3. Advanced Optimization OPHONS(Tttt et et e e e e e e e e ee e ee e ee e 20
o) (Y2 S B LY o 1W (o [@ o i {o] o - TSRS UUPRPR 20
Table 2-5. INCIUAE OPIIONS.t e oo et e e e et e e e e et eeeeeeaaaaaaeaeeeeseaesaaa s asassssaesesaseeeeeeaeeaaaaaaeeaeeesanaaaaannnes 20
Table 2-6. ULP AdVIiSOr OPtIONS.ottt e e e e e e e e e e et et e et e e e e e et et s aeeeeeeeeeaaaaaaaaeaeaasasaesasaaaasnssssssssseseseneneeaaaaaaaaenns 20
Table 2-7. CONTrOl OPtIONS.t e e e et e oot e e e e e et e e e e e e e eeeeeeaaaaeaeeeeeesesesasaasasassssseseseseeeeeeeaaaaaaaaeeeeeseaaaaaannnes 20
o) (SR S I =T g Vo T E= o [T @ o] 1 o] 1 SR OUUPERN: 21
Table 2-9. Parser PreproCeSSiNg OPHIONS.co o it ee e ettt e e e e s eteeea e e aastaeeaaeaasaeeeaaeaaannseeaaeeaansseeaaeaaannneeaaeaaannens 21
Table 2-10. Predefined Macro OPtiONS.ttt e e e e e et e e e e e e e e et a e e e e e e e eeeeaaaaaaaeaaeaeeesasaaaaannsnsssssssssnnnnneees 22
Table 2-11. Diagnostic MeSSAgE OPLIONS. ... ittt ettt e e e ettt e e e e e s ate e e e e e e e sbeeeaa e e nnneeaaeeaannsseeaeaaannseneaaaan 22
Table 2-12. Supplemental INformation OPLIONS.ccciiiiiiie e e e e e e e e e e e e e e s e e e re e e e e e e e eaeaaaaaaaaas 22
Table 2-13. RUN-TIME MOl OPLIONS........ccooiiiii e e et e e et e ettt r e e ae e e e e e eeeeaaaaaaaaaaeaeaesesaaaaassnnsnsnsnrnns 22
Table 2-14. Entry/EXit HOOK OPtiIONS.ottt ettt ettt e e e e te et e e e e e e anee e e e e e e aanbeeeaaeaantaeeaaeeaannseeeaeaaannsneaaaann 23
Table 2-15. FEEADACK OPHIONS.......cooiiiiiiie et e e et e e e e e e e e e e e e e e s e e aeaeatareseeereeeeeteeaaaaaaaaaaesesaaaaaaaasnnnsssnsnnnnnnnns 23
Table 2-16. ASSEMDIET O P IONS.t e e e e et et e oot e e e e et — b e bt e eeeeeeeeeeeaaaaaaaeaeaeeeeaesaaaaasnsnsssssssssassesneeeeaaaaaaaaenns 23
Table 2-17. File Type SPeCfier OPtiONS. ittt ettt e e e ettt e e e e e s taeeeaeaasaeeeeaeaaannseeeaaeaanseneaaesaannneeeaeaaannnns 23
Table 2-18. Directory SPeCifier QP IONS. ettt e e et e e e e s te e e e e e e e s beeeaaeaaannseeeaaeaansaeeeaeaaansnneaaeaanns 24
Table 2-19. Default File EXIENSIONS OPLIONS.ttt e e e e e e e e eaeaaeaaeaeeeseeaaaaasasnsnsssnsnnsnnnnes 24
Table 2-20. ComMmMANd FileS OPLIONS.coiiiiiii i e e e e e e e e e e e e e e e s e e e e et et sraraaeeeeeeeeeeaeaaaaaeaaaeeeesesaaaaaaannnnnenes 24
Table 2-21. MISRA-C 2004 OPtIONS.eeiuiteteeiieeiteeiteestee et eatee et e sheeeasee st bt e abeeaase e st e e aaseeabeeaabeaaaeeeabeeaaeeaabeesabeaabeesabeesaeesaneenenas 24
Table 2-22. LINKEr BASIC OPLIONS......uuuiiiiiiiiiiiiiii e e et e e e e e e e e e e e e e e e e e e s e e aaaba b e bereseeeeeeeeaaaaaaaaeeaeeseeanaaaaannnes 25
Table 2-23. File S€arch Path OPLiONS.ceiiiiiiieie e e e e e e e e e e e e e e e e e er e e e e e e eeeeeeaaaaaaeeaeeeaeaaaaaaannnes 25
Table 2-24. Command File PreproCesSing OPHIONS.......coo ittt e et e e e e e et eeaeaaaaneeeeeaasantaeeeaeaaanneeeaaeaanns 25
Table 2-25. DiagnostiCc MESSAGE OPLIONS.ee ittt ettt e e e e et e e e e e e taeeea e e e e aeeeeaeeeanteeeaaeaanneeeaaeeaannseeaaaannn 25
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 7

Submit Document Feedback

v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS

INSTRUMENTS
Table of Contents www.ti.com
Table 2-26. LinKer OULPUL OPTIONS.ooiuiii ittt ettt et e bttt r e et e et et e e bt e e e sabe e e ebb e e e aate e e saneeeenbbeeennes 26
Table 2-27. Symbol ManagemeEnt OPTIONS.coiiuiiiiiiee ettt bttt e e ab bt e e aabe e e sb et e e et b e e e satneesneeeeanreeenae 26
Table 2-28. Run-Time ENVIrONMENT OPtiONS.eiiiiiiiiiiee ittt ettt et e e e ae e e e e e ebe e e s aan e e e aabe e e snne e e nanes 26
Table 2-29. MiSCEIIANEOUS OPTIONS........uiiiiiiie ittt ettt ea e e s b et e ek et e ettt e s b et e e aa b e e e ebee e s aae e e e aabeeeesteeenaneas 27
Table 2-30. Predefined ARM MaCIO NEIMES.......coiiiiiiiiiii ittt e e ekt e s ettt et be e e e sa bt e e ebeeesnseeenabeeas 35
Table 2-31. ACLE Pre-Defined IMACTOS.couiiiiiit ettt ettt bt e e et e e st e e et bt e e sate e e s beeeeanbe e e e 37
Table 2-32. Raw Listing File IA@NTfIEIS.......coouuiiiiie ettt ettt e e e e e bneeeaee 46
Table 2-33. Raw Listing File DiagnostiC IAENTIIEIS.oiiiiiii e e 46
Table 3-1. Options That You Can Use With ——0pt_IEVEIS3..........iiii e 55
Table 3-2. Selecting a Level for the --gen_opt_info OPtioN.ooiiiiiii e 55
Table 3-3. Selecting a Level for the --call_assumptions OPLioN...........cooiiiiiiiiiiii e 56
Table 3-4. Special Considerations When Using the --call_assumptions Option...........ccccoiiiiiiiiiiiec e 57
Table 4-1. Initialized Sections Created by the COMPIIET.........ooi i e 79
Table 4-2. Uninitialized Sections Created by the COMPIIET............oooiiiiiii e 79
Table 5-1. ARM C/CH+ DAta TYPES. . .eeitteeiiuiiieitiee ettt ettt ettt ettt e et h et e e aa b e e e ettt e o bttt e aa b et e e b bt e e as bt e e aa b e e e eate e e asbeeeebeeeenteeenanee 90
Lol Lo i o o TU g =T = (o T Y o= O PP P P OTPPPPPRROE 90
Table 5-3. ARM INtrinSiC SUPPOIT DY TarGeT.......coo ittt e b e et sbe e e sneee s 118
Table 5-4. ARM COMPIIET INTIINSICS.....ccitieiiiiiiee ettt e h e e et s bt e e sa bt e e e bt e e ab e e e s b e e e ebb e e e nnneeesneeeeas 121
Table 5-5. GCC Language EXIENSIONS.uii ittt ettt et ettt e st e e s bt e e e bttt e e bt e e e be e e esbe e e naneeesanreeeas 130
Table 6-1. Summary of Sections and Memory PlaCeMENT............coiiiiiiiiiii e e 139
Table 6-2. Data Representation in Registers and MEMOTY.........cooiiiiiiiiiiii ettt 140
Table 6-3. How Register Types Are Affected by the CONVENTIONS..........oouuiiiiiiii e 147
Lo Lo OB =T) (=T U 1= o =T PRSP PP P 147
Table 6-5. VFP REGISEr USAGE.......coiuiiiiiiiie ittt b e h e e 1h bt e e et et e e b bt e e sab et e e bbe e e enbe e e et e e e enne e e nnneas 148
Table 6-6. NEON REGISTEI USAGE. ..ottt ettt et a et sa b et e e bt e e bt e e s be e e ettt e s aaneeesnneee s 149
Table 6-7. CPSR and Interrupt C/C++ Compiler INTHINSICS.uiiiiiiiiiiiee et 159
Table 6-8. Selecting a Level of Dual-State SUPPOI........couiii it e e 169
Table 7-1. Differences between __time32_t and _ fimMEB4_t..........ooo it 176
Table 7-2. The MKIID Program OPtiONS.o ettt e et e bt b e e rab e e et e s eae e e e e b e e ebneesenneas 193
8 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Preface

Read This First

i3 TEXAS INSTRUMENTS

About This Manual

The ARM Optimizing C/C++ Compiler User's Guide explains how to use the following Texas Instruments Code
Generation compiler tools:

» Compiler
» Library build utility
* C++ name demangler

The TI compiler accepts C and C++ code conforming to the International Organization for Standardization (ISO)
standards for these languages. The compiler supports the 1989, 1999, and 2011 versions of the C language and
the 2014 version of the C++ language.

This user's guide discusses the characteristics of the TI C/C++ compiler. It assumes that you already know how
to write C/C++ programs. The C Programming Language (second edition), by Brian W. Kernighan and Dennis M.
Ritchie, describes C based on the ISO C standard. You can use the Kernighan and Ritchie (hereafter referred to
as K&R) book as a supplement to this manual. References to K&R C (as opposed to ISO C) in this manual refer
to the C language as defined in the first edition of Kernighan and Ritchie's The C Programming Language.

Notational Conventions
This document uses the following conventions:

* Program listings, program examples, and interactive displays are shown in a special typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter from
items that the system displays (such as prompts, command output, error messages, etc.). Here is a sample
of C code:

#include <stdio.h>

main ()

{ printf ("Hello World\n");
}

* In syntax descriptions, instructions, commands, and directives are in a bold typeface and parameters are in
an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a syntax that
are in italics describe the type of information that should be entered.

» Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter the
brackets themselves. The following is an example of a command that has an optional parameter:

‘armcl [options] [filenames] [--run_linker [link_options] [object files]]

» Braces ({and }) indicate that you must choose one of the parameters within the braces; you do not enter the
braces themselves. This is an example of a command with braces that are not included in the actual syntax
but indicate that you must specify either the --rom_model or --ram_model option:

armcl --run_linker {--rom_model | --ram_model} filenames [--output_file= name.ouf]

--library= libraryname

* In assembler syntax statements, the leftmost column is reserved for the first character of a label or symbol. If
the label or symbol is optional, it is usually not shown. If a label or symbol is a required parameter, it is shown

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 9
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Read This First www.ti.com

starting against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in the leftmost column.

symbol .usect "section name", size in bytes[, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive. This syntax is
shown as [, ..., parameter].

* The ARM® 16-bit instruction set is referred to as 16-BIS.
« The ARM 32-bit instruction set is referred to as 32-BIS.

Related Documentation
You can use the following books to supplement this user's guide:

ANSI X3.159-1989, Programming Language - C (Alternate version of the 1989 C Standard), American
National Standards Institute

ISO/IEC 9899:1989, International Standard - Programming Languages - C (The 1989 C Standard),
International Organization for Standardization

ISO/IEC 9899:1999, International Standard - Programming Languages - C (The 1999 C Standard),
International Organization for Standardization

ISO/IEC 9899:2011, International Standard - Programming Languages - C (The 2011 C Standard),
International Organization for Standardization

ISO/IEC 14882-2014, International Standard - Programming Languages - C++ (The 2014 C++ Standard),
International Organization for Standardization

The C Programming Language (second edition), by Brian W. Kernighan and Dennis M. Ritchie, published by
Prentice-Hall, Englewood Cliffs, New Jersey, 1988

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

C: A Reference Manual (fourth edition), by Samuel P. Harbison, and Guy L. Steele Jr., published by Prentice
Hall, Englewood Cliffs, New Jersey

Programming Embedded Systems in C and C++, by Michael Barr, Andy Oram (Editor), published by O'Reilly
& Associates; ISBN: 1565923545, February 1999

Programming in C, Steve G. Kochan, Hayden Book Company

The C++ Programming Language (second edition), Bjarne Stroustrup, published by Addison-Wesley
Publishing Company, Reading, Massachusetts, 1990

Tool Interface Standards (TIS) DWARF Debugging Information Format Specification Version 2.0, TIS
Committee, 1995

DWARF Debugging Information Format Version 3, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2005 (http://dwarfstd.org)

DWARF Debugging Information Format Version 4, DWARF Debugging Information Format Workgroup, Free
Standards Group, 2010 (http://dwarfstd.org)

System V ABI specification (http://www.sco.com/developers/gabi/)

ARM C Language Extensions (ACLE) specification (ACLE Version ACLE Q2 2017)
Related Documentation From Texas Instruments

See the following resources for further information about the TI Code Generation Tools:

» Code Composer Studio Documentation Overview
» Texas Instruments E2E Software Tools Forum

10 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://dwarfstd.org
http://dwarfstd.org
http://www.sco.com/developers/gabi/
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://software-dl.ti.com/ccs/esd/documents/ccs_documentation-overview.html
http://e2e.ti.com/support/tools/ccs/f/81
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Read This First

You can use the following documents to supplement this user's guide:

SPNU118 ARM Assembly Language Tools User's Guide. Describes the assembly language tools
(assembiler, linker, and other tools used to develop assembly language code), assembler directives,
macros, common object file format, and symbolic debugging directives for the ARM devices.

SPRAAB5 The Impact of DWARF on TI Object Files. Describes the Texas Instruments extensions to the
DWAREF specification.

SPRUEX3 TI SYS/BIOS Real-time Operating System User's Guide. SYS/BIOS gives application developers
the ability to develop embedded real-time software. SYS/BIOS is a scalable real-time kernel. It
is designed to be used by applications that require real-time scheduling and synchronization or
real-time instrumentation. SYS/BIOS provides preemptive multithreading, hardware abstraction,
real-time analysis, and configuration tools.

Trademarks

Code Composer Studio™ is a trademark of Texas Instruments.
ARM® is a registered trademark of ARM Limited.
All trademarks are the property of their respective owners.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 11
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spnu118
https://www.ti.com/lit/pdf/spraab5
https://www.ti.com/lit/pdf/SPRUEX3
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

Read This First www.ti.com
This page intentionally left blank.

12 ARM Optimizing C/C++ Compiler SPNU7151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 1
Introduction to the Software Development Tools

i3 TEXAS INSTRUMENTS

The ARM® is supported by a set of software development tools, which includes an optimizing C/C++ compiler,
an assembler, a linker, and assorted utilities.

This chapter provides an overview of these tools and introduces the features of the optimizing C/C++ compiler.
The assembler and linker are discussed in detail in the ARM Assembly Language Tools User's Guide.

1.1 Software DevelopmeNnt TOOIS OVEIVIEW................iii ittt ettt e e s e e e et e e s aane e e aabeeeasre e e enneeesnneeaas 14

1.2 CoMPIIEE INTEITACE.ottt ettt et e ekt e e at ettt e ekt e e et et e naan e e e anb e e e ennneennnes 15

.3 ANSIHISO STANAANM..........cooiiiiii ettt sh e bt s he e b e e as e e e b e e eane e ehe s et e e ebe e et e eeaneeneeseneeaneenaneen 15

LB OULPUL FIlES...... ..ottt e et ettt e e e e e e st e eee e e e abaaeeeeeaaaasseeaeeeaasbaeeeeeaanaseeeaeeeannsseeaeesannbnneaaean 16

1 = PP 16
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 13
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 illustrates the software development flow. The shaded portion of the figure highlights the most
common path of software development for C language programs. The other portions are peripheral functions
that enhance the development process.

C/C++
source
files
Macro
source Gl
files compiler
C/C++ name
ASSSOGUTCt:er demangling
utility
Macro
lbrary Assembler

Object Library-build Debugging

files 1111113 tools

N Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM

Cross-reference § Obiject file
programmer lister utilities

Absolute lister

Figure 1-1. ARM Software Development Flow

The following list describes the tools that are shown in Figure 1-1:

* The compiler accepts C/C++ source code and produces ARM assembly language source code. See Chapter
2.

» The assembler translates assembly language source files into machine language relocatable object files.
See the ARM Assembly Language Tools User's Guide.

» The linker combines relocatable object files into a single absolute executable object file. As it creates the
executable file, it performs relocation and resolves external references. The linker accepts relocatable object

14 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Introduction to the Software Development Tools

files and object libraries as input. See Chapter 4 for an overview of the linker. See the ARM Assembly
Language Tools User's Guide for details.

» The archiver allows you to collect a group of files into a single archive file, called a library. The archiver
allows you to modify such libraries by deleting, replacing, extracting, or adding members. One of the most
useful applications of the archiver is building a library of object files. See the ARM Assembly Language Tools
User's Guide.

* The run-time-support libraries contain the standard ISO C and C++ library functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler. See
Chapter 7.

The library-build utility automatically builds the run-time-support library if compiler and linker options require
a custom version of the library. See Section 7.4. Source code for the standard run-time-support library
functions for C and C++ is provided in the lib\src subdirectory of the directory where the compiler is installed.

« The hex conversion utility converts an object file into other object formats. You can download the converted
file to an EPROM programmer. See the ARM Assembly Language Tools User's Guide.

* The absolute lister accepts linked object files as input and creates .abs files as output. You can assemble
these .abs files to produce a listing that contains absolute, rather than relative, addresses. Without the
absolute lister, producing such a listing would be tedious and would require many manual operations. See the
ARM Assembly Language Tools User's Guide.

* The cross-reference lister uses object files to produce a cross-reference listing showing symbols, their
definitions, and their references in the linked source files. See the ARM Assembly Language Tools User's
Guide.

+ The C++ name demangler is a debugging aid that converts names mangled by the compiler back to their
original names as declared in the C++ source code. As shown in Figure 1-1, you can use the C++ name
demangler on the assembly file that is output by the compiler; you can also use this utility on the assembler
listing file and the linker map file. See Chapter 8.

* The disassembler decodes object files to show the assembly instructions that they represent. See the ARM
Assembly Language Tools User's Guide.

» The main product of this development process is an executable object file that can be executed on a ARM
device.

1.2 Compiler Interface

The compiler is a command-line program named armcl. This program can compile, optimize, assemble, and
link programs in a single step. Within Code Composer Studio™, the compiler is run automatically to perform the
steps needed to build a project.

For more information about compiling a program, see Section 2.1.

The compiler has straightforward calling conventions, so you can write assembly and C functions that call each
other. For more information about calling conventions, see Chapter 6.

1.3 ANSI/ISO Standard

The compiler supports the 1989, 1999, and 2011 versions of the C language and the 2014 version of the C++
language. The C and C++ language features in the compiler are implemented in conformance with the following
ISO standards:

* ISO-standard C: The C compiler supports the 1989, 1999, and 2011 versions of the C language.

— €89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C
standard, which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the
same programming language. "C89" is used in this document.

— €99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C
standard.

— C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C
standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R).

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 15
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Introduction to the Software Development Tools www.ti.com

* ISO-standard C++: The compiler uses the C++14 version of the C++ standard. Previously, C++03 was used.
See the C++ Standard ISO/IEC 14882:2014. For a description of unsupported C++ features, see Section 5.2.

* ISO-standard run-time support: The compiler tools come with an extensive run-time library. Library
functions conform to the ISO C/C++ library standard unless otherwise stated. The library includes functions
for standard input and output, string manipulation, dynamic memory allocation, data conversion, timekeeping,
trigonometry, and exponential and hyperbolic functions. Functions for signal handling are not included,
because these are target-system specific. For more information, see Chapter 7.

See Section 5.16 for command line options to select the C or C++ standard your code uses.
1.4 Output Files
The following types of output files are created by the compiler:

* ELF object files. Executable and Linking Format (ELF) enables supporting modern language features like
early template instantiation and exporting inline functions. The ELF format for ARM is part of the Application
Binary Interface (ABI) specification, which is documented in the ARM Infocenter.

COFF object files and the legacy TIABI and TI ARM9 ABI modes are not supported in v15.6.0.STS and later
versions of the TI Code Generation Tools. If you would like to produce COFF output files, please use v5.2 of the
ARM Code Generation Tools and refer to SPNU151J for documentation.

1.5 Utilities
These features are compiler utilities:
« Library-build utility

The library-build utility lets you custom-build object libraries from source for any combination of run-time
models. For more information, see Section 7.4.
* C++ name demangler

The C++ name demangler (armdem) is a debugging aid that translates each mangled name it detects
in compiler-generated assembly code, disassembly output, or compiler diagnostic messages to its original
name found in the C++ source code. For more information, see Chapter 8.

* Hex conversion utility

For stand-alone embedded applications, the compiler has the ability to place all code and initialization data
into ROM, allowing C/C++ code to run from reset. The ELF files output by the compiler can be converted
to EPROM programmer data files by using the hex conversion utility, as described in the ARM Assembly
Language Tools User's Guide.

16 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0044e/index.html
https://www.ti.com/lit/pdf/spnu151J
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 2
Using the C/C++ Compiler

i3 TEXAS INSTRUMENTS

The compiler translates your source program into machine language object code that the ARM can execute.
Source code must be compiled, assembled, and linked to create an executable file. All of these steps are
executed at once by using the compiler.

2.1 ADOUL the COMIPIIET........ ..o ettt e ettt oo st e e s et e ekt e e eane e e e b et e e e te e e e e e e e bn e e s anneeenanns 18
2.2 InvOKing the CICH+ COMPIIET........ ..ottt h e e ettt sat e e e ahb e e eabe e e ssne e e saneeeebneenan 18
2.3 Changing the Compiler's Behavior With Options.................cooiiiiiiiiii e 19
2.4 Controlling the Compiler Through Environment Variables...............c..ccooiiiiiiiiii e 34
2.5 CoNtrolliNng the PrePrOCESSONcoc.u ittt ee et e e e e te e et e e e ne e e e aaeeeeamteeeaneeeeamneeeanseeeaneeeeanneeeanneeeanees $5)
2.6 Passing Arguments t0 M@iN()........ccoooo ittt e et e et e e e e e ab et e e e e e b ne e e e e e e aanbeeaaeeaannbneaeeeaannaeeas 41
2.7 Understanding DiagnoStiC IMESSAQES.ooiiiiiiiiiiie ittt et e ettt e e s e e e e bt e s enne e e sane e e e s e e e enneeesnneenn 42
2.8 Other IMESSAQES.c.uuiiiiiiii ittt e ettt e ettt e ettt et at e e 1a s et e ek et e £ st et e 4a Rt e e 2 A b et e £ sttt e 1a b et e ek bt e e bt e e e e e e e nne e e nnes 45
2.9 Generating Cross-Reference Listing Information (--gen_cross_reference_listing Option)....................c....c..... 45
2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)................cccooiiiiiiiiiiiiii e 46
2.11 Using Inline FUNCion EXPANSION..........cooooi ittt e e e e ettt e e e e e ee e e e s e annteeeeeeannnneeeas 47
212 USING INLEILIST. ... ettt oottt e e e e ettt e e e e e ate et ee e e e naee e e e e e nneeeaeeeannsseeeeeeannbeeeeeeaannnneas 49
2.13 Controlling Application Binary INterface...................oooiiiiiiiii e 49
A YAl ST 1T o] o Yo o SRRSO 50
2.15 Enabling Entry Hook and Exit HOOK FUNCLIONS................c.ooiiiiiiii e e 51
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 17
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

2.1 About the Compiler

The compiler lets you compile, optimize, assemble, and optionally link in one step. The compiler performs the
following steps on one or more source modules:

* The compiler accepts C/C++ source code and assembly code. It produces object code.

You can compile C, C++, and assembly files in a single command. The compiler uses the filename
extensions to distinguish between different file types. See Section 2.3.9 for more information.

» The linker combines object files to create an executable or relinkable an executable file. The link step is
optional, so you can compile and assemble many modules independently and link them later. See Chapter 4
for information about linking the files.

Note
Invoking the Linker

By default, the compiler does not invoke the linker. You can invoke the linker by using the --run_linker
(-z) compiler option. See Section 4.1.1 for details.

For a complete description of the assembler and the linker, see the ARM Assembly Language Tools User's
Guide.

2.2 Invoking the C/C++ Compiler

To invoke the compiler, enter:

‘armcl [options] [filenames] [--run_linker [link_options] object files]]

armcl Command that runs the compiler and the assembler.

options Options that affect the way the compiler processes input files. The options are listed in Table 2-7 through Table
2-29.

filenames One or more C/C++ source filesand assembly language source files.

--run_linker (-z) Option that invokes the linker. The --run_linker option's short form is -z. See Chapter 4 for more information.

link_options Options that control the linking process.

object files Names of the object files for the linking process.

The arguments to the compiler are of three types:

» Compiler options
* Link options
* Filenames

The --run_linker option indicates linking is to be performed. If the --run_linker option is used, any compiler
options must precede the --run_linker option, and all link options must follow the --run_linker option.

Source code filenames must be placed before the --run_linker option. Additional object file filenames can be
placed after the --run_linker option.

For example, if you want to compile two files named symtab.c and file.c, assemble a third file named seek.asm,
and link to create an executable program called myprogram.out, you will enter:

armcl symtab.c file.c seek.asm --run linker --library=lnk.cmd
--output file=myprogram.out

18 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.3 Changing the Compiler's Behavior with Options

Options control the operation of the compiler. This section provides a description of option conventions and
an option summary table. It also provides detailed descriptions of the most frequently used options, including
options used for type-checking and assembling.

For a help screen summary of the options, enter armcl with no parameters on the command line.
The following apply to the compiler options:

» There are typically two ways of specifying a given option. The "long form" uses a two hyphen prefix and is
usually a more descriptive name. The "short form" uses a single hyphen prefix and a combination of letters
and numbers that are not always intuitive.

* Options are usually case sensitive.

* Individual options cannot be combined.

» An option with a parameter should be specified with an equal sign before the parameter to clearly associate
the parameter with the option. For example, the option to undefine a constant can be expressed as
--undefine=name. Likewise, the option to specify the maximum amount of optimization can be expressed
as -0=3. You can also specify a parameter directly after certain options, for example -O3 is the same as
-O=3. No space is allowed between the option and the optional parameter, so -O 3 is not accepted.

» Files and options except the --run_linker option can occur in any order. The --run_linker option must follow all
compiler options and precede any linker options.

You can define default options for the compiler by using the TI_ ARM_C_OPTION environment variable. For a
detailed description of the environment variable, see Section 2.4.1.

Table 2-1 through Table 2-29 summarize all options (including link options). Use the references in the tables for
more complete descriptions of the options.

Table 2-1. Processor Options

Option Alias Effect Section
--silicon_version={4 | 5e |6 | 6M0O| -mv Selects processor version: ARM V4 (ARM7), ARM V5e (ARM9E), Section 2.3.4
7TA8|7M3 | 7M4 | 7R4 | 7TR5} ARM V6 (ARM11), ARM V6MO (Cortex-M0), ARM V7A8 (Cortex-

A8), ARM V7M3 (Cortex-M3), ARM V7M4 (Cortex-M4), ARM V7R4

(Cortex-R4), or ARM V7R5 (Cortex-R5). The default is ARM V4.
--code_state={ 16 | 32} Designates the ARM compilation mode. Section 2.3.4
--float_support={ vfpv2 | vfpv3 | Generates vector floating-point (VFP) coprocessor instructions. Use Section 2.14
vfpv3d16 | fpv4spd16 | none) this option only if the target hardware provides this functionality.
--little_endian or --endian={ big | -me Designates little-endian code. The default is big-endian. Section 2.3.4
little }

Table 2-2. Optimization Options("

Option Alias Effect Section
--opt_level=off Disables all optimization. Section 3.1
--opt_level=n -On Level 0 (-O0) optimizes register usage only. Section 3.1,

Level 1 (-O1) uses Level 0 optimizations and optimizes locally. Section 3.3,

Level 2 (-O2) uses Level 1 optimizations and optimizes globally. Section 3.6

Level 3 (-O3) uses Level 2 optimizations and optimizes the file

(default if option not used).

Level 4 (-O4) uses Level 3 optimizations and performs link-time

optimization.
--opt_for_speed[=n] -mf Controls the tradeoff between size and speed (0-5 range). If this Section 3.2

option is specified without n, the default value is 4. If this option is not
specified, the default setting is 1.

(1) Note: Machine-specific options (see Table 2-13) can also affect optimization.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

ARM Optimizing C/C++ Compiler 19

Copyright © 2023 Texas Instruments Incorporated

v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

TeExAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 2-3. Advanced Optimization Options(!)
Option Alias Effect Section
--auto_inline=[size] -0i Sets automatic inlining size (--opt_level=3 only). If size is not Section 3.5
specified, the default is 1.
--call_assumptions=n -opn Level 0 (-op0) specifies that the module contains functions and Section 3.4.1
variables that are called or modified from outside the source code
provided to the compiler.
Level 1 (-op1) specifies that the module contains variables modified
from outside the source code provided to the compiler but does not
use functions called from outside the source code.
Level 2 (-op2) specifies that the module contains no functions or
variables that are called or modified from outside the source code
provided to the compiler (default).
Level 3 (-op3) specifies that the module contains functions that are
called from outside the source code provided to the compiler but
does not use variables modified from outside the source code.
--disable_inlining Prevents any inlining from occurring. Section 2.11
--fp_mode={relaxed|strict} Enables or disables relaxed floating-point mode. Section 2.3.3
--fp_reassoc={on|off} Enables or disables the reassociation of floating-point arithmetic. Section 2.3.3
--gen_opt_info=n -onn Level 0 (-on0) disables the optimization information file. Section 3.3.1
Level 1 (-on2) produces an optimization information file.
Level 2 (-on2) produces a verbose optimization information file.
--optimizer_interlist -0S Interlists optimizer comments with assembly statements. Section 3.11
--program_level_compile -pm Combines source files to perform program-level optimization. Section 3.4
--sat_reassoc={on|off} Enables or disables the reassociation of saturating arithmetic. Section 2.3.3
Default is --sat_reassoc=off.
--aliased_variables -ma Indicates that a specific aliasing technique is used. Section 3.9
(1) Note: Machine-specific options (see Table 2-13) can also affect optimization.
Table 2-4. Debug Options
Option Alias Effect Section
--symdebug:dwarf -g Default behavior. Enables symbolic debugging. The generation Section 2.3.5
of debug information does not impact optimization. Therefore, Section 3.12
generating debug information is enabled by default.
--symdebug:dwarf_version=2|3|4 Specifies the DWARF format version. Section 2.3.5
--symdebug:none Disables all symbolic debugging. Section 2.3.5
Section 3.12
--symdebug:skeletal (Deprecated; has no effect.)
Table 2-5. Include Options
Option Alias Effect Section
--include_path=directory -I Adds the specified directory to the #include search path. Section 2.5.2.1
--preinclude=filename Includes filename at the beginning of compilation. Section 2.3.3
Table 2-6. ULP Advisor Options
Option Alias Effect Section
--advice:power[={all|none|rulespec}] Enables checking the specified ULP Advisor rules. (Default is all.) Section 2.3.3
--advice:power_severity={error| Sets the diagnostic severity for ULP Advisor rules. Section 2.3.3
warning|remark|suppress}
Table 2-7. Control Options
Option Alias Effect Section
--compile_only -C Disables linking (negates --run_linker). Section 4.1.3
--help -h Prints (on the standard output device) a description of the options Section 2.3.2

understood by the compiler.

20 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 2-7. Control Options (continued)
Option Alias Effect Section
--run_linker -z Causes the linker to be invoked from the compiler command line. Section 2.3.2
--skip_assembler -n Compiles C/C++ source file , producing an assembly language Section 2.3.2
output file. The assembler is not run and no object file is produced.
Table 2-8. Language Options
Option Alias Effect Section
--c89 Processes C files according to the ISO C89 standard. Section 5.16
--c99 Processes C files according to the ISO C99 standard. Section 5.16
--c11 Processes C files according to the ISO C11 standard. Section 5.16
--ct+14 Processes C++ files according to the ISO C++14 standard. Section 5.16
The --c++03 option has been deprecated.
--cpp_default -fg Processes all source files with a C extension as C++ source files. Section 2.3.7
--enum_type={int|packed} Choose whether to use compact integer types to store small Section 2.3.4
enumerated types.
--exceptions Enables C++ exception handling. Section 5.8
--extern_c_can_throw Allow extern C functions to propagate exceptions. -
--float_operations_allowed Restricts the types of floating point operations allowed. Section 2.3.3
={none|all|32|64}
--gen_cross_reference_listing -px Generates a cross-reference listing file (.crl). Section 2.9
--pending_instantiations=# Specify the number of template instantiations that may be in Section 2.3.4
progress at any given time. Use 0 to specify an unlimited number.
--plain_char={signed|unsigned} -mc Specifies how to treat plain chars, default is unsigned. Section 2.3.4
--printf_support={nofloat]|full| Enables support for smaller, limited versions of the printf function Section 2.3.3
minimal} family (sprintf, fprintf, etc.) and the scanf function family (sscanf,
fscanf, etc.) run-time-support functions.
--relaxed_ansi -pr Enables relaxed mode; ignores strict ISO violations. This is on by Section 5.16.3
default. To disable this mode, use the --strict_ansi option.
--riti -rtti Enables C++ run-time type information (RTTI). —
--strict_ansi -ps Enables strict ANSI/ISO mode (for C/C++, not for K&R C). In this Section 5.16.3
mode, language extensions that conflict with ANSI/ISO C/C++ are
disabled. In strict ANSI/ISO mode, most ANSI/ISO violations are
reported as errors. Violations that are considered discretionary may
be reported as warnings instead.
--wchar_t={32|16} Sets the size of the C/C++ type wchar_t. Default is 16 bits. Section 2.3.4
Table 2-9. Parser Preprocessing Options
Option Alias Effect Section
--preproc_dependency[=filename] -ppd Performs preprocessing only, but instead of writing preprocessed Section 2.5.8
output, writes a list of dependency lines suitable for input to a
standard make utility.
--preproc_includes[=filename] -ppi Performs preprocessing only, but instead of writing preprocessed Section 2.5.9
output, writes a list of files included with the #include directive.
--preproc_macros[=filename] -ppm Performs preprocessing only. Writes list of predefined and user- Section 2.5.10
defined macros to a file with the same name as the input but with
a .pp extension.
--preproc_only -ppo Performs preprocessing only. Writes preprocessed output to a file Section 2.5.4
with the same name as the input but with a .pp extension.
--preproc_with_comment -ppc Performs preprocessing only. Writes preprocessed output, keeping Section 2.5.6
the comments, to a file with the same name as the input but with
a .pp extension.
--preproc_with_compile -ppa Continues compilation after preprocessing with any of the -pp<x> Section 2.5.5

options that normally disable compilation.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

ARM Optimizing C/C++ Compiler

Copyright © 2023 Texas Instruments Incorporated

v20.2.0.LTS

21

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 2-9. Parser Preprocessing Options (continued)
Option Alias Effect Section
--preproc_with_line -ppl Performs preprocessing only. Writes preprocessed output with line- Section 2.5.7
control information (#line directives) to a file with the same name as
the input but with a .pp extension.
Table 2-10. Predefined Macro Options
Option Alias Effect Section
--define=name[=def] -D Predefines name. Section 2.3.2
--undefine=name -U Undefines name. Section 2.3.2
Table 2-11. Diagnostic Message Options
Option Alias Effect Section
--compiler_revision Prints out the compiler release revision and exits. -
--diag_error=num -pdse Categorizes the diagnostic identified by num as an error. Section 2.7.1
--diag_remark=num -pdsr Categorizes the diagnostic identified by num as a remark. Section 2.7.1
--diag_suppress=num -pds Suppresses the diagnostic identified by num. Section 2.7.1
--diag_warning=num -pdsw Categorizes the diagnostic identified by num as a warning. Section 2.7.1
--diag_wrap={on|off} Wrap diagnostic messages (default is on). Note that this command-
line option cannot be used within the Code Composer Studio IDE.
--display_error_number -pden Displays a diagnostic's identifiers along with its text. Note that this Section 2.7.1
command-line option cannot be used within the Code Composer
Studio IDE.
--emit_warnings_as_errors -pdew Treat warnings as errors. Section 2.7.1
--gen_func_info_listing Generate user information file (.aux). Section 2.3.2
--issue_remarks -pdr Issues remarks (non-serious warnings). Section 2.7.1
--no_warnings -pdw Suppresses diagnostic warnings (errors are still issued). Section 2.7.1
--quiet -q Suppresses progress messages (quiet). --
--set_error_limit=num -pdel Sets the error limit to num. The compiler abandons compiling after Section 2.7.1
this number of errors. (The default is 100.)
--super_quiet -qq Super quiet mode. -
--tool_version -version Displays version number for each tool. -
--verbose Display banner and function progress information. --
--verbose_diagnostics -pdv Provides verbose diagnostic messages that display the original Section 2.7.1
source with line-wrap. Note that this command-line option cannot be
used within the Code Composer Studio IDE.
--write_diagnostics_file -pdf Generates a diagnostic message information file. Compiler only Section 2.7.1
option. Note that this command-line option cannot be used within
the Code Composer Studio IDE.
Table 2-12. Supplemental Information Options
Option Alias Effect Section
--gen_preprocessor_listing -pl Generates a raw listing file (.rl). Section 2.10
--section_sizes={on|off} Generates section size information, including sizes for sections Section 2.7.1
containing executable code and constants, constant or initialized
data (global and static variables), and uninitialized data. (Default is
off if this option is not included on the command line. Default is on if
this option is used with no value specified.)
Table 2-13. Run-Time Model Options
Option Alias Effect Section
--common={on|off} On by default. When on, uninitialized file scope variables are emitted Section 2.3.4
as common symbols. When off, common symbols are not created.
--embedded_constants={on|off} Controls whether compiler embeds constants in functions. Section 2.3.4
22 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 2-13. Run-Time Model Options (continued)
Option Alias Effect Section
--gen_data_subsections={on|off} Place all aggregate data (arrays, structs, and unions) into Section 4.2.2
subsections. This gives the linker more control over removing
unused data during the final link step. See the link to the right for
details about the default setting.
--global_register={r5|r6|r9} -rr Disallows use of rx=[5,6,9] by the compiler. Section 2.3.4
-neon Enables support for the Cortex-A8 Neon SIMD instruction set. Section 2.3.4
--ramfunc={on|off} If set to on, specifies that all functions should be placed in Section 2.3.4
the .Tl.ramfunc section, which is placed in RAM.
--unaligned_access={on|off} Controls generation of unaligned accesses. Section 2.3.4
--use_dead_funcs_list [=fname] Places each function listed in the file in a separate section. Section 2.3.4
Table 2-14. Entry/Exit Hook Options
Option Alias Effect Section
--entry_hook[=name] Enables entry hooks. Section 2.15
--entry_parm={none|name| Specifies the parameters to the function to the --entry_hook option. Section 2.15
address}
--exit_hook[=name] Enables exit hooks. Section 2.15
--exit_parm={none|name|address} Specifies the parameters to the function to the --exit_hook option. Section 2.15
--remove_hooks_when_inlining Removes entry/exit hooks for auto-inlined functions. Section 2.15
Table 2-15. Feedback Options
Option Alias Effect Section
--analyze=codecov Generate analysis info from profile data. Section 3.8.2.2
--analyze_only Only generate analysis. Section 3.8.2.2
--gen_profile_info Generates instrumentation code to collect profile information. Section 3.7.1.3
--use_profile_info=file1], file2,...] Specifies the profile information file(s). Section 3.7.1.3
Table 2-16. Assembler Options
Option Alias Effect Section
--keep_asm -k Keeps the assembly language (.asm) file. Section 2.3.11
--asm_listing -al Generates an assembly listing file. Section 2.3.11
--c_src_interlist -Ss Interlists C source and assembly statements. Section 2.12
Section 3.11
--src_interlist -S Interlists optimizer comments (if available) and assembly source Section 2.3.2
statements; otherwise interlists C and assembly source statements.
--absolute_listing -aa Enables absolute listing. Section 2.3.11
--asm_cross_reference_listing -ax Generates the cross-reference file. Section 2.3.11
--asm_define=name[=def] -ad Sets the name symbol. Section 2.3.11
--asm_dependency -apd Performs preprocessing; lists only assembly dependencies. Section 2.3.11
--asm_includes -api Performs preprocessing; lists only included #include files. Section 2.3.11
--asm_undefine=name -au Undefines the predefined constant name. Section 2.3.11
--code_state={16|32} Begins assembling instructions as 16- or 32-bit instructions. Section 2.3.11
--include_file=filename -ahi Includes the specified file for the assembly module. Section 2.3.11

Table 2-17. File Type Specifier Options

Option Alias Effect Section
--asm_file=filename -fa Identifies filename as an assembly source file regardless of its Section 2.3.7
extension. By default, the compiler and assembler treat .asm files
as assembly source files.
--c_file=filename -fc Identifies filename as a C source file regardless of its extension. By ~ Section 2.3.7

default, the compiler treats .c files as C source files.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

ARM Optimizing C/C++ Compiler

Copyright © 2023 Texas Instruments Incorporated

v20.2.0.LTS

23

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
Table 2-17. File Type Specifier Options (continued)
Option Alias Effect Section
--cpp_file=filename -fp Identifies filename as a C++ file, regardless of its extension. By Section 2.3.7
default, the compiler treats .C, .cpp, .cc and .cxx files as a C++ files.
--obj_file=filename -fo Identifies filename as an object code file regardless of its extension. Section 2.3.7

By default, the compiler and linker treat .obj files as object code files,

including both *.c.obj and *.cpp.obj files.

Table 2-18. Directory Specifier Options

Option Alias Effect Section

--abs_directory=directory -fb Specifies an absolute listing file directory. By default, the compiler Section 2.3.10
uses the object file directory.

--asm_directory=directory -fs Specifies an assembly file directory. By default, the compiler uses the Section 2.3.10
current directory.

--list_directory=directory -ff Specifies an assembly listing file and cross-reference listing file Section 2.3.10
directory By default, the compiler uses the object file directory.

--obj_directory=directory -fr Specifies an object file directory. By default, the compiler uses the Section 2.3.10
current directory.

--output_file=filename -fe Specifies a compilation output file name; can override --obj_directory. Section 2.3.10

--pp_directory=dir

--temp_directory=directory

Specifies a preprocessor file directory. By default, the compiler uses Section 2.3.10

the current directory.

Specifies a temporary file directory. By default, the compiler uses the Section 2.3.10

current directory.

Table 2-19. Default File Extensions Options

Option Alias Effect Section
--asm_extension=[.]extension -ea Sets a default extension for assembly source files. Section 2.3.9
--c_extension=[.]extension -ec Sets a default extension for C source files. Section 2.3.9
--cpp_extension=[.]Jextension -ep Sets a default extension for C++ source files. Section 2.3.9
--listing_extension=[.]extension -es Sets a default extension for listing files. Section 2.3.9
--obj_extension=[.]Jextension -e0 Sets a default extension for object files. Section 2.3.9
Table 2-20. Command Files Options
Option Alias Effect Section
--cmd_file=filename -@ Interprets contents of a file as an extension to the command line. Section 2.3.2
Multiple -@ instances can be used.
Table 2-21. MISRA-C 2004 Options
Option Alias Effect Section

--check_misra[={all|required|
advisory|none|rulespec}]

--misra_advisory={error|warning|
remark|suppress}

--misra_required={error|warning|
remark|suppress}

Enables checking of the specified MISRA-C:2004 rules. Default is all. Section 2.3.3

Sets the diagnostic severity for advisory MISRA-C:2004 rules.

Sets the diagnostic severity for required MISRA-C:2004 rules.

Section 2.3.3

Section 2.3.3

24 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

2.3.1 Linker Options

The following tables list the linker options. See Chapter 4 of this document and the ARM Assembly Language
Tools User's Guide for details on these options.

Table 2-22. Linker Basic Options

Option Alias Description

--run_linker -z Enables linking.

--output_file=file -0 Names the executable output file. The default filename is a .out file.

--map_file=file -m Produces a map or listing of the input and output sections, including holes, and places
the listing in file.

--stack_size=size [-]-stack Sets C system stack size to size bytes and defines a global symbol that specifies the
stack size. Default = 2K bytes.

--heap_size=size [-]-heap Sets heap size (for the dynamic memory allocation in C) to size bytes and defines a

global symbol that specifies the heap size. Default = 2K bytes.

Table 2-23. File Search Path Options

Option Alias Description

--library=file -l Names an archive library or link command file as linker input.

--disable_auto_rts Disables the automatic selection of a run-time-support library. See Section 4.3.1.1.

--priority -priority Satisfies unresolved references by the first library that contains a definition for that
symbol.

--reread_libs -X Forces rereading of libraries, which resolves back references.

--search_path=pathname -1 Alters library-search algorithms to look in a directory named with pathname before
looking in the default location. This option must appear before the --library option.

Table 2-24. Command File Preprocessing Options
Option Alias Description

--define=name=value

--undefine=name

Predefines name as a preprocessor macro.

Removes the preprocessor macro name.

--disable_pp Disables preprocessing for command files.
Table 2-25. Diagnostic Message Options

Option Alias Description

--diag_error=num Categorizes the diagnostic identified by num as an error.

--diag_remark=num Categorizes the diagnostic identified by num as a remark.

--diag_suppress=num Suppresses the diagnostic identified by num.

--diag_warning=num Categorizes the diagnostic identified by num as a warning.

--display_error_number Displays a diagnostic's identifiers along with its text.

--emit_references:file[=file] Emits a file containing section information. The information includes section size,
symbols defined, and references to symbols.

--emit_warnings_as_errors -pdew Treat warnings as errors.

--issue_remarks Issues remarks (non-serious warnings).

--no_demangle Disables demangling of symbol names in diagnostic messages.

--no_warnings Suppresses diagnostic warnings (errors are still issued).

--set_error_limit=count Sets the error limit to count. The linker abandons linking after this number of errors. (The
default is 100.)

--verbose_diagnostics Provides verbose diagnostic messages that display the original source with line-wrap.

--warn_sections -wW Displays a message when an undefined output section is created.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

ARM Optimizing C/C++ Compiler 25
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-26. Linker Output Options

Option Alias Description

--absolute_exe -a Produces an absolute, executable object file. This is the default; if neither --
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe were
specified.

--ecc={ on | off } Enable linker-generated Error Correcting Codes (ECC). The default is off.

--ecc:data_error Inject specified errors into the output file for testing.

--ecc:ecc_error Inject specified errors into the Error Correcting Code (ECC) for testing.

--generate_dead_funcs_list Writes a list of the dead functions that were removed by the linker to file fname.

--mapfile_contents=attribute Controls the information that appears in the map file.

--relocatable -r Produces a nonexecutable, relocatable output object file.

--run_abs -abs Produces an absolute listing file.

--xml_link_info=file

Generates a well-formed XML file containing detailed information about the result of a
link.

Table 2-27. Symbol Management Options

Option Alias Description

--entry_point=symbol -e Defines a global symbol that specifies the primary entry point for the executable object
file.

--globalize=pattern Changes the symbol linkage to global for symbols that match pattern.

--hide=pattern Hides symbols that match the specified pattern.

--localize=pattern Make the symbols that match the specified pattern local.

--make_global=symbol -g Makes symbol global (overrides -h).

--make_static -h Makes all global symbols static.

--no_symtable -s Strips symbol table information and line number entries from the executable object file.

--retain Retains a list of sections that otherwise would be discarded.

--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions.

--symbol_map=refname=defname Specifies a symbol mapping; references to the refname symbol are replaced with
references to the defname symbol. The --symbol_map option is supported when used
with --opt_level=4.

--undef_sym=symbol -u Adds symbol to the symbol table as an unresolved symbol.

--unhide=pattern

Excludes symbols that match the specified pattern from being hidden.

Table 2-28. Run-Time Environment Options

Option Alias Description

--arg_size=size --args Reserve size bytes for the argc/argv memory area.

--cinit_hold_wdt={on|off} Link in an RTS auto-initialization routine that either holds (on) or does not hold (off) the
watchdog timer during cinit auto-initialization. See Section 4.3.3.

-be32 Forces the linker to generate BE-32 object code.

-be8 Forces the linker to generate BE-8 object code.

--cinit_compression[=type] Specifies the type of compression to apply to the C auto initialization data. The
default if this option is specified with no type is Izss for Lempel-Ziv-Storer-Szymanski
compression.

--copy_compression[=type] Compresses data copied by linker copy tables. The default if this option is specified with
no type is lzss for Lempel-Ziv-Storer-Szymanski compression.

--fill_value=value -f Sets default fill value for holes within output sections

--ram_model -cr Initializes variables at load time. See Section 4.3.5 for details.

--rom_model -C Autoinitializes variables at run time. See Section 4.3.5 for details.

--trampolines[=off|on]

Generates far call trampolines (argument is optional, is "on" by default).

26 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 2-29. Miscellaneous Options

Option Alias Description

--compress_dwarf[=off|on] Aggressively reduces the size of DWARF information from input object files. Default is
on.

--linker_help [-]-help Displays information about syntax and available options.

--minimize_trampolines Places sections to minimize number of far trampolines required.

--preferred_order=function Prioritizes placement of functions.

--trampoline_min_spacing When trampoline reservations are spaced more closely than the specified limit, tries to
make them adjacent.

--unused_section_elimination[=off|on] Eliminates sections that are not needed in the executable module. Default is on.

--zero_init=[offlon] Controls preinitialization of uninitialized variables. Default is on. Always off if --

ram_model is used.

2.3.2 Frequently Used Options
Following are detailed descriptions of options that you will probably use frequently:

--c_src_interlist Invokes the interlist feature, which interweaves original C/C++ source with compiler-generated assembly
language. The interlisted C statements may appear to be out of sequence. You can use the interlist feature
with the optimizer by combining the --optimizer_interlist and --c_src_interlist options. See Section 3.11. The
--c_src_interlist option can have a negative performance and/or code size impact.

--cmd_file=filename Appends the contents of a file to the option set. Use this option to avoid limitations on command line
length or C style comments imposed by the operating system. Use a # or ; at the beginning of a line in the
command file to include comments. You can add comments by surrounded by /* and */. To specify options,
surround hyphens with quotation marks. For example, "--"quiet. You can use the --cmd_file option multiple
times to specify multiple files. For example, the following indicates file3 should be compiled as source and
file1 and file2 are --cmd_file files:

‘armcl --cmd_file=filel --cmd file=file2 file3

--compile_only Suppresses the linker and overrides the --run_linker option, which specifies linking. The --compile_only
option's short form is -c. Use this option when you have --run_linker specified in the TI_ARM_C_OPTION
environment variable and you do not want to link. See Section 4.1.3.

--define=name[=def] Predefines the constant name for the preprocessor. This is equivalent to inserting #define name def at the
top of each C source file. If the optional[=def] is omitted, name is set to 1. This option's short form is -D.
If you want to define a quoted string and keep the quotation marks, do one of the following:
» For Windows, use --define=name="\"string def\"". For example, --define=car="\"sedan\""
» For UNIX, use --define=name=""string def". For example, --define=car=""sedan
» For CCS, enter the definition in a file and include that file with the --cmd_file option.

--gen_func_info_listing Generates a user information file with a .aux file extension. The file contains linker call graph information on
a per-file level.

--help Displays the syntax for invoking the compiler and lists available options. If the --help option is followed by
another option or phrase, detailed information about the option or phrase is displayed. For example, to see
information about debugging options use --help debug.

--include_path=directory Adds directory to the list of directories that the compiler searches for #include files. The --include_path
option's short form is —I. You can use this option several times to define several directories; be sure to
separate the --include_path options with spaces. If you do not specify a directory name, the preprocessor
ignores the --include_path option. See Section 2.5.2.1.

--keep_asm Retains the assembly language output from the compiler or assembly optimizer. Normally, the compiler
deletes the output assembly language file after assembly is complete. This option's short form is -k.

--quiet Suppresses banners and progress information from all the tools. Only source filenames and error messages
are output. The --quiet option's short form is -q.

--run_linker Runs the linker on the specified object files. The --run_linker option and its parameters follow all other
options on the command line. All arguments that follow --run_linker are passed to the linker. The --run_linker
option's short form is -z. See Section 4.1.

--skip_assembler Compiles only. The specified source files are compiled but not assembled or linked. This option's short form
is -n. This option overrides --run_linker. The output is assembly language output from the compiler.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 27
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
Using the C/C++ Compiler www.ti.com
--src_interlist Invokes the interlist feature, which interweaves optimizer comments or C/C++ source with assembly source.

If the optimizer is invoked (--opt_level=n option), optimizer comments are interlisted with the assembly
language output of the compiler, which may rearrange code significantly. If the optimizer is not invoked,
C/C++ source statements are interlisted with the assembly language output of the compiler, which allows you
to inspect the code generated for each C/C++ statement. The --src_interlist option implies the --keep_asm
option. The --src_interlist option's short form is -s.

--tool_version Prints the version number for each tool in the compiler. No compiling occurs.

--undefine=name Undefines the predefined constant name. This option overrides any --define options for the specified
constant. The --undefine option's short form is -U.

--verbose Displays progress information and toolset version while compiling. Resets the --quiet option.

2.3.3 Miscellaneous Useful

Options

Following are detailed descriptions of miscellaneous options:

--advice:power={alljnone|
rulespec}

--advice:power_severity={error|
warning|remark|suppress}

--check_misra={all|required|
advisory|none|rulespec}

--float_operations_allowed=
{nonelall|32|64}

--fp_mode={relaxed|strict}

--fp_reassoc={on|off}

--misra_advisory={error|
warning|remark|suppress}

--misra_required={error|
warning|remark|suppress}

Enables checking code against ULP (ultra low power) Advisor rules for possible power inefficiencies.
More detailed information can be found at www.ti.com/ulpadvisor. The rulespec parameter is a comma-
separated list of specifiers. See Section 5.4 for details.

Sets the diagnostic severity for ULP Advisor rules.

Displays the specified amount or type of MISRA-C documentation. This option must be used if you
want to enable use of the CHECK_MISRA and RESET_MISRA pragmas within the source code. The
rulespec parameter is a comma-separated list of specifiers. See Section 5.3 for details.

Restricts types of floating point operations allowed. The default is all. If set to none, 32,

or 64, the application is checked for operations performed at runtime. For example, if --
float_operations_allowed=32 is specified on the command line, the compiler issues an error if a double
precision operation will be generated. This can be used to ensure that double precision operations

are not accidentally introduced into an application. The checks are performed after relaxed mode
optimizations have been performed, so illegal operations that are completely removed result in no
diagnostic messages.

The default floating-point mode is strict. To enable relaxed floating-point mode use the
--fp_mode=relaxed option. Relaxed floating-point mode causes double-precision floating-point
computations and storage to be converted to single-precision floating-point where possible. This
behavior does not conform with ISO, but it results in faster code, with some loss in accuracy. The
following specific changes occur in relaxed mode:

» If a double-precision floating-point expression's result is assigned to a single-precision floating-
point, an integer, or immediately used in a single-precision context, the expression's computations
are converted to single-precision computations. Double-precision constants in the expression are
converted to single-precision if they can be correctly represented as single-precision constants.

+ Calls to double-precision functions in math.h are converted to their single-precision counterparts if
all arguments are single-precision and the result is used in a single-precision context. The math.h
header file must be included for this optimization to work.

» Division by a constant is converted to inverse multiplication.

+ Calls to sqrt, sqrtf, and sqrtl are converted directly to the VSQRT instruction. In this case errno will
not be set for negative inputs.

» Certain C standard float functions--such as sqrt, sin, cos, atan, atan2, and fmodf--are redirected to
optimized inline functions where possible.

Enables or disables the reassociation of floating-point arithmetic. If --fp_mode=relaxed is specified,
--fp_reassoc=on is set automatically. If --strict_ansi is set, --fp_reassoc=0off is set since reassociation of
floating-point arithmetic is an ANSI violation.

Because floating-point values are of limited precision, and because floating-point operations round,
floating-point arithmetic is neither associative nor distributive. For instance, (1 + 3e100) - 3e100 is
not equal to 1 + (3e100 - 3e100). If strictly following IEEE 754, the compiler cannot, in general,
reassociate floating-point operations. Using --fp_reassoc=on allows the compiler to perform the
algebraic reassociation, at the cost of a small amount of precision for some operations.

Sets the diagnostic severity for advisory MISRA-C:2004 rules.

Sets the diagnostic severity for required MISRA-C:2004 rules.

28 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/ulpadvisor
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

--preinclude=filename

--printf_support={full|
nofloat|minimal}

--sat_reassoc={on|off}

Includes the source code of filename at the beginning of the compilation. This can be used to establish
standard macro definitions. The filename is searched for in the directories on the include search list.
The files are processed in the order in which they were specified.

Enables support for smaller, limited versions of the printf function family (sprintf, fprintf, etc.) and the

scanf function family (sscanf, fscanf, etc.) run-time-support functions. The valid values are:

« full: Supports all format specifiers. This is the default.

« nofloat: Excludes support for printing and scanning floating-point values. Supports all format
specifiers except %a, %A, %f, %F, %g, %G, %e, and %E.

* minimal: Supports the printing and scanning of integer, char, or string values without width or
precision flags. Specifically, only the %%, %d, %o, %c, %s, and %Xx format specifiers are supported.

There is no run-time error checking to detect if a format specifier is used for which support is
not included. The --printf_support option precedes the --run_linker option, and must be used when
performing the final link.

Enables or disables the reassociation of saturating arithmetic.

2.3.4 Run-Time Model Options

These options are specific to the ARM toolset. See the referenced sections for more information. ARM-specific
assembler options are listed in Section 2.3.11.

The ARM compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which uses the
ELF object format and the DWARF debug format. If you want support for the legacy COFF ABI, please use the
ARM v5.2 Code Generation Tools and refer to SPNU151J and SPNU118J for documentation.

--code_state={16|32}

--common={on|off}

--embedded_constants={on|off}

--endian={ big | little }

--enum_type={int|packed}

Generates 16-bit Thumb code. By default, 32-bit code is generated. When Cortex-R4,
Cortex-M0, Cortex-M3, or Cortex-A8 architecture support is chosen, the --code_state option
generates Thumb-2 code. For details on indirect calls in 16-bit versus 32-bit code, see
Section 6.11.2.2.

When on (the default), uninitialized file scope variables are emitted as common symbols.
When off, common symbols are not created. The benefit of allowing common symbols

to be created is that generated code can remove unused variables that would otherwise
increase the size of the .bss section. (Uninitialized variables of a size larger than 32 bytes are
separately optimized through placement in separate subsections that can be omitted from a
link.) Variables cannot be common symbols if they are assigned to a section other than .bss
or are defined relative to another common symbol.

By default the compiler embeds constants in functions. These constants can include literals,
addresses, strings, etc. This is a problem if you wants to prevent reads from a memory region
that contains only executable code. To enable the generation of "execute only code", the
compiler provides the --embedded_constants=[on|off] option. If the option is not specified, it
is assumed to be on. The option is available on the following devices: Cortex-A8, Cortex-M3,
Cortex-M4, and Cortex-R4.

Designates big- or little-endian format for the compiled code. By default, big-endian format is
used.

Designates the underlying type of an enumeration type. The default is packed, which causes
the underlying enumeration type to be the smallest integer type that accommodates the
enumeration constants. Using --enum_type=int causes the underlying type to always be int.
An enumeration constant with a value outside the int range generates an error.

--float_support={ vfpv2 | vipv3 | vfpv3d16 | Generates vector floating-point (VFP) coprocessor instructions for various versions and

fpv4spd16 | none }
--global_register={r5|r6|r9}

-md

libraries. See Section 2.14.

Disallows use of rx=[5|6|9] by the compiler. Only one --global_register option may be used on
a command line; if multiple such options are specified, only the last option takes effect.

Disables dual-state interworking support. See Section 6.11.1.

-mv={4|5¢|6|6MO|7A8|7M3 |7TM4|7R4|7R5} Selects processor version: ARM V4 (ARM7), ARM V5e (ARM9E), ARM V6 (ARM11), ARM

V6MO (Cortex-M0), ARM V7A8 (Cortex-A8), ARM V7M3 (Cortex-M3), ARM V7M4 (Cortex-
M4), ARM V7R4 (Cortex-R4), or ARM V7R5 (Cortex-R5). The default is ARM V4.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 29

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spnu151j
https://www.ti.com/lit/pdf/spnu118j
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

=--neon

--pending_instantiations=#

--plain_char={signed|unsigned}

--ramfunc={on|off}

--silicon_version

--unaligned_access={on|off}

--use_dead_funcs_list[=fname]

--wchar_t={32|16}

The compiler can generate code using the SIMD instructions available in the Neon extension
to the version 7 ARM architecture. The optimizer attempts to vectorize source code in order
to take advantage of these SIMD instructions. In order to generate vectorized SIMD Neon
code, select the version 7 architecture with the -mv=7A8 option and enable Neon instruction
support with the --neon option.

The optimizer is used to vectorize the source code. At least level 2 optimization (--
opt_level=2 or 02) is required, although level 3 (--opt_level=3) is recommended along with
the --opt_for_speed option.

Specify the number of template instantiations that may be in progress at any given time. Use
0 to specify an unlimited number.

Specifies how to treat C/C++ plain char variables. Default is unsigned.

If set to on, specifies that all functions should be placed in the .Tl.ramfunc section, which is
placed in RAM. If set to off, only functions with the ramfunc function attribute are treated this
way. See Section 5.17.2.

Newer Tl linker command files support the --ramfunc option automatically by placing
functions in the .Tl.ramfunc section. If you have a linker command file that does not include
a section specification for the .Tl.ramfunc section, you can modify the linker command file to
place this section in RAM. See the ARM Assembly Language Tools User's Guide for details
on section placement.

Selects the instruction set version. The options are:
* 4 =ARM V4 (ARM7) This is the default.

* 5e =ARM V5e (ARM9IE)

* 6=ARMV6 (ARM11)

* 6MO0 = ARM V6MO (Cortex-MO0)

* 7A8 = ARM V7A8 (Cortex-A8)

e 7M3 =ARM V7M3 (Cortex-M3)

* 7M4 = ARM V7M4 (Cortex-M4)

* 7R4 = ARM V7R4 (Cortex-R4),

* 7R5 = ARM V7R5 (Cortex-R5)

Using the --silicon_version=7M4 option automatically sets the --float_support=fpv4spd16
option. To disable hardware floating point support, use the --float_support=none option.

Informs the compiler that the target device supports unaligned memory accesses. Typically
data is aligned to its size boundary. For instance 32-bit data is aligned on a 32-bit boundary,
16-bit data on a 16-bit boundary, and 8-bit data on an 8-bit boundary. If this option is set to
on, it tells the compiler it is legal to generate load and store instructions for data that falls
on an unaligned boundary (32-bit data on a 16-bit boundary). Cases where unaligned data
accesses can occur include calls to memcpy() and accessing packed structs. This option is
on by default for all Cortex devices.

Places each function listed in the file in a separate section. The functions are placed

in the fname section, if specified. This option and --generate_dead_funcs_list are not
recommended within the Code Composer Studio IDE. Instead, consider using --opt_level=4,
--program_level_compile, and/or --gen_func_subsections.

Sets the size (in bits) of the C/C++ type wchar_t. By default the compiler generates 16-bit
wchar_t. 16-bit wchar_t objects are not compatible with the 32-bit wchar_t objects; an error is
generated if they are combined.

30

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.3.5 Symbolic Debugging and Profiling Options
The following options are used to select symbolic debugging or profiling:

--symdebug:dwarf (Default) Generates directives that are used by the C/C++ source-level debugger and enables
assembly source debugging in the assembler. The --symdebug:dwarf option's short form is -g.
See Section 3.12. For details on the DWARF format, see The DWARF Debugging Standard.

--symdebug:dwarf_ Specifies the DWARF debugging format version (2, 3, or 4) to be generated when --

version={2|3|4} symdebug:dwarf (the default) is specified. By default, the compiler generates DWARF version
3 debug information. DWARF versions 2, 3, and 4 may be intermixed safely. When DWARF
4 is used, type information is placed in the .debug_types section. At link time, duplicate type
information is removed. This method of type merging is superior to DWARF 2 or 3 and results
in a smaller executable. In addition, DWARF 4 reduces the size of intermediate object files in
comparison to DWARF 3. For more about Tl extensions to the DWARF language, see The
Impact of DWARF on Tl Object Files (SPRAABS).

--symdebug:none Disables all symbolic debugging output. This option is not recommended; it prevents debugging
and most performance analysis capabilities.

--symdebug:skeletal Deprecated. Has no effect.

2.3.6 Specifying Filenames

The input files that you specify on the command line can be C source files, C++ source files, assembly source
files, or object files. The compiler uses filename extensions to determine the file type.

Extension File Type
.asm, .abs, or .s* (extension begins with s) Assembly source
.c C source
.C Depends on operating system
.cpp, .CXX, .CC C++ source
.obj .c.obj .cpp.obj .0* .dll .so Object
Note

Case Sensitivity in Filename Extensions: Case sensitivity in filename extensions is determined
by your operating system. If your operating system is not case sensitive, a file with a .C extension
is interpreted as a C file. If your operating system is case sensitive, a file with a .C extension is
interpreted as a C++ file.

For information about how you can alter the way that the compiler interprets individual filenames, see Section
2.3.7. For information about how you can alter the way that the compiler interprets and names the extensions of
assembly source and object files, see Section 2.3.10.

You can use wildcard characters to compile or assemble multiple files. Wildcard specifications vary by system;
use the appropriate form listed in your operating system manual. For example, to compile all of the files in a
directory with the extension .cpp, enter the following:

armcl *.cpp

Note

No Default Extension for Source Files is Assumed: If you list a filename called example on the
command line, the compiler assumes that the entire filename is example not example.c. No default
extensions are added onto files that do not contain an extension.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 31
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

2.3.7 Changing How the Compiler Interprets Filenames

You can use options to change how the compiler interprets your filenames. If the extensions that you use are
different from those recognized by the compiler, you can use the filename options to specify the type of file. You

can insert an optional space between the option and the filename. Select the appropriate option for the type of
file you want to specify:

--asm_file=filename for an assembly language source file
--c_file=filename for a C source file
--cpp_file=filename for a C++ source file
--obj_file=filename for an object file

For example, if you have a C source file called file.s and an assembly language source file called assy, use the
--asm_file and --c_file options to force the correct interpretation:

armcl --c_file=file.s --asm_file=assy

You cannot use the filename options with wildcard specifications.

Note

The default file extensions for object files created by the compiler have been changed in order
to prevent conflicts when C and C++ files have the same names. Object files generated from C

source files have the .c.obj extension. Object files generated from C++ source files have the .cpp.obj
extension.

2.3.8 Changing How the Compiler Processes C Files

The --cpp_default option causes the compiler to process C files as C++ files. By default, the compiler treats files
with a .c extension as C files. See Section 2.3.9 for more information about filename extension conventions.

2.3.9 Changing How the Compiler Interprets and Names Extensions

You can use options to change how the compiler program interprets filename extensions and names the
extensions of the files that it creates. The filename extension options must precede the filenames they apply to
on the command line. You can use wildcard specifications with these options. An extension can be up to nine
characters in length. Select the appropriate option for the type of extension you want to specify:

--asm_extension=new extension for an assembly language file
--c_extension=new extension for a C source file
--cpp_extension=new extension for a C++ source file
--listing_extension=new extension sets default extension for listing files
--obj_extension=new extension for an object file

The following example assembles the file fit.rrr and creates an object file named fit.o:

armcl --asm_extension=.rrr --obj extension=.o0 fit.rrr ‘

The period (.) in the extension is optional. You can also write the example above as:

armcl --asm extension=rrr --obj extension=o fit.rrr ‘

32 ARM Optimizing C/C++ Compiler

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.3.10 Specifying Directories

By default, the compiler program places the object, assembly, and temporary files that it creates into the current
directory. If you want the compiler program to place these files in different directories, use the following options:

--abs_directory=directory Specifies the destination directory for absolute listing files. The default is to use the same directory

as the object file directory. For example:

‘armcl --abs _directory=d:\abso list ‘
--asm_directory=directory Specifies a directory for assembly files. For example:

‘armcl --asm _directory=d:\assembly ‘
--list_directory=directory Specifies the destination directory for assembly listing files and cross-reference listing files. The

default is to use the same directory as the object file directory. For example:
‘armcl --list directory=d:\listing ‘

--obj_directory=directory Specifies a directory for object files. For example:
‘armcl --obj directory=d:\object ‘

--output_file=filename Specifies a compilation output file name; can override --obj_directory. For example:
‘armcl --output file=transfer ‘
--pp_directory=directory Specifies a preprocessor file directory for object files (default is .). For example:

‘armcl --pp_directory=d:\preproc ‘

--temp_directory=directory Specifies a directory for temporary intermediate files. For example:
‘armcl --temp directory=d:\temp ‘

2.3.11 Assembler Options

Following are assembler options that you can use with the compiler. For more information, see the ARM
Assembly Language Tools User's Guide.

--absolute_listing Generates a listing with absolute addresses rather than section-relative offsets.

--asm_define=name[=def] Predefines the constant name for the assembler; produces a .set directive for a constant
or an .arg directive for a string. If the optional [=def] is omitted, the name is set to 1. If you
want to define a quoted string and keep the quotation marks, do one of the following:

* For Windows, use --asm_define=name="\"string def\"". For example: --

asm_define=car="\"sedan\""

* For UNIX, use --asm_define=name="'string def". For example: --
asm_define=car='"sedan"'
* For Code Composer Studio, enter the definition in a file and include that file with the

--cmd_file option.

--asm_dependency Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of dependency lines suitable for input to a standard make utility. The list is
written to a file with the same name as the source file but with a .ppa extension.

--asm_includes Performs preprocessing for assembly files, but instead of writing preprocessed output,
writes a list of files included with the #include directive. The list is written to a file with the
same name as the source file but with a .ppa extension.

--asm_listing Produces an assembly listing file.

--asm_undefine=name Undefines the predefined constant name. This option overrides any --asm_define options
for the specified name.

--code_state={16|32} Generates 16-bit Thumb code. By default, 32-bit code is generated. When Cortex-R4,

Cortex-MO0, Cortex-M3, or Cortex-A8 architecture support is chosen, the --code_state
option generates Thumb-2 code. For details on indirect calls in 16-bit versus 32-bit code,
see Section 6.11.2.2.

--asm_cross_reference_listing Produces a symbolic cross-reference in the listing file.
--include_file=filename Includes the specified file for the assembly module; acts like an .include directive. The file
is included before source file statements. The included file does not appear in the assembly
listing files.
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 33
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

2.3.12 Deprecated Options

Several compiler options have been deprecated, removed, or renamed. The compiler continues to accept some
of the deprecated options, but they are not recommended for use.

2.4 Controlling the Compiler Through Environment Variables

An environment variable is a system symbol you define and assign a string to. Setting environment variables is
useful if you want to run the compiler repeatedly without re-entering options, input filenames, or pathnames.

Note

C_OPTION and C_DIR -- The C_OPTION and C_DIR environment variables are deprecated. Use
device-specific environment variables instead.

2.4.1 Setting Default Compiler Options (TI_ARM_C_OPTION)

You might find it useful to set the compiler, assembler, and linker default options using the TI_ ARM_C_OPTION
environment variable. If you do this, the compiler uses the default options and/or input filenames that you name
TI_ARM_C_OPTION every time you run the compiler.

Setting the default options with these environment variables is useful when you want to run the compiler
repeatedly with the same set of options and/or input files. After the compiler reads the command line and the
input filenames, it looks for the TI_ARM_C_OPTION environment variable and processes it.

The table below shows how to set the TI_ ARM_C_OPTION environment variable. Select the command for your
operating system:

Operating System Enter
UNIX (Bourne shell) TI_ARM_C_OPTION=" option, [option, . . .]"; export TI_ARM_C_OPTION
Windows set TI_ARM_C_OPTION= option4 [option; . . .]

Environment variable options are specified in the same way and have the same meaning as they do
on the command line. For example, if you want to always run quietly (the --quiet option), enable C/C+
+ source interlisting (the --src_interlist option), and link (the --run_linker option) for Windows, set up the
TI_ARM_C_OPTION environment variable as follows:

set TI_ARM C OPTION=--quiet --src_interlist --run linker

Note

The TI_ARM_C_OPTION environment variable takes precedence over the older TMS470 _C_OPTION
environment variable if both are defined. If only TMS470_C_OPTION is set, it will continue to be used.

Any options following --run_linker on the command line or in TI_ARM_C_OPTION are passed to the linker.
Thus, you can use the TI_ARM_C_OPTION environment variable to specify default compiler and linker options
and then specify additional compiler and linker options on the command line. If you have set --run_linker in

the environment variable and want to compile only, use the compiler --compile_only option. These additional
examples assume TI_ARM_C_OPTION is set as shown above:

armcl *c ; compiles and links
armcl --compile only *.c ; only compiles
armcl *.c --run_linker lnk.cmd ; compiles and links using a command file
armcl --compile only *.c --run_linker lnk.cmd
; only compiles (--compile only overrides --run_linker)

For details on compiler options, see Section 2.3. For details on linker options, see the Linker Description chapter
in the ARM Assembly Language Tools User's Guide.

34 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.4.2 Naming One or More Alternate Directories (TI_ARM_C_DIR)

The linker uses the TI_ARM_C_DIR environment variable to name alternate directories that contain object
libraries. The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) TI_ARM_C_DIR=" pathname, ; pathname, ;..."; export TI_ARM_C_DIR
Windows set TI_ARM_C_DIR= pathname, ; pathname; ;...

The pathnames are directories that contain input files. The pathnames must follow these constraints:

» Pathnames must be separated with a semicolon.
* Spaces or tabs at the beginning or end of a path are ignored. For example, the space before and after the
semicolon in the following is ignored:

‘ set TI_ARM C DIR=c:\path\one\to\tools ; c:\path\two\to\tools ‘

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces. For
example, the pathnames in the following are valid:

‘ set TI_ARM C DIR=c:\first path\to\tools;d:\second path\to\tools ‘

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) [unset TI_ARM C DIR |
Windows ‘set TI_ARM C DIR= ‘

Note

The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be used.

2.5 Controlling the Preprocessor

This section describes features that control the preprocessor, which is part of the parser. A general description
of C preprocessing is in section A12 of K&R. The C/C++ compiler includes standard C/C++ preprocessing
functions, which are built into the first pass of the compiler. The preprocessor handles:

* Macro definitions and expansions

* #include files

* Conditional compilation

» Various preprocessor directives, specified in the source file as lines beginning with the # character

The preprocessor produces self-explanatory error messages. The line number and the filename where the error
occurred are printed along with a diagnostic message.

2.5.1 Predefined Macro Names
The compiler maintains and recognizes the predefined macro names listed in Table 2-30.
Table 2-30. Predefined ARM Macro Names

Macro Name Description

__16bis__ Defined if 16-BIS state is selected (the -code_state=16 option is used); otherwise, it is
undefined.

_ 32bis__ Defined if 32-BIS state is selected (the -code_state=16 option is not used); otherwise, it is
undefined.

_AEABI_PORTABILITY_LEVEL Define to 1 to enable full object file portability when headers files are included. Define to 0 to

require full C standard compatibility. See the ARM standard for details.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 35
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-30. Predefined ARM Macro Names (continued)

Macro Name

Description

__big_endian__

__DATE_ (™
__FILE_ (™
_INLINE
LINE ™

__little_endian__

__PTRDIFF_T_TYPE__
__signed_chars___

__ SIZE_T_TYPE__
STbc M

__ STDC_VERSION__
__STDC_HOSTED__
__STDC_NO_THREADS__
__TI_COMPILER_VERSION__

__TI_EABI_SUPPORT__
__TI_FPALIB_SUPPORT__

__TI_GNU_ATTRIBUTE_SUPPORT _

__TI_NEON_SUPPORT__

__TI_STRICT_ANSI_MODE__

__TI_STRICT_FP_MODE__
__TILARM__
__TILARM_V4__

_TILARM_V5__

__TILARM_V6__

__TI_LARM_V6MO__

_TILARM V7 __
__TILARM_V7A8__

__TILARM_V7M3__

__TIARM V7M4__

__TILARM_V7R4__

__TI_ARM_V7R5__

__TI_FPV4SPD16_SUPPORT _

__TI_VFP_SUPPORT__

Defined if big-endian mode is selected (the --endian=big option is used or the --endian=little
option is not used); otherwise, it is undefined.

Expands to the compilation date in the form mmm dd yyyy

Expands to the current source filename

Expands to 1 if optimization is used (--opt_level or -O option); undefined otherwise.
Expands to the current line number

Defined if little-endian mode is selected (the --endian=little option is used); otherwise, it is
undefined.

Defined to the type of ptrdiff_t.
Defined if char types are signed by default
Defined to the type of size_t.

Defined to 1 to indicate that compiler conforms to ISO C Standard. See Section 5.1 for
exceptions to ISO C conformance.

C standard macro.
C standard macro. Always defined to 1.
C standard macro. Always defined to 1.

Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The number does not
contain a decimal. For example, version 3.2.1 is represented as 3002001. The leading zeros
are dropped to prevent the number being interpreted as an octal.

Defined to 1 if the EABI ABI is enabled (this is the default); otherwise, it is undefined.

Defined to 1 if the FPA endianness is used to store double-precision floating-point values;
otherwise, it is undefined.

Defined to 1 if GCC extensions are enabled (which is the default)

Defined to 1 if NEON SIMD extension is targeted (the --neon option is used); otherwise, it is
undefined.

Defined to 1 if strict ANSI/ISO mode is enabled (the --strict_ansi option is used); otherwise, it is
defined as 0.

Defined to 1 if --fp_mode=strict is used (default); otherwise, it is defined as 0.
Always defined

Defined to 1 if the v4 architecture (ARM7) is targeted (the -mv4 option is used); otherwise, it is
undefined.

Defined to 1 if the v5E architecture (ARM9E) is targeted (the -mv5e option is used); otherwise,
it is undefined.

Defined to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used); otherwise, it
is undefined.

Defined to 1 if the v6MO architecture (Cortex-MO0) is targeted (the -mv6MO option is used);
otherwise, it is undefined.

Defined to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is undefined.

Defined to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used);
otherwise, it is undefined.

Defined to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is used);
otherwise, it is undefined.

Defined to 1 if the v7M4 architecture (Cortex-M4) is targeted (the -mv7M4 option is used);
otherwise, it is undefined.

Defined to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is used);
otherwise, it is undefined.

Defined to 1 if the v7R5 architecture (Cortex-R5) is targeted (the -mv7R5 option is used);
otherwise, it is undefined.

Defined to 1 if the VFP coprocessor is enabled (the --float_support=fpv4spd16 option is used);
otherwise, it is undefined.

Defined to 1 if the VFP coprocessor is enabled (any --float_support option is used); otherwise,
it is undefined.

36

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using the C/C++ Compiler
Table 2-30. Predefined ARM Macro Names (continued)
Macro Name Description
__TI_VFPLIB_SUPPORT__ Defined to 1 if the VFP endianness is used to store double-precision floating-point values;
otherwise, it is undefined.
__TI_VFPV3_SUPPORT__ Defined to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3 option is used);
otherwise, it is undefined.
__TI_VFPV3D16_SUPPORT__ Defined to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3d16 option is used);
otherwise, it is undefined.
__TI_WCHAR_T_BITS__ Defined to the type of wchar_t.
__TIME__() Expands to the compilation time in the form "hh:mm:ss"
__unsigned_chars__ Defined if char types are unsigned by default (default)
__ WCHAR_T_TYPE__ Defined to the type of wchar_t.
(1) Specified by the ISO standard
Note

Macros with names that contain __ TI_ARM are duplicates of the older __ TI TMS470 macros. For
example, Tl _ARM_V7__ is the newer name for the _ Tl TMS470_V7__ macro. The old macro
names still exist and can continue to be used.

You can use the names listed in Table 2-30 in the same manner as any other defined name. For example,

‘printf ("%s %s" , _ TIME__, _ DATE);

translates to a line such as:

‘printf ("%s %s" , "13:58:17", "Jan 14 1997"); ‘

In addition, the ARM C Language Extensions (ACLE) v2.0 specification describes macros that identify features
of the ARM architecture and how the C/C++ implementation uses the architecture. All ACLE predefined macros
begin with the prefix __ ARM. Table 2-31 lists the macros mentioned in the ACLE specification and the section

of the specification that provides more information. Some macros are undefined because they are not applicable
for any Cortex-M or Cortex-R processor variant.

Table 2-31. ACLE Pre-Defined Macros

Macro Name Description Section in ACLE
Specification
__ARM_32BIT_STATE Defined as 1 if the compiler is generating code for an ARM (Section 5.4.1)

32-bit processor variant (-mvém0, -mv7m3, -mv7m4, -mv7a8,
-mv7r4, and -mv7r5); undefined otherwise.

__ARM_64BIT_STATE Undefined (Section 5.4.1)

_ ARM_ACLE Defined as 200 for all Cortex-M and Cortex-R processor variants | (Sections 3.4, 5.2)
(-mv6mO0, -mv7m3, -mv7m4, -mv7r4, and -mv7r5).

__ARM_ALIGN_MAX_PWR Not supported (Section 6.5.2)

_ ARM_ALIGN_MAX_STACK_PWR Not supported (Section 6.5.3)

_ ARM_ARCH Identifies the version of ARM architecture selected on the (Section 5.1)

compiler command line.

* 4 indicates -mv4

» 5indicates -mv5e

* 6 indicates -mv6 or -mv6mO0

¢ 7 indicates -mv7a8, -mv7m3, -mv7m4, -mv7r4, or -mv7r5

__ARM_ARCH_ISA A64 Undefined (Section 5.4.1)

__ARM_ARCH_ISA_ARM Defined as 1 if the compiler is generating code for a processor | (Section 5.4.1)
variant that supports the ARM instruction set (-mv7a8, -mv7r4,
and -mv7r5); undefined otherwise.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 37
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Using the C/C++ Compiler

Table 2-31.

ACLE Pre-Defined Macros (continued)

Macro Name

Description

Section in ACLE
Specification

__ARM_ARCH_ISA_THUMB

Defined as 1 if the compiler is generating code for a processor
variant that supports the THUMB-1 instruction set. Defined as
2 if the compiler is generating code for a processor variant that
supports the THUMB-2 instruction set; undefined otherwise.

(Section 5.4.1)

__ARM_ARCH_PROFILE

Not supported

(Section 5.4.2)

__ARM_BIG_ENDIAN

Defined as 1 by default; not defined if --little-endian (-me) option
is used.

(Section 5.3)

__ARM_FEATURE_CLZ

Defined as 1 if the compiler is generating code for a processor
variant that supports the CLZ instruction (-mv7m3, -mv7m4,
-mv7a8, -mv7r4, and -mv7r5); undefined otherwise.

(Section 5.4.5)

_ ARM_FEATURE_COPROC Not supported (Section 5.9)

__ARM_FEATURE_CRC32 Undefined (Section 5.5.8)
__ARM_FEATURE_CRYPTO Undefined (Section 5.5.7)
_ ARM_FEATURE_DIRECTED_ROUNDING Undefined (Section 5.5.9)

__ARM_FEATURE_DSP

Defined as 1 if the compiler is generating code for a Cortex-M
or Cortex-R processor that supports DSP instructions/intrinsics
(-mv7m4, -mv7r4, and -mv7r5); undefined otherwise.

(Section 5.4.7)

__ARM_FEATURE_FMA Not supported (Section 5.5.3)
__ARM_FEATURE_FP16_SCALAR_ Undefined (Sections 3.4, 5.5.13)
ARITHMETIC

__ ARM_FEATURE_FP16_VECTOR _ Undefined (Section 5.5.13)
ARITHMETIC

__ARM_FEATURE_IDIV Not supported (Section 5.4.10)
__ARM_FEATURE_JCVT Undefined (Section 5.5.14)
__ARM_FEATURE_LDREX Undefined (Section 5.4.4)
__ ARM_FEATURE_NUMERIC_MAXMIN Undefined (Section 5.5.10)
__ARM_FEATURE_QBIT Not supported (Section 5.4.6)
_ ARM_FEATURE_QRDMX Undefined (Section 5.5.12)

__ARM_FEATURE_SAT

Defined as 1 if the compiler is generating code for

a processor variant that supports SSAT/USAT instructions/
intrinsics (-mv7m3, -mv7m4, -mv7a8, -mv7r4, and -mv7r5);
undefined otherwise.

(Section 5.4.8)

__ARM_FEATURE_SIMD32

Defined as 1 if the compiler is generating code for a processor
variant that supports all SIMD instructions/intrinsics (-mv7m4,
-mv7r4, and -mv7r5); undefined otherwise.

(Section 5.4.9)

__ARM_FEATURE_UNALIGNED

Defined as 1 if the compiler is generating code for a processor
variant that supports unaligned access to memory (-mv7m3,
-mv7m4, -mv7a8, -mv7r4, and -mv7r5); undefined otherwise.

(Section 5.4.3)

__ARM_FP

Defined as 6 for --float_support={fpv4spd16 | fpv5spd16}.
Defined as 12 for --float_support={vfpv2 | vfpv3 | vfpv3d16};
undefined otherwise.

(Section 5.5.1)

__ARM_FP16_ARGS

Defined as 1 if a 16-bit float type can be used for an argument
and/or result; undefined otherwise.

(Section 5.5.11)

__ARM_FP16_FORMAT_ALTERNATIVE

Undefined

(Section 5.5.2)

__ARM_FP16_FORMAT_IEEE

Defined as 1 if the IEEE format for 16-bit floating-point
(according to IEEE 754-2008 standard) is used; undefined
otherwise.

(Section 5.5.2)

__ARM_FP_FAST Not supported (Section 5.6)

_ ARM_FP_FENV_ROUNDING Not supported (Section 5.6)
__ARM_NEON Undefined (Sections 3.4, 5.5.4)
__ARM_NEON_FP Undefined (Section 5.5.5)

38 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

Table 2-31. ACLE Pre-Defined Macros (continued)

Macro Name Description Section in ACLE
Specification

__ARM_PCS Defined as 1 if the compiler can assume the default procedure | (Section 5.7)
calling standard for a translation unit conforms to the "base
procedure call standard" as prescribed in the ARM Architecture
Procedure Call Standard (AAPCS) specification (-mv7m3,
-mv7m4, -mv7r4, and -mv7r5); undefined otherwise.

__ARM_PCS_AAPCS64 Undefined (Section 5.7)

_ ARM_PCS_VFP Defined as 1 if the default procedure calling convention is (Section 5.7)
to pass floating-point arguments / return values in hardware
floating-point registers; undefined otherwise.

__ARM_RORPI Undefined (Section 5.8)
__ARM_RWPI Undefined (Section 5.8)
__ARM_SIZEOF_MINIMAL_ENUM Defined to the smallest possible enum type size (1 byte for (Section 3.1.1)

packed, 4 bytes for int). This mirrors the --enum_type=[packed |
int] option where packed is the default.

__ARM_SIZEOF_WCHAR_T Defined as 2 if --wchar_t=16 (default). Defined as 4 if -- (Section 3.1.1)
wchar_t=32.

__ARM_WMMX Undefined (Section 5.5.6)

__STDC_IEC_559 Undefined (Section 5.6)

__SUPPORT_SNAN__ Not supported (Section 5.6)

2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source statements from another file. When
specifying the file, you can enclose the filename in double quotes or in angle brackets. The filename can be a
complete pathname, partial path information, or a filename with no path information.

» If you enclose the filename in double quotes (" "), the compiler searches for the file in this order:
1. The directory of the file that contains the #include directive and in the directories of any files that contain
that file.
2. Directories named with the --include_path option.
3. Directories set with the TI_ARM_C_DIR environment variable.
» If you enclose the filename in angle brackets (< >), the compiler searches for the file in the following
directories in this order:
1. Directories named with the --include_path option.
2. Directories set with the TI_ARM_C_DIR environment variable.

See Section 2.5.2.1 for information on using the --include_path option. See Section 2.4.2 for more information on
input file directories.

2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

The --include_path option names an alternate directory that contains #include files. The --include_path option's
short form is -I. The format of the --include_path option is:

--include_path=directory1 [--include_path= directory?2 ...]

There is no limit to the number of --include_path options per invocation of the compiler; each --include_path
option names one directory. In C source, you can use the #include directive without specifying any directory
information for the file; instead, you can specify the directory information with the --include_path option.

For example, assume that a file called source.c is in the current directory. The file source.c contains the following
directive statement:

#include "alt.h"

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 39
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

Assume that the complete pathname for alt.h is:

UNIX Jtools/files/alt.h

Windows c:\tools\files\alt.h

The table below shows how to invoke the compiler. Select the command for your operating system:

Operating System Enter

UNIX ‘armcl --include path=/tools/files source.c ‘
Windows ‘armcl --include path=c:\tools\files source.c ‘
Note

Specifying Path Information in Angle Brackets: If you specify the path information in angle
brackets, the compiler applies that information relative to the path information specified with --
include_path options and the TI_ARM_C_DIR environment variable.

For example, if you set up TI_ARM_C_DIR with the following command:

‘TI_ARM_C_DIR "/usr/include; /usr/ucb"; export TI_ARM C_DIR ‘

or invoke the compiler with the following command:

armcl --include_path=/usr/include file.c ‘

and file.c contains this line:

‘ #include <sys/proc.h> ‘

the result is that the included file is in the following path:

‘ /usr/include/sys/proc.h ‘

2.5.3 Support for the #warning and #warn Directives

In strict ANSI mode, the Tl preprocessor allows you to use the #warn directive to cause the preprocessor
to issue a warning and continue preprocessing. The #warn directive is equivalent to the #warning directive
supported by GCC, IAR, and other compilers.

If you use the --relaxed_ansi option (on by default), both the #warn and #warning preprocessor directives are
supported.

2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)

The --preproc_only option allows you to generate a preprocessed version of your source file with an extension
of .pp. The compiler's preprocessing functions perform the following operations on the source file:

» Each source line ending in a backslash (\) is joined with the following line.

» Trigraph sequences are expanded.

* Comments are removed.

» #include files are copied into the file.

* Macro definitions are processed.

» All macros are expanded.

» All other preprocessing directives, including #line directives and conditional compilation, are expanded.

The --preproc_only option is useful when creating a source file for a technical support case or to ask a question
about your code. It allows you to reduce the test case to a single source file, because #include files are
incorporated when the preprocessor runs.

40 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)

If you are preprocessing, the preprocessor performs preprocessing only; it does not compile your

source code. To override this feature and continue to compile after your source code is preprocessed,

use the --preproc_with_compile option along with the other preprocessing options. For example, use --
preproc_with_compile with --preproc_only to perform preprocessing, write preprocessed output to a file with
a .pp extension, and compile your source code.

2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)

The --preproc_with_comment option performs all of the preprocessing functions except removing comments and
generates a preprocessed version of your source file with a .pp extension. Use the --preproc_with_comment
option instead of the --preproc_only option if you want to keep the comments.

2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)

By default, the preprocessed output file contains no preprocessor directives. To include the #line directives,
use the --preproc_with_line option. The --preproc_with_line option performs preprocessing only and writes
preprocessed output with line-control information (#line directives) to a file named as the source file but with
a .pp extension.

2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)

The --preproc_dependency option performs preprocessing only. Instead of writing preprocessed output, it writes
a list of dependency lines suitable for input to a standard make utility. If you do not supply an optional filename,
the list is written to a file with the same name as the source file but a .pp extension.

2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)

The --preproc_includes option performs preprocessing only, but instead of writing preprocessed output, writes a
list of files included with the #include directive. If you do not supply an optional filename, the list is written to a file
with the same name as the source file but with a .pp extension.

2.5.10 Generating a List of Macros in a File (--preproc_macros Option)

The --preproc_macros option generates a list of all predefined and user-defined macros. If you do not supply an
optional filename, the list is written to a file with the same name as the source file but with a .pp extension.

The output includes only those files directly included by the source file. Predefined macros are listed first and
indicated by the comment /* Predefined */. User-defined macros are listed next and indicated by the source
filename.

2.6 Passing Arguments to main()

Some programs pass arguments to main() via argc and argv. This presents special challenges in an embedded
program that is not run from the command line. In general, argc and argv are made available to your program
through the .args section. There are various ways to populate this section for use by your program.

To cause the linker to allocate an .args section of the appropriate size, use the --arg_size=size linker option.
This option tells the linker to allocate an uninitialized section named .args, which can be used by the loader to
pass arguments from the command line of the loader to the program. The size is the number of bytes to be
allocated. When you use the --arg_size option, the linker defines the __¢c_args__ symbol to contain the address
of the .args section.

It is the responsibility of the loader to populate the .args section. The loader and the target boot code can use
the .args section and the __¢c_args___ symbol to determine whether and how to pass arguments from the host to
the target program. The format of the arguments is an array of pointers to char on the target. Due to variations in
loaders, it is not specified how the loader determines which arguments to pass to the target.

If you are using Code Composer Studio to run your application, you can use the Scripting Console tool to
populate the .args section. To open this tool, choose View > Scripting Console from the CCS menus. You can
use the loadProg command to load an object file and its associated symbol table into memory and pass an array
of arguments to main(). These arguments are automatically written to the allocated .args section.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 41
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

The loadProg syntax is as follows, where file is an executable file and args is an object array of arguments. Use
JavaScript to declare the array of arguments before using this command.

loadProg(file, args)

The .args section is loaded with the following data for non-SYS/BIOS-based executables, where each element in
the argv[] array contains a string corresponding to that argument:

Int argc;
Char * argv([0];
Char * argv[l];

Char * argv([n];

For SYS/BIOS-based executables, the elements in the .args section are as follows:

Int argc;
Char ** argv; /* points to argv[0] */
Char * envp; /* ignored by loadProg command */

Char * argv([0];
Char * argv([1l];

Char * argv([n];

For more details, see the "Scripting Console" page.
2.7 Understanding Diagnostic Messages

One of the primary functions of the compiler and linker is to report diagnostic messages for the source program.
A diagnostic message indicates that something may be wrong with the program. When the compiler or linker
detects a suspect condition, it displays a message in the following format:

" file.c ", line n : diagnostic severity : diagnostic message

" file.c " The name of the file involved

linen: The line number where the diagnostic applies

diagnostic severity The diagnostic message severity (severity category descriptions follow)
diagnostic message The text that describes the problem

Diagnostic messages have a severity, as follows:

» A fatal error indicates a problem so severe that the compilation cannot continue. Examples of such problems
include command-line errors, internal errors, and missing include files. If multiple source files are being
compiled, any source files after the current one will not be compiled.

* An error indicates a violation of the syntax or semantic rules of the C/C++ language. Compilation may
continue, but object code is not generated.

* A warning indicates something that is likely to be a problem, but cannot be proven to be an error. For
example, the compiler emits a warning for an unused variable. An unused variable does not affect program
execution, but its existence suggests that you might have meant to use it. Compilation continues and object
code is generated (if no errors are detected).

* Aremark is less serious than a warning. It may indicate something that is a potential problem in rare
cases, or the remark may be strictly informational. Compilation continues and object code is generated (if no
errors are detected). By default, remarks are not issued. Use the --issue_remarks compiler option to enable
remarks.

» Advice provides information about recommended usage. It is not provided in the same way as the other
diagnostic categories described here. Instead, it is only available in Code Composer Studio in the Advice
area, which is a tab that appears next to the Problems tab. This advice cannot be controlled or accessed via
the command line. The advice provided includes suggested settings for the --opt_level and --opt_for_speed
options. In addition, messages about suggested code changes from the ULP (Ultra-Low Power) Advisor are
provided in this tab.

42 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/ccs_scripting_console.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

Diagnostic messages are written to standard error with a form like the following example:

"test.c", line 5: error: a break statement may only be used within a loop or switch
break;

By default, the source code line is not printed. Use the --verbose_diagnostics compiler option to display the
source line and the error position. The above example makes use of this option.

The message identifies the file and line involved in the diagnostic, and the source line itself (with the position
indicated by the * character) follows the message. If several diagnostic messages apply to one source line, each
diagnostic has the form shown; the text of the source line is displayed several times, with an appropriate position
indicated each time.

Long messages are wrapped to additional lines, when necessary.

You can use the --display_error_number command-line option to request that the diagnostic's numeric identifier
be included in the diagnostic message. When displayed, the diagnostic identifier also indicates whether the
diagnostic can have its severity overridden on the command line. If the severity can be overridden, the
diagnostic identifier includes the suffix -D (for discretionary); otherwise, no suffix is present. For example:

"Test name.c", line 7: error #64-D: declaration does not declare anything
struct {};
"Test name.c", line 9: error #77: this declaration has no storage class or type specifier

XXXXX;

~

Because errors are determined to be discretionary based on the severity in a specific context, an error can be
discretionary in some cases and not in others. All warnings and remarks are discretionary.

For some messages, a list of entities (functions, local variables, source files, etc.) is useful; the entities are listed
following the initial error message:

"test.c", line 4: error: more than one instance of overloaded function "f"
matches the argument list:
function "f (int)"
function "f(float)"
argument types are: (double)

In some cases, additional context information is provided. Specifically, the context information is useful when the
front end issues a diagnostic while doing a template instantiation or while generating a constructor, destructor, or
assignment operator function. For example:

"test.c", line 7: error: "A::A()" 1is inaccessible
B x;
A

detected during implicit generation of "B::B()" at line 7

Without the context information, it is difficult to determine to what the error refers.
2.7.1 Controlling Diagnostic Messages

The C/C++ compiler provides diagnostic options to control compiler- and linker-generated diagnostic messages.
The diagnostic options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_error=num to recategorize the diagnostic as an error. You can only alter the severity of
discretionary diagnostic messages.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 43
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Using the C/C++ Compiler

13 TEXAS
INSTRUMENTS

www.ti.com

--diag_remark=num

--diag_suppress=num

--diag_warning=num

--display_error_number

--emit_warnings_as_
errors

--issue_remarks
--no_warnings

--section_sizes={on|off}

--set_error_limit=num

--verbose_diagnostics

--write_diagnostics_file

Categorizes the diagnostic identified by num as a remark. To determine the numeric identifier of a
diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_remark=num to recategorize the diagnostic as a remark. You can only alter the severity of
discretionary diagnostic messages.

Suppresses the diagnostic identified by num. To determine the numeric identifier of a diagnostic
message, use the --display_error_number option first in a separate compile. Then use --
diag_suppress=num to suppress the diagnostic. You can only suppress discretionary diagnostic
messages.

Categorizes the diagnostic identified by num as a warning. To determine the numeric identifier of

a diagnostic message, use the --display_error_number option first in a separate compile. Then use
--diag_warning=num to recategorize the diagnostic as a warning. You can only alter the severity of
discretionary diagnostic messages.

Displays a diagnostic's numeric identifier along with its text. Use this option in determining which
arguments you need to supply to the diagnostic suppression options (--diag_suppress, --diag_error,
--diag_remark, and --diag_warning). This option also indicates whether a diagnostic is discretionary. A
discretionary diagnostic is one whose severity can be overridden. A discretionary diagnostic includes the
suffix -D; otherwise, no suffix is present. See Section 2.7.

Treats all warnings as errors. This option cannot be used with the --no_warnings option. The
--diag_remark option takes precedence over this option. This option takes precedence over the --
diag_warning option.

Issues remarks (non-serious warnings), which are suppressed by default.
Suppresses diagnostic warnings (errors are still issued).

Generates section size information, including sizes for sections containing executable code and
constants, constant or initialized data (global and static variables), and uninitialized data. Section size
information is output during both the assembly and linking phases. This option should be placed on the
command line with the compiler options (that is, before the --run_linker or --z option).

Sets the error limit to num, which can be any decimal value. The compiler abandons compiling after this
number of errors. (The default is 100.)

Provides verbose diagnostic messages that display the original source with line-wrap and indicate the
position of the error in the source line. Note that this command-line option cannot be used within the
Code Composer Studio IDE.

Produces a diagnostic message information file with the same source file name with an .err extension.
(The --write_diagnostics_file option is not supported by the linker.) Note that this command-line option
cannot be used within the Code Composer Studio IDE.

2.7.2 How You Can Use Diagnostic Suppression Options

The following example demonstrates how you can control diagnostic messages issued by the compiler. You
control the linker diagnostic messages in a similar manner.

int one();
int I;
int main ()
{
switch (I){
case 1;
return one
break;
default:
return 0;
break;

}

If you invoke the compiler with the --quiet option, this is the result:

"err.c", line 12:

"err.c", line 9: warning:
warning: statement is unreachable

statement is unreachable

44 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

Because it is standard programming practice to include break statements at the end of each case arm to avoid
the fall-through condition, these warnings can be ignored. Using the --display_error_number option, you can find
out the diagnostic identifier for these warnings. Here is the result:

[err.c]
"err.c", line 9: warning #111-D: statement is unreachable
"err.c", line 12: warning #111-D: statement is unreachable

Next, you can use the diagnostic identifier of 111 as the argument to the --diag_remark option to treat this
warning as a remark. This compilation produces no diagnostic messages (because remarks are disabled by
default).

Note

You can suppress any non-fatal errors, but be careful to make sure you only suppress diagnostic
messages that you understand and are known not to affect the correctness of your program.

2.8 Other Messages

Other error messages that are unrelated to the source, such as incorrect command-line syntax or inability to find
specified files, are usually fatal. They are identified by the symbol >> preceding the message.

2.9 Generating Cross-Reference Listing Information (--gen_cross_reference_listing Option)

The --gen_cross_reference_listing option generates a cross-reference listing file that contains reference
information for each identifier in the source file. The listing file describes where each symbol is referenced
and defined.

A cross-reference listing file with a .crl extension is generated for every source file. The files have the
same name as their corresponding source file. (The --gen_cross_reference_listing option is separate from
--asm_cross_reference_listing, which is an assembler rather than a compiler option.)

The information in the cross-reference listing file is displayed in the following format:

sym-id name X filename line number column number

sym-id An integer uniquely assigned to each identifier
name The identifier name
X One of the following values:
D Definition
d Declaration (not a definition)
M Modification
A Address taken
u Used
C Changed (used and modified in a single operation)
R Any other kind of reference
E Error; reference is indeterminate
filename The source file
line number The line number in the source file
column number The column number in the source file
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 45
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)

The --gen_preprocessor_listing option generates a raw listing file that can help you understand how the
compiler is preprocessing your source file. Whereas the preprocessed listing file (generated with the --
preproc_only, --preproc_with_comment, --preproc_with_line, and --preproc_dependency preprocessor options)
shows a preprocessed version of your source file, a raw listing file provides a comparison between the original
source line and the preprocessed output. The raw listing file has the same name as the corresponding source
file with an .rl extension.

The raw listing file contains the following information:

« Each original source line

» Transitions into and out of include files

« Diagnostic messages

» Preprocessed source line if nontrivial processing was performed (comment removal is considered trivial,
other preprocessing is nontrivial)

Each source line in the raw listing file begins with one of the identifiers listed in Table 2-32.
Table 2-32. Raw Listing File Identifiers

Identifier Definition
N Normal line of source
X Expanded line of source. It appears immediately following the normal line of source
if nontrivial preprocessing occurs.
S Skipped source line (false #if clause)
L Change in source position, given in the following format:

L line number filename key

Where line number is the line number in the source file. The key is present only
when the change is due to entry/exit of an include file. Possible values of key are:

1 = entry into an include file
2 = exit from an include file

The --gen_preprocessor_listing option also includes diagnostic identifiers as defined in Table 2-33.

Table 2-33. Raw Listing File Diagnostic Identifiers

Diagnostic Identifier Definition
E Error
F Fatal
R Remark
w Warning

Diagnostic raw listing information is displayed in the following format:

S filename line number column number diagnostic

S One of the identifiers in Table 2-33 that indicates the severity of the diagnostic
filename The source file

line number The line number in the source file

column number The column number in the source file

diagnostic The message text for the diagnostic

Diagnostic messages after the end of file are indicated as the last line of the file with a column number of 0. When diagnostic message text
requires more than one line, each subsequent line contains the same file, line, and column information but uses a lowercase version of the
diagnostic identifier. For more information about diagnostic messages, see Section 2.7.

46 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.11 Using Inline Function Expansion

When an inline function is called, a copy of the C/C++ source code for the function is inserted at the point

of the call. This is known as inline function expansion, commonly called function inlining or just inlining. Inline
function expansion can speed up execution by eliminating function call overhead. This is particularly beneficial
for very small functions that are called frequently. Function inlining involves a tradeoff between execution speed
and code size, because the code is duplicated at each function call site. Large functions that are called in many
places are poor candidates for inlining.

Note

Excessive Inlining Can Degrade Performance: Excessive inlining can make the compiler
dramatically slower and degrade the performance of generated code.

Function inlining is triggered by the following situations:

» The use of built-in intrinsic operations. Intrinsic operations look like function calls, and are inlined
automatically, even though no function body exists.

+ Useofthe inline keyword or the equivalent inline keyword. Functions declared with the inline
keyword may be inlined by the compiler if you set --opt_level=0 or greater. The inline keyword is a suggestion
from the programmer to the compiler. Even if your optimization level is high, inlining is still optional for the
compiler. The compiler decides whether to inline a function based on the length of the function, the number
of times it is called, your --opt_for_speed setting, and any contents of the function that disqualify it from
inlining (see Section 2.11.2). Functions can be inlined at --opt_level=0 or above if the function body is visible
in the same module or if -pm is also used and the function is visible in one of the modules being compiled.
Functions may be inlined at link time if the file containing the definition and the call site were both compiled
with --opt_level=4. Functions defined as both static and inline are more likely to be inlined.

* When --opt_level=3 or greater is used, the compiler may automatically inline eligible functions even if they are
not declared as inline functions. The same list of decision factors listed for functions explicitly defined with the
inline keyword is used. For more about automatic function inlining, see Section 3.5.

» The pragma FUNC_ALWAYS_INLINE (Section 5.11.12) and the equivalent always inline attribute
(Section 5.17.2) force a function to be inlined (where it is legal to do so) unless --opt_level=off. That is,
the pragma FUNC_ALWAYS_INLINE forces function inlining even if the function is not declared as inline and
the --opt_level=0 or --opt_level=1.

» The FORCEINLINE pragma (Section 5.11.10) forces functions to be inlined in the annotated statement.

That is, it has no effect on those functions in general, only on function calls in a single statement. The
FORCEINLINE_RECURSIVE pragma forces inlining not only of calls visible in the statement, but also in the
inlined bodies of calls from that statement.

* The --disable_inlining option prevents any inlining. The pragma FUNC_CANNOT _INLINE prevents a function
from being inlined. The NOINLINE pragma prevents calls within a single statement from being inlined.
(NOINLINE is the inverse of the FORCEINLINE pragma.)

Note

Function Inlining Can Greatly Increase Code Size: Function inlining increases code size, especially
inlining a function that is called in a number of places. Function inlining is optimal for functions that are
called only from a small number of places and for small functions.

The semantics of the inline keyword in C code follow the C99 standard. The semantics of the inline
keyword in C++ code follow the C++ standard.

The inline keyword is supported in all C++ modes, in relaxed ANSI mode for all C standards, and in strict
ANSI mode for C99 and C11. It is disabled in strict ANSI mode for C89, because it is a language extension that
could conflict with a strictly conforming program. If you want to define inline functions while in strict ANSI C89
mode, use the alternate keyword inline.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 47
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

Compiler options that affect inlining are: --opt_level, --auto_inline, --remove_hooks_when_inlining, --
opt_for_speed, and --disable_inlining.

2.11.1 Inlining Intrinsic Operators

The compiler has a number of built-in function-like operations called intrinsics. The implementation of an intrinsic
function is handled by the compiler, which substitutes a sequence of instructions for the function call. This is
similar to the way inline functions are handled; however, because the compiler knows the code of the intrinsic
function, it can perform better optimization.

Intrinsics are inlined whether or not you use the optimizer. For details about intrinsics, and a list of the intrinsics,
see Section 5.14. In addition to those listed, abs and memcpy are implemented as intrinsics.

2.11.2 Inlining Restrictions

The compiler makes decisions about which functions to inline based on the factors mentioned in Section 2.11.
In addition, there are several restrictions that can disqualify a function from being inlined by automatic inlining or
inline keyword-based inlining.

The compiler will leave calls as they are if the function:

» Has a different number of arguments than the call site

* Has an argument whose type is incompatible with the corresponding call site argument
* Is not declared inline and returns void but its return value is needed

* Is an ARM function with different code-state than its caller

The compiler will also not inline a call if the function has features that create difficult situations for the compiler:

* Has a variable-length argument list

* Never returns

* Is arecursive or non-leaf function that exceeds the depth limit

* Is not declared inline and contains an asm() statement that is not a comment

* Is an interrupt function

* Is the main() function

* Is not declared inline and will require too much stack space for local array or structure variables
« Contains a volatile local variable or argument

« Is a C++ function that contains a catch

* Is not defined in the current compilation unit and -O4 optimization is not used

A call in a statement that is annotated with a NOINLINE pragma will not be inlined, regardless of other
indications (including a FUNC_ALWAYS_INLINE pragma or always_inline attribute on the called function).

A call in a statement that is annotated with a FORCEINLINE pragma will always be inlined, if it is not
disqualified for one of the reasons above, even if the called function has a FUNC_CANNOT _INLINE pragma
or cannot_inline attribute.

In other words, a statement-level pragma overrides a function-level pragma or attribute. If both NOINLINE and
FORCEINLINE apply to the same statement, the one that appears first is used and the rest are ignored.

48 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.12 Using Interlist

The compiler tools include a feature that interlists C/C++ source statements into the assembly language output
of the compiler. The interlist feature enables you to inspect the assembly code generated for each C statement.
The interlist behaves differently, depending on whether or not the optimizer is used, and depending on which
options you specify.

The easiest way to invoke the interlist feature is to use the --c_src_interlist option. To compile and run the interlist
on a program called function.c, enter:

armcl --c_src_interlist function

The --c_src_interlist option prevents the compiler from deleting the interlisted assembly language output file. The
output assembly file, function.asm, is assembled normally.

When you invoke the interlist feature without the optimizer, the interlist runs as a separate pass between the
code generator and the assembler. It reads both the assembly and C/C++ source files, merges them, and writes
the C/C++ statements into the assembly file as comments.

For information about using the interlist feature with the optimizer, see Section 3.11. Using the --c_src_interlist
option can cause performance and/or code size degradation.

The following example shows a typical interlisted assembly file.

ADR Al, SL1
BL printf

; 6 | return 0;
MOV Al, #0
LDMFED Sp!, {PC}

2.13 Controlling Application Binary Interface

Application Binary Interface (ABI) defines the low level interface between object files, and between an
executable and its execution environment. An ABI allows ABI-compliant object files to be linked together,
regardless of their source, and allows the resulting executable to run on any system that supports that ABI.

Obiject files conforming to different ABIs cannot be linked together. The linker detects this situation and
generates an error.

The ARM compiler now supports only the Embedded Application Binary Interface (EABI) ABI, which uses
the ELF object format and the DWARF debug format. If you want support for the legacy TI_ ARM9_ABI and
TIARM ABIs, please use the ARM v5.2 Code Generation Tools and refer to SPNU151J and SPNU118J for
documentation.

An industry consortium founded by ARM Ltd defined a standard ABI for binary code intended for the ARM
architecture. This ABI is called the Application Binary Interface (ABI) for the ARM Architecture Version 2 (ARM
ABIv2). This ABIl is also referred to as Embedded Application Binary Interface (EABI). The terms ABIv2 and
EABI can be used interchangeably.

For more details on the ABI, see Section 5.13.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 49
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spnu151j
https://www.ti.com/lit/pdf/spnu118j
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using the C/C++ Compiler www.ti.com

2.14 VFP Support

The compiler includes support for generating vector floating-point (VFP) co-processor instructions through the
--float_support=vfp option. The VFP co-processor is available in many variants of ARM11 and higher. The valid
vip entries are:

vfpv2 Allows generation of floating point instructions for ARM9E.

vfpv3 Allows generation of floating point instructions for Cortex-A8.

vfpv3d16 Ajows generation of floating point instructions for Cortex-Ré.

fpvaspd16 A jows generation of floating point instructions for Cortex-M4.
none Disables hardware floating point support. Specifies that the compiler implements floating point
operations in software.

Using the --silicon_version=7M4 command-line option automatically sets the --float_support=fpv4spd16 option.
To disable hardware floating point support, use the --float_support=none option.

This is the current support for VFP:

* You must link any VFP compiled code with a separate version of the run-time support library. See Section
7.1.9 for information on library-naming conventions.

» The compiler follows the VFP argument passing and returning calling convention for qualified VFP
arguments.

» Obiject files that do not contain any functions with floating point arguments or return values can be linked with
both VFP and non-VFP files.

» Obiject files that do contain functions with floating point arguments or return values can only be linked with
objects that were compiled with matching VFP support.

» All hand-coded VFP assembly must follow VFP calling conventions and EABI conventions to correctly
compile and link. In addition to these, the appropriate VFP build attributes for EABI must be correctly set.

* The compile-time predefined macro __ Tl VFP_SUPPORT__ can be used for conditionally compiling/
assembling user code. VFP-specific user code can use this macro to ensure that the conditionally included
code is compiled only when VFP is enabled.

Refer to the ARM architecture manual for more details on the VFPv3 and VFPv3D16 architectures and ISAs.
Refer to the ARM AAPCS and EABI documents for more details on VFP calling conventions and build attributes.

50 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using the C/C++ Compiler

2.15 Enabling Entry Hook and Exit Hook Functions

An entry hook is a routine that is called upon entry to each function in the program. An exit hook is a routine that
is called upon exit of each function. Applications for hooks include debugging, trace, profiling, and stack overflow
checking. Entry and exit hooks are enabled using the following options:

--entry_hook[=name] Enables entry hooks. If specified, the hook function is called name. Otherwise, the default entry hook
function name is __entry_hook.

--entry_parm{=name| Specify the parameters to the hook function. The name parameter specifies that the name of the calling

address|none} function is passed to the hook function as an argument. In this case the signature for the hook function

is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function.

In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

--exit_hook[=name] Enables exit hooks. If specified, the hook function is called name. Otherwise, the default exit hook
function name is __exit_hook.

--exit_parm{=name| Specify the parameters to the hook function. The name parameter specifies that the name of the calling

address|none} function is passed to the hook function as an argument. In this case the signature for the hook function

is: void hook(const char *name);
The address parameter specifies that the address of the calling function is passed to the hook function.

In this case the signature for the hook function is: void hook(void (*addr)());
The none parameter specifies that the hook is called with no parameters. This is the default. In this case
the signature for the hook function is: void hook(void);

The presence of the hook options creates an implicit declaration of the hook function with the given signature. If
a declaration or definition of the hook function appears in the compilation unit compiled with the options, it must
agree with the signatures listed above.

In C++, the hooks are declared extern "C". Thus you can define them in C (or assembly) without being
concerned with name mangling.

Hooks can be declared inline, in which case the compiler tries to inline them using the same criteria as other
inline functions.

Entry hooks and exit hooks are independent. You can enable one but not the other, or both. The same function
can be used as both the entry and exit hook.

You must take care to avoid recursive calls to hook functions. The hook function should not call any function
which itself has hook calls inserted. To help prevent this, hooks are not generated for inline functions, or for the
hook functions themselves.

You can use the --remove_hooks_when_inlining option to remove entry/exit hooks for functions that are auto-
inlined by the optimizer.

See Section 5.11.21 for information about the NO_HOOKS pragma.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 51
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

Using the C/C++ Compiler www.ti.com
This page intentionally left blank.

52 ARM Optimizing C/C++ Compiler SPNU7151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 3
Optimizing Your Code

i3 TEXAS INSTRUMENTS

The compiler tools can perform many optimizations to improve the execution speed and reduce the size of C
and C++ programs by simplifying loops, rearranging statements and expressions, and allocating variables into
registers.

This chapter describes how to invoke different levels of optimization and describes which optimizations are
performed at each level. This chapter also describes how you can use the Interlist feature when performing
optimization and how you can profile or debug optimized code.

3.1 INVOKING OPHIMIZALION. ... ettt ettt e e e s a e e e e bt e s enn e e e s e e e nn e e e anneeesaneeean 54
3.2 Controlling Code Size VErsuS SPEEU..............ooiiiiiiiiiiiiiii it et ettt st e e e bb e e s aane e e aabe e e e asbeeeenneeesneee s 59)
3.3 Performing File-Level Optimization (--opt_level=3 option)............cc..ccoiiiiiiiiii e 99
3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)..............c.ccceccceeiiieininnnnne 56
3.5 Automatic Inline Expansion (--auto_inline OPLtioNn)...............oooiiiiiiiiiiiie e e e e e 58
3.6 Link-Time Optimization (--opt_leVvel=4 OPLtioN)........ ... i et e et e e e e enaeeeeeean 59
3.7 Using Feedback Directed Optimization...................ooiiiiiiiiiiiii et 60
3.8 Using Profile Information to Analyze Code COVEIAGE.............cccouuiiiiiiiiiiiiieiiie ettt et sane e enneeas 63
3.9 Accessing Aliased Variables in Optimized COde.oouiiiiiiiiiiiii et e e 65
3.10 Use Caution With asm Statements in Optimized Code..................cooiiiiiiiiiiii e 65
3.11 Using the Interlist Feature With Optimization.......................ooi e e 65
3.12 Debugging and Profiling Optimized Code............. ..o et e e e e e e e e aneaeeaaeaan 66
3.13 What Kind of Optimization Is Being Performed™?................ooo i 67
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 53
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

3.1 Invoking Optimization

The C/C++ compiler is able to perform various optimizations, which are performed by the optimizer and the code
generator:

The optimizer performs high-level optimizations in the stand-alone optimization pass. Use higher optimization
levels, such as --opt_level=2 and --opt_level=3, to achieve optimal code.

The code generator performs several additional optimizations. These are low-level, target-specific optimizations.
It performs these regardless of whether you invoke the optimizer and are always enabled, though they are more
effective when the optimizer is used.

The easiest way to invoke optimization is to use the compiler program, specifying the --opt_level=n option on
the compiler command line. You can use -On as an alias for the --opt_level option. The n denotes the level of
optimization (0, 1, 2, 3, and 4), which controls the type and degree of optimization.

* --opt_level=off or -Ooff
— Performs no optimization

+ --opt_level=0 or -0O0

Performs control-flow-graph simplification (Section 3.13.3)

Performs loop rotation (Section 3.13.10)

Eliminates unused code

Simplifies expressions and statements (Section 3.13.5)

Expands calls to functions declared as inline (Section 3.13.6)

« --opt_level=1 or -O1 Performs all --opt_level=0 (-O0) optimizations, plus:
— Performs local copy/constant propagation (Section 3.13.4)
— Removes unused assignments (Section 3.13.4)
— Eliminates local common expressions

* --opt_level=2 or -O2 Performs all --opt_level=1 (-O1) optimizations, plus:
— Performs loop optimizations
— Eliminates global common subexpressions (Section 3.13.4)
— Eliminates global unused assignments (Section 3.13.4)
— Performs loop unrolling (Section 5.11.31)

» --opt_level=3 or -O3 Performs all --opt_level=2 (-O2) optimizations, plus:
— Removes all functions that are never called (Section 3.4)
— Simplifies functions with return values that are never used (Section 3.4)
— Inlines calls to small functions (Section 2.11 and Section 3.5)
— Reorders function declarations; the called functions attributes are known when the caller is optimized
— Propagates arguments into function bodies when all calls pass the same value in the same argument

position

— ldentifies file-level variable characteristics (Section 3.4)
— Performs other optimizations (Section 3.3 and Section 3.4)

» --opt_level=4 or -O4
— Performs link-time optimization. (Section 3.6)

For details about how the --opt_level and --opt_for_speed options and various pragmas affect inlining, see
Section 2.11.

Debugging is enabled by default, and the optimization level is unaffected by the generation of debug information.

54 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.2 Controlling Code Size Versus Speed

To balance the tradeoff between code size and speed, use the --opt_for_speed option. The level of optimization
(0-5) controls the type and degree of code size or code speed optimization:

* --opt _for_speed=0

Optimizes code size with a high risk of worsening or impacting performance.
e --opt _for_speed=1

Optimizes code size with a medium risk of worsening or impacting performance.
* --opt _for_speed=2

Optimizes code size with a low risk of worsening or impacting performance.
* --opt for_speed=3

Optimizes code performance/speed with a low risk of worsening or impacting code size.
» --opt_for_speed=4

Optimizes code performance/speed with a medium risk of worsening or impacting code size.
* --opt for_speed=5

Optimizes code performance/speed with a high risk of worsening or impacting code size.

If you specify the --opt_for_speed option without a parameter, the default setting is --opt_for_speed=4. If you do
not specify the --opt_for_speed option, the default setting is 1

The best performance for caching devices has been observed with --opt_for_speed set to level 1 or 2.
3.3 Performing File-Level Optimization (--opt_level=3 option)

The --opt_level=3 option (aliased as the -O3 option) instructs the compiler to perform file-level optimization.
This is the default optimization level. You can use the --opt_level=3 option alone to perform general file-level
optimization, or you can combine it with other options to perform more specific optimizations. The options listed
in Table 3-1 work with --opt_level=3 to perform the indicated optimization:

Table 3-1. Options That You Can Use With --opt_level=3

If You ... Use this Option See
Want to create an optimization information file --gen_opt_level=n Section 3.3.1
Want to compile multiple source files --program_level_compile Section 3.4

3.3.1 Creating an Optimization Information File (--gen_opt_info Option)

When you invoke the compiler with the --opt_level=3 option (the default), you can use the --gen_opt_info option
to create an optimization information file that you can read. The number following the option denotes the level (0,
1, or 2). The resulting file has an .nfo extension. Use Table 3-2 to select the appropriate level to append to the
option.

Table 3-2. Selecting a Level for the --gen_opt_info Option
If you... Use this option

Do not want to produce an information file, but you used the --gen_opt_level=1 or --gen_opt_level=2 option --gen_opt_info=0
in a command file or an environment variable. The --gen_opt_level=0 option restores the default behavior of
the optimizer.

Want to produce an optimization information file --gen_opt_info=1

Want to produce a verbose optimization information file --gen_opt_info=2
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 55
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)

You can specify program-level optimization by using the --program_level _compile option with the --opt_level=3
option (aliased as -O3). (If you use --opt_level=4 (-O4), the --program_level _compile option cannot be used,
because link-time optimization provides the same optimization opportunities as program level optimization.)

With program-level optimization, all of your source files are compiled into one intermediate file called a module.
The module moves to the optimization and code generation passes of the compiler. Because the compiler can
see the entire program, it performs several optimizations that are rarely applied during file-level optimization:

« If a particular argument in a function always has the same value, the compiler replaces the argument with the
value and passes the value instead of the argument.

» If areturn value of a function is never used, the compiler deletes the return code in the function.

« If a function is not called directly or indirectly by main(), the compiler removes the function.

The --program_level_compile option requires use of --opt_level=3 or higher in order to perform these
optimizations.

To see which program-level optimizations the compiler is applying, use the --gen_opt_level=2 option to generate
an information file. See Section 3.3.1 for more information.

In Code Composer Studio, when the --program_level _compile option is used, C and C++ files that have the
same options are compiled together. However, if any file has a file-specific option that is not selected as a
project-wide option, that file is compiled separately. For example, if every C and C++ file in your project has

a different set of file-specific options, each is compiled separately, even though program-level optimization has
been specified. To compile all C and C++ files together, make sure the files do not have file-specific options. Be
aware that compiling C and C++ files together may not be safe if previously you used a file-specific option.

Note
Compiling Files With the --program_level_compile and --keep_asm Options

If you compile all files with the --program_level_compile and --keep_asm options, the compiler
produces only one .asm file, not one for each corresponding source file.

3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)

You can control program-level optimization, which you invoke with --program_level_compile --opt_level=3, by
using the --call_assumptions option. Specifically, the --call_assumptions option indicates if functions in other
modules can call a module's external functions or modify a module's external variables. The number following
--call_assumptions indicates the level you set for the module that you are allowing to be called or modified.

The --opt_level=3 option combines this information with its own file-level analysis to decide whether to treat this
module's external function and variable declarations as if they had been declared static. Use Table 3-3 to select
the appropriate level to append to the --call_assumptions option.

Table 3-3. Selecting a Level for the --call_assumptions Option

If Your Module ... Use this Option
Has functions that are called from other modules and global variables that are modified in other modules --call_assumptions=0
Does not have functions that are called by other modules but has global variables that are modified in other --call_assumptions=1
modules

Does not have functions that are called by other modules or global variables that are modified in other --call_assumptions=2
modules

Has functions that are called from other modules but does not have global variables that are modified in --call_assumptions=3

other modules

In certain circumstances, the compiler reverts to a different --call_assumptions level from the one you specified,
or it might disable program-level optimization altogether. Table 3-4 lists the combinations of --call_assumptions
levels and conditions that cause the compiler to revert to other --call_assumptions levels.

56 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

Table 3-4. Special Considerations When Using the --call_assumptions Option
Then the --call_assumptions

If --call_assumptions is... Under these Conditions... Level...
Not specified The --opt_level=3 optimization level was specified Defaults to --call_assumptions=2
Not specified The compiler sees calls to outside functions under the --opt_level=3 Reverts to --call_assumptions=0
optimization level
Not specified Main is not defined Reverts to --call_assumptions=0
--call_assumptions=1 or No function has main defined as an entry point, and no interrupt Reverts to --call_assumptions=0
--call_assumptions=2 functions are defined, and no functions are identified by the
FUNC_EXT_CALLED pragma
--call_assumptions=1 or A main function is defined, or, an interrupt function is defined, or a Remains --call_assumptions=1 or
--call_assumptions=2 function is identified by the FUNC_EXT_CALLED pragma --call_assumptions=2
--call_assumptions=3 Any condition Remains --call_assumptions=3

In some situations when you use --program_level_compile and --opt_level=3, you must use a --call_assumptions
option or the FUNC_EXT_CALLED pragma. See Section 3.4.2 for information about these situations.

3.4.2 Optimization Considerations When Mixing C/C++ and Assembly

If you have any assembly functions in your program, you need to exercise caution when using the --
program_level_compile option. The compiler recognizes only the C/C++ source code and not any assembly
code that might be present. Because the compiler does not recognize the assembly code calls and variable
modifications to C/C++ functions, the --program_level_compile option optimizes out those C/C++ functions. To
keep these functions, place the FUNC_EXT_CALLED pragma (see Section 5.11.14) before any declaration or
reference to a function that you want to keep.

Another approach you can take when you use assembly functions in your program is to use the --
call_assumptions=n option with the --program_level_compile and --opt_level=3 options. See Section 3.4.1 for
information about the --call_assumptions=n option.

In general, you achieve the best results through judicious use of the FUNC_EXT_CALLED pragma in
combination with --program_level_compile --opt_level=3 and --call_assumptions=1 or --call_assumptions=2.

If any of the following situations apply to your application, use the suggested solution:

» Situation: Your application consists of C/C++ source code that calls assembly functions. Those assembly
functions do not call any C/C++ functions or modify any C/C++ variables.

Solution: Compile with --program_level_compile --opt_level=3 --call_assumptions=2 to tell the compiler that
outside functions do not call C/C++ functions or modify C/C++ variables.

If you compile with the --program_level_compile --opt_level=3 options only, the compiler reverts from
the default optimization level (--call_assumptions=2) to --call_assumptions=0. The compiler uses --
call_assumptions=0, because it presumes that the calls to the assembly language functions that have a
definition in C/C++ may call other C/C++ functions or modify C/C++ variables.

» Situation: Your application consists of C/C++ source code that calls assembly functions. The assembly
language functions do not call C/C++ functions, but they modify C/C++ variables.

Solution: Try both of these solutions and choose the one that works best with your code:

— Compile with --program_level _compile --opt_level=3 --call_assumptions=1.

— Add the volatile keyword to those variables that may be modified by the assembly functions and compile
with --program_level_compile --opt_level=3 --call_assumptions=2.

» Situation: Your application consists of C/C++ source code and assembly source code. The assembly
functions are interrupt service routines that call C/C++ functions; the C/C++ functions that the assembly
functions call are never called from C/C++. These C/C++ functions act like main: they function as entry points
into C/C++.

Solution: Add the volatile keyword to the C/C++ variables that may be modified by the interrupts. Then, you
can optimize your code in one of these ways:

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 57
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

— You achieve the best optimization by applying the FUNC_EXT_CALLED pragma to all of the entry-point
functions called from the assembly language interrupts, and then compiling with --program_level_compile
--opt_level=3 --call_assumptions=2. Be sure that you use the pragma with all of the entry-point functions.
If you do not, the compiler might remove the entry-point functions that are not preceded by the
FUNC_EXT_CALLED pragma.

— Compile with --program_level_compile --opt_level=3 --call_assumptions=3. Because you do not use the
FUNC_EXT_CALLED pragma, you must use the --call_assumptions=3 option, which is less aggressive
than the --call_assumptions=2 option, and your optimization may not be as effective.

Keep in mind that if you use --program_level_compile --opt_level=3 without additional options, the compiler
removes the C functions that the assembly functions call. Use the FUNC_EXT_CALLED pragma to keep
these functions.

3.5 Automatic Inline Expansion (--auto_inline Option)

When optimizing with the --opt_level=3 option (aliased as -O3), the compiler automatically inlines small
functions. A command-line option, --auto_inline=size, specifies the size threshold for automatic inlining. This
option controls only the inlining of functions that are not explicitly declared as inline.

When the --auto_inline option is not used, the compiler sets the size limit based on the optimization level and the
optimization goal (performance versus code size). If the -auto_inline size parameter is set to 0, automatic inline
expansion is disabled. If the --auto_inline size parameter is set to a non-zero integer, the compiler automatically
inlines any function smaller than size. (This is a change from previous releases, which inlined functions for which
the product of the function size and the number of calls to it was less than size. The new scheme is simpler, but
will usually lead to more inlining for a given value of size.)

The compiler measures the size of a function in arbitrary units; however the optimizer information file (created
with the --gen_opt_info=1 or --gen_opt_info=2 option) reports the size of each function in the same units that
the --auto_inline option uses. When --auto_inline is used, the compiler does not attempt to prevent inlining that
causes excessive growth in compile time or size; use with care.

When --auto_inline option is not used, the decision to inline a function at a particular call-site is based on an
algorithm that attempts to optimize benefit and cost. The compiler inlines eligible functions at call-sites until a
limit on size or compilation time is reached.

Inlining behavior varies, depending on which compile-time options are specified:

* The code size limit is smaller when compiling for code size rather than performance. The --auto_inline option
overrides this size limit.

» At --opt_level=3, the compiler automatically inlines small functions.

* At --opt_level=4, the compiler auto-inlines aggressively if compiling for performance.

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

Note
Some Functions Cannot Be Inlined: For a call-site to be considered for inlining, it must be legal
to inline the function and inlining must not be disabled in some way. See the inlining restrictions in
Section 2.11.2.

Note
Optimization Level 3 and Inlining: In order to turn on automatic inlining, you must use the
--opt_level=3 option. If you desire the --opt_level=3 optimizations, but not automatic inlining, use
--auto_inline=0 with the --opt_level=3 option.

58 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

Note
Inlining and Code Size: Expanding functions inline increases code size, especially inlining a function
that is called in a number of places. Function inlining is optimal for functions that are called only from a
small number of places and for small functions. To prevent increases in code size because of inlining,
use the --auto_inline=0 option. This option causes the compiler to inline intrinsics only.

3.6 Link-Time Optimization (--opt_level=4 Option)

Link-time optimization is an optimization mode that allows the compiler to have visibility of the entire program.
The optimization occurs at link-time instead of compile-time like other optimization levels.

Link-time optimization is invoked using the --opt_level=4 option. This option must be placed before the
--run_linker (-z) option on the command line, because both the compiler and linker are involved in link-time
optimization. At compile time, the compiler embeds an intermediate representation of the file being compiled into
the resulting object file. At link-time this representation is extracted from every object file which contains it, and is
used to optimize the entire program.

If you use --opt_level=4 (-O4), the --program_level _compile option cannot also be used, because link-time
optimization provides the same optimization opportunities as program level optimization (Section 3.4). Link-time
optimization provides the following benefits:

» Each source file can be compiled separately. One issue with program-level compilation is that it requires
all source files to be passed to the compiler at one time. This often requires significant modification of a
customer's build process. With link-time optimization, all files can be compiled separately.

» References to C/C++ symbols from assembly are handled automatically. When doing program-level
compilation, the compiler has no knowledge of whether a symbol is referenced externally. When performing
link-time optimization during a final link, the linker can determine which symbols are referenced externally and
prevent eliminating them during optimization.

» Third party object files can participate in optimization. If a third party vendor provides object files that were
compiled with the --opt_level=4 option, those files participate in optimization along with user-generated files.
This includes object files supplied as part of the Tl run-time support. Object files that were not compiled with
—opt_level=4 can still be used in a link that is performing link-time optimization. Those files that were not
compiled with —opt_level=4 do not participate in the optimization.

» Source files can be compiled with different option sets. With program-level compilation, all source files must
be compiled with the same option set. With link-time optimization, files can be compiled with different options.
If the compiler determines that two options are incompatible, it issues an error.

3.6.1 Option Handling

When performing link-time optimization, source files can be compiled with different options. When possible, the
options that were used during compilation are used during link-time optimization. For options which apply at the
program level, --auto_inline for instance, the options used to compile the main function are used. If main is not
included in link-time optimization, the option set used for the first object file specified on the command line is
used. Some options, --opt_for_speed for instance, can affect a wide range of optimizations. For these options,
the program-level behavior is derived from main, and the local optimizations are obtained from the original option
set.

Some options are incompatible when performing link-time optimization. These are usually that which conflict on
the command line as well, but can also be options that cannot be handled during link-time optimization.

3.6.2 Incompatible Types

During a normal link, the linker does not check to make sure that each symbol was declared with the same type
in different files. This is not necessary during a normal link. When performing link-time optimization, however,
the linker must ensure that all symbols are declared with compatible types in different source files. If a symbol
is found which has incompatible types, an error is issued. The rules for compatible types are derived from the C
and C++ standards.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 59
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

3.7 Using Feedback Directed Optimization

Feedback directed optimization provides a method for finding frequently executed paths in an application
using compiler-based instrumentation. This information is fed back to the compiler and is used to perform
optimizations. This information is also used to provide you with information about application behavior.

3.7.1 Feedback Directed Optimization

Feedback directed optimization uses run-time feedback to identify and optimize frequently executed program
paths. Feedback directed optimization is a two-phase process.

3.7.1.1 Phase 1 -- Collect Program Profile Information

In this phase the compiler is invoked with the option --gen_profile_info, which instructs the compiler to add
instrumentation code to collect profile information. The compiler inserts a minimal amount of instrumentation
code to determine control flow frequencies. Memory is allocated to store counter information.

The instrumented application program is executed on the target using representative input data sets. The

input data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT file.
The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or armpdd. The armpdd
tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 3.7.2) for
consumption by phase 2 of feedback directed optimization.

3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which reads the specified PRF
file generated in phase 1. In phase 2, optimization decisions are made using the data generated during phase
1. The profile feedback file is used to guide program optimization. The compiler optimizes frequently executed
program paths more aggressively.

The compiler uses data in the profile feedback file to guide certain optimizations of frequently executed program
paths.

3.7.1.3 Generating and Using Profile Information
There are two options that control feedback directed optimization:

--gen_profile_info tells the compiler to add instrumentation code to collect profile information. When the program executes the
run-time-support exit() function, the profile data is written to a PDAT file. This option applies to all the C/C++
source files being compiled on the command-line.

If the environment variable TI_PROFDATA on the host is set, the data is written into the specified file.
Otherwise, it uses the default filename: pprofout.pdat. The full pathname of the PDAT file (including the
directory name) can be specified using the TI_PROFDATA host environment variable.

By default, the RTS profile data output routine uses the C 1/0O mechanism to write data to the PDAT file. You
can install a device handler for the PPHNDL device to re-direct the profile data to a custom device driver
routine. For example, this could be used to send the profile data to a device that does not use a file system.
Feedback directed optimization requires you to turn on at least some debug information when using the --
gen_profile_info option. This enables the compiler to output debug information that allows armpdd to correlate
compiled functions and their associated profile data.

--use_profile_info specifies the profile information file(s) to use for performing phase 2 of feedback directed optimization. More
than one profile information file can be specified on the command line; the compiler uses all input data from
multiple information files. The syntax for the option is:

--use_profile_info==file1[, file2, ..., filen]
If no filename is specified, the compiler looks for a file named pprofout.prf in the directory where the compiler
in invoked.

60 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.7.1.4 Example Use of Feedback Directed Optimization
These steps illustrate the creation and use of feedback directed optimization.

1. Generate profile information.

armcl --opt level=2 --gen profile info foo.c --run linker --output file=foo.out
--library=lnk.cmd --library=rtsv4 A be eabi.lib

2. Execute the application.

The execution of the application creates a PDAT file named pprofout.pdat in the current (host) directory. The
application can be run on target hardware connected to a host machine.
3. Process the profile data.

After running the application with multiple data-sets, run armpdd on the PDAT files to create a profile
information (PRF) file to be used with --use_profile_info.

armpdd -e foo.out -o pprofout.prf pprofout.pdat ‘

4. Re-compile using the profile feedback file.

--output file=foo.out --library=lnk.cmd --library=rtsv4d A be eabi.lib

armcl --opt level=2 --use profile info=pprofout.prf foo.c --run linker

3.7.1.5 The .ppdata Section

Profile information collected in phase 1 is stored in the .ppdata section, which must be allocated into target
memory. The .ppdata section contains profiler counters for all functions compiled with --gen_profile_info. The
default Ink.cmd file has directives to place the .ppdata section in data memory. If the link command file has no
section directive to allocate the .ppdata section, the link step places the .ppdata section in a writable memory
range.

The .ppdata section must be allocated memory in multiples of 32 bytes. Please refer to the linker command file
in the distribution for example usage.

3.7.1.6 Feedback Directed Optimization and Code Size Tune

Feedback directed optimization is different from the Code Size Tune feature in Code Composer Studio (CCS).
The code size tune feature uses CCS profiling to select specific compilation options for each function in order to
minimize code size while still maintaining a specific performance point. Code size tune is coarse-grained, since
it is selecting an option set for the whole function. Feedback directed optimization selects different optimization
goals along specific regions within a function.

3.7.1.7 Instrumented Program Execution Overhead

During profile collection, the execution time of the application may increase. The amount of increase depends on
the size of the application and the number of files in the application compiled for profiling.

The profiling counters increase the code and data size of the application. Consider using the option when using
profiling to mitigate the code size increase. This has no effect on the accuracy of the profile data being collected.
Since profiling only counts execution frequency and not cycle counts, code size optimization flags do not affect
profiler measurements.

3.7.1.8 Invalid Profile Data
When recompiling with --use_profile_info, the profile information is invalid in the following cases:

* The source file name changed between the generation of profile information (gen-profile) and the use of the
profile information (use-profile).

» Source code was modified since gen-profile. In this case, profile information is invalid for modified functions.

» Certain compiler options used with gen-profile are different from those with used with use-profile. In particular,
options that affect parser behavior could invalidate profile data during use-profile. In general, using different
optimization options during use-profile should not affect the validity of profile data.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 61
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

3.7.2 Profile Data Decoder

The code generation tools include a tool called the Profile Data Decoder or armpdd, which is used for post
processing profile data (PDAT) files. The armpdd tool generates a profile feedback (PRF) file. See Section 3.7.1
for a discussion of where armpdd fits in the profiling flow. The armpdd tool is invoked with this syntax:

armpdd -e exec.out -0 application.prf filename .pdat

-a Computes the average of the data values in the data sets instead of accumulating data values
-e exec.out Specifies exec.out is the name of the application executable.
-0 application.prf Specifies application.prf is the formatted profile feedback file that is used as the argument to --

use_profile_info during recompilation. If no output file is specified, the default output filename is
pprofout.prf.

filename .pdat Is the name of the profile data file generated by the run-time-support function. This is the default name and
it can be overridden by using the host environment variable TI_PROFDATA.

The run-time-support function and armpdd append to their respective output files and do not overwrite them.
This enables collection of data sets from multiple runs of the application.

Note
Profile Data Decoder Requirements: Compile applications with at least DWARF debug support
to enable feedback-directed optimization. When compiling for feedback-directed optimization, the
armpdd tool relies on basic debug information about each function to generate the formatted .prf file.

The pprofout.pdat file generated by the run-time support is a raw data file of a fixed format understood
only by armpdd. You should not modify this file in any way.

3.7.3 Feedback Directed Optimization API

There are two user interfaces to the profiler mechanism. You can start and stop profiling in your application by
using the following run-time-support calls.

» _TI_start_pprof_collection(): This interface informs the run-time support that you wish to start profiling
collection from this point on and causes the run-time support to clear all profiling counters in the application
(that is, discard old counter values).

* _TI_stop_pprof_collection(): This interface directs the run-time support to stop profiling collection and
output profiling data into the output file (into the default file or one specified by the TI_PROFDATA host
environment variable). The run-time support also disables any further output of profile data into the output file
during exit(), unless you call _TI_start_pprof_collection() again.

3.7.4 Feedback Directed Optimization Summary

Options

--gen_profile_info Adds instrumentation to the compiled code. Execution of the code results in profile data being emitted
to a PDAT file.

--use_profile_info=file.prf Uses profile information for optimization and/or generating code coverage information.

--analyze=codecov Generates a code coverage information file and continues with profile-based compilation. Must be
used with --use_profile_info.

--analyze_only Generates only a code coverage information file. Must be used with --use_profile_info. Specify both

--analyze=codecov and --analyze_only to do code coverage analysis of the instrumented application.

Host Environment Variables

TI_PROFDATA Writes profile data into the specified file
TI_COVDIR Creates code coverage files in the specified directory
TI_COVDATA Writes code coverage data into the specified file
62 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Optimizing Your Code
API
_TI_start_pprof_collection() Clears the profile counters to file
_TI_stop_pprof_collection() Writes out all profile counters to file
PPHDNL Device driver handle for low-level C 1/0O based driver for writing out profile data from a target program.

Files Created

*.pdat Profile data file, which is created by executing an instrumented program and used as input to the
profile data decoder

*.prf Profiling feedback file, which is created by the profile data decoder and used as input to the re-
compilation step

3.8 Using Profile Information to Analyze Code Coverage
You can use the analysis information from the Profile Data Decoder to analyze code coverage.
3.8.1 Code Coverage

The information collected during feedback directed optimization can be used for generating code coverage
reports. As with feedback directed optimization, the program must be compiled with the --gen_profile_info option.
Code coverage conveys the execution count of each line of source code in the file being compiled, using data
collected during profiling.

3.8.1.1 Phase1 -- Collect Program Profile Information

In this phase, the compiler is invoked with --gen_profile_info, which instructs the compiler to add instrumentation
code to collect profile information. The compiler inserts a small amount of instrumentation code to determine
control flow frequencies. Memory is allocated to store counter information.

The instrumented application program is executed on the target using representative input data sets. The

input data sets should correlate closely with the way the program is expected to be used in the end product
environment. When the program completes, a run-time-support function writes the collected information into a
profile data file called a PDAT file. Multiple executions of the program using different input data sets can be
performed and in such cases, the run-time-support function appends the collected information into the PDAT file.
The resulting PDAT file is post-processed using a tool called the Profile Data Decoder or armpdd. The armpdd
tool consolidates multiple data sets and formats the data into a feedback file (PRF file, see Section 3.7.2) for
consumption by phase 2 of feedback directed optimization.

3.8.1.2 Phase 2 -- Generate Code Coverage Reports

In this phase, the compiler is invoked with the --use_profile_info=file.prf option, which indicates that the compiler
should read the specified PRF file generated in phase 1. The application must also be compiled with either

the --codecov or --onlycodecov option; the compiler generates a code-coverage info file. The --codecov option
directs the compiler to continue compilation after generating code-coverage information, while the --onlycodecov
option stops the compiler after generating code-coverage data. For example:

armcl --opt level=2 --use profile info=pprofout.prf --onlycodecov foo.c

You can specify two environment variables to control the destination of the code-coverage information file.

» The TI_COVDIR environment variable specifies the directory where the code-coverage file should be
generated. The default is the directory where the compiler is invoked.

» The TI_COVDATA environment variable specifies the name of the code-coverage data file generated by
the compiler. the default is filename.csv where filename is the base-name of the file being compiled. For
example, if foo.c is being compiled, the default code-coverage data file name is foo.csv.

If the code-coverage data file already exists, the compiler appends the new dataset at the end of the file.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 63
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

Code-coverage data is a comma-separated list of data items that can be conveniently handled by data-
processing tools and scripting languages. The following is the format of code-coverage data:

"filename-with-full-path","funcname" line#,column#,exec-frequency,"comments"

"filename-with-full-path" Full pathname of the file corresponding to the entry

"funcname" Name of the function

line# Line number of the source line corresponding to frequency data

column# Column number of the source line

exec-frequency Execution frequency of the line

"comments" Intermediate-level representation of the source-code generated by the parser

The full filename, function name, and comments appear within quotation marks ("). For example:
"/some dir/zlib/arm/deflate.c"," deflateInit2 ",216,5,1,"(strm->zalloc)"

Other tools, such as a spreadsheet program, can be used to format and view the code coverage data.

3.8.2 Related Features and Capabilities

The code generation tools provide some features and capabilities that can be used in conjunction with code
coverage analysis. The following is a summary:

3.8.2.1 Path Profiler

The code generation tools include a path profiling utility, armpprof, that is run from the compiler, armcl. The
armpprof utility is invoked by the compiler when the --gen_profile or the --use_profile command is used from the
compiler command line:

armcl --gen_profile ... file.c

armcl --use_profile ... file.c

For further information about profile-based optimization and a more detailed description of the profiling
infrastructure, see Section 3.7.

3.8.2.2 Analysis Options

The path profiling utility, armpprof, appends code coverage information to existing CSV (comma separated
values) files that contain the same type of analysis information.

The utility checks to make sure that an existing CSV file contains analysis information that is consistent with the
type of analysis information it is being asked to generate . Attempts to mix code coverage and other analysis
information in the same output CSYV file will be detected, and armpprof will emit a fatal error and abort.

--analyze=codecov Instructs the compiler to generate code coverage analysis information. This option replaces the
previous --codecov option.

--analyze_only Halts compilation after generation of analysis information is completed.

3.8.2.3 Environment Variables

To assist with the management of output CSV analysis files, armpprof supports this environment variable:

TI_ANALYSIS_DIR Specifies the directory in which the output analysis file will be generated.
64 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.9 Accessing Aliased Variables in Optimized Code

Aliasing occurs when a single object can be accessed in more than one way, such as when two pointers point
to the same object or when a pointer points to a named object. Aliasing can disrupt optimization because any
indirect reference can refer to another object. The optimizer analyzes the code to determine where aliasing can
and cannot occur, then optimizes as much as possible while still preserving the correctness of the program. The
optimizer behaves conservatively. If there is a chance that two pointers are pointing to the same object, then the
optimizer assumes that the pointers do point to the same object.

The compiler assumes that if the address of a local variable is passed to a function, the function changes

the local variable by writing through the pointer. This makes the local variable's address unavailable for use
elsewhere after returning. For example, the called function cannot assign the local variable's address to a
global variable or return the local variable's address. In cases where this assumption is invalid, use the
--aliased_variables compiler option to force the compiler to assume worst-case aliasing. In worst-case aliasing,
any indirect reference can refer to such a variable.

3.10 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements in optimized code. The compiler
rearranges code segments, uses registers freely, and can completely remove variables or expressions.

Although the compiler never optimizes out an asm statement (except when it is unreachable), the surrounding
environment where the assembly code is inserted can differ significantly from the original C/C++ source code.

It is usually safe to use asm statements to manipulate hardware controls such as interrupt masks, but

asm statements that attempt to interface with the C/C++ environment or access C/C++ variables can have
unexpected results. After compilation, check the assembly output to make sure your asm statements are correct
and maintain the integrity of the program.

3.11 Using the Interlist Feature With Optimization

You control the output of the interlist feature when compiling with optimization (the --opt_level=n or -On option)
with the --optimizer_interlist and --c_src_interlist options.

» The --optimizer_interlist option interlists compiler comments with assembly source statements.
* The --c_src_interlist and --optimizer_interlist options together interlist the compiler comments and the original
C/C++ source with the assembly code.

When you use the --optimizer_interlist option with optimization, the interlist feature does not run as a separate
pass. Instead, the compiler inserts comments into the code, indicating how the compiler has rearranged and
optimized the code. These comments appear in the assembly language file as comments starting with ;**. The
C/C++ source code is not interlisted, unless you use the --c_src_interlist option also.

The interlist feature can affect optimized code because it might prevent some optimization from crossing
C/C++ statement boundaries. Optimization makes normal source interlisting impractical, because the compiler
extensively rearranges your program. Therefore, when you use the --optimizer_interlist option, the compiler
writes reconstructed C/C++ statements.

Note
Impact on Performance and Code Size: The --c_src_interlist option can have a negative effect on
performance and code size.

When you use the --c_src_interlist and --optimizer_interlist options with optimization, the compiler inserts its
comments and the interlist feature runs before the assembler, merging the original C/C++ source into the
assembly file.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 65
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

For example, suppose the following C code is compiled with optimization (--opt_level=2) and --optimizer_interlist
options:

int copy (char *str, const char *s, int n)
{
int i;
for (i = 0; 1 < n; 1 ++4)
*str++ = *s++;

The assembily file contains compiler comments interlisted with assembly code.

_main:
STMFD SP!, {LR}
D e printf ("Hello, world\n");
ADR Al, SL1
BL printf
D e il return 0;
MOV Al, #0
LDMFD sp!, {PC}

If you add the --c_src_interlist option (compile with --opt_level=2, --c_src_interlist, and --optimizer_interlist), the
assembly file contains compiler comments and C source interlisted with assembly code.

ADR Al, SL1

BL printf
R Tttt return 0;
; 6 | return 0;

MOV Al, #0

LDMFED SP!, {PC}

3.12 Debugging and Profiling Optimized Code

The compiler generates symbolic debugging information by default at all optimization levels. Generating debug
information does not affect compiler optimization or generated code. However, higher levels of optimization
negatively impact the debugging experience due to the code transformations that are done. For the best
debugging experience use --opt_level=off.

The default optimization level depends on the use of the --symdebug:dwarf (-g) option. If --symdebug:dwarf is
specified, the default optimization level is off. Otherwise the default optimization level is 3.

Debug information increases the size of object files, but it does not affect the size of code or data on the target.
If object file size is a concern and debugging is not needed, use --symdebug:none to disable the generation of
debug information.

3.12.1 Profiling Optimized Code

To profile optimized code, use optimization (--opt_level=0 through --opt_level=3).

66 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.13 What Kind of Optimization Is Being Performed?

The ARM C/C++ compiler uses a variety of optimization techniques to improve the execution speed of your C/C+
+ programs and to reduce their size. The following are some of the optimizations performed by the compiler:

Optimization

See

Cost-based register allocation

Alias disambiguation

Branch optimizations and control-flow simplification

Data flow optimizations

» Copy propagation

* Common subexpression elimination
* Redundant assignment elimination

Expression simplification

Inline expansion of functions

Function symbol aliasing

Induction variables and strength reduction
Loop-invariant code motion

Loop rotation

Instruction scheduling

Section 3.13.1
Section 3.13.2
Section 3.13.3
Section 3.13.4

Section 3.13.5
Section 3.13.6
Section 3.13.7
Section 3.13.8
Section 3.13.9
Section 3.13.10
Section 3.13.11

ARM-Specific Optimization

See

Tail merging

Autoincrement addressing
Block conditionalizing

Epilog inlining

Removing comparisons to zero

Integer division with constant divisor

Section 3.13.12
Section 3.13.13
Section 3.13.14
Section 3.13.15
Section 3.13.16
Section 3.13.17

Branch chaining Section 3.13.18

3.13.1 Cost-Based Register Allocation

The compiler, when optimization is enabled, allocates registers to user variables and compiler temporary values
according to their type, use, and frequency. Variables used within loops are weighted to have priority over others,
and those variables whose uses do not overlap can be allocated to the same register.

Induction variable elimination and loop test replacement allow the compiler to recognize the loop as a simple
counting loop and unroll or eliminate the loop. Strength reduction turns the array references into efficient pointer
references with autoincrements.

3.13.2 Alias Disambiguation

C and C++ programs generally use many pointer variables. Frequently, compilers are unable to determine

whether or not two or more | values (lowercase L: symbols, pointer references, or structure references) refer to
the same memory location. This aliasing of memory locations often prevents the compiler from retaining values
in registers because it cannot be sure that the register and memory continue to hold the same values over time.

Alias disambiguation is a technique that determines when two pointer expressions cannot point to the same
location, allowing the compiler to freely optimize such expressions.

3.13.3 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges the linear sequences of operations
(basic blocks) to remove branches or redundant conditions. Unreachable code is deleted, branches to branches
are bypassed, and conditional branches over unconditional branches are simplified to a single conditional
branch.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 67
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

When the value of a condition is determined at compile time (through copy propagation or other data flow
analysis), the compiler can delete a conditional branch. Switch case lists are analyzed in the same way as
conditional branches and are sometimes eliminated entirely. Some simple control flow constructs are reduced to
conditional instructions, totally eliminating the need for branches.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.
3.13.4 Data Flow Optimizations

Collectively, the following data flow optimizations replace expressions with less costly ones, detect and remove
unnecessary assignments, and avoid operations that produce values that are already computed. The compiler
with optimization enabled performs these data flow optimizations both locally (within basic blocks) and globally
(across entire functions).

« Copy propagation. Following an assignment to a variable, the compiler replaces references to the variable
with its value. The value can be another variable, a constant, or a common subexpression. This can result in
increased opportunities for constant folding, common subexpression elimination, or even total elimination of
the variable. This type of optimization is enabled by the --opt_level=1 and higher optimization settings.

« Common subexpression elimination. When two or more expressions produce the same value, the
compiler computes the value once, saves it, and reuses it. This type of optimization is enabled by the
--opt_level=2 and higher optimization settings.

* Redundant assignment elimination. Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables with no subsequent reference before
another assignment or before the end of the function). The compiler removes these dead assignments.

This type of optimization is enabled by the --opt_level=1 for local assignments and --opt_level=2 for global
assignments.

3.13.5 Expression Simplification

For optimal evaluation, the compiler simplifies expressions into equivalent forms, requiring fewer instructions or
registers. Operations between constants are folded into single constants. For example,a= (b +4)-(c + 1)
becomesa=b-c+3.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.
3.13.6 Inline Expansion of Functions

The compiler replaces calls to small functions with inline code, saving the overhead associated with a function
call as well as providing increased opportunities to apply other optimizations. For information about interactions
between command-line options, pragmas, and keywords that affect inlining, see Section 2.11.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.
3.13.7 Function Symbol Aliasing

The compiler recognizes a function whose definition contains only a call to another function. If the two functions
have the same signature (same return value and same number of parameters with the same type, in the same
order), then the compiler can make the calling function an alias of the called function.

For example, consider the following:

int bbb (int argl, char *arg2);
int aaa(int n, char *str)
{

return bbb (n, str);

}

For this example, the compiler makes aaa an alias of bbb, so that at link time all calls to function aaa should be
redirected to bbb. If the linker can successfully redirect all references to aaa, then the body of function aaa can
be removed and the symbol aaa is defined at the same address as bbb.

For information about using the GCC function attribute syntax to declare function aliases, see Section 5.17.2

68 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.13.8 Induction Variables and Strength Reduction

Induction variables are variables whose value within a loop is directly related to the number of executions of the
loop. Array indices and control variables for loops are often induction variables.

Strength reduction is the process of replacing inefficient expressions involving induction variables with more
efficient expressions. For example, code that indexes into a sequence of array elements is replaced with code
that increments a pointer through the array.

Induction variable analysis and strength reduction together often remove all references to your loop-control
variable, allowing its elimination.

This type of optimization is enabled by the --opt_level=2 and higher optimization settings.
3.13.9 Loop-Invariant Code Motion

This optimization identifies expressions within loops that always compute to the same value. The computation is
moved in front of the loop, and each occurrence of the expression in the loop is replaced by a reference to the
precomputed value.

3.13.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving an extra branch out of the loop. In many
cases, the initial entry conditional check and the branch are optimized out.

This type of optimization is enabled by the --opt_level=0 and higher optimization settings.
3.13.11 Instruction Scheduling

The compiler performs instruction scheduling, which is the rearranging of machine instructions in such a way
that improves performance while maintaining the semantics of the original order. Instruction scheduling is used
to improve instruction parallelism and hide latencies. It can also be used to reduce code size.

3.13.12 Tail Merging

If you are optimizing for code size, tail merging can be very effective for some functions. Tail merging finds basic
blocks that end in an identical sequence of instructions and have a common destination. If such a set of blocks
is found, the sequence of identical instructions is made into its own block. These instructions are then removed
from the set of blocks and replaced with branches to the newly created block. Thus, there is only one copy of the
sequence of instructions, rather than one for each block in the set.

3.13.13 Autoincrement Addressing

For pointer expressions of the form *p++, the compiler uses efficient ARM autoincrement addressing modes. In
many cases, where code steps through an array in a loop such as below, the loop optimizations convert the
array references to indirect references through autoincremented register variable pointers.

for (I = 0; I <N; ++I) a(I)...

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 69
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Optimizing Your Code www.ti.com

3.13.14 Block Conditionalizing
Because all 32-bit instructions can be conditional, branches can be removed by conditionalizing instructions.

In Example 3-1, the branch around the add and the branch around the subtract are removed by simply
conditionalizing the add and the subtract.

Example 3-1. Block Conditionalizing C Source

int main (int a)

{

if (a < 0)
a = a-3;
else
a = a*3;

return ++a;

}

Example 3-2. C/C++ Compiler Output for Example 3-1

IR S S S S SRR RS SRR e R SRS EEE R R R R R R R R R R R R R R R R R R R
’

;* FUNCTION DEF: _main *
;*‘k‘k******‘k*‘k******‘k*‘k*****‘k‘k*****************************
_main:

CMP Al, #0

ADDPL Al, Al, Al, LSL #1

SUBMI Al, Al, #3

ADD Al, Al, #1

BX LR

3.13.15 Epilog Inlining

If the epilog of a function is a single instruction, that instruction replaces all branches to the epilog. This
increases execution speed by removing the branch.

3.13.16 Removing Comparisons to Zero

Because most of the 32-bit instructions and some of the 16-bit instructions can modify the status register when
the result of their operation is 0, explicit comparisons to 0 may be unnecessary. The ARM C/C++ compiler
removes comparisons to 0 if a previous instruction can be modified to set the status register appropriately.

3.13.17 Integer Division With Constant Divisor

The optimizer attempts to rewrite integer divide operations with constant divisors. The integer divides are
rewritten as a multiply with the reciprocal of the divisor. This occurs at optimization level 2 (--opt_level=2 or -02)
and higher. You must also compile with the --opt_for_speed option, which selects compile for speed.

70 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Optimizing Your Code

3.13.18 Branch Chaining

Branching to branches that jump to the desired target is called branch chaining. Branch chaining is supported in
16-BIS mode only. Consider this code sequence:

LABL: BR L10
LAB2: BR L10
L10:

If L10 is far away from LAB1 (large offset), the assembler converts BR into a sequence of branch around and
unconditional branches, resulting in a sequence of two instructions that are either four or six bytes long. Instead,
if the branch at LAB1 can jump to LAB2, and LAB2 is close enough that BR can be replaced by a single short
branch instruction, the resulting code is smaller as the BR in LAB1 would be converted into one instruction that is
two bytes long. LAB2 can in turn jump to another branch if L10 is too far away from LAB2. Thus, branch chaining
can be extended to arbitrary depths.

When you compile in thumb mode (--code_state=16) and for code size (--opt_for_speed is not used), the
compiler generates two psuedo instructions:

» BTcc instead of BRcc. The format is BRcc farget, #[depth].

The #depth is an optional argument. If depth is not specified, it is set to the default branch chaining depth. If
specified, the chaining depth for this branch instruction is set to #depth. The assembler issues a warning if
#depth is less than zero and sets the branch chaining depth for this instruction to zero.

» BAQcc instead of Bce. The format is BQcc target , #[depth].

The #depth is the same as for the BTcc psuedo instruction.

The BT pseudo instruction replaces the BR (pseudo branch) instruction. Similarly, BQ replaces B. The
assembler performs branch chain optimizations for these instructions, if branch chaining is enabled. The
assembler replaces the BT and BQ jump targets with the offset to the branch to which these instructions jump.

The default branch chaining depth is 10. This limit is designed to prevent longer branch chains from impeding
performance.

You can the BT and BQ instructions in assembly language programs to enable the assembler to perform branch
chaining. You can control the branch chaining depth for each instruction by specifying the (optional) #depth
argument. You must use the BR and B instructions to prevent branch chaining for any BT or BQ branches.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 71
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

Optimizing Your Code www.ti.com
This page intentionally left blank.

72 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 4
Linking C/C++ Code

i3 TEXAS INSTRUMENTS

The C/C++ Code Generation Tools provide two methods for linking your programs:

* You can compile individual modules and link them together. This method is especially useful when you have
multiple source files.
* You can compile and link in one step. This method is useful when you have a single source module.

This chapter describes how to invoke the linker with each method. It also discusses special requirements of
linking C/C++ code, including the run-time-support libraries, specifying the type of initialization, and allocating the
program into memory. For a complete description of the linker, see the ARM Assembly Language Tools User's
Guide.

4.1 Invoking the Linker Through the Compiler (=2 OPtion)............coociiiiiiiii e 74

4.2 Linker Code OPtimiZations.cooiiiiiiiiii ittt ettt et e e ea bt e e b bt e e eaae e e ea bt e e snb e e e sane e e e bneeeanneeenanees 76

4.3 Controlling the LiNKING PrOCESS..........cocoiiiiiiii it e e et e e e e et e e e e e esbaeeaeesansaaeeeeeaasssaeeaeeaannsaeaaeenan 77
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 73
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Linking C/C++ Code www.ti.com

4.1 Invoking the Linker Through the Compiler (-z Option)

This section explains how to invoke the linker after you have compiled and assembled your programs: as a
separate step or as part of the compile step.

4.1.1 Invoking the Linker Separately

This is the general syntax for linking C/C++ programs as a separate step:

armcl --run_linker {--rom_model | --ram_model} filenames

[options] [--output_file= name.out] --library= library [Ink.cmd]

armcl --run_linker The command that invokes the linker.

--rom_model | --ram_model Options that tell the linker to use special conventions defined by the C/C++ environment.
When you use armcl --run_linker without listing any C/C++ files to be compiled on the
command line, you must use --rom_model or --ram_model on the command line or in the
linker command file. The --rom_model option uses automatic variable initialization at run
time; the --ram_model option uses variable initialization at load time. See Section 4.3.5 for
details about using the --rom_model and --ram_model options. If you fail to specify the ROM
or RAM model, you will see a linker warning that says:
warning: no suitable entry-point found; setting to 0

filenames Names of object files, linker command files, or archive libraries. The default extensions
for input files are .c.obj (for C source files) and .cpp.obj (for C++ source files). Any other
extension must be explicitly specified. The linker can determine whether the input file is an
object or ASCII file that contains linker commands. The default output filename is a.out,
unless you use the --output_file option.

options Options affect how the linker handles your object files. Linker options can only appear after
the --run_linker option on the command line, but otherwise may be in any order. (Options
are discussed in detail in the ARM Assembly Language Tools User's Guide.)

--output_file= name.out Names the output file.

--library= library Identifies the appropriate archive library containing C/C++ run-time-support and floating-
point math functions, or linker command files. If you are linking C/C++ code, you must use
a run-time-support library. You can use the libraries included with the compiler, or you can
create your own run-time-support library. If you have specified a run-time-support library in a
linker command file, you do not need this parameter. The --library option's short form is -I.

Ink.cmd Contains options, filenames, directives, or commands for the linker.

Note

The default file extensions for object files created by the compiler have been changed. Object files
generated from C source files have the .c.obj extension. Object files generated from C++ source files
have the .cpp.obj extension.

When you specify a library as linker input, the linker includes and links only those library members that resolve
undefined references. The linker uses a default allocation algorithm to allocate your program into memory. You
can use the MEMORY and SECTIONS directives in the linker command file to customize the allocation process.
For information, see the ARM Assembly Language Tools User's Guide.

You can link a C/C++ program consisting of object files prog1.c.obj, prog2.c.obj, and prog3.cpp.obj, with an
executable object file filename of prog.out with the command:

armcl --run linker --rom model progl prog2 prog3 --output file=prog.out
--library=rtsv4 A be eabi.lib

74 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

4.1.2 Invoking the Linker as Part of the Compile Step

This is the general syntax for linking C/C++ programs as part of the compile step:

armcl filenames [options] --run_linker [--rom_model | --ram_model] filenames

[options] [--output_file= name.out] --library= library [Ink.cmd]

The --run_linker option divides the command line into the compiler options (the options before --run_linker) and
the linker options (the options following --run_linker). The --run_linker option must follow all source files and
compiler options on the command line.

All arguments that follow --run_linker on the command line are passed to the linker. These arguments can
be linker command files, additional object files, linker options, or libraries. These arguments are the same as
described in Section 4.1.1.

All arguments that precede --run_linker on the command line are compiler arguments. These arguments can be
C/C++ source files, assembly files, or compiler options. These arguments are described in Section 2.2.

You can compile and link a C/C++ program consisting of object files prog1.c, prog2.c, and prog3.c, with an
executable object file filename of prog.out with the command:

armcl progl.c prog2.c prog3.c --run_linker --rom model --output file=prog.out
--library=rtsv4 A be eabi.lib

When you use armcl --run_linker after listing at least one C/C++ file to be compiled on the same command line,
by default the --rom_model is used for automatic variable initialization at run time. See Section 4.3.5 for details
about using the --rom_model and --ram_model options.

Note

Order of Processing Arguments in the Linker: The order in which the linker processes arguments
is important. The compiler passes arguments to the linker in the following order:

1. Object filenames from the command line
2. Arguments following the --run_linker option on the command line
3. Arguments following the --run_linker option from the TI_ARM_C_OPTION environment variable

4.1.3 Disabling the Linker (--compile_only Compiler Option)

You can override the --run_linker option by using the --compile_only compiler option. The -run_linker option's
short form is -z and the --compile_only option's short form is -c.

The --compile_only option is especially helpful if you specify the --run_linker option in the TI_ARM_C_OPTION
environment variable and want to selectively disable linking with the --compile_only option on the command line.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 75
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Linking C/C++ Code www.ti.com

4.2 Linker Code Optimizations
These techniques are used to further optimize your code.
4.2.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)

In order to facilitate the removal of unused code, the linker generates a feedback file containing a list of functions
that are never referenced. The feedback file must be used the next time you compile the source files. The syntax
for the --generate_dead_funcs_list option is:

--generate_dead_funcs_list= filename
If filename is not specified, a default filename of dead_funcs.txt is used.
Proper creation and use of the feedback file entails the following steps:

1. Compile all source files using the --gen_func_subsections compiler option. For example:

armcl filel.c file2.c --gen func subsections ‘

2. During the linker, use the --generate_dead_funcs_list option to generate the feedback file based on the
generated object files. For example:

armcl --run linker filel.c.obj file2.c.obj --generate dead funcs list=feedback.txt ‘

Alternatively, you can combine steps 1 and 2 into one step. When you do this, you are not required to specify
--gen_func_subsections when compiling the source files as this is done for you automatically. For example:

armcl filel.c file2.c --run linker --generate dead funcs list=feedback.txt ‘

3. Once you have the feedback file, rebuild the source. Give the feedback file to the compiler using the

--use_dead_funcs_list option. This option forces each dead function listed in the file into its own subsection.
For example:

armcl filel.c file2.c --use dead funcs_list=feedback.txt ‘

4. Invoke the linker with the newly built object files. The linker removes the subsections. For example:

armcl --run linker filel.c.obj file2.c.obj ‘

Alternatively, you can combine steps 3 and 4 into one step. For example:

armcl filel.c file2.c --use dead funcs list=feedback.txt --run linker ‘

Note

Dead Functions Feedback: The format of the feedback file generated with --
generate_dead_funcs_list is tightly controlled. It must be generated by the linker in order to be
processed correctly by the compiler. The format of this file may change over time, so the file contains
a version format number to allow backward compatibility.

4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

Similarly to code sections described in the previous section, data can either be placed in a single section
or multiple sections. The benefit of multiple data sections is that the linker may omit unused data structures

from the executable. This option causes aggregate data—arrays, structs, and unions—to be placed in separate
subsections of the data section.

If this option is not used, the default is "on". If this option is used but neither "on" nor "off" is specified, an error
message is provided.

If the SET_DATA_SECTION pragma is used, the --gen_data_subsections=on option is ignored. User-defined
section placement takes precedence over automatic generation of subsections.

76 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

4.3 Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special requirements apply when linking C/C++
programs. You must:

* Include the compiler's run-time-support library
» Specify the type of boot-time initialization
* Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an example of the standard default linker
command file. For more information about how to operate the linker, see the linker description in the ARM
Assembly Language Tools User's Guide.

4.3.1 Including the Run-Time-Support Library

You must link all C/C++ programs with a run-time-support library. The library contains standard C/C++ functions
as well as functions used by the compiler to manage the C/C++ environment. The following sections describe
two methods for including the run-time-support library.

4.3.1.1 Automatic Run-Time-Support Library Selection

The linker assumes you are using the C and C++ conventions if either the --rom_model or --ram_model linker
option is specified, or if at least one C/C++ file to compile is listed on the command line. See Section 4.3.5 for
details about using the --rom_model and --ram_model options.

If the linker assumes you are using the C and C++ conventions and the entry point for the program (normally
c_int00) is not resolved by any specified object file or library, the linker attempts to automatically include the
most compatible run-time-support library for your program. The run-time-support library chosen by the compiler
is searched after any other libraries specified with the --library option on the command line or in the linker
command file. If libc.a is explicitly used, the appropriate run-time-support library is included in the search order
where libc.a is specified.

You can disable the automatic selection of a run-time-support library by using the --disable_auto_rts option.

If the --issue_remarks option is specified before the --run_linker option during the linker, a remark is generated
indicating which run-time support library was linked in. If a different run-time-support library is desired than the
one reported by --issue_remarks, you must specify the name of the desired run-time-support library using the
--library option and in your linker command files when necessary.

Example 4-1. Using the --issue_remarks Option

armcl --code_state=16 --issue_remarks main.c --run_linker --rom model
<Linking>

remark: linking in "libc.a"

remark: linking in "rtsv4 A be eabi.lib" in place of "libc.a"

4.3.1.2 Manual Run-Time-Support Library Selection

You can bypass automatic library selection by explicitly specifying the desired run-time-support library to use.
Use the --library linker option to specify the name of the library. The linker will search the path specified by the
--search_path option and then the TI_ ARM_C_DIR environment variable for the named library. You can use the
--library linker option on the command line or in a command file.

armcl --run_linker {--rom_model | --ram_model} filenames --library= libraryname

4.3.1.3 Library Order for Searching for Symbols

Generally, you should specify the run-time-support library as the last name on the command line because the
linker searches libraries for unresolved references in the order that files are specified on the command line. If
any object files follow a library, references from those object files to that library are not resolved. You can use
the --reread_libs option to force the linker to reread all libraries until references are resolved. Whenever you

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 77
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Linking C/C++ Code www.ti.com

specify a library as linker input, the linker includes and links only those library members that resolve undefined
references.

By default, if a library introduces an unresolved reference and multiple libraries have a definition for it, then the
definition from the same library that introduced the unresolved reference is used. Use the --priority option if you
want the linker to use the definition from the first library on the command line that contains the definition.

4.3.2 Run-Time Initialization

You must link all C/C++ programs with code to initialize and execute the program called a bootstrap routine. The
bootstrap routine is responsible for the following tasks:

Switch to user mode and sets up the user mode stack

Set up status and configuration registers

Set up the stack

Process special binit copy table, if present.

Process the run-time initialization table to autoinitialize global variables (when using the --rom_model option)
Call all global constructors

Call the main() function

Call exit() when main() returns

N>R ON =

Note

The _c_int00 Symbol: If you use the --ram_model or --rom_model link option, _c¢_int00 is
automatically defined as the entry point for the program. If your command line does not list any C/C++
files to compile and does not specify either the --ram_model or --rom_model link option, the linker
does not know whether or not to use the C/C++ conventions, and you will receive a linker warning that
says "warning: no suitable entry-point found; setting to 0". See Section 4.3.5 for details about using
the --rom_model and --ram_model options.

4.3.3 Initialization of Cinit and Watchdog Timer Hold

You can use the --cinit_hold_wdt option to specify whether the watchdog timer should be held (on) or not held
(off) during cinit auto-initialization. Setting this option causes an RTS auto-initialization routine to be linked in with
the program to handle the desired watchdog timer behavior.

4.3.4 Global Object Constructors

Global C++ variables that have constructors and destructors require their constructors to be called during
program initialization and their destructors to be called during program termination. The C++ compiler produces
a table of constructors to be called at startup.

Constructors for global objects from a single module are invoked in the order declared in the source code, but
the relative order of objects from different object files is unspecified.

Global constructors are called after initialization of other global variables and before the main() function is called.
Global destructors are invoked during the exit run-time support function, similar to functions registered through
atexit.

Section 6.10.3.6 discusses the format of the global constructor table for EABI mode.
4.3.5 Specifying the Type of Global Variable Initialization

The C/C++ compiler produces data tables for initializing global variables. Section 6.10.3.4 discusses the format
of these initialization tables. The initialization tables are used in one of the following ways:

* Global variables are initialized at run time. Use the --rom_model linker option (see Section 6.10.3.3).
* Global variables are initialized at load time. Use the --ram_model linker option (see Section 6.10.3.5).

If you use the linker command line without compiling any C/C++ files, you must use either the --rom_model
or --ram_model option. These options tell the linker two things. First, they indicate that the linker should follow
C/C++ conventions, using the definition of main() to link in the c¢_int00 boot routines. Second, they tell the linker

78 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

whether to select initialization at run time or load time. If your command line fails to include one of these options
when it is required, you will see "warning: no suitable entry-point found; setting to 0".

If you use a single command line to both compile and link, the --rom_model option is the default. If used, the
--rom_model or --ram_model option must follow the --run_linker option (see Section 4.1).

For details on linking conventions for EABI with --rom_model and --ram_model, see Section 6.10.3.3 and
Section 6.10.3.5, respectively.

Note

Boot Loader: A loader is not included as part of the C/C++ compiler tools. You can use the ARM
simulator or emulator with the source debugger as a loader. See the "Program Loading and Running"
chapter of the ARM Assembly Language Tools User's Guide for more about boot loading.

4.3.6 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated in
memory in a variety of ways to conform to a variety of system configurations. See Section 6.1.1 for a complete
description of how the compiler uses these sections.

The compiler creates two basic kinds of sections: initialized and uninitialized. Table 4-1 summarizes the
initialized sections. Table 4-2 summarizes the uninitialized sections.

Table 4-1. Initialized Sections Created by the Compiler

Name Contents

.binit Boot time copy tables (See the Assembly Language Tools User's Guide for information on BINIT in linker
command files.)

.cinit Tables for explicitly initialized global and static variables.

.const Global and static const variables that are explicitly initialized.

.data Global and static non-const variables that are explicitly initialized.

.init_array Table of constructors to be called at startup.

.ovly Copy tables other than boot time (.binit) copy tables. Read-only data.

text Executable code and constants. Also contains string literals and switch tables. See Section 6.1.1 for
exceptions.

.Tl.crctab Generated CRC checking tables. Read-only data.

Table 4-2. Uninitialized Sections Created by the Compiler

Name Contents

.bss Uninitialized global and static variables

.cio Buffers for stdio functions from the run-time support library
.stack Stack

.sysmem Memory pool (heap) for dynamic memory allocation (malloc, etc)

When you link your program, you must specify where to allocate the sections in memory. In general, initialized
sections are linked into ROM or RAM; uninitialized sections are linked into RAM.

The linker provides MEMORY and SECTIONS directives for allocating sections. For more information about
allocating sections into memory, see the ARM Assembly Language Tools User's Guide.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 79
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Linking C/C++ Code

13 TEXAS
INSTRUMENTS

www.ti.com

4.3.7 A Sample Linker Command File

Linker Command File shows a typical linker command file that links a 32-bit C program. The command file in this
example is named Ink32.cmd and lists several link options:

--rom_model
--stack_size

--heap_size

To link the program, use the following syntax:

Tells the linker to use autoinitialization at run time
Tells the linker to set the C stack size at 0x8000 bytes
Tells the linker to set the heap size to 0x2000 bytes

armcl --run_linker object _file(s) --output_file outfile --map_file mapfile Ink32.cmd

Linker Command File

--rom model

/* SPECIFY THE

MEMORY

{
P _MEM
D _MEM

}

/* SPECIFY THE

SECTIONS

{
.intvecs
.bss
.sysmem
.stack
.text
.cinit
.const
.pinit

: org
: org

--stack _size=0x8000
--heap_size=0x2000

SYSTEM MEMORY MAP */

0x00000000 len
0x00030000 len

SECTIONS ALLOCATION INTO

0x0

D MEM
D_MEM
D_MEM
P_MEM
P_MEM
P_MEM
P_MEM

VVVVVYVYVYV

/* LINK USING C CONVENTIONS
/* SOFTWARE STACK SIZE
/* HEAP AREA SIZE

0x00030000 /* PROGRAM MEMORY (ROM)
0x00050000 /* DATA MEMORY (RAM)

MEMORY */

/*
/*
/*
/*
/*
/*
/*
/*

INTERRUPT VECTORS

GLOBAL & STATIC VARS

DYNAMIC MEMORY ALLOCATION AREA
SOFTWARE SYSTEM STACK

CODE

INITIALIZATION TABLES

CONSTANT DATA

TEMPLATE INITIALIZATION TABLES

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

80 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 5
C/C++ Language Implementation

i3 TEXAS INSTRUMENTS

The C language supported by the ARM was developed by a committee of the American National Standards
Institute (ANSI) and subsequently adopted by the International Standards Organization (ISO).

The C++ language supported by the ARM is defined by the ANSI/ISO/IEC 14882:2014 standard with certain
exceptions.

5.1 Characteristics Of AR C........ ...ttt e e et e e sttt e s st e e e b et e e aaee e e sane e e e ann e e e eanneennneeeaaneeean 82
5.2 CharacteristiCs Of ARIM Ca. it ettt ettt e eaa e e e e be e e aate e e aabe e e e be e e e aabe e e aane e e e bneeeanneeenannes 87
B.3USING MISRA € 2004oouoiiiiiititiiieateeitee et e ateeateeaseeasbeeaaeeaaseesseeaaseeaaseeseeanse e beeanseeseeeneeaaneeenbeeameeenneesnbeeneennneen 88
5.4 USING the ULP AGVISOTcoo ittt e e ettt e et e a bttt e o4kttt e 442 a b e et e e e 2 e anb st e e e e e nn e e e e e e nnbnne s 89
LRI 0 - = T Y/ o 1= PP 90
5.6 File Encodings and CharaCter Sets........... ..ot e e e e et e e e e e e nnb e e e e e e annbeeaaeeanees 92
BT K@Y WOIRAS. ...ttt oot e ettt e e a e et et e e £ sttt e oas et 44k et e £ aE et e AR e e a4k bt e e e R et e e R Rt e e e a R et e e n e e e nnn e e ane e e s 92
5.8 CH+ EXCOPLioN HANAIING.ooiiiiiiiii ettt e ettt e et e e bt e e s et e e e e e bn e e s ante e e nanees 95
5.9 Register Variables and Parameters...............cooouiiiiiiiiiiiii et e n 95
5.10 The __@SM STAtEMENL...........oo ettt e e e ettt e e e e ettt e e e e s ataeeeeeeaabaeeaeeaassseeaeeeansseeaeeeannsaneeaeeansnnees 97
5.11 Pragma DIFr@CLIVES...........ooii ittt et e oottt e e e e e teeee e e e e nne et e e e e e aanbe et e e e e nbaeeeeeeeanneeeeaeeeannneens 98
5.12 The _Pragma OPEIaAtOr............coooi it ee ettt e e e e aet e e e e e e uaeeeee e e e neseeea e e e nbeeeeaeaannteeeeeaaansateaaeeaannnneaaean 117
5.13 Application Binary INEErFACE.............c.ooi ittt e e bt e s e e e nne e e e anneeean 118
5.14 ARM INStruCtion INTFINSICS.oouuiiiiiiii ettt e e et e e st e e saa e e ebe e e snte e e saneeeabneeeans 118
5.15 Object File Symbol Naming Conventions (LINKNAMES)...............c.uiiiiiiiiiiiiie et e e e e e e 127
5.16 Changing the ANSI/ISO C/C++ Language MOde................ccoooiiiiiiiiiii it e st e e essnnee e eanees 128
5.17 GNU , Clang, and ACLE Language EXtenSIONS................ccooiiiiiiiiiiiiii et e e s e e anaee e e 130
BUAB AUTOSAR.ttt et ettt e bt ekt e st eeh et ek e e eh st £ ke 4 4ot e 2R et 4o b e e eae e 2a bt e 4h £ a2 ab e e 4H bt 2Rt e nh bt e bn e eane e ebeeenneeann s 136
5,19 CoMPIIEE LIMIES.ottt b e ettt e st e ek et e e e sttt e s s e e e ek st e e ean e e e s ne e e e nre e e eanneennnee s 136
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 81
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.1 Characteristics of ARM C
The C compiler supports the 1989, 1999, and 2011 versions of the C language:

» C89. Compiling with the --c89 option causes the compiler to conform to the ISO/IEC 9899:1990 C standard,
which was previously ratified as ANSI X3.159-1989. The names "C89" and "C90" refer to the same
programming language. "C89" is used in this document.

* €99. Compiling with the --c99 option causes the compiler to conform to the ISO/IEC 9899:1999 C standard.

* C11. Compiling with the --c11 option causes the compiler to conform to the ISO/IEC 9899:2011 C standard.

The C language is also described in the second edition of Kernighan and Ritchie's The C Programming
Language (K&R). The compiler can also accept many of the language extensions found in the GNU C compiler
(see Section 5.17).

The compiler supports some features of C99 and C11 in the default relaxed ANSI mode with C89 support. It
supports all language features of C99 in C99 mode and all language features of C11 in C11 mode. See Section
5.16.

The atomic operations in C11 are supported in the relaxed ANSI mode (on by default) and in C11 mode as
follows:

*+ On ARM V7A8 (Cortex-A8), ARM V7M3 (Cortex-M3), ARM V7M4 (Cortex-M4), ARM V7R4 (Cortex-R4), and
ARM V7R5 (Cortex-R5)), atomic operations are implemented using processor-supported exclusive access
instructions.

* On ARM V6MO (Cortex-M0), atomic operations are implemented by disabling interrupts across the operation.

* On ARM V4 (ARM7), ARM V5e (ARM9E), and ARM V6 (ARM11), atomic operations are not supported.

In addition, the compiler supports many of the features described in the ARM C Language Extensions (ACLE)
specification. These features are applicable for the Cortex-M and Cortex-R processor variants. ACLE support
affects the pre-defined macros (Table 2-31), function attributes (Section 5.17.2), and intrinsics (Section 5.14) you
may use in C/C++ code. These features are implemented in order to support the development of source code
that can be compiled using ACLE-compliant compilers from multiple vendors for a variety of ARM processors.

The ANSI/ISO standard identifies some features of the C language that may be affected by characteristics of
the target processor, run-time environment, or host environment. This set of features can differ among standard
compilers.

Unsupported features of the C library are:

* The run-time library has minimal support for wide characters. The type wchar_t is implemented as unsigned
short (16 bits), but can be an int if you set the --wchar_t=32 option. The wide character set is equivalent
to the set of values of type char. The library includes the header files <wchar.h> and <wctype.h>, but does
not include all the functions specified in the standard. See Section 5.6 for information about extended and
multibyte character sets.

* The run-time library includes the header file <locale.h>, but with a minimal implementation. The only
supported locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded
to the behavior of the C locale, and attempting to install a different locale by way of a call to setlocale() will
return NULL.

» Some run-time functions and features in the C99/C11 specifications are not supported. See Section 5.16.

82 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.1.1 Implementation-Defined Behavior

The C standard requires that conforming implementations provide documentation on how the compiler handles
instances of implementation-defined behavior.

The Tl compiler officially supports a freestanding environment. The C standard does not require a freestanding
environment to supply every C feature; in particular the library need not be complete. However, the Tl compiler
strives to provide most features of a hosted environment.

The section numbers in the lists that follow correspond to section numbers in Appendix J of the C99 standard.
The numbers in parentheses at the end of each item are sections in the C99 standard that discuss the topic.
Certain items listed in Appendix J of the C99 standard have been omitted from this list.

J.3.1 Translation

» The compiler and related tools emit diagnostic messages with several distinct formats. Diagnostic messages
are emitted to stderr; any text on stderr may be assumed to be a diagnostic. If any errors are present, the tool
will exit with an exit status indicating failure (non-zero). (3.10, 5.1.1.3)

* Nonempty sequences of white-space characters are preserved and are not replaced by a single space
character in translation phase 3. (5.1.1.2)

J.3.2 Environment

» The compiler does not support multibyte characters in identifiers, string literals, or character constants. There
is no mapping from multibyte characters to the source character set. However, the compiler accepts multibyte
characters in comments. See Section 5.6 for details (5.1.1.2)

* The name of the function called at program startup is "main". (5.1.2.1)

* Program termination does not affect the environment; there is no way to return an exit code to the
environment. By default, the program is known to have halted when execution reaches the special C$$EXIT
label. (5.1.2.1)

* Inrelaxed ANSI mode, the compiler accepts "void main(void)" and "void main(int argc, char *argv[])" as
alternate definitions of main. The alternate definitions are rejected in strict ANSI mode. (5.1.2.2.1)

» |If space is provided for program arguments at link time with the --args option and the program is run under a
system that can populate the .args section (such as CCS), argv[0] will contain the filename of the executable,
argv[1] through argv[argc-1] will contain the command-line arguments to the program, and argv[argc] will be
NULL. Otherwise, the value of argv and argc are undefined. (5.1.2.2.1)

* Interactive devices include stdin, stdout, and stderr (when attached to a system that honors CIO requests).
Interactive devices are not limited to those output locations; the program may access hardware peripherals
that interact with the external state. (5.1.2.3)

» Signals are not supported. The function signal is not supported. (7.14, 7.14.1.1)

* The library function getenv is implemented through the CIO interface. If the program is run under a system
that supports CIO, the system performs getenv calls on the host system and passes the result back to the
program. Otherwise the operation of getenv is undefined. No method of changing the environment from
inside the target program is provided. (7.20.4.5)

* The system function is not supported. (7.20.4.6)

J.3.3. Identifiers

« The compiler does not support multibyte characters in identifiers. See Section 5.6 for details. (6.4.2)
« The number of significant initial characters in an identifier is unlimited. (5.2.4.1, 6.4.2)

J.3.4 Characters

* The number of bits in a byte (CHAR_BIT) is 8. See Section 5.5 for details about data types. (3.6)

» The execution character set is the same as the basic execution character set: plain ASCII. Characters in the
ISO 8859 extended character set are also supported. (5.2.1)

» The values produced for the standard alphabetic escape sequences are as follows. (5.2.2):

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 83
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

C/C++ Language Implementation www.ti.com

Escape ASCII Meaning Integer Value

Sequence

\a BEL (bell) 7

\b BS (backspace) 8

\f FF (form feed) 12

\n LF (line feed) 10

\r CR (carriage 13

return)
\t HT (horizontal tab) 9
\v VT (vertical tab) 11

The value of a char object into which any character other than a member of the basic execution character set
has been stored is the ASCII value of that character. (6.2.5)

Plain char is identical to unsigned char, but can be changed to signed char with the --plain_char=signed
option. (6.2.5, 6.3.1.1)

The source character set and execution character set are both plain ASCII, so the mapping between them

is one-to-one. The compiler accepts multibyte characters in comments. See Section 5.6 for details. (6.4.4.4,
5.1.1.2)

The compiler currently supports only one locale, "C". (6.4.4.4)

The compiler currently supports only one locale, "C". (6.4.5)

.3.5 Integers

No extended integer types are provided. (6.2.5)

Negative values for signed integer types are represented as two's complement, and there are no trap
representations. (6.2.6.2)

No extended integer types are provided, so there is no change to the integer ranks. (6.3.1.1)

When an integer is converted to a signed integer type which cannot represent the value, the value is
truncated (without raising a signal) by discarding the bits which cannot be stored in the destination type; the
lowest bits are not modified. (6.3.1.3)

Right shift of a signed integer value performs an arithmetic (signed) shift. The bitwise operations other than
right shift operate on the bits in exactly the same way as on an unsigned value. That is, after the usual
arithmetic conversions, the bitwise operation is performed without regard to the format of the integer type, in
particular the sign bit. (6.5)

.3.6 Floating point

The accuracy of floating-point operations (+ - * /) is bit-exact. The accuracy of library functions that return
floating-point results is not specified. (5.2.4.2.2)

The compiler does not provide non-standard values for FLT_ROUNDS. (5.2.4.2.2)

The compiler does not provide non-standard negative values of FLT_EVAL_METHOD. (5.2.4.2.2)

The rounding direction when an integer is converted to a floating-point number is IEEE-754 "round to even".
(6.3.1.4)

The rounding direction when a floating-point number is converted to a narrower floating-point number is
IEEE-754 "round to even". (6.3.1.5)

For floating-point constants that are not exactly representable, the implementation uses the nearest
representable value. (6.4.4.2)

The compiler does not contract float expressions. (6.5)

The default state for the FENV_ACCESS pragma is off. (7.6.1)

The TI compiler does not define any additional float exceptions. (7.6, 7.12)

The default state for the FP_CONTRACT pragma is off. (7.12.2)

The "inexact" floating-point exception cannot be raised if the rounded result equals the mathematical result.
(F.9)

ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

* The "underflow" and "inexact" floating-point exceptions cannot be raised if the result is tiny but not inexact.
(F.9)

J.3.7 Arrays and pointers

* When converting a pointer to an integer or vice versa, the pointer is considered an unsigned integer of the
same size, and the normal integer conversion rules apply.

* When converting a pointer to an integer or vice versa, if the bitwise representation of the destination can hold
all of the bits in the bitwise representation of the source, the bits are copied exactly. (6.3.2.3)

» The size of the result of subtracting two pointers to elements of the same array is the size of ptrdiff_t, which is
defined in Section 5.5. (6.5.6)

J.3.8 Hints

* When the optimizer is used, the register storage-class specifier is ignored. When the optimizer is not used,
the compiler will preferentially place register storage class objects into registers to the extent possible. The
compiler reserves the right to place any register storage class object somewhere other than a register. (6.7.1)

» The inline function specifier is ignored unless the optimizer is used. For other restrictions on inlining, see
Section 2.11.2. (6.7.4)

J.3.9 Structures, unions, enumerations, and bit-fields

« A'"plain" int bit-field is treated as a signed int bit-field. (6.7.2, 6.7.2.1)

* In addition to _Bool, signed int, and unsigned int, the compiler allows char, signed char, unsigned char,
signed short, unsigned shot, signed long, unsigned long, signed long long, unsigned long long, and enum
types as bit-field types. (6.7.2.1)

« Bit-fields may not straddle a storage-unit boundary. (6.7.2.1)

» Bit-fields are allocated in endianness order within a unit. See Section 6.2.2. (6.7.2.1)

* Non-bit-field members of structures are aligned as specified in Section 6.2.1. (6.7.2.1)

« The integer type underlying each enumerated type is described in Section 5.5.1. (6.7.2.2)

J.3.10 Qualifiers

» The Tl compiler does not shrink or grow volatile accesses. It is the user's responsibility to make sure the
access size is appropriate for devices that only tolerate accesses of certain widths. The Tl compiler does
not change the number of accesses to a volatile variable unless absolutely necessary. This is significant
for read-modify-write expressions such as += ; for an architecture which does not have a corresponding
read-modify-write instruction, the compiler will be forced to use two accesses, one for the read and one for
the write. Even for architectures with such instructions, it is not guaranteed that the compiler will be able to
map such expressions to an instruction with a single memory operand. It is not guaranteed that the memory
system will lock that memory location for the duration of the instruction. In a multi-core system, some other
core may write the location after a RMW instruction reads it, but before it writes the result. The Tl compiler
will not reorder two volatile accesses, but it may reorder a volatile and a non-volatile access, so volatile
cannot be used to create a critical section. Use some sort of lock if you need to create a critical section.
(6.7.3)

J.3.11 Preprocessing directives

* Include directives may have one of two forms, " " or < >. For both forms, the compiler will look for a real file
on-disk by that name using the include file search path. See Section 2.5.2. (6.4.7)

» The value of a character constant in a constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set (both are ASCII). (6.10.1)

» The compiler uses the file search path to search for an included < > delimited header file. See Section 2.5.2.
(6.10.2)

» The compiler uses the file search path to search for an included " " delimited header file. See Section 2.5.2.
(6.10.2)

« There is no arbitrary nesting limit for #include processing. (6.10.2)

« See Section 5.11 for a description of the recognized non-standard pragmas. (6.10.6)

* The date and time of translation are always available from the host. (6.10.8)

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 85
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

J.3.12 Library functions

Almost all of the library functions required for a hosted implementation are provided by the Tl library, with
exceptions noted in Section 5.16.1. (5.1.2.1)

The format of the diagnostic printed by the assert macro is "Assertion failed, (assertion macro argument), file
file, line line". (7.2.1.1)

No strings other than "C" and " may be passed as the second argument to the setlocale function. (7.11.1.1)
No signal handling is supported. (7.14.1.1)

The +INF, -INF, +inf, -inf, NAN, and nan styles can be used to print an infinity or NaN. (7.19.6.1, 7.24.2.1)
The output for %p conversion in the fprintf or fwprintf function is the same as %x of the appropriate size.
(7.19.6.1,7.24.2.1)

The termination status returned to the host environment by the abort, exit, or _Exit function is not returned to
the host environment. (7.20.4.1, 7.20.4.3, 7.20.4.4)

The system function is not supported. (7.20.4.6)

J.3.13 Architecture

The values or expressions assigned to the macros specified in the headers float.h, limits.h, and stdint.h are
described along with the sizes and format of integer types are described in Section 5.5. (5.2.4.2, 7.18.2,
7.18.3)

The number, order, and encoding of bytes in any object are described in Section 6.2.1. (6.2.6.1)

The value of the result of the sizeof operator is the storage size for each type, in terms of bytes. See Section
6.2.1.(6.5.3.4)

86

ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.2 Characteristics of ARM C++

The ARM compiler supports C++ as defined in the ANSI/ISO/IEC 14882:2014 standard (C++14), including these
features:

» Complete C++ standard library support, with exceptions noted below.

* Templates

» Exceptions, which are enabled with the --exceptions option; see Section 5.8.

* Run-time type information (RTTI), which can be enabled with the --rtti compiler option.

The compiler supports the 2014 standard of C++ as standardized by the ISO. However, the following features
are not implemented or fully supported:

* The compiler does not support embedded C++ run-time-support libraries.

« The library supports wide chars (wchar_t), in that template functions and classes that are defined for char are
also available for wchar_t. For example, wide char stream classes wios, wiostream, wstreambuf and so on
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file
I/O for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and
<cwctype>) is limited as described above in the C library.

» Constant expressions for target-specific types are only partially supported.

* New character types (introduced in the C++11 standard) are not supported.

* Unicode string literals (introduced in the C++11 standard) are not supported.

» Universal character names in literals (introduced in the C++11 standard) are not supported.

» Strong compare and exchange (introduced in the C++11 standard) are not supported.

» Bidirectional fences (introduced in the C++11 standard) are not supported.

* Memory model (introduced in the C++11 standard) is not supported.

» Propagating exceptions (introduced in the C++11 standard) is not supported.

» Thread-local storage (introduced in the C++11 standard) is not supported.

« Dynamic initialization and destruction with concurrency (introduced in the C++11 standard) is not supported.

The changes made in order to support C++14 may cause "undefined symbol" errors to occur if you link with a
C++ object file or library that was compiled with an older version of the compiler. If such linktime errors occur,
recompile your C++ code using the --no_demangle command-line option. If any undefined symbol names begin
with _Z or _ZVT, recompile the entire application, including object files and libraries. If you do not have source
code for the libraries, download a newly-compiled version of the library.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 87
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.3 Using MISRA C 2004

MISRA C is a set of software development guidelines for the C programming language. It promotes best
practices in developing safety-related electronic systems in road vehicles and other embedded systems. MISRA
C was originally launched in 1998 by the Motor Industry Software Reliability Association, and has since been
adopted across a wide variety of industries. A subsequent update to the guidelines was publishes as MISRA
C:2004

You can alter your code to work with the MISRA C:2004 rules. The following options and pragmas can be used
to enable/disable rules:

» The --check_misra option enables checking of the specified MISRA C:2004 rules. This compiler option must
be used if you want to enable further control over checking using the CHECK_MISRA and RESET_MISRA
pragmas.

* The CHECK_MISRA pragma enables/disables MISRA C:2004 rules at the source level. See Section 5.11.2.

« The RESET_MISRA pragma resets the specified MISRA C:2004 rules to their state before any
CHECK_MISRA pragmas were processed. See Section 5.11.25.

The syntax of the option and the pragmas is:

--check_misra={all[required|advisory|none|rulespec}
#pragma CHECK_MISRA ("{all|required|advisory|none|rulespec}")
#pragma RESET_MISRA ("{all|required|advisory|rulespec}")

The rulespec parameter is a comma-separated list of rule numbers to enable or disable.

Example: --check_misra=1.1,1.4,1.5,2.1,2.7,7.1,7.2,8.4
» Enables checking of rules 1.1, 1.4,1.5,2.1,2.7,7.1,7.2, and 8.4.

Example: #pragma CHECK_MISRA("-7.1,-7.2,-8.4")
» Disables checking of rules 7.1, 7.2, and 8.4.

A typical use case is to use the --check_misra option on the command line to specify the rules that should be
checked in most of your code. Then, use the CHECK_MISRA pragma with a rulespec to activate or deactivate
certain rules for a particular region of code.

Two options control the severity of certain MISRA C:2004 rules:

» The --misra_required option sets the diagnostic severity for required MISRA C:2004 rules.
» The --misra_advisory option sets the diagnostic severity for advisory MISRA C:2004 rules.

The syntax for these options is:

--misra_advisory={error|warning|remark|suppress}

--misra_required={error|warning|remark|suppress}

88 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.4 Using the ULP Advisor

You can get feedback about your code from the ULP (Ultra-Low Power) Advisor. For a list and descriptions of
the ULP rules, see www.ti.com/ulpadvisor. You can enable/disable the rules using any of the following. Using
multiple --advice options on the command line is permitted.

» The --advice:power option lets you specify which rules to check.

» The --advice:power_severity option lets you specify whether ULP Advisor rule violations are errors, warnings,
remarks, or not reported.

» The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma has the
same effect as using the --advice:power option. See Section 5.11.3.

» The RESET_ULP pragma resets the specified ULP Advisor rules to their state before any CHECK_ULP
pragmas were processed. See Section 5.11.26.

The --advice:power option enables checking specified ULP Advisor rules. The syntax is:

--advice:power={all|none|rulespec}

The rulespec parameter is a comma-separated list of rule numbers to enable. For example, --
advice:power=1.1,7.2,7.3,7.4 enablesrules 1.1,7.2,7.3,and 7 .4.

The --advice:power_severity option sets the diagnostic severity for ULP Advisor rules. The syntax is:

--advice:power_severity={error|warning|remark|suppress}

The syntax of the pragmas is:

#pragma CHECK_ULP ("{all|none|rulespec}")
#pragma RESET_ULP ("{all|rulespec}")

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 89
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/ulpadvisor
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

C/C++ Language Implementation

13 TEXAS

INSTRUMENTS

www.ti.com

5.5 Data Types

Table 5-1 lists the size, representation, and range of each scalar data type for the ARM compiler. Many of the
range values are available as standard macros in the header file limits.h.

The storage and alignment of data types is described in Section 6.2.1.
Table 5-1. ARM C/C++ Data Types

Range
Type Size Representation Minimum Maximum
signed char 8 bits ASCII -128 127
char (1) 8 bits ASCII oM 255 (1)
unsigned char 8 bits ASCII 0 255
bool, _Bool 8 bits ASCII 0 (false) 1(true)
short, signed short 16 bits Binary -32 768 32767
unsigned short, wchar_t @) 16 bits Binary 0 65 535
int, signed int 32 bits Binary -2 147 483 648 2 147 483 647
unsigned int 32 bits Binary 0 4 294 967 295
long, signed long 32 bits Binary -2 147 483 648 2 147 483 647
unsigned long 32 bits Binary 0 4 294 967 295
long long, signed long long 64 bits®® Binary -9 223 372 036 854 775 808 9223 372 036 854 775 807
unsigned long long 64 bits® Binary 0 18 446 744 073 709 551 615
enum (TI_ARM9_ABI and TIABI varies Binary varies varies
only) @
float 32 bits IEEE 32-bit 1.175 494¢-380) 3.40 282 346e+38
double 64 bits®) |IEEE 64-bit 2.22 507 385e-308() 1.79 769 313e+308
long double 64 bits® |EEE 64-bit 2.22 507 385e-308() 1.79 769 313e+308
pointers, references, pointer to 32 bits Binary 0 OxFFFFFFFF

data members

(1) "Plain" char has the same representation as either signed char or unsigned char. The --plain_char option specifies whether "plain" char

is signed or unsigned. The default is unsigned.
(2) This is the default type for wchar_t. You can use the --wchar_t option to change the wchar_t type to a 32-bit unsigned int type.
(3) 64-bit data is aligned on a 64-bit boundary.
(4) For details about the size of an enum type, see Section 5.5.1. Also see Table 5-2 for sizes.
(5) Figures are minimum precision.

Negative values for signed types are represented using two's complement.

The type of the storage container for an enumerated type is the smallest integer type that contains all the

enumerated values. The container types for enumerators are shown in Table 5-2.

Table 5-2. Enumerator Types

Lower Bound Range

Upper Bound Range

Enumerator Type

0 to 255 0 to 255 unsigned char
-128to 1 -128 to 127 signed char

0to 65 535 256 to 65 535 unsigned short
-128to 1 128 to 32 767 short, signed short
-32 768 to -129 -32 768 to 32 767

0 to 4 294 967 295 2 147 483 648 to 4 294 967 295 unsigned int

-32 768 to -1 32 767 to 2 147 483 647 int, signed int

-2 147 483 648 to -32 769
0to 2 147 483 647

-2 147 483 648 to 2 147 483 647
65 536 to 2 147 483 647

90 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

The compiler determines the type based on the range of the lowest and highest elements of the enumerator. For
example, the following code results in an enumerator type of int:

enum COLORS

{ green = -200,
blue =1,
yellow = 2,
red = 60000

The following code results in an enumerator type of short:

enum COLORS

{ green = -200,
blue 1,
yellow 2,
red 3

bi

5.5.1 Size of Enum Types

In the following declaration, enum e is an enumerated type. Each of a and b are enumeration constants.

enum e { a, b=N };

Each enumerated type is assigned an integer type that can hold all of the enumeration constants. This integer
type is the "underlying type." The type of each enumeration constant is also an integer type, and in C might not
be the same type. Be careful to note the difference between the underlying type of an enumerated type and the
type of an enumeration constant.

The size and signedness chosen for the enumerated type and each enumeration constant depend on the values
of the enumeration constants and whether you are compiling for C or C++. C++11 allows you to specify a
specific type for an enumeration type; if such a type is provided, it will be used and the rest of this section does
not apply.

In C++ mode, the compiler allows enumeration constants up to the largest integral type (64 bits). The C standard
says that all enumeration constants in strictly conforming C code (C89/C99/C11) must have a value that fits into
the type "int;" however, as an extension, you may use enumeration constants larger than "int" even in C mode.

You may control the strategy for picking enumerated types by using either the --enum_type command line
option, or by using an attribute, or both. If you use the --enum_type=packed option (the default), the compiler
uses the smallest type it can for the enumerated type. If you use the --enum_type=int option, the underlying type
will be int. An enumeration constant with a value outside the int range generates an error.

For the enumerated type if --enum_type=packed, the compiler selects the first type in this list that is big enough
and of the correct sign to represent all of the values of the enumeration constants:

* unsigned char

* signed char

* unsigned short

* signed short

* unsigned int

* signed int

* unsigned long long
* signed long long

The "long" type is skipped because it is the same size as "int."

For example, this enumerated type will have "unsigned char" as its underlying type:

enum uc { a, b, c };
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 91
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

But this one will have "signed char" as its underlying type:

enum sc { a, b, ¢, d = -1 }; ‘

And this one will have "signed short" as its underlying type:

enum ss { a, b, ¢, d = -1, e = UCHAR MAX }; ‘

For C++, the enumeration constants are all of the same type as the enumerated type.

For C, the enumeration constants are assigned types depending on their value. All enumeration constants with
values that can fit into "int" are given type "int," even if the underlying type of the enumerated type is smaller than
"int." All enumeration constants that do not fit in an "int" are given the same type as the underlying type of the
enumerated type. This means that some enumeration constants may have a different size and signedness than
the enumeration type.

5.6 File Encodings and Character Sets
The compiler accepts source files with one of two distinct encodings:

» UTF-8 with Byte Order Mark (BOM). These files may contain extended (multibyte) characters in C/C++
comments. In all other contexts—including string constants, identifiers, assembly files, and linker command
files—only 7-bit ASCII characters are supported.

» Plain ASCII files. These files must contain only 7-bit ASCII characters.

To choose the UTF-8 encoding in Code Composer Studio, open the Preferences dialog, select General >
Workspace, and set the Text File Encoding to UTF-8.

If you use an editor that does not have a "plain ASCII" encoding mode, you can use Windows-1252 (also called
CP-1252) or ISO-8859-1 (also called Latin 1), both of which accept all 7-bit ASCII characters. However, the
compiler may not accept extended characters in these encodings, so you should not use extended characters,
even in comments.

Wide character (wchar_t) types and operations are supported by the compiler. However, wide character strings
may not contain characters beyond 7-bit ASCII. The encoding of wide characters is 7-bit ASCII, 0 extended to
the width of the wchar _t type.

5.7 Keywords

The ARM C/C++ compiler supports all of the standard C89 keywords, including const, volatile, and register.

It supports all of the standard C99 keywords, including inline and restrict. It supports all of the standard C11
keywords. It also supports Tl extension keywords __interrupt,and __asm. Some keywords are not available in
strict ANSI mode.

The following keywords may appear in other target documentation and require the same treatment as the
interrupt and restrict keywords:

* trap
* reentrant
* cregister

5.7.1 The const Keyword

The C/C++ compiler supports the ANSI/ISO standard keyword const in all modes. This keyword gives you
greater optimization and control over allocation for certain data objects. You can apply the const qualifier to the
definition of any variable or array to ensure that its value is not altered.

Global objects qualified as const are placed in the .const section. The linker allocates the .const section from
ROM or FLASH, which are typically more plentiful than RAM. The const data storage allocation rule has the
following exceptions:

92 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

» If volatile is also specified in the object definition. For example, volatile const int x. Volatile keywords
are assumed to be allocated to RAM. (The program is not allowed to modify a const volatile object, but
something external to the program might.)

» If the object has automatic storage (function scope).

« If the object is a C++ object with a "mutable" member.

« If the object is initialized with a value that is not known at compile time (such as the value of another
variable).

In these cases, the storage for the object is the same as if the const keyword were not used.

The placement of the const keyword is important. For example, the first statement below defines a constant
pointer p to a modifiable int. The second statement defines a modifiable pointer q to a constant int:

int * const p = &x;
const int * g = &x;

Using the const keyword, you can define large constant tables and allocate them into system ROM. For
example, to allocate a ROM table, you could use the following definition:

const int digits[] = {0,1,2,3,4,5,6,7,8,9};

5.7.2 The __interrupt Keyword

The compiler extends the C/C++ language by adding the __interrupt keyword, which specifies that a function is
treated as an interrupt function. This keyword is an IRQ interrupt. The alternate keyword, "interrupt", may also be
used except in strict ANSI C or C++ modes.

Note that the interrupt function attribute described in Section 5.11.16 is the recommended syntax for declaring
interrupt functions.

Functions that handle interrupts follow special register-saving rules and a special return sequence. The
implementation stresses safety. The interrupt routine does not assume that the C run-time conventions for the
various CPU register and status bits are in effect; instead, it re-establishes any values assumed by the run-time
environment. When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine
registers that are used by the routine or by any function called by the routine. When you use the __interrupt
keyword with the definition of the function, the compiler generates register saves based on the rules for interrupt
functions and the special return sequence for interrupts.

You can only use the __interrupt keyword with a function that is defined to return void and that has no
parameters. The body of the interrupt function can have local variables and is free to use the stack or global
variables. For example:

__interrupt void int handler ()
{

unsigned int flags;

The name c_int00 is the C/C++ entry point. This name is reserved for the system reset interrupt. This special
interrupt routine initializes the system and calls the main() function. Because it has no caller, c_int00 does not
save any registers.

Note
Hwi Objects and the __interrupt Keyword: The __interrupt keyword must not be used when SYS/
BIOS Hwi objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher already contain this functionality; use of the C modifier can cause unwanted conflicts.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 93
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.7.3 The volatile Keyword

The C/C++ compiler supports the volatile keyword in all modes. In addition, the __volatile keyword is supported
in relaxed ANSI mode for C89, C99, C11, and C++.

The volatile keyword indicates to the compiler that there is something about how the variable is accessed that
requires that the compiler not use overly-clever optimization on expressions involving that variable. For example,
the variable may also be accessed by an external program, an interrupt, another thread, or a peripheral device.

The compiler eliminates redundant memory accesses whenever possible, using data flow analysis to figure out
when it is legal. However, some memory accesses may be special in some way that the compiler cannot see,
and in such cases you should use the volatile keyword to prevent the compiler from optimizing away something
important. The compiler does not optimize out any accesses to variables declared volatile. The number of
volatile reads and writes will be exactly as they appear in the C/C++ code, no more and no less and in the same
order.

Any variable which might be modified by something external to the obvious control flow of the program (such
as an interrupt service routine) must be declared volatile. This tells the compiler that an interrupt function might
modify the value at any time, so the compiler should not perform optimizations which will change the number or
order of accesses of that variable. This is the primary purpose of the volatile keyword. In the following example,
the loop intends to wait for a location to be read as OxFF:

unsigned int *ctrl;
while (*ctrl !=0xFF);

However, in this example, *ctrl is a loop-invariant expression, so the loop is optimized down to a single-memory
read. To get the desired result, define ctrl as:

‘ volatile unsigned int *ctrl;

Here the *ctrl pointer is intended to reference a hardware location, such as an interrupt flag.

The volatile keyword must also be used when accessing memory locations that represent memory-mapped
peripheral devices. Such memory locations might change value in ways that the compiler cannot predict. These
locations might change if accessed, or when some other memory location is accessed, or when some signal
occurs.

Volatile must also be used for local variables in a function which calls setjmp, if the value of the local variables
needs to remain valid if a longjmp occurs.

#include <stdlib.h>
jmp_buf context;
void function ()
{
volatile int x = 3;
switch (setjmp (context))
{
case 0: setup(); break;
default:
{
/* We only reach here if longjmp occurs. Because x's lifetime begins before setjmp
and lasts through longjmp, the C standard requires x be declared "volatile". */

printf ("x == %d\n", x);
break;
}
}
}
94 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.8 C++ Exception Handling

The compiler supports the C++ exception handling features defined by the ANSI/ISO 14882 C++ Standard.
See The C++ Programming Language, Third Edition by Bjarne Stroustrup. The compiler's --exceptions option
enables exception handling. The compiler’s default is no exception handling support.

For exceptions to work correctly, all C++ files in the application must be compiled with the --exceptions option,
regardless of whether exceptions occur in that file. Mixing exception-enabled and exception-disabled object files
and libraries can lead to undefined behavior.

Exception handling requires support in the run-time-support library, which come in exception-enabled and
exception-disabled forms; you must link with the correct form. When using automatic library selection (the
default), the linker automatically selects the correct library Section 4.3.1.1. If you select the library manually, you
must use run-time-support libraries whose name contains _eh if you enable exceptions.

Using the --exceptions option causes the compiler to insert exception handling code. This code will increase the
size of the program , but EABI does not increase the code size much, and has a minimal execution time cost if
exceptions are never thrown. It slightly increases the data size for the exception-handling tables.

See Section 7.1 for details on the run-time libraries.
5.9 Register Variables and Parameters

The C/C++ compiler allows the use of the keyword register on global and local register variables and
parameters. This section describes the compiler implementation for this qualifier.

5.9.1 Local Register Variables and Parameters

The C/C++ compiler treats register variables (variables defined with the register keyword) differently, depending
on whether you use the --opt_level (-O) option.

« Compiling with optimization

The compiler ignores any register definitions and allocates registers to variables and temporary values by
using an algorithm that makes the most efficient use of registers.
» Compiling without optimization

If you use the register keyword, you can suggest variables as candidates for allocation into registers. The
compiler uses the same set of registers for allocating temporary expression results as it uses for allocating
register variables.

The compiler attempts to honor all register definitions. If the compiler runs out of appropriate registers, it frees

a register by moving its contents to memory. If you define too many objects as register variables, you limit the
number of registers the compiler has for temporary expression results. This limit causes excessive movement of
register contents to memory.

Any object with a scalar type (integral, floating point, or pointer) can be defined as a register variable. The
register designator is ignored for objects of other types, such as arrays.

The register storage class is meaningful for parameters as well as local variables. Normally, in a function, some
of the parameters are copied to a location on the stack where they are referenced during the function body. The
compiler copies a register parameter to a register instead of the stack, which speeds access to the parameter
within the function.

For more information about register conventions, see Section 6.3.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 95
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.9.2 Global Register Variables

The C/C++ compiler extends the C language by adding a special convention to the register storage class
specifier to allow the allocation of global registers. This special global declaration has the form:

register type regid

The regid parameter can be _ R5, R6, or _ R9. The identifiers _ _R5, R6,and __R9 are each bound to
their corresponding register R5, R6 and R9, respectively.

When you use this declaration at the file level, the register is permanently reserved from any other use by the
optimizer and code generator for that file. You cannot assign an initial value to the register. You can use a
#define directive to assign a meaningful name to the register; for example:

register struct data struct *_ R5
#define data pointer _ RS

data pointer->element;

data pointer++;

There are two reasons that you would be likely to use a global register variable:

* You are using a global variable throughout your program, and it would significantly reduce code size and
execution speed to assign this variable to a register permanently.

* You are using an interrupt service routine that is called so frequently that it would significantly reduce
execution speed if the routine did not have to save and restore the register(s) it uses every time it is called.

You need to consider very carefully the implications of reserving a global register variable. Registers are a
precious resource to the compiler, and using this feature indiscriminately may result in poorer code.

You also need to consider carefully how code with a globally declared register variable interacts with other code,
including library functions, that does not recognize the restriction placed on the register.

Because the registers that can be global register variables are save-on-entry registers, a normal function call
and return does not affect the value in the register and neither does a normal interrupt. However, when you mix
code that has a globally declared register variable with code that does not have the register reserved, it is still
possible for the value in the register to become corrupted. To avoid the possibility of corruption, you must follow
these rules:

* Functions that alter global register variables cannot be called by functions that are not aware of the global
register. Use the -r shell option to reserve the register in code that is not aware of the global register
declaration. You must be careful if you pass a pointer to a function as an argument. If the passed function
alters the global register variable and the called function saves the register, the value in the register will be
corrupted.

* You cannot access a global register variable in an interrupt service routine unless you recompile all code,
including all libraries, to reserve the register. This is because the interrupt routine can be called from any
point in the program.

* The longjmp (') function restores global register variables to the values they had at the setjmp () location. If
this presents a problem in your code, you must alter the code for the function and recompile rts.src.

The -r register compiler command-line option allows you to prevent the compiler from using the named
register. This lets you reserve the named register in modules that do not have the global register variable
declaration, such as the run-time-support libraries, if you need to compile the modules to prevent some of the
above occurrences.

96 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.10 The __asm Statement

The C/C++ compiler can embed assembly language instructions or directives directly into the assembly
language output of the compiler. This capability is an extension to the C/C++ language implemented through
the __asm keyword. The __asm keyword provides access to hardware features that C/C++ cannot provide.

The alternate keyword, "asm", may also be used except in strict ANSI C mode. It is available in relaxed C and
C++ modes.

Using __asm is syntactically performed as a call to a function named __asm, with one string constant argument:

__asm(" assembler text");

The compiler copies the argument string directly into your output file. The assembler text must be enclosed in
double quotes. All the usual character string escape codes retain their definitions. For example, you can insert
a .byte directive that contains quotes as follows:

__asm("STR: .byte \"abc\"");

The naked function attribute can be used to identify functions that are written as embedded assembly functions
using asm statements. See Section 5.17.2.

The inserted code must be a legal assembly language statement. Like all assembly language statements, the
line of code inside the quotes must begin with a label, a blank, a tab, or a comment (asterisk or semicolon). The
compiler performs no checking on the string; if there is an error, the assembler detects it. For more information
about the assembly language statements, see the ARM Assembly Language Tools User's Guide.

The __asm statements do not follow the syntactic restrictions of normal C/C++ statements. Each can appear as
a statement or a declaration, even outside of blocks. This is useful for inserting directives at the very beginning
of a compiled module.

The __asm statement does not provide any way to refer to local variables. If your assembly code needs to refer
to local variables, you will need to write the entire function in assembly code.

For more information, refer to Section 6.6.5.

Note
Avoid Disrupting the C/C++ Environment With asm Statements

Be careful not to disrupt the C/C++ environment with __asm statements. The compiler does not check
the inserted instructions. Inserting jumps and labels into C/C++ code can cause unpredictable results
in variables manipulated in or around the inserted code. Directives that change sections or otherwise
affect the assembly environment can also be troublesome.

Be especially careful when you use optimization with __asm statements. Although the compiler
cannot remove __asm statements, it can significantly rearrange the code order near them and cause
undesired results.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 97
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11 Pragma Directives

The following pragma directives tell the compiler how to treat a certain function, object, or section of code.

CALLS (See Section 5.11.1)

CHECK_MISRA (See Section 5.11.2)
CHECK_ULP (See Section 5.11.3)
CODE_SECTION (See Section 5.11.4)
CODE_STATE (See Section 5.11.5)
DATA_ALIGN (See Section 5.11.6)
DATA_SECTION (See Section 5.11.7)
diag_suppress, diag_remark, diag_warning, diag_error, diag_default, diag_push, diag_pop (See Section
5.11.8)

DUAL_STATE (See Section 5.11.9)
FORCEINLINE (See Section 5.11.10)
FORCEINLINE_RECURSIVE (See Section 5.11.11)
FUNC_ALWAYS_INLINE (See Section 5.11.12)
FUNC_CANNOT_INLINE (See Section 5.11.13)
FUNC_EXT_CALLED (See Section 5.11.14)
FUNCTION_OPTIONS (See Section 5.11.15)
INTERRUPT (See Section 5.11.16)

LOCATION (See Section 5.11.17)
MUST_ITERATE (See Section 5.11.18)
NOINIT (See Section 5.11.19)

NOINLINE (See Section 5.11.20)

NO_HOOKS (See Section 5.11.21)

once (See Section 5.11.22)

pack (See Section 5.11.23)

PERSISTENT (See Section 5.11.19)
PROB_ITERATE (See Section 5.11.24)
RESET_MISRA (See Section 5.11.25)
RESET_ULP (See Section 5.11.26)

RETAIN (See Section 5.11.27)
SET_CODE_SECTION (See Section 5.11.28)
SET_DATA_SECTION (See Section 5.11.28)
SWI_ALIAS (See Section 5.11.29)

TASK (See Section 5.11.30)

UNROLL (See Section 5.11.31)

WEAK (See Section 5.11.32)

The arguments func and symbol cannot be defined or declared inside the body of a function. You must specify
the pragma outside the body of a function, and pragma specifications must occur before any declaration,
definition, or reference to the func or symbol argument. If you do not follow these rules, the compiler issues a
warning and may ignore the pragma.

For pragmas that apply to functions or symbols, the syntax differs between C and C++.

In C, you must supply the name of the object or function to which you are applying the pragma as the first
argument. Because the entity operated on is specified, a pragma in C can appear some distance way from
the definition of that entity.

In C++, pragmas are positional. They do not name the entity on which they operate as an argument. Instead,
they always operate on the next entity defined after the pragma.

98

ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.1 The CALLS Pragma
The CALLS pragma specifies a set of functions that can be called indirectly from a specified calling function.

The CALLS pragma is used by the compiler to embed debug information about indirect calls in object files. Using
the CALLS pragma on functions that make indirect calls enables such indirect calls to be included in calculations
for such functions' inclusive stack sizes. For more information on generating function stack usage information,
see the -cg option of the Object File Display Utility in the "Invoking the Object File Display Utility" section of the
ARM Assembly Language Tools User's Guide.

The CALLS pragma can precede either the calling function's definition or its declaration. In C, the pragma must
have at least 2 arguments—the first argument is the calling function, followed by at least one function that will
be indirectly called from the calling function. In C++, the pragma applies to the next function declared or defined,
and the pragma must have at least one argument.

The syntax for the CALLS pragma in C is as follows. This indicates that calling_function can indirectly call
function_1 through function_n.

‘#pragma CALLS (calling_function, function_1, function_2, ..., function_n') ‘

The syntax for the CALLS pragma in C++ is:

‘#pragma CALLS (function_1_mangled_name, ..., function_n_mangled_name) ‘

Note that in C++, the arguments to the CALLS pragma must be the full mangled names for the functions that can
be indirectly called from the calling function.

The GCC-style "calls" function attribute (see Section 5.17.2), which has the same effect as the CALLS pragma,
has the following syntax:

__attribute ((calls("function 1","function 2",..., "function n")))

5.11.2 The CHECK_MISRA Pragma

The CHECK_MISRA pragma enables/disables MISRA C:2004 rules at the source level. The compiler option
--check _misra must be used to enable checking in order for this pragma to function at the source level.

The syntax of the pragma in C is:
#pragma CHECK_MISRA (" {all[required|advisory|none|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for details.
The RESET_MISRA pragma can be used to reset any CHECK_MISRA pragmas; see Section 5.11.25.
5.11.3 The CHECK_ULP Pragma

The CHECK_ULP pragma enables/disables ULP Advisor rules at the source level. This pragma has the same
effect as using the --advice:power option.

The syntax of the pragma in C is:
#pragma CHECK_ULP (" {alllnone|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.4 for the syntax. See
www.ti.com/ulpadvisor for a list of rules.

The RESET_ULP pragma can be used to reset any CHECK_ULP pragmas; see Section 5.11.26.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 99
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/ulpadvisor
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.4 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a
section named section name. The CODE_SECTION pragma is useful if you have code objects that you want to
link into an area separate from the .text section. The CODE_SECTION pragma has the same effect as using the
GCC-style section function attribute. See Section 5.17.2.

The syntax of the pragma in C is:

‘#pragma CODE_SECTION (symbol , " section name ")

The syntax of the pragma in C++ is:

‘#pragma CODE_SECTION (" section name ") ‘

The following example demonstrates the use of the CODE_SECTION pragma.
Using the CODE_SECTION Pragma in C

#pragma CODE_SECTION (fn, "my sect")
int fn(int x)
{

return x;

}

This example C code results in the following generated assembly code:

.sect "my sect"
.align 4
.state32

.global fn

,-***

;* FUNCTION NAME: fn

. % *
Had Regs Modified : SP *
;x Regs Used : Al,SP *
Hd Local Frame Size : 0 Args + 4 Auto + 0 Save = 4 byte *
;***
fn:
g *

SUB SP, SP, #8

STR Al, [SPp, #0] ;14

ADD SP, SP, #8

BX LR

5.11.5 The CODE_STATE Pragma

The CODE_STATE pragma overrides the compilation state of a file, at the function level. For example, if a file is
compiled in thumb mode, but you want a function in that file to be compiled in 32-bit mode, you would add this
pragma in the file. The compilation state for the function is changed to 16-bit mode (thumb) or 32-bit mode.

The syntax of the pragma is C is:

‘#pragma CODE_STATE (function , {16|32})

The syntax of the pragma in C++ is:

‘#pragma CODE_STATE (code state)

100 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.6 The DATA_ALIGN Pragma

The DATA_ALIGN pragma aligns the symbol in C, or the next symbol declared in C++, to an alignment
boundary. The alignment boundary is the maximum of the symbol's default alignment value or the value of
the constant in bytes. The constant must be a power of 2. The maximum alignment is 32768.

The DATA_ALIGN pragma cannot be used to reduce an object's natural alignment.

Using the DATA_ALIGN pragma has the same effect as using the GCC-style aligned variable attribute. See
Section 5.17 4.

The syntax of the pragma in C is:

‘#pragma DATA_ALIGN (symbol , constant) \

The syntax of the pragma in C++ is:

‘#pragma DATA_ALIGN (constant) ‘

5.11.7 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in C, or the next symbol declared in C++, in a
section named section name. This pragma is useful if you have data objects that you want to link into an area
separate from the .bss section.

Using the DATA_SECTION pragma has the same effect as using the GCC-style section variable attribute.
See Section 5.17.4.

The syntax of the pragma in C is:

‘#pragma DATA_SECTION (symbol , " section name ") ‘

The syntax of the pragma in C++ is:

‘#pragma DATA_SECTION (" section name ") ‘

Example 5-1 through Example 5-3 demonstrate the use of the DATA_SECTION pragma.
Example 5-1. Using the DATA_SECTION Pragma C Source File

#pragma DATA SECTION (bufferB, "my sect")
char bufferA[512];
char bufferB[512];

Example 5-2. Using the DATA_SECTION Pragma C++ Source File

char bufferA[512];
#pragma DATA SECTION ("my sect")
char bufferB[512];

Example 5-3. Using the DATA_SECTION Pragma Assembly Source File

.global _bufferA

.bss _buffera,512,4

.global bufferB
_bufferB: .usect "my sect",512,4

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 101
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.8 The Diagnostic Message Pragmas

The following pragmas can be used to control diagnostic messages in the same ways as the corresponding
command line options:

Pragma Option Description

diag_suppress num -pds=num[, num,, nums...] Suppress diagnostic num

diag_remark num -pdsr=num(, num,, nums...] Treat diagnostic num as a remark

diag_warning num -pdsw=num(, num,, numgs...] Treat diagnostic num as a warning

diag_error num -pdse=num[, num,, nums...] Treat diagnostic num as an error

diag_default num n/a Use default severity of the diagnostic

diag_push n/a Push the current diagnostics severity state to store it for later use.

diag_pop n/a Pop the most recent diagnostic severity state stored with #pragma diag_push to

be the current setting.

The syntax of the diag_suppress, diag_remark, diag_warning, and diag_error pragmas in C is:

#pragma diag_ xxx [=]Jnum[, numy, nums...]

Notice that the names of these pragmas are in lowercase.

The diagnostic affected (num) is specified using either an error number or an error tag name. The equal sign
(=) is optional. Any diagnostic can be overridden to be an error, but only diagnostic messages with a severity
of discretionary error or below can have their severity reduced to a warning or below, or be suppressed. The
diag_default pragma is used to return the severity of a diagnostic to the one that was in effect before any
pragmas were issued (i.e., the normal severity of the message as modified by any command-line options).

The diagnostic identifier number is output with the message when you use the -pden command line option.
5.11.9 The DUAL_STATE Pragma

By default (that is, without the compiler -md option), all functions with external linkage support dual-state
interworking. This support assumes that most calls do not require a state change and are therefore optimized (in
terms of code size and execution speed) for calls not requiring a state change. Using the DUAL_STATE pragma
does not change the functionality of the dual-state support, but it does assert that calls to the applied function
often require a state change. Therefore, such support is optimized for state changes.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function. In C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

‘#pragma DUAL_STATE (func) ‘

The syntax of the pragma in C++ is:

‘#pragma DUAL_STATE ‘

For more information on dual-state interworking, see Section 6.11.

102 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.10 The FORCEINLINE Pragma

The FORCEINLINE pragma can be placed before a statement to force any function calls made in that statement
to be inlined. It has no effect on other calls to the same functions.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler
is invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the

inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line
option.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE

For example, in the following example, the mytest() and getname() functions are inlined, but the error() function
is not.

#pragma FORCEINLINE
if (!mytest (getname (myvar))) {
error () ;

}

Placing the FORCEINLINE pragma before the call to error() would inline that function but not the others.

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

Notice that the FORCEINLINE, FORCEINLINE_RECURSIVE, and NOINLINE pragmas affect only the C/C++
statement that follows the pragma. The FUNC_ALWAYS_INLINE and FUNC_CANNOT_INLINE pragmas affect
an entire function.

5.11.11 The FORCEINLINE_RECURSIVE Pragma

The FORCEINLINE_RECURSIVE can be placed before a statement to force any function calls made in that
statement to be inlined along with any calls made from those functions. That is, calls that are not visible in the
statement but are called as a result of the statement will be inlined.

The syntax of the pragma in C/C++ is:

#pragma FORCEINLINE_RECURSIVE

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 103
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.12 The FUNC_ALWAYS_INLINE Pragma
The FUNC_ALWAYS_INLINE pragma instructs the compiler to always inline the named function.

The compiler only inlines a function if it is legal to inline the function. Functions are never inlined if the compiler
is invoked with the --opt_level=off option. A function can be inlined even if the function is not declared with the

inline keyword. A function can be inlined even if the compiler is not invoked with any --opt_level command-line
option. See Section 2.11 for details about interaction between various types of inlining.

This pragma must appear before any declaration or reference to the function that you want to inline. In C, the
argument func is the name of the function that will be inlined. In C++, the pragma applies to the next function
declared.

The FUNC_ALWAYS_INLINE pragma has the same effect as using the GCC-style always inline function
attribute. See Section 5.17.2.

The syntax of the pragma in C is:

‘#pragma FUNC_ALWAYS_INLINE (func) \

The syntax of the pragma in C++ is:

‘#pragma FUNC_ALWAYS_INLINE \

The following example uses this pragma:

#pragma FUNC_ALWAYS INLINE (functionThatMustGetInlined)
static inline void functionThatMustGetInlined (void) {
P1OUT |= 0x01;
P10OUT &= ~0x01;

Note
Use Caution with the FUNC_ALWAYS_INLINE Pragma

The FUNC_ALWAYS_INLINE pragma overrides the compiler's inlining decisions. Overuse of this
pragma could result in increased compilation times or memory usage, potentially enough to consume
all available memory and result in compilation tool failures.

5.11.13 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named function cannot be expanded inline.
Any function named with this pragma overrides any inlining you designate in any other way, such as using the
inline keyword. Automatic inlining is also overridden with this pragma; see Section 2.11.

The pragma must appear before any declaration or reference to the function that you want to keep. In C, the
argument func is the name of the function that cannot be inlined. In C++, the pragma applies to the next function
declared.

The FUNC_CANNOT _INLINE pragma has the same effect as using the GCC-style noinline function
attribute. See Section 5.17.2.

The syntax of the pragma in C is:

‘#pragma FUNC_CANNOT_INLINE (func) \

The syntax of the pragma in C++ is:

‘#pragma FUNC_CANNOT _INLINE \

104 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.14 The FUNC_EXT_CALLED Pragma

When you use the --program_level_compile option, the compiler uses program-level optimization. When you use
this type of optimization, the compiler removes any function that is not called, directly or indirectly, by main(). You
might have C/C++ functions that are called instead of main().

The FUNC_EXT_CALLED pragma specifies that the optimizer should keep these C functions or any functions
these C/C++ functions call. These functions act as entry points into C/C++. The pragma must appear before any
declaration or reference to the function to keep. In C, the argument func is the name of the function to keep. In
C++, the pragma applies to the next function declared.

The syntax of the pragma in C is:

‘#pragma FUNC_EXT_CALLED (func) \

The syntax of the pragma in C++ is:

‘#pragma FUNC_EXT_CALLED \

Except for _c_int00, which is the name reserved for the system reset interrupt for C/C++programs, the name of
the interrupt (the func argument) does not need to conform to a naming convention.

When you use program-level optimization, you may need to use the FUNC_EXT_CALLED pragma with certain
options. See Section 3.4.2.

5.11.15 The FUNCTION_OPTIONS Pragma

The FUNCTION_OPTIONS pragma allows you to compile a specific function in a C or C++ file with additional
command-line compiler options. The affected function will be compiled as if the specified list of options appeared
on the command line after all other compiler options. In C, the pragma is applied to the function specified. In
C++, the pragma is applied to the next function.

The syntax of the pragma in C is:

‘#pragma FUNCTION_OPTIONS (func , " additional options ") ‘

The syntax of the pragma in C++ is:

‘#pragma FUNCTION_OPTIONS(" additional options ") ‘

Supported options for this pragma are --opt_level, --auto_inline, --code_state, and --opt_for_speed.

In order to use --opt_level and --auto_inline with the FUNCTION_OPTIONS pragma, the compiler must be
invoked with some optimization level (that is, at least --opt_level=0). The FUNCTION_OPTIONS pragma

is ignored if --opt_level=off. The FUNCTION_OPTIONS pragma cannot be used to completely disable the
optimizer for the compilation of a function; the lowest optimization level that can be specified is --opt_level=0.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 105
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.16 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C code. The pragma specifies that the
function is an interrupt. The type of interrupt is specified by the pragma; the IRQ (interrupt request) interrupt type
is assumed if none is given.

The syntax of the pragma in C is:

#pragma INTERRUPT (func [,interrupt_type])

The syntax of the pragma in C++ is:

#pragma INTERRUPT [(interrupt_type)]
void func (void)

The GCC interrupt attribute syntax, which has the same effects as the INTERRUPT pragma, is as follows. Note
that the interrupt attribute can precede either the function's definition or its declaration.

__attribute__ ((interrupt [("interrupt_type")])) void func (void)

In C, the argument func is the name of a function. In C++, the pragma applies to the next function declared.
The optional argument interrupt_type specifies an interrupt type. The registers that are saved and the return
sequence depend upon the interrupt type. If the interrupt type is omitted from the interrupt pragma, the interrupt
type IRQ is assumed. These are the valid interrupt types:

Interrupt Type Description

DABT Data abort

FIQ Fast interrupt request
IRQ Interrupt request
PABT Prefetch abort
RESET System reset

SWiI Software interrupt
UDEF Undefined instruction

Except for _c_int00, which is the name reserved for the system reset interrupt for C programs, the name of the
interrupt (the func argument) does not need to conform to a naming convention.

For the Cortex-M architectures, the interrupt_type can be nothing (default) or SWI. The hardware performs the
necessary saving and restoring of context for interrupts. Therefore, the compiler does not distinguish between
the different interrupt types. The only exception is for software interrupts (SWIs) which are allowed to have
arguments (for Cortex-M architectures, C SWI handlers cannot return values).

‘#pragma INTERRUPT (func , {HPI|LPI}) \

‘#pragma INTERRUPT ({HPI|LPI}) \

Note
Hwi Objects and the INTERRUPT Pragma: The INTERRUPT pragma must not be used when SYS/
BIOS Hwi objects are used in conjunction with C functions. The Hwi_enter/Hwi_exit macros and the
Hwi dispatcher contain this functionality, and the use of the C modifier can cause negative results.

106 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.17 The LOCATION Pragma

The compiler supports the ability to specify the run-time address of a variable at the source level. This can be
accomplished with the LOCATION pragma or the GCC-style location attribute. The LOCATION pragma has the
same effect as using the GCC-style 1location function attribute. See Section 5.17.2.

The syntax of the pragma in C is:

#pragma LOCATION(x , address))
int x

The syntax of the pragmas in C++ is:

#pragma LOCATION(address)
int x

The syntax of the GCC-style attribute (see Section 5.17.4) is:

int x __attribute__((location(address)))

The NOINIT pragma may be used in conjunction with the LOCATION pragma to map variables to special
memory locations; see Section 5.11.19.

5.11.18 The MUST_ITERATE Pragma

The MUST _ITERATE pragma specifies to the compiler certain properties of a loop. When you use this pragma,
you are guaranteeing to the compiler that a loop executes a specific number of times or a number of times within
a specified range.

Any time the UNROLL pragma is applied to a loop, MUST_ITERATE should be applied to the same loop.
For loops the MUST_ITERATE pragma's third argument, multiple, is the most important and should always be
specified.

Furthermore, the MUST _ITERATE pragma should be applied to any other loops as often as possible. This

is because the information provided via the pragma (especially the minimum number of iterations) aids the
compiler in choosing the best loops and loop transformations (that is, nested loop transformations). It also helps
the compiler reduce code size.

No statements are allowed between the MUST_ITERATE pragma and the for, while, or do-while loop to which it
applies. However, other pragmas, such as UNROLL, can appear between the MUST_ITERATE pragma and the
loop.

5.11.18.1 The MUST_ITERATE Pragma Syntax

The syntax of the pragma for C and C++ is:

‘#pragma MUST_ITERATE (min, max, multiple) \

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available.

‘ [[TI::must_iterate(min, max, multiple)]] ‘

The arguments min and max are programmer-guaranteed minimum and maximum trip counts. The trip count is
the number of times a loop iterates. The trip count of the loop must be evenly divisible by multiple. All arguments
are optional. For example, if the trip count could be 5 or greater, you can specify the argument list as follows:

#pragma MUST ITERATE (5)

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 107
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

However, if the trip count could be any nonzero multiple of 5, the pragma would look like this:

#pragma MUST ITERATE (5, , 5) /* Note the blank field for max */

It is sometimes necessary for you to provide min and multiple in order for the compiler to perform unrolling. This
is especially the case when the compiler cannot easily determine how many iterations the loop will perform (that
is, the loop has a complex exit condition).

When specifying a multiple via the MUST_ITERATE pragma, results of the program are undefined if the trip
count is not evenly divisible by multiple. Also, results of the program are undefined if the trip count is less than
the minimum or greater than the maximum specified.

If no min is specified, zero is used. If no max is specified, the largest possible number is used. If multiple
MUST_ITERATE pragmas are specified for the same loop, the smallest max and largest min are used.

The following example uses the must_iterate C++ attribute syntax:

void myFunc (int *a, int *b, int * restrict c, int n)

{

[[TI::must iterate(32, 1024, 16)]]
for (int i = 0; 1 < n; 1i++)
{

cl[i] = alil + blil;

}

5.11.18.2 Using MUST _ITERATE to Expand Compiler Knowledge of Loops

Through the use of the MUST_ITERATE pragma, you can guarantee that a loop executes a certain number of
times. The example below tells the compiler that the loop is guaranteed to run exactly 10 times:

#pragma MUST_ITERATE (10,10)
for(i = 0; 1 < trip count; i++) { ...

In this example, the compiler attempts to generate a loop even without the pragma. However, if MUST_ITERATE
is not specified for a loop such as this, the compiler generates code to bypass the loop, to account for the
possibility of 0 iterations. With the pragma specification, the compiler knows that the loop iterates at least once
and can eliminate the loop-bypassing code.

MUST _ITERATE can specify a range for the trip count as well as a factor of the trip count. The following
example tells the compiler that the loop executes between 8 and 48 times and the trip_count variable is a
multiple of 8 (8, 16, 24, 32, 40, 48). The multiple argument allows the compiler to unroll the loop.

#pragma MUST ITERATE (8, 48, 8)
for(i = 0; 1 < trip count; i++) { ...

You should consider using MUST _ITERATE for loops with complicated bounds. In the following example, the
compiler would have to generate a divide function call to determine, at run time, the number of iterations
performed.

for(i2 = ipos[2]; 12 < 40; i2 += 5) { ...

The compiler will not do the above. In this case, using MUST_ITERATE to specify that the loop always executes
eight times allows the compiler to attempt to generate a loop:

#pragma MUST ITERATE (8, 8)
for(i2 = ipos[2]; 12 < 40; 12 += 5) { ...

108 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.19 The NOINIT and PERSISTENT Pragmas

Global and static variables are zero-initialized by default. However, in applications that use non-volatile memory,
it may be desirable to have variables that are not initialized. Noinit variables are global or static variables that are
not zero-initialized at startup or reset.

Variables can be declared as noinit or persistent using either pragmas or variable attributes. See Section 5.17.4
for information about using variable attributes in declarations.

Noinit and persistent variables behave identically with the exception of whether or not they are initialized at load
time.

» The NOINIT pragma may be used only with uninitialized variables. It prevents such variables from being set
to 0 during a reset. It may be used in conjunction with the LOCATION pragma to map variables to special
memory locations, like memory-mapped registers, without generating unwanted writes.

* The PERSISTENT pragma may be used only with statically-initialized variables. It prevents such variables
from being initialized during a reset. Persistent variables disable startup initialization; they are given an initial
value when the code is loaded, but are never again initialized.

By default, noinit or persistent variables are placed in sections named .TI.noinit and .TI.persistent ,
respectively. The location of these sections is controlled by the linker command file. Typically .Tl.persistent
sections are placed in FRAM for devices that support FRAM and .Tl.noinit sections are placed in RAM.

Note

When using these pragmas in non-volatile FRAM memory, the memory region could be protected
against unintended writes through the device's Memory Protection Unit. Some devices have memory
protection enabled by default. Please see the information about memory protection in the datasheet
for your device. If the Memory Protection Unit is enabled, it first needs to be disabled before modifying
the variables.

If you are using non-volatile RAM, you can define a persistent variable with an initial value of zero loaded into
RAM. The program can increment that variable over time as a counter, and that count will not disappear if the
device loses power and restarts, because the memory is non-volatile and the boot routines do not initialize it
back to zero. For example:

#pragma PERSISTENT (x)
#pragma location = 0xC200 // memory address in RAM
int x = 0;
void main() {
run_init();
while (1) |
run_actions(x);
delay cycles (1000000);
xt+;

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 109
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

The syntax of the pragmas in C is:

#pragma NOINIT (x)
int x;

#pragma PERSISTENT (x)
int x =10;

The syntax of the pragmas in C++ is:

#pragma NOINIT
intx;

#pragma PERSISTENT
int x =10;

The syntax of the GCC attributes is:

int x __attribute__((noinit));

int x __attribute__((persistent)) = 0;

5.11.20 The NOINLINE Pragma

The NOINLINE pragma can be placed before a statement to prevent any function calls made in that statement
from being inlined. It has no effect on other calls to the same functions.

The syntax of the pragma in C/C++ is:

#pragma NOINLINE

For information about interactions between command-line options, pragmas, and keywords that affect inlining,
see Section 2.11.

5.11.21 The NO_HOOKS Pragma

The NO_HOOKS pragma prevents entry and exit hook calls from being generated for a function.

The syntax of the pragma in C is:

\#pragma NO_HOOKS (func) \

The syntax of the pragma in C++ is:

‘#pragma NO_HOOKS \

See Section 2.15 for details on entry and exit hooks.

110 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.22 The once Pragma

The once pragma tells the C preprocessor to ignore a #include directive if that header file has already been
included. For example, this pragma may be used if header files contain definitions, such as struct definitions, that
would cause a compilation error if they were executed more than once.

This pragma should be used at the beginning of a header file that should only be included once. For example:

// hdr.h

#pragma once

#warn You will only see this message one time
struct foo

{

int member;

}i

This pragma is not part of the C or C++ standard, but it is a widely-supported preprocessor directive. Note that
this pragma does not protect against the inclusion of a header file with the same contents that has been copied
to another directory.

5.11.23 The pack Pragma

The pack pragma can be used to control the alignment of fields within a class, struct, or union type. The syntax
of the pragma in C/C++ can be any of the following.
#pragma pack (n)

The above form of the pack pragma affects all class, struct, or union type declarations that follow this pragma in
a file. It forces the maximum alignment of each field to be the value specified by n. Valid values for n are 1, 2, 4,
8, and 16 bytes.

#pragma pack (push, n)

#pragma pack (pop)

The above form of the pack pragma affects only class, struct, and union type declarations between push and
pop directives. (A pop directive with no prior push results in a warning diagnostic from the compiler.) The
maximum alignment of all fields declared is n. Valid values for n are 1, 2, 4, 8, and 16 bytes.

#pragma pack (show)

The above form of the pack pragma sends a warning diagnostic to stderr to record the current state of the pack
pragma stack. You can use this form while debugging.

For more about packed fields, see Section 5.17.5.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 111
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.24 The PROB_ITERATE Pragma

The PROB_ITERATE pragma specifies to the compiler certain properties of a loop. You assert that these
properties are true in the common case. The PROB_ITERATE pragma aids the compiler in choosing the best
loops and loop transformations (that is, software pipelining and nested loop transformations). PROB_ITERATE
is useful only when the MUST_ITERATE pragma is not used or the PROB_ITERATE parameters are more
constraining than the MUST_ITERATE parameters.

No statements are allowed between the PROB_ITERATE pragma and the for, while, or do-while loop to
which it applies. However, other pragmas, such as UNROLL and MUST _ITERATE, may appear between the
PROB_ITERATE pragma and the loop. The syntax of the pragma for C and C++ is:

#pragma PROB_ITERATE(min , max)

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available. See Section
5.11.18.1 for an example that uses similar syntax.

[[TI::prob_iterate(min, max)]]

Where min and max are the minimum and maximum trip counts of the loop in the common case. The trip count
is the number of times a loop iterates. Both arguments are optional.

For example, PROB_ITERATE could be applied to a loop that executes for eight iterations in the majority of
cases (but sometimes may execute more or less than eight iterations):

‘#pragma PROB_ ITERATE (8, 8) ‘

If only the minimum expected trip count is known (say it is 5), the pragma would look like this:

‘ #pragma PROB_ITERATE (5) ‘

If only the maximum expected trip count is known (say it is 10), the pragma would look like this:

‘#pragma PROB ITERATE(, 10) /* Note the blank field for min */ ‘

5.11.25 The RESET_MISRA Pragma

The RESET_MISRA pragma resets the specified MISRA C:2004 rules to the state they were before any
CHECK _MISRA pragmas (see Section 5.11.2) were processed. For instance, if a rule was enabled on the
command line but disabled in the source, the RESET_MISRA pragma resets it to enabled. This pragma accepts
the same format as the --check _misra option, except for the "none" keyword.

The --check_misra compiler command-line option must be used to enable MISRA C:2004 rule checking in order
for this pragma to function at the source level.

The syntax of the pragma in C is:
#pragma RESET_MISRA (" {all|required|advisory|rulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.3 for details.

112 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.26 The RESET_ULP Pragma

The RESET_ULP pragma resets the specified ULP Advisor rules to the state they were before any CHECK_ULP
pragmas (see Section 5.11.3) were processed. For instance, if a rule was enabled on the command line but
disabled in the source, the RESET_ULP pragma resets it to enabled. This pragma accepts the same format as
the --advice:power option, except for the "none" keyword.

The syntax of the pragma in C is:
‘#pragma RESET_ULP (" {alljrulespec} ")

The rulespec parameter is a comma-separated list of rule numbers. See Section 5.4 for details. See www.ti.com/
ulpadvisor for a list of rules.

5.11.27 The RETAIN Pragma
The RETAIN pragma can be applied to a code or data symbol.

It causes a .retain directive to be generated into the section that contains the definition of the symbol. The .retain
directive indicates to the linker that the section is ineligible for removal during conditional linking. Therefore,
regardless whether or not the section is referenced by another section in the application that is being compiled
and linked, it will be included in the output file result of the link.

The RETAIN pragma has the same effect as using the retain function or variable attribute. See Section 5.17.2
and Section 5.17.4, respectively.

The syntax of the pragma in C is:
‘#pragma RETAIN (symbol') ‘

The syntax of the pragma in C++ is:
‘#pragma RETAIN ‘

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 113
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/ulpadvisor
http://www.ti.com/ulpadvisor
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
These pragmas can be used to set the section for all declarations below the pragma.

The syntax of the pragmas in C/C++ is:

‘#pragma SET_CODE_SECTION (" section name ") ‘

‘#pragma SET_DATA_SECTION (" section name ") ‘

In the Setting Section With SET_DATA_SECTION Pragma example, x and y are put in the section mydata. To
reset the current section to the default used by the compiler, a blank parameter should be passed to the pragma.
An easy way to think of the pragma is that it is like applying the CODE_SECTION or DATA_SECTION pragma to
all symbols below it.

Setting Section With SET_DATA_SECTION Pragma

#pragma SET DATA SECTION ("mydata")
int x;

int y;

#pragma SET DATA SECTION ()

The pragmas apply to both declarations and definitions. If applied to a declaration and not the definition, the
pragma that is active at the declaration is used to set the section for that symbol. Here is an example:

Setting a Section With SET_CODE_SECTION Pragma

#pragma SET CODE SECTION ("funcl")
extern void funcl();
#pragma SET_ CODE_SECTION ()

%éid funcl () { ... }

In the Setting a Section With SET_CODE_SECTION Pragma example, func1 is placed in section func1. If
conflicting sections are specified at the declaration and definition, a diagnostic is issued.

The current CODE_SECTION and DATA_SECTION pragmas and GCC attributes can be used to override the
SET_CODE_SECTION and SET_DATA_SECTION pragmas. For example:

Overriding SET_DATA_SECTION Setting

#pragma DATA SECTION (x, "x data")
#pragma SET DATA SECTION ("mydata")
int x;

int y;

#pragma SET DATA SECTION ()

In the Overriding SET_DATA_SECTION Setting example, x is placed in x_data and y is placed in mydata. No
diagnostic is issued for this case.

The pragmas work for both C and C++. In C++, the pragmas are ignored for templates and for implicitly created
objects, such as implicit constructors and virtual function tables.

The SET_DATA_SECTION pragma takes precedence over the --gen_data_subsections=on option if it is used.

114 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.29 The SWI_ALIAS Pragma

The SWI_ALIAS pragma allows you to refer to a particular software interrupt as a function name and to
invocations of the software interrupt as function calls. Since the function name is simply an alias for the software
interrupt, no function definition exists for the function name.

The syntax of the pragma in C is:

‘#pragma SWI_ALIAS(func , swi_number) ‘

The syntax of the pragma in C++ is:

‘ #pragma SWI_ALIAS(swi_number) ‘

Calls to the applied function are compiled as software interrupts whose number is swi_number. The swi_number
variable must be an integer constant.

A function prototype must exist for the alias and it must occur after the pragma and before the alias is used.
Software interrupts whose number is not known until run time are not supported.

For information about using the GCC function attribute syntax to declare function aliases, see Section 5.17.2.

For more information about using software interrupts, including restrictions on passing arguments and register
usage, see Section 6.7.5.

Using the SWI_ALIAS Pragma C Source File

#pragma SWI_ALIAS (put, 48) /* #pragma SWI_ALIAS(48) for C++ */
int put (char *key, int value);
void error();
main ()
{
if (!put("one", 1)) /* calling "put" invokes SWI #48 with 2 arguments */
error () ; /* and returns a result. */
}

Generated Assembly File

,-***
;* FUNCTION DEF: main *
;***
main:
- STMFD SP!, {LR}
ADR Al, SL1
MOV A2, #1
SWI #48 ; SWI #48 is generated for the function call
CMP Al, #0
BLEQ error
MOV Al, #0
LDMFD sp!, {PC}
SL1: .string "one",0
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 115
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.11.30 The TASK Pragma

The TASK pragma specifies that the function to which it is applied is a task. Tasks are functions that are called
but never return. Typically, they consist of an infinite loop that simply dispatches other activities. Because they
never return, there is no need to save (and therefore restore) registers that would otherwise be saved and
restored. This can save RAM space, as well as some code space.

The syntax of the pragma in C is:

‘#pragma TASK(func) \

The syntax of the pragma in C++ is:

‘#pragma TASK ‘

5.11.31 The UNROLL Pragma

The UNROLL pragma specifies to the compiler how many times a loop should be unrolled. The optimizer must
be invoked (use --opt_level=[1|2|3] or -O1, -O2, or -O3) in order for pragma-specified loop unrolling to take
place. The compiler has the option of ignoring this pragma.

No statements are allowed between the UNROLL pragma and the for, while, or do-while loop to which it applies.
However, other pragmas, such as MUST_ITERATE, can appear between the UNROLL pragma and the loop.

The syntax of the pragma for C and C++ is:

#pragma UNROLL(n)

The C++ syntax for the corresponding attribute is as follows. No C attribute syntax is available. See Section
5.11.18.1 for an example that uses similar syntax.

[[TI::unroll(n)]

If possible, the compiler unrolls the loop so there are n copies of the original loop. The compiler only unrolls if
it can determine that unrolling by a factor of n is safe. In order to increase the chances the loop is unrolled, the
compiler needs to know certain properties:

» The loop iterates a multiple of n times. This information can be specified to the compiler via the multiple
argument in the MUST_ITERATE pragma.

* The smallest possible number of iterations of the loop

» The largest possible number of iterations of the loop

The compiler can sometimes obtain this information itself by analyzing the code. However, sometimes the
compiler can be overly conservative in its assumptions and therefore generates more code than is necessary
when unrolling. This can also lead to not unrolling at all. Furthermore, if the mechanism that determines when
the loop should exit is complex, the compiler may not be able to determine these properties of the loop. In these
cases, you must tell the compiler the properties of the loop by using the MUST_ITERATE pragma.

Specifying #pragma UNROLL(1) asks that the loop not be unrolled. Automatic loop unrolling also is not
performed in this case.

If multiple UNROLL pragmas are specified for the same loop, it is undefined which pragma is used, if any.

116 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

5.11.32 The WEAK Pragma
The WEAK pragma gives weak binding to a symbol.

The syntax of the pragma in C is:

‘#pragma WEAK (symbol) ‘

The syntax of the pragma in C++ is:

‘#pragma WEAK ‘

The WEAK pragma makes symbol a weak reference if it is a reference, or a weak definition, if it is a definition.
The symbol can be a data or function variable. In effect, unresolved weak references do not cause linker errors
and do not have any effect at run time. The following apply for weak references:

» Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain
unresolved.
* During linking, the value of an undefined weak reference is:
— Zero if the relocation type is absolute
— The address of the place if the relocation type is PC-relative
— The address of the nominal base address if the relocation type is base-relative.

A weak definition does not change the rules by which object files are selected from libraries. However, if a link
set contains both a weak definition and a non-weak definition, the non-weak definition is always used.

The WEAK pragma has the same effect as using the weak function or variable attribute. See Section 5.17.2 and
Section 5.17.4, respectively.

5.12 The _Pragma Operator

The ARM C/C++ compiler supports the C99 preprocessor _Pragma() operator. This preprocessor operator is
similar to #pragma directives. However, Pragma can be used in preprocessing macros (#defines).

The syntax of the operator is:

_Pragma (" string_literal ');

The argument string_literal is interpreted in the same way the tokens following a #pragma directive are
processed. The string_literal must be enclosed in quotes. A quotation mark that is part of the string_literal
must be preceded by a backward slash.

You can use the _Pragma operator to express #pragma directives in macros. For example, the DATA_SECTION
syntax:

#pragma DATA_SECTION(func ," section ")

Is represented by the _Pragma() operator syntax:

_Pragma ("DATA_SECTION(func ,\" section \")")

The following code illustrates using _Pragma to specify the DATA_SECTION pragma in a macro:

#define EMIT PRAGMA (x) _Pragma (#x)

#define COLLECT DATA (var) EMIT PRAGMA (DATA SECTION (var, "mysection"))
COLLECT_ DATA (x)

int x;

The EMIT_PRAGMA macro is needed to properly expand the quotes that are required to surround the section
argument to the DATA_SECTION pragma.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 117
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.13 Application Binary Interface

An Application Binary Interface (ABI) defines how functions that are written separately and compiled or
assembled separately can work together. This involves standardizing data type storage, register conventions,
and function structure and calling conventions. It should define linkname generation from C symbols. It defines
the object file format and the debug format. It should document how the system is initialized. In the case of C++
it defines C++ name mangling and exception handling support.

The COFF ABI is not supported in v15.6.0.STS and later versions of the TI Code Generation Tools. If you want
to produce COFF output files, please use v5.2 of the ARM tools and see SPRU151J.

The ARM ABIv2 has become an industry standard for the ARM architecture. It has these advantages:

» It enables interlinking of objects built with different tool chains. For example, this enables a library built with
RVCT to be linked in with an application built with the ARM 4.6 toolset.

» Itis well documented. The complete ARM ABI specifications are in the ARM Information Center.

» Itis modern. EABI requires ELF object file format which enables supporting modern language features like
early template instantiation and export inline functions support.

ARM ABIv2 allows a vendor to define the system initialization in the bare-metal mode. Tl-specific information
on EABI mode is described in Section 6.10.3. The __ Tl EABI_ASSEMBLER predefined symbol is set to 1 if
compiling for EABI.

5.14 ARM Instruction Intrinsics

Assembly instructions can be generated using the intrinsics in the following tables. Table 5-3 shows which
intrinsics are available on the different ARM targets. Table 5-4 shows the calling syntax for each intrinsic, along
with the corresponding assembly instruction and a description. Additional intrinsices for getting and setting the
CPSR register and to enable/disable interrupts are provided in Section 6.8.1.

Table 5-3. ARM Intrinsic Support by Target

C/C++ Compiler ARM V5e ARM V6 ARM V6MO ARM V7M3 ARM V7M4 ARM V7R ARM V7A8
Intrinsic (ARMO9E) (ARM11) (Cortex-M0) (Cortex-M3) (Cortex-M4) (Cortex-R4) (Cortex-A8)
__clz yes yes yes yes yes yes
_ _delay_cycles yes yes yes yes
_ _get_ MSP yes yes yes
_ _get PRIMASK yes yes yes
_ _ldrex yes yes yes yes yes
_ _ldrexb yes yes yes yes yes
_ _ldrexd yes yes yes
_ _ldrexh yes yes yes yes yes
__MCR yes yes yes yes yes yes
__MRC yes yes yes yes yes yes
__nop yes yes yes yes yes yes yes
_norm yes yes yes yes yes yes
__rev yes yes yes yes yes
__rev1l6 yes yes yes yes yes
_ _revsh yes yes yes yes yes
_ _rbit yes yes yes yes
_ _ror yes yes yes yes yes yes yes
_pkhbt yes yes yes yes
_pkhtb yes yes yes yes
_qadd16 yes yes yes yes
_qadd8 yes yes yes yes
_qaddsubx yes yes yes yes
118 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spru151J
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com C/C++ Language Implementation
Table 5-3. ARM Intrinsic Support by Target (continued)

C/C++ Compiler ARM V5e ARM V6 ARM V6MO ARM V7M3 ARM V7M4 ARM V7R ARM V7A8
Intrinsic (ARMO9E) (ARM11) (Cortex-M0) (Cortex-M3) (Cortex-M4) (Cortex-R4) (Cortex-A8)
_qgsub16 yes yes yes yes
_qsub8 yes yes yes yes
_qsubaddx yes yes yes yes
_sadd yes yes yes yes yes
_sadd16 yes yes yes yes
_sadd8 yes yes yes yes
_saddsubx yes yes yes yes
_sdadd yes yes yes yes yes
_sdsub yes yes yes yes yes
_sel yes yes yes yes
__set MSP yes yes yes
_ _set PRIMASK yes yes yes
_shadd16 yes yes yes yes
_shadd8 yes yes yes yes
_shsub16 yes yes yes yes
_shsub8 yes yes yes yes
_smac yes yes yes yes yes
_smlabb yes yes yes yes yes
_smlabt yes yes yes yes yes
_smlad yes yes yes yes
_smladx yes yes yes yes
_smlalbb yes yes yes yes yes
_smlalbt yes yes yes yes yes
_smlald yes yes yes yes
_smlaldx yes yes yes yes
_smlaltb yes yes yes yes yes
_smlaltt yes yes yes yes yes
_smlatb yes yes yes yes yes
_smlatt yes yes yes yes yes
_smlawb yes yes yes yes yes
_smlawt yes yes yes yes yes
_smlsd yes yes yes yes
_smlsdx yes yes yes yes
_smlsld yes yes yes yes
_smlsldx yes yes yes yes
_smmla yes yes yes yes
_smmlar yes yes yes yes
_smmis yes yes yes yes
_smmisr yes yes yes yes
_smmul yes yes yes yes
_smmulr yes yes yes yes
_smuad yes yes yes yes
_smuadx yes yes yes yes
_smusd yes yes yes yes

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 119

Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
C/C++ Language Implementation www.ti.com
Table 5-3. ARM Intrinsic Support by Target (continued)
C/C++ Compiler ARM V5e ARM V6 ARM V6MO ARM V7M3 ARM V7M4 ARM V7R ARM V7A8
Intrinsic (ARMO9E) (ARM11) (Cortex-M0) (Cortex-M3) (Cortex-M4) (Cortex-R4) (Cortex-A8)
_smusdx yes yes yes yes
_smpy yes yes yes yes yes
_smsub yes yes yes yes yes
_smulbb yes yes yes yes yes
_smulbt yes yes yes yes yes
_smultb yes yes yes yes yes
_smultt yes yes yes yes yes
_smulwb yes yes yes yes yes
_smulwt yes yes yes yes yes
__sqrt yes yes yes yes
_ _sqrtf yes yes yes yes yes
_ssat16 yes yes yes yes
_ssata yes yes yes yes yes yes
_ssatl yes yes yes yes yes yes
_ssub yes yes yes yes yes
_ssub16 yes yes yes yes
_ssub8 yes yes yes yes
_ssubaddx yes yes yes yes
_ _strex yes yes yes yes yes
_ _strexb yes yes yes yes yes
_ _strexd yes yes yes
_ _strexh yes yes yes yes yes
_subc yes yes yes yes yes
_sxtab yes yes yes yes
_sxtab16 yes yes yes yes
_sxtah yes yes yes yes
_sxtb yes yes yes yes yes yes
_sxtb16 yes yes yes yes
_sxth yes yes yes yes yes yes
_uadd16 yes yes yes yes
_uadd8 yes yes yes yes
_uaddsubx yes yes yes yes
_uhadd16 yes yes yes yes
_uhadd8 yes yes yes yes
_uhsub16 yes yes yes yes
_uhsub8 yes yes yes yes
_umaal yes yes yes yes
_ugadd16 yes yes yes yes
_ugadd8 yes yes yes yes
_ugaddsubx yes yes yes yes
_ugsub16 yes yes yes yes
_ugsub8 yes yes yes yes
_ugsubaddx yes yes yes yes
_usad8 yes yes yes yes
120 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com C/C++ Language Implementation
Table 5-3. ARM Intrinsic Support by Target (continued)

C/C++ Compiler ARM V5e ARM V6 ARM V6MO ARM V7M3 ARM V7M4 ARM V7R ARM V7A8
Intrinsic (ARMO9E) (ARM11) (Cortex-M0) (Cortex-M3) (Cortex-M4) (Cortex-R4) (Cortex-A8)
_usat16 yes yes yes yes

_usata yes yes yes yes yes yes

_usatl yes yes yes yes yes yes
_usub16 yes yes yes yes

_usub8 yes yes yes yes
_usubaddx yes yes yes yes

_uxtab yes yes yes yes
_uxtab16 yes yes yes yes

_uxtah yes yes yes yes

_uxtb yes yes yes yes yes yes
_uxtb16 yes yes yes yes

_uxth yes yes yes yes yes yes

__wfe yes yes yes yes yes

_ Wi yes yes yes yes yes

Table 5-4 shows the calling syntax for each intrinsic, along with the corresponding assembly instruction and a
description. See Table 5-3 for a list of which intrinsics are available on the different ARM targets. Additional
intrinsices for getting and setting the CPSR register and to enable/disable interrupts are provided in Section
6.8.1.

Table 5-4. ARM Compiler Intrinsics

Assembly
C/C++ Compiler Intrinsic Instruction Description

int count = _ _clz(int src); CLZ count, src Returns the count of leading zeros.

void _ _delay_cycles(unsigned int cycles); varies Delays execution for the specified number
of cycles. The number of cycles must be a
constant.

The __delay_cycles intrinsic inserts code to
consume precisely the number of specified
cycles with no side effects. The number

of cycles delayed must be a compile-time
constant.

Note: Cycle timing is based on 0 wait states.
Results vary with additional wait states. The
implementation does not account for dynamic
prediction. Lower delay cycle counts may be
less accurate given pipeline flush behaviors.

unsigned int dst = _ _get_ MSP(void); MRS dst , MSP Returns the current value of the Main Stack
Pointer.

unsigned int dst = _ _get_PRIMASK(void); MRS dst , PRIMASK Returns the current value of the Priority
Mask Register. If this value is 1, activation
of all exceptions with configurable priority is
prevented.

unsigned int dest = _ _ldrex(void* src); LDREX dst, src Loads data from memory address containing

word (32-bit) data

unsigned int dest= _ _ldrexb(void* src); LDREXB dst, src Loads data from memory address containing
byte data

unsigned long long dest = _ _ldrexd(void* src); LDREXD dst, src Loads data from memory address with long
long support

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 121
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

C/C++ Language Implementation

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-4. ARM Compiler Intrinsics (continued)

C/C++ Compiler Intrinsic

Assembly
Instruction

Description

unsigned int dest = _ _ldrexh(void* src);

LDREXH dst, src

Loads data from memory address containing
halfword (16-bit) data

void __MCR (unsigned int coproc, unsigned
int opc1, unsigned int src, unsigned int
coproc_reg1, unsigned int coproc_reg2,
unsigned int opc2);

MCR coproc, opc1, src,

CR<coproc_reg1>, CR<coproc_reg2>,

opc2

Access the coprocessor registers

unsigned int __MRC(unsigned int coproc,
unsigned int opc1, unsigned int coproc_reg1,

MRC coproc, opc1, src,

CR<coproc_reg1>, CR<coproc_reg2>,

Access the coprocessor registers

unsigned int coproc_reg2, unsigned int opc2); opc2
void _ _nop(void); NOP Perform an instruction that does nothing.
int dst = _norm(int src); CLZ dst, src Count leading zero bits. This intrinsic can be

used when implementing integer normalization.

int dst = _pkhbt(int src7 , int src2, int shift);

PKHBT dst, src1, src2 , # shift

Combine bottom halfword of src1 with shifted
top halfword of src2

nt dst = _pkhtb(int src1 , int src2, int shift);

PKHTB dst, src1, src2 , # shift

Combine top halfword of src1 with shifted
bottom halfword of src2

int dst = _gadd16(int src?, int src2);

QADD16 dst, src1, src2

Performs two signed halfword saturated
additions

int dst = _qadd8(int src?, int src2);

QADDS8 dst, srct1, src2

Performs four signed saturated 8-bit additions

int dst = _qaddsubx(int src7 , int src2);

QASX dst, src1, src2

Exchange halfwords of src2, perform signed
saturated addition on the top halfwords and
signed saturated subtraction on the bottom

halfwords.

int dst = _qsub16(int src?, int src2);

QSUB16 dst, src1, src2

Performs two signed saturated halfword
subtractions

int dst = _qgsub8(int src1 , int src2);

QSUBS8 dst, src1, src2

Performs four signed saturated 8-bit
subtractions

int dst = _gsubaddx(int src1 , int src2);

QSAX dst, src1, src2

Exchange halfwords of src2, perform signed
saturated subtraction on top halfwords and
signed saturated addition on bottom halfwords

int dst = _ _rbit(int src);

RBIT dst, src

Reverses the bit order in a word.

int dst = _ _rev(int src);

REV dst, src

Reverses byte order in a word. That is, converts
32-bit data between big-endian and little-endian
or vice versa.

int dst = _ _rev16(int src);

REV16 dst, src

Reverses byte order in each byte in a word
independently. That is, converts 16-bit data
between big-endian and little-endian or vice
versa.

int dst = _ _revsh(int src);

REVSH dst, src

Reverses byte order in the lower byte of a
word, and extends the sign to 32 bits. That

is, converts 16-bit signed data to 32-bit signed
data, while also converting between big-endian
and little-endian or vice versa.

int dst = _ _ror(int src, int shift);

ROR dst, src, shift

Rotates the value to the right by the number of
bits specified. Bits rotated off the right end are
placed into empty bits on the left.

int dst =_sadd(int src?, int src2);

QADD dst, src1, src2

Saturated add

int dst = _sadd16(int src1 , int src2);

SADD16 dst, src1, src2

Performs two signed halfword additions

int dst = _sadd8(int src1, int src2);

SADDS8 dst, src1, src2

Performs four signed 8-bit additions

int dst = _saddsubx(int src7 , int src2);

SASX dst, src1, src2

Exchange halfwords of src2, add the top
halfwords and subtract the bottom halfwords

int dst =_sdadd(int src1, int src2);

QDADD dst, src1, src2

Saturated double-add

int dst =_sdsub(int src1, int src2);

QDSUB dst, src1, src2

Saturated double-subtract

122 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com

C/C++ Language Implementation

Table 5-4. ARM Compiler Intrinsics (continued)

C/C++ Compiler Intrinsic

Assembly
Instruction

Description

int dst = _sel(int src1, int src2);

SEL dst, src1, src2

Selects byte n from src1 if GE bit n is set or
from src2 if GE bit n is not set, where n ranges
from O to 3.

void _ _set_MSP(unsigned int src);

MSR MSP, src

Sets the value of the Main Stack Pointer to src.

unsigned int dst = _ _set_PRIMASK(unsigned

int src);

MRS dst , PRIMASK (optional)
MSR PRIMASK, src

Sets the Priority Mask Register to the src value
and returns the value as it was prior to being
set as dst. Setting this register to 1 prevents
the activation of all exceptions with configurable
priority.

int dst = _shadd16(int src1, int src2);

SHADD16 dst, src1, src2

Performs two signed halfword additions and
halves the results

int dst = _shadd8(int src?, int src2);

SHADDS dst, src1, src2

Performs four signed 8-bit additions and halves
the results

int dst = _shsub16(int src1, int src2);

SHSUB16 dst, src1, src2

Performs two signed halfword subtractions and
halves the results

int dst = _shsub8int src1, int src2);

SHSUBS dst, srct, src2

Performs four signed 8-bit subtractions and
halves the results

int dst =_smac(int dst, int src1, int src2);

SMULBB tmp, src1, src2
QDADD dst, dst, tmp

Saturated multiply-accumulate

int dst =_smlabb(int dst, short src? , short
src2);

SMLABB dst, src1, src2

Signed multiply-accumulate bottom halfwords

int dst =_smlabt(int dst, short src? , int src2);

SMLABT dst, src1, src2

Signed multiply-accumulate bottom and top
halfwords

int dst _smlad(int src1, int src2 , int acc);

SMLAD dst, src1, src2 , acc

Performs two signed 16-bit multiplications on
the top and bottom halfwords of src1 and src2
and adds the results to acc.

int dst _smladx(int src7, int src2, int acc);

SMLADX dst, src1, src2, acc

Same as _smlad except the halfwords in src2
are exchange before the multiplication.

long long dst =_smlalbb(long long dst , short
src1, short src2);

SMLALBB dstlo , dsthi , src1, src2

Signed multiply-long and accumulate bottom
halfwords

long long dst =_smlalbt(long long dst, short
src1, int src2);

SMLALBT dstlo, dsthi, src1, src2

Signed multiply-long and accumulate bottom
and top halfwords

long long dst _smlald(long long acc , int srct,
int src2);

SMLALD dst, src1, src2

Performs two 16-bit multiplication on the top
and bottom halfwords of src1 and src2 and
adds the results to the 64-bit acc operand

long long dst _smlaldx(long long acc , int srct,
int src2);

SMLALDX dst, srct, src2

Same as _smlald except the halfwords in src2
are exchanged.

long long dst =_smlaltb(long long dst, int srcT,
short src2);

SMLALTB dstlo , dsthi, src1, src2

Signed multiply-long and accumulate top and
bottom halfwords

long long dst =_smlaltt(long long dst , int src1,
int src2);

SMLALTT dstlo , dsthi, src1, src2

Signed multiply-long and accumulate top
halfwords

int dst =_smlatb(int dst, int src1, short src2);

SMLATB dst, src1, src2

Signed multiply-accumulate top and bottom
halfwords

int dst =_smlatt(int dst, int src1, int src2);

SMLATT dst, src1, src2

Signed multiply-accumulate top halfwords

int dst _smlawb(int src7, short src2, int acc);

SMLAWB dst, src1, src2

Signed multiply-accumulate word and bottom
halfword

int dst _smlawt(int src1, short src2, int acc);

SMLAWT dst, src1, src2

Signed multiply-accumulate word and top
halfword

int dst _smlisd(int src7, int src2, int acc);

SMLSD dst, src1, src2, acc

Performs two signed 16-bit multiplications on
the top and bottom halfwords of src1 and src2
and adds the difference of the results to acc.

int dst _smlsdx(int src?, int src2, int acc);

SMLSDX dst, src1, src2, acc

Same as _smisd except the halfwords in src2
are exchange before the multiplication.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler 123

v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

C/C++ Language Implementation

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-4. ARM Compiler Intrinsics (continued)

C/C++ Compiler Intrinsic

Assembly
Instruction

Description

long long dst _smilsld(long long acc, int srct,
int src2);

SMLSLD dst, src1, src2

Performs two 16-bit multiplication on the top
and bottom halfwords of src1 and src2 and
adds the difference of the results to the 64-bit
acc operand.

long long dst _smilsldx(long long acc, int srct,
int src2);

SMLSLDX dst, src1, src2

Same as _smisld except the halfwords in src2
are exchanged.

int dst _smmla(int src7 , int src2, int acc);

SMMLA dst, src1, src2 , acc

Performs a signed multiplication on src1 and
src2, extracts the most significant 32 bits of the
result, and adds an accumulate value.

int dst _smmlar(int src7, int src2, int acc);

SMMLAR dst, srct1, src2 , acc

Same as _smmla execpt the result is rounded
instead of being truncated.

int dst _smmls(int src?, int src2, int acc);

SMMLS dst, src1, src2, acc

Performs a signed multiplication on src1 and
src2, subtracts the result from an accumulate
value that is shifted left by 32 bits, and extracts
the most significant 32 bits of the result of the
subtraction.

int dst _smmlsr(int src7, int src2, int acc);

SMMLSR dst, srct, src2 , acc

Same as _smmls except the result is rounded
instead of being truncated.

int dst _smmul(int src7 , int src2 , int acc);

SMMUL dst, src1, src2, acc

Performs a signed 32-bit multiplication on src1
and src2 and extracts the most significant 32-
bits of the result.

int dst _smmulr(int src7, int src2 , int acc);

SMMULR dst, src1, src2, acc

Same as _smmul except the result is rounded
instead of being truncated.

int dst =_smpy(int src1, int src2);

SMULBB dst, src1, src2
QADD dst, dst, dst

Saturated multiply

int dst =_smsub(int src?, int src2);

SMULBB tmp, src1, src2
QDSUB dst, dst, tmp

Saturated multiply-subtract

int dst _smuad(int src?, int src2);

SMUAD dst, src1, src2

Performs two signed 16-bit multiplications on
the top and bottom halfwords and adds the
products.

int dst _smuadx(int src?, int src2);

SMUADX dst, src1, src2

Same as _smuad except the halfwords in src2
are exchange before the multiplication.

int dst =_smulbb(int src7 , int src2);

SMULBB dst, src1, src2

Signed multiply bottom halfwords

int dst =_smulbt(int src7 , int src2);

SMULBT dst, src1, src2

Signed multiply bottom and top halfwords

int dst =_smultb(int src1 , int src2);

SMULTB dst, srct, src2

Signed multiply top and bottom halfwords

int dst =_smultt(int src?, int src2);

SMULTT dst, src1, src2

Signed multiply top halfwords

int dst _smulwb(int src1, short src2, int acc);

SMULWB dst, src1, src2

Signed multiply word and bottom halfword

int dst _smulwt(int src?, short src2 , int acc);

SMULWT dst, src1, src2

Signed multiply word and top halfword

int dst _smusd(int src?, int src2);

SMUSD dst, src1, src2

Performs two signed 16-bit multiplications on
the top and bottom halfwords and subtracts the
products.

int dst _smusdx(int src? , int src2);

SMUSDX dst, src1, src2

Same as _smusd except the halfwords in src2
are exchanged before the multiplication.

double __sqrt(double);

VSQRT dst, src1

Return the square root of the specified double.
This intrinsic is directly replaced with the
VSQRT instruction if --fp_mode=relaxed. If strict
floating point mode is used, the function must
also set an errno if a domain error occurs.

float __sqrtf(float);

VSQRT dst, srct1

Return the square root of the specified float.
This intrinsic is directly replaced with the
VSQRT instruction if --fp_mode=relaxed. If strict
floating point mode is used, the function must
also set an errno if a domain error occurs.

124 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

C/C++ Language Implementation

Table 5-4. ARM Compiler Intrinsics (continued)

C/C++ Compiler Intrinsic

Assembly
Instruction

Description

int dst =_ssat16(int src , int bitpos);

SSAT16 dst, # bitpos

Performs two halfword saturations to a
selectable signed range specified by bitpos

int dst =_ssata(int src, int shift , int bitpos);

SSAT dst, # bitpos , src , ASR # shift

Right shifts src and saturates to a selectable
signed range specified by bitpos

int dst =_ssatl(int src, int shift, int bitpos);

SSAT dst, # bitpos , src , LSL # shift

Left shifts src and saturates to a selectable
signed range specified by bitpos

int dst =_ssub(int src1, int src2);

QSUB dst, src1, src2

Saturated subtract

int dst = _ssub16(int src1 , int src2);

SSUB16 dst, src1, src2

Performs two signed halfword subtractions

int dst = _ssub8(int src1 , int src2);

SSUBS dst, src1, src2

Performs four signed 8-bit subtractions

int dst = _ssubaddx(int src7 , int src2);

SSAX dst, src1, src2

Exchange halfwords of src2, subtract the top
halfwords and add the bottom halfwords

int status = _ _strex(unsigned int src , void* STREX status , src, dest Stores word (32-bit) data in memory address
dst);

int status = _ _strexb(unsigned char src, void* STREXB status , src, dest Stores byte data in memory address

dst);

int status = _ _strexd(unsigned long long src, STREXD status , src, dest Stores long long data in memory address
void* dst);

int status = _ _strexh(unsigned short src, void* STREXH status , src, dest Stores halfword (16-bit) data in memory
dst); address

int dst = _subc(int src1 , int src2);

SUBC dst, src1, src2

Subtract with carry

int dst _sxtab(int src7 , int src2, int rotamt);

SXTAB dst, src1, src2 , ROR # rotamt

Extracts an optionally rotated 8-bit value from
src2 and sign extends it to 32 bits, then adds
the value to src1. The rotation amount can be 0,
8, 16, or 24.

int dst _sxtab16(int src1, int src2, int rofamt);

SXTAB16 dst, src1, src2 , ROR #
rotamt

Extracts two optionally rotated 8-bit values from
src2 and sign extends them to 16 bits each,
then adds the values to the two 16-bit values in
src1. The rotation amount should be 0, 8, 16, or
24.

int dst _sxtah(int src7, int src2, int rotamt);

SXTAH dst, src1, src2, ROR # rotamt

Extracts an optionally rotated 16-bit value from
src2 and sign extends it to 32 bits, then adds
the result to src1. The rotation amount can be
0, 8, 16, or 32.

int dst _sxtb(int src1, int rotamt);

SXTB dst, src1, ROR # rotamt

Extracts an optionally rotated 8-bit value from
src1 and sign extends it to 32 bits. The rotation
amount can be 0, 8, 16, or 24.

int dst _sxtb16(int src? , int rotamt);

SXTAB16 dst, src1, ROR # rotamt

Extracts two optionally rotated 8-bit values from
src1 and sign extends them to 16-bits. The
rotation amount can be 0, 8, 16, or 24.

int dst _sxth(int src? , int rotamt);

SXTH dst, src1, ROR # rotamt

Extracts an optionally rotated 16-bit value from
src2 and sign extends it to 32 bits. The rotation
amount can be 0, 8, 16, or 24.

int dst = _uadd16(int src?, int src2);

UADD16 dst, src1, src2

Performs two unsigned halfword additions

int dst = _uadd8(int src7 , int src2);

UADDS8 dst, src1, src2

Performs four unsigned 8-bit additions

int dst = _uaddsubx(int src1 , int src2);

UASX dst, src1, src2

Exchange halfwords of src2, add the top
halfwords and subtract the bottom halfwords

int dst = _uhadd16(int src? , int src2);

UHADD16 dst, src1, src2

Performs two unsigned halfword additions and
halves the results

int dst = _uhadd8(int src1 , int src2);

UHADDS dst, srct1, src2

Performs four unsigned 8-bit additions and
halves the results

int dst = _uhsub16(int src7, int src2);

UHSUB16 dst, src1, src2

Performs two unsigned halfword subtractions
and halves the results

int dst = _uhsub8(int src?, int src2);

UHSUBS dst, src1, src2

Performs four unsigned 8-bit subtractions and
halves the results

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

125

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

C/C++ Language Implementation

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-4. ARM Compiler Intrinsics (continued)

C/C++ Compiler Intrinsic

Assembly
Instruction

Description

int dst = _umaal(long long acc, int srct , int
src2);

UMAAL dst?, dst2, src1, src2

Performs an unsigned 32-bit multiplication on
src1 and src2, then adds two unsigned 32-bit
values in acc.

int dst = _uqadd16(int src7 , int src2);

UQADD16 dst, srct, src2

Performs two unsigned halfword saturated
additions

int dst = _uqadd8(int src?, int src2);

UQADDS dst, src1, src2

Performs four unsigned saturated 8-bit
additions

int dst = _ugaddsubx(int src? , int src2);

UQASX dst, srct, src2

Exchange halfwords of src2, perform unsigned
saturated addition on the top halfwords and
unsigned saturated subtraction on the bottom
halfwords.

int dst = _uqgsub16(int src? , int src2);

UQSUB16 dst, src1, src2

Performs two unsigned saturated halfword
subtractions

int dst = _uqsub8(int src1 , int src2);

UQSUBS dst, srct, src2

Performs four unsigned saturated 8-bit
subtractions

int dst = _ugsubaddx(int src? , int src2);

UQSAX dst, srct, src2

Exchange halfwords of src2, perform unsigned
saturated subtraction on top halfwords and
unsigned saturated addition on bottom
halfwords

int dst = _usad8(int src1 , int src2);

USADS dst, src1, src2

Performs four unsigned 8-bit subtractions, and
adds the absolute value of the differences
together.

int dst =_usat16(int src, int bitpos);

USAT16 dst, # bitpos

Performs two halfword saturations to a
selectable unsigned range specified by bitpos

int dst =_usata(int src, int shift , int bitpos);

USAT dst, # bitpos , src , ASR # shift

Right shifts src and saturates to a selectable
unsigned range specified by bitpos

int dst =_usatl(int src, int shift , int bitpos);

USAT dst, # bitpos , src , LSL # shift

Left shifts src and saturates to a selectable
unsigned range specified by bitpos

int dst = _usub16(int src? , int src2);

USuUB16 dst, srct, src2

Performs two unsigned halfword subtractions

int dst = _usub8(int src1 , int src2);

USUBS dst, src1, src2

Performs four unsigned 8-bit subtractions

int dst = _usubaddx(int src1 , int src2);

USAX dst, src1, src2

Exchange halfwords of src2, subtract the top
halfwords and add the bottom halfwords

int dst _uxtab(int src1 , int src2 , int rotamt);

UXTAB dst, src1, src2 , ROR # rotamt

Extracts an optionally rotated 8-bit value from
src2 and zero extends it to 32 bits, then adds
the value to src1. The rotation amount can be 0,
8, 16, or 24.

int dst _uxtab16(int src?, int src2, int rotamt);

UXTAB16 dst, src1, src2, ROR #
rotamt

Extracts two optionally rotated 8-bit values from
src2 and zero extends them to 16 bits each,
then adds the values to the two 16-bit values in
src1. The rotation amount should be 0, 8, 16, or
24.

int dst _uxtah(int src? , int src2, int rotamt);

UXTAH dst, src1, src2 , ROR # rotamt

Extracts an optionally rotated 16-bit value from
src2 and zero extends it to 32 bits, then adds
the result to src1. The rotation amount can be
0, 8, 16, or 32.

int dst _uxtb(int src1 , int rotamt);

UXTB dst, src1, ROR # rotamt

Extracts an optionally rotated 8-bit value from
src2 and zero extends it to 32 bits. The rotation
amount can be 0, 8, 16, or 24.

int dst _uxtb16(int src?, int rotamt);

UXTB16 dst, src1, ROR # rotamt

Extracts two optionally rotated 8-bit values from
src1 and zero extends them to 16-bits. The
rotation amount can be 0, 8, 16, or 24.

int dst _uxth(int src7, int rotamt);

UXTH dst, src1, ROR # rotamt

Extracts an optionally rotated 16-bit value from
src2 and zero extends it to 32 bits. The rotation
amount can be 0, 8, 16, or 24.

126 ARM Optimizing C/C++ Compiler
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com C/C++ Language Implementation
Table 5-4. ARM Compiler Intrinsics (continued)
Assembly
C/C++ Compiler Intrinsic Instruction Description
void _ _wfe(void); WFE Wait for event. Save power by waiting for an
exception or event..
void _ _wfi(void); WFI Wait for interrupt. Enter standby, dormant or

shutdown mode, where an interrupt is required
to wake-up the processor.

In addition, the compiler supports many of the intrinsics described in the ARM C Language Extensions (ACLE)
specification. These intrinsics are applicable for the Cortex-M and Cortex-R processor variants. The ACLE
intrinsics are implemented in order to support the development of source code that can be compiled using
ACLE-compliant compilers from multiple vendors for a variety of ARM processors. A number of the intrinsics are
duplicates of intrinsics listed in the previous table but with slightly different names (such as one vs. two leading
underscores).

The compiler does not support all of the ACLE intrinsics listed in the ACLE specification. For example, the
__cls, __clsl, and __clsll ACLE intrinsics are not supported, because the CLS instruction is not available on the
Cortex-M or Cortex-R architectures.

In order to use the ACLE intrinsics, your code must include the provided arm acle.h header file. For

details about the ACLE intrinsics, see the ACLE specification. For information about which ACLE intrinsics

are supported, see the arm_acle.h file. Where applicable, the declarations of ACLE intrinsics that are not
supported are enclosed in comments in that header file along with a brief explanation of why the intrinsic is not
supported and a reference to the appropriate section in the ACLE specification where the intrinsic is described.

5.15 Object File Symbol Naming Conventions (Linknames)

Each externally visible identifier is assigned a unique symbol name to be used in the object file, a so-called
linkname. This name is assigned by the compiler according to an algorithm which depends on the name, type,
and source language of the symbol. This algorithm may add a prefix to the identifier (typically an underscore),
and it may mangle the name.

User-defined symbols in C code and in assembly code are stored in the same namespace, which means you

are responsible for making sure that your C identifiers do not collide with your assembly code identifiers. You
may have identifiers that collide with assembly keywords (for instance, register names); in this case, the compiler
automatically uses an escape sequence to prevent the collision. The compiler escapes the identifier with double
parallel bars, which instructs the assembler not to treat the identifier as a keyword. You are responsible for
making sure that C identifiers do not collide with user-defined assembly code identifiers.

Name mangling encodes the types of the parameters of a function in the linkname for a function. Name mangling
only occurs for C++ functions which are not declared 'extern "C". Mangling allows function overloading, operator
overloading, and type-safe linking. Be aware that the return value of the function is not encoded in the mangled
name, as C++ functions cannot be overloaded based on the return value.

For example, the general form of a C++ linkname for a 32-bit function named func is:
__func__F parmcodes
Where parmcodes is a sequence of letters that encodes the parameter types of func.

For this simple C++ source file:

int foo(int I){ } //global C++ function compiled in 16-bit mode ‘

This is the resulting assembly code:

‘ $_foo_Fi ‘

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 127
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

The linkname of foo is $__foo__Fi, indicating that foo is a 16-bit function that takes a single argument of type int.
To aid inspection and debugging, a name demangling utility is provided that demangles names into those found
in the original C++ source. See Chapter 8 for more information.

The mangling algorithm follows that described in the Itanium C++ ABI (http://www.codesourcery.com/cxx-abi/
abi.html).

int foo(int i) { } would be mangled "_Z3fooi"

Note
EABI Mode C++ Demangling: The EABI mode has a different C++ demangling scheme. For
instance, there is no prefix (either _ or $). Please refer to the ARM Information Center for details.

5.16 Changing the ANSI/ISO C/C++ Language Mode

The language mode command-line options determine how the compiler interprets your source code. You specify
one option to identify which language standard your code follows. You can also specify a separate option to
specify how strictly the compiler should expect your code to conform to the standard.

Specify one of the following language options to control the language standard that the compiler expects the
source to follow. The options are:

* ANSI/ISO C89 (--c89, default for C files)

* ANSI/ISO C99 (--c99, see Section 5.16.1.)

* ANSI/ISO C11 (--c11, see Section 5.16.2)

* |ISO C++14 (--c++14 , used for all C++ files , see Section 5.2.)

Use one of the following options to specify how strictly the code conforms to the standard:

* Relaxed ANSI/ISO (--relaxed_ansi or -pr) This is the default.
o Strict ANSI/ISO (--strict_ansi or -ps)

The default is relaxed ANSI/ISO mode. Under relaxed ANSI/ISO mode, the compiler accepts language
extensions that could potentially conflict with ANSI/ISO C/C++. Under strict ANSI mode, these language
extensions are suppressed so that the compiler will accept all strictly conforming programs. (See Section
5.16.3.)

If you want to link object files created with the TI CodeGen tools with object files generated by other compiler
tool chains, the ARM standard specifies that you should define the _AEABI_PORTABILITY_LEVEL preprocessor
symbol as follows before #including any standard header files, such as <stdlib.h>.

#define AEABI PORTABILITY LEVEL 1

This definition enables full portability. Defining the symbol to 0 specifies that the "C standard" portability level will
be used.

5.16.1 C99 Support (--c99)

The compiler supports the 1999 standard of C as standardized by the 1ISO. However, the following list of run-time
functions and features are not implemented or fully supported:

* inttypes.h
— wecstoimax() / westoumax()
+ stdio.h

— The %e specifier may produce "-0" when "0" is expected by the standard

— snprintf() does not properly pad with spaces when writing to a wide character array
+ stdlib.h

— vfscanf() / vscanf() / vsscanf() return value on floating point matching failure is incorrect
* wcharh

— getws() / fputws()
128 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.codesourcery.com/cxx-abi/abi.html
http://www.codesourcery.com/cxx-abi/abi.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

— mbrlen()

— mbsrtowcs()

— wecscat()

— wecschr()

— wesemp() / wesnemp()

— wecescepy() / wesnepy()

— wesftime()

— wcesrtombs()

— wecsstr()

— westok()

— wesxfrm()

— Wide character print / scan functions
— Wide character conversion functions

5.16.2 C11 Support (--c11)

The compiler supports the 2011 standard of C as standardized by the 1ISO. However, in addition to the list
in Section 5.16.1, the following run-time functions and features are not implemented or fully supported in C11
mode:

« threads.h
5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

Under relaxed ANSI/ISO mode (the default), the compiler accepts language extensions that could potentially
conflict with a strictly conforming ANSI/ISO C/C++ program. Under strict ANSI mode, these language extensions
are suppressed so that the compiler will accept all strictly conforming programs.

Use the --strict_ansi option when you know your program is a conforming program and it will not compile

in relaxed mode. In this mode, language extensions that conflict with ANSI/ISO C/C++ are disabled and the
compiler will emit error messages where the standard requires it to do so. Violations that are considered
discretionary by the standard may be emitted as warnings instead.

Examples:

The following is strictly conforming C code, but will not be accepted by the compiler in the default relaxed mode.
To get the compiler to accept this code, use strict ANSI mode. The compiler will suppress the interrupt keyword
language exception, and interrupt may then be used as an identifier in the code.

int main ()

{
int interrupt = 0;
return 0;

}

The following is not strictly conforming code. The compiler will not accept this code in strict ANSI mode. To get
the compiler to accept it, use relaxed ANSI mode. The compiler will provide the interrupt keyword extension and
will accept the code.

interrupt void isr(void);
int main ()

{

return 0;
}
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 129
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

The following code is accepted in all modes. The __interrupt keyword does not conflict with the ANSI/ISO C
standard, so it is always available as a language extension.

__interrupt void isr(void);
int main ()
{

return 0;

}

The default mode is relaxed ANSI. This mode can be selected with the --relaxed_ansi (or -pr) option. Relaxed
ANSI mode accepts the broadest range of programs. It accepts all Tl language extensions, even those which
conflict with ANSI/ISO, and ignores some ANSI/ISO violations for which the compiler can do something
reasonable. Some GCC language extensions described in Section 5.17 may conflict with strict ANSI/ISO
standards, but many do not conflict with the standards.

5.17 GNU , Clang, and ACLE Language Extensions

The GNU compiler collection (GCC) defines a number of language features not found in the ANSI/ISO C and
C++ standards. The definition and examples of these extensions (for GCC version 4.7) can be found at the GNU
web site, http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions. Most of these extensions
are also available for C++ source code.

The compiler also supports the following Clang macro extensions, which are described in the Clang 6
Documentation:

* _ has_feature (up to tests described for Clang 3.5)

* _ has_extension (up to tests described for Clang 3.5)
* _ has_include

* _ has_include_next

* _ has_builtin (see Section 5.17.6)

* _ has_attribute

In addition, the compiler supports many of the features described in the ARM C Language Extensions (ACLE)
specification. These features are applicable for the Cortex-M and Cortex-R processor variants. ACLE support
affects the pre-defined macros (Table 2-31), function attributes (Section 5.17.2), and intrinsics (Section 5.14) you
may use in C/C++ code. These features are implemented in order to support the development of source code
that can be compiled using ACLE-compliant compilers from multiple vendors for a variety of ARM processors.

5.17.1 Extensions

Most of the GCC language extensions are available in the TI compiler when compiling in relaxed ANSI mode
(--relaxed_ansi).

The extensions that the Tl compiler supports are listed in Table 5-5, which is based on the list of extensions
found at the GNU web site. The shaded rows describe extensions that are not supported.

Table 5-5. GCC Language Extensions

Extensions Descriptions

Statement expressions Putting statements and declarations inside expressions (useful for creating smart 'safe’ macros)

Local labels Labels local to a statement expression
Labels as values Pointers to labels and computed gotos
Nested functions As in Algol and Pascal, lexical scoping of functions
Constructing calls Dispatching a call to another function
Naming types(") Giving a name to the type of an expression
typeof operator typeof referring to the type of an expression
Generalized Ivalues Using question mark (?) and comma (,) and casts in Ivalues
Conditionals Omitting the middle operand of a ?: expression
long long Double long word integers and long long int type
130 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
https://clang.llvm.org/docs/LanguageExtensions.html
https://clang.llvm.org/docs/LanguageExtensions.html
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com C/C++ Language Implementation
Table 5-5. GCC Language Extensions (continued)
Extensions Descriptions
Hex floats Hexadecimal floating-point constants
Complex Data types for complex numbers
Zero length Zero-length arrays

Variadic macros

Macros with a variable number of arguments

Variable length

Arrays whose length is computed at run time

Empty structures

Structures with no members

Subscripting

Any array can be subscripted, even if it is not an Ivalue.

Escaped newlines

Slightly looser rules for escaped newlines

Multi-line strings(")

String literals with embedded newlines

Pointer arithmetic

Arithmetic on void pointers and function pointers

Initializers

Non-constant initializers

Compound literals

Compound literals give structures, unions, or arrays as values

Designated initializers

Labeling elements of initializers

Cast to union

Casting to union type from any member of the union

Case ranges

'Case 1 ... 9" and such

Mixed declarations

Mixing declarations and code

Function attributes

Declaring that functions have no side effects, or that they can never return

Attribute syntax

Formal syntax for attributes

Function prototypes

Prototype declarations and old-style definitions

C++ comments

C++ comments are recognized.

Dollar signs

A dollar sign is allowed in identifiers.

Character escapes

The character ESC is represented as \e

Variable attributes

Specifying the attributes of variables

Type attributes

Specifying the attributes of types

Alignment

Inquiring about the alignment of a type or variable

Inline

Defining inline functions (as fast as macros)

Assembly labels

Specifying the assembler name to use for a C symbol

Extended asm

Assembler instructions with C operands

Constraints

Constraints for asm operands

Wrapper headers

Wrapper header files can include another version of the header file using #include_next

Alternate keywords

Header files canuse __const__, _asm__, etc

Explicit reg vars

Defining variables residing in specified registers

Incomplete enum types

Define an enum tag without specifying its possible values

Function names

Printable strings which are the name of the current function

Return address

Getting the return or frame address of a function (limited support)

Other built-ins

Other built-in functions (see Section 5.17.6)

Vector extensions

Using vector instructions through built-in functions

Target built-ins

Built-in functions specific to particular targets

Pragmas

Pragmas accepted by GCC

Unnamed fields

Unnamed struct/union fields within structs/unions

Thread-local

Per-thread variables

Binary constants

Binary constants using the '0b' prefix.

(1) Feature defined for GCC 3.0; definition and examples at http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler 131
v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

http://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html#C-Extensions
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

5.17.2 Function Attributes

The following GCC function attributes are supported:

« alias

» aligned

* always_inline
e calls

* const

e constructor
* deprecated

» format

» format_arg
* interrupt

* malloc

¢ naked

e noinline

* noreturn

* pure

* section

» target

e unused

e used

* warn_unused_result
e weak

The following additional Tl-specific function attributes are supported:

* retain
¢ ramfunc

For example, this function declaration uses the alias attribute to make "my_alias" a function alias for the
"myFunc" function:

void my alias() _ attribute ((alias("myFunc")));

The aligned function attribute aligns the function using the specified alignment. The alignment must be a power
of 2.

The always_inline function attribute has the same effect as the FUNC_ALWAYS_INLINE pragma. See Section
5.11.12

The calls attribute has the same effect as the CALLS pragma, which is described in Section 5.11.1.

The format attribute is applied to the declarations of printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
vsnprintf, scanf, fscanf, vfscanf, vscanf, vsscanf, and sscanf in stdio.h. Thus when GCC extensions are enabled,
the data arguments of these functions are type checked against the format specifiers in the format string
argument and warnings are issued when there is a mismatch. These warnings can be suppressed in the usual
ways if they are not desired.

See Section 5.11.16 for more about using the interrupt function attribute.
The malloc attribute is applied to the declarations of malloc, calloc, realloc and memalign in stdlib.h.

The naked attribute identifies functions written as embedded assembly functions using asm statements. The
compiler does not generate prologue and epilog sequences for such functions. See Section 5.10.

The noinline function attribute has the same effect as the FUNC_CANNOT_INLINE pragma. See Section
5.11.13

132 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

The ramfunc attribute specifies that a function will be placed in and executed from RAM. The ramfunc attribute
allows the compiler to optimize functions for RAM execution, as well as to automatically copy functions to RAM
on flash-based devices. For example:

__attribute ((ramfunc))

(
void f(void) {

}

The --ramfunc=on option specifies that all functions compiled with this option are placed in and executed from
RAM, even if this function attribute is not used.

Newer Tl linker command files support the ramfunc attribute automatically by placing functions with this attribute
in the .Tl.ramfunc section. If you have a linker command file that does not include a section specification for

the .Tl.ramfunc section, you can modify the linker command file to place this section in RAM. See the ARM
Assembly Language Tools User's Guide for details on section placement.

The target attribute causes a function to be compiled in either ARM (32-bit) or Thumb (16-bit) mode. The target
attribute has the same effect as the CODE_STATE pragma. The following examples use the target attribute.

~_attribute ((target("arm"))) void foo(int argl, int arg2)
__attribute ((target ("thumb"))) void foo(int argl, int arg2)

Note that the "pcs" attribute described in the ACLE specification is not supported.

The retain attribute has the same effect as the RETAIN pragma (Section 5.11.27). That is, the section that
contains the function will not be omitted from conditionally linked output even if it is not referenced elsewhere in
the application.

The section attribute when used on a function has the same effect as the CODE_SECTION pragma. See
Section 5.11.4

The weak attribute has the same effect as the WEAK pragma (Section 5.11.32).
5.17.3 For Loop Attributes

If you are using C++, there are several Tl-specific attributes that can be applied to loops. No corresponding
syntax is available in C. The following TI-specific attributes have the same function as their corresponding
pragmas:

e Tl::must_iterate
e Tl:unroll

See Section 5.11.18.1 for an example that uses a for loop attribute.
5.17.4 Variable Attributes

The following variable attributes are supported:

« aligned

* deprecated

* location

* mode

* noinit

* packed

* persistent

e retain

e section

* transparent_union

e unused

e used

« weak
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 133
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://developer.arm.com/products/software-development-tools/compilers/arm-compiler-5/docs/101028/latest/1-preface
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

The aligned attribute used on a variable has the same effect as the DATA_ALIGN pragma. See Section 5.11.6

The location attribute has the same effect as the LOCATION pragma. See Section 5.11.17. For example:

__attribute ((location(0x100))) extern struct PERIPH peripheral;

The noinit and persistent attributes apply to the ROM initialization model and allow an application to avoid
initializing certain global variables during a reset. The alternative RAM initialization model initializes variables
only when the image is loaded; no variables are initialized during a reset. See the "RAM Model vs. ROM Model"
section and its subsections in the ARM Assembly Language Tools User's Guide.

The noinit attribute can be used on uninitialized variables; it prevents those variables from being set to 0
during a reset. The persistent attribute can be used on initialized variables; it prevents those variables from
being initialized during a reset. By default, variables marked noinit or persistent will be placed in sections
named .TI.noinit and .TI.persistent , respectively. The location of these sections is controlled by
the linker command file. Typically .Tl.persistent sections are placed in FRAM for devices that support FRAM
and .Tl.noinit sections are placed in RAM. Also see Section 5.11.19.

The packed attribute may be applied to individual fields within a struct or union. The packed attribute is
supported on all ARM targets. See the description of the --unaligned_access option for more information on how
the compiler accesses unaligned data.

The retain attribute has the same effect as the RETAIN pragma (Section 5.11.27). That is, the section that
contains the variable will not be omitted from conditionally linked output even if it is not referenced elsewhere in
the application.

The section attribute when used on a variable has the same effect as the DATA_SECTION pragma. See
Section 5.11.7

The used attribute is defined in GCC 4.2 (see http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-
Attributes.html#Variable-Attributes).

The weak attribute has the same effect as the WEAK pragma (Section 5.11.32).
5.17.5 Type Attributes

The following type attributes are supported:

« aligned

» deprecated

* packed

» transparent_union
e unused

The packed attribute is supported for struct and union types. It is supported on all ARM targets if the
--relaxed_ansi option is used. See the description of the --unaligned_access option for more information on
how the compiler accesses unaligned data.

Members of a packed structure are stored as closely to each other as possible, omitting additional bytes of
padding usually added to preserve word-alignment. For example, assuming a word-size of 4 bytes ordinarily has
3 bytes of padding between members c1 and i, and another 3 bytes of trailing padding after member c2, leading
to a total size of 12 bytes:

‘ struct unpacked struct { char cl; int i; char c2;}; ‘

However, the members of a packed struct are byte-aligned. Thus the following does not have any bytes of
padding between or after members and totals 6 bytes:

‘ struct _ attribute ((_ packed_)) packed struct { char cl; int i; char c2; }; ‘

Subsequently, packed structures in an array are packed together without trailing padding between array
elements.

134 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Variable-Attributes.html#Variable-Attributes
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com C/C++ Language Implementation

Bit fields of a packed structure are bit-aligned. The byte alignment of adjacent struct members that are not bit
fields does not change. However, there are no bits of padding between adjacent bit fields.

The "packed" attribute can be applied only to the original definition of a structure or union type. It cannot be
applied with a typedef to a non-packed structure that has already been defined, nor can it be applied to the
declaration of a struct or union object. Therefore, any given structure or union type can only be packed or
non-packed, and all objects of that type will inherit its packed or non-packed attribute.

The "packed" attribute is not applied recursively to structure types that are contained within a packed structure.
Thus, in the following example the member s retains the same internal layout as in the first example above.
There is no padding between c and s, so s falls on an unaligned boundary:

struct _ attribute_ ((_ packed_)) outer_ packed struct { char c; struct unpacked struct s; };

It is illegal to implicitly or explicitly cast the address of a packed struct member as a pointer to any non-packed
type except an unsigned char. In the following example, p1, p2, and the call to foo are all illegal.

void foo (int *param);
struct packed struct ps;
int *pl = &ps.i;

int *p2 = (int *)&ps.i;
foo (&ps.1i);

However, it is legal to explicitly cast the address of a packed struct member as a pointer to an unsigned char:

unsigned char *pc = (unsigned char *)é&ps.i;

The Tl compiler also supports an unpacked attribute for an enumeration type to allow you to indicate that the
representation is to be an integer type that is no smaller than int; in other words, it is not packed.

5.17.6 Built-In Functions
The following built-in functions are supported:

e _ builtin_abs()

e builtin_constant_p()

e _ builtin_expect()
__builtin_fabs()

e _ builtin_fabsf()

e _ builtin_frame_address()
e _ builtin_labs()

* _ builtin_llabs()

e _ builtin_sqrt()

e builtin_sqrtf()

* _ builtin_memcpy()

e builtin_return_address()

The __ builtin_frame_address() function always returns zero unless the argument is a constant zero.

The __ builtin_sqrt() and __ builtin_sqrtf() functions are supported only when hardware floating point support is
enabled. In addition, the __ builtin_sqrt() function is not supported if --float_support is set to fpv4spd16.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 135
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C/C++ Language Implementation www.ti.com

When calling built-in functions that may be unavailable at run-time, use the Clang __has_builtin macro as shown
in the following example to make sure the function is supported:

#if _ has_builtin(_ builtin_sqgrt)

double estimate = _ builtin sqrt(x);

#else

double estimate = fast approximate sqrt(x);
#endif

If the built-in function is supported and the device has the appropriate hardware support, the built-in function will
invoke the hardware support.

If the built-in function is supported but the device does not have the appropriate hardware enabled, the built-in
function will usually become a call to an RTS library function. For example, __ builtin_sqrt() will become a call to
the library function sqrt().

The __ builtin_return_address() function always returns zero.
5.18 AUTOSAR

The ARM compiler supports the AUTOSAR 3.1 standard by providing the following header files:
* Compiler.h

* Platform_Types.h

» Std_Types.h

» Compiler_Cfg.h

Compiler_Cfg.h is an empty file, the contents of which should be provided by the end user. The provided file
contains information on what the contents of the file should look like. It is included by Compiler.h. If a new
Compiler_Cfg.h file is provided by the user, its include path must come before the path to the run-time-support
header files.

More information on AUTOSAR can be found at http://www.autosar.org.
5.19 Compiler Limits

Due to the variety of host systems supported by the C/C++ compiler and the limitations of some of these
systems, the compiler may not be able to successfully compile source files that are excessively large or
complex. In general, exceeding such a system limit prevents continued compilation, so the compiler aborts
immediately after printing the error message. Simplify the program to avoid exceeding a system limit.

Some systems do not allow filenames longer than 500 characters. Make sure your filenames are shorter than
500.

The compiler has no arbitrary limits but is limited by the amount of memory available on the host system.

On smaller host systems such as PCs, the optimizer may run out of memory. If this occurs, the optimizer
terminates and the shell continues compiling the file with the code generator. This results in a file compiled with
no optimization. The optimizer compiles one function at a time, so the most likely cause of this is a large or
extremely complex function in your source module. To correct the problem, your options are:

* Don't optimize the module in question.

 Identify the function that caused the problem and break it down into smaller functions.

« Extract the function from the module and place it in a separate module that can be compiled without
optimization so that the remaining functions can be optimized.

136 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.autosar.org
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 6
Run-Time Environment

i3 TEXAS INSTRUMENTS

This chapter describes the ARM C/C++ run-time environment. To ensure successful execution of C/C++
programs, it is critical that all run-time code maintain this environment. It is also important to follow the guidelines
in this chapter if you write assembly language functions that interface with C/C++ code.

6.1 MEMIOKY IMIOTEIottt ettt et e ekt et et et e et e a2 s st a2 at et e 4a e e a2k e e 2 e mn e e e e R et e e s e e e e nnneeanneeean 138
6.2 ODBJECt REPIESENEALION. ... ittt ettt ettt e e a et e ettt e e b et e e aa b et e eaae e e e eane e e anbe e e nnne e e anneeeanbaeenan 140
6.3 ReGISTEr CONVENTIONS ...ttt e et e e e e ettt et e e e e s et e e e e eeaantaeeeee e nsbeeeeeeaannsteaaeeeansaeaeaeannsnnees 147
6.4 Function Structure and Calling CoONVENtIONS.cooiiiiiiiiiiiiie et e et e e see e s e e e sneee e e 149
6.5 Accessing Linker Symbols in C and CH... ...t e et e e et e e aeeeeanteeeeaae e e eneeeaanneeen 152
6.6 Interfacing C and C++ With Assembly LanQuUage.................ooiiiiiiiiiiiiii e e e e e e e 152
6.7 INEErTUPt HANAIING.ottt ettt e et e et e e bt e et mt et e s e e e e bne e e nte e e nnne e e annee s 155
6.8 Intrinsic Run-Time-Support Arithmetic and Conversion Routines.................ccccooiiiiiiiiiiiiii e 159
6.9 BUIIt-IN FUNCLIONS. ...ttt ettt e e ha e e e e bb e e e at et e sab e e e e bt e e e aab et e sabe e e e anb e e e enneeeeannes 160
6.10 System INHTAlIZAtION..............o ettt e et e e et e e s bt e e e nbe e e ettt e e an e e e anbeeeeneeeennnes 160
6.11 Dual-State Interworking Under TIABI (Deprecated)................ooiiiiiiiiiiiiiee e e e e e sneeeeaeeeeenees 169
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 137
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.1 Memory Model

The ARM compiler treats memory as a single linear block that is partitioned into subblocks of code and data.
Each subblock of code or data generated by a C program is placed in its own continuous memory space. The
compiler assumes that a full 32-bit address space is available in target memory.

Note
The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and data into target memory.
The compiler assumes nothing about the types of memory available, about any locations not available
for code or data (holes), or about any locations reserved for I/O or control purposes. The compiler
produces relocatable code that allows the linker to allocate code and data into the appropriate
memory spaces. For example, you can use the linker to allocate global variables into on-chip RAM

or to allocate executable code into external ROM. You can allocate each block of code or data
individually into memory, but this is not a general practice (an exception to this is memory-mapped /O,
although you can access physical memory locations with C/C++ pointer types).

6.1.1 Sections

The compiler produces relocatable blocks of code and data called sections, which are allocated in memory in
a variety of ways to conform to a various system configurations. For information about sections and allocating
them, see the introductory object file information in the ARM Assembly Language Tools User's Guide.

There are two basic types of sections:

» Initialized sections contain data or executable code. Initialized sections are usually read-only; exceptions
are noted below. The C/C++ compiler creates the following initialized sections:

— The .binit section contains boot time copy tables. For details on BINIT, see the ARM Assembly Language
Tools User's Guide.

— The .init_array section contains global constructor tables.

— The .ovly section contains copy tables for unions in which different sections have the same run address.

— The .data section contains initialized global and static variables. This section is writable.

— The .const section contains read-only data, typically string constants and static-scoped objects defined
with the C/C++ qualifier const. Note that not all static-scoped objects marked "const" are placed in
the .const section (see Section 5.7.1).

— The .text section contains all the executable code. It also contains string literals, switch tables, and
compiler-generated constants. This section is usually read-only. Note that some string literals may instead
be placed in .const:.string. The placement of string literals depends on the size of the string and the use of
the --embedded_constants option.

— The .Tl.crctab section contains CRC checking tables.

» Uninitialized sections reserve space in memory (usually RAM). A program can use this space at run time to
create and store variables. The compiler creates the following uninitialized sections:

— For EABI only, the .bss section reserves space for uninitialized global and static variables. Uninitialized
variables that are also unused are usually created as common symbols (unless you specify --common=off)
instead of being placed in .bss so that they can be excluded from the resulting application.

— The .stack section reserves memory for the C/C++ software stack.

— The .sysmem section reserves space for dynamic memory allocation. This space is used by dynamic
memory allocation routines, such as malloc(), calloc(), realloc(), or new(). If a C/C++ program does not
use these functions, the compiler does not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. You can instruct the compiler to create
additional sections by using the CODE_SECTION and DATA_SECTION pragmas (see Section 5.11.4 and
Section 5.11.7).

The linker takes the individual sections from different object files and combines sections that have the same
name. The resulting output sections and the appropriate placement in memory for each section are listed in

138 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

Table 6-1. You can place these output sections anywhere in the address space as needed to meet system
requirements.

Table 6-1. Summary of Sections and Memory Placement

Section Type of Memory Section Type of Memory
.bss RAM .pinit ROM or RAM
.cinit ROM or RAM .stack RAM

.const ROM or RAM .sysmem RAM

.data RAM text ROM or RAM
.init_array ROM or RAM

You can use the SECTIONS directive in the linker command file to customize the section-allocation process. For
more information about allocating sections into memory, see the linker description chapter in the ARM Assembly
Language Tools User's Guide.

6.1.2 C/C++ System Stack
The C/C++ compiler uses a stack to:

» Allocate local variables
» Pass arguments to functions
» Save register contents

The run-time stack grows from the high addresses to the low addresses. The compiler uses the R13 register to
manage this stack. R13 is the stack pointer (SP), which points to the next unused location on the stack.

The linker sets the stack size, creates a global symbol, Tl STACK_SIZE, and assigns it a value equal to the
stack size in bytes. The default stack size is 2048 bytes. You can change the stack size at link time by using
the --stack_size option with the linker command. For more information on the --stack_size option, see the linker
description chapter in the ARM Assembly Language Tools User's Guide.

At system initialization, SP is set to a designated address for the top of the stack. This address is the first
location past the end of the .stack section. Since the position of the stack depends on where the .stack section is
allocated, the actual address of the stack is determined at link time.

The C/C++ environment automatically decrements SP at the entry to a function to reserve all the space
necessary for the execution of that function. The stack pointer is incremented at the exit of the function to
restore the stack to the state before the function was entered. If you interface assembly language routines to
C/C++ programs, be sure to restore the stack pointer to the same state it was in before the function was entered.

For more information about using the stack pointer, see Section 6.3; for more information about the stack, see
Section 6.4.

Note
Stack Overflow: The compiler provides no means to check for stack overflow during compilation or
at run time. A stack overflow disrupts the run-time environment, causing your program to fail. Be sure
to allow enough space for the stack to grow. You can use the --entry_hook option to add code to the
beginning of each function to check for stack overflow; see Section 2.15.

6.1.3 Dynamic Memory Allocation

The run-time-support library supplied with the ARM compiler contains several functions (such as malloc, calloc,
and realloc) that allow you to allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem section. You can set the size

of the .sysmem section by using the --heap_size=size option with the linker command. The linker also creates a
global symbol, Tl SYSMEM_SIZE, and assigns it a value equal to the size of the heap in bytes. The default
size is 2048 bytes. For more information on the --heap_size option, see the linker description chapter in the ARM
Assembly Language Tools User's Guide.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 139
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

If you use any C 1/O function, the RTS library allocates an I/O buffer for each file you access. This buffer will be
a bit larger than BUFSIZ, which is defined in stdio.h and defaults to 256. Make sure you allocate a heap large
enough for these buffers or use setvbuf to change the buffer to a statically-allocated buffer.

Dynamically allocated objects are not addressed directly (they are always accessed with pointers) and the
memory pool is in a separate section (.sysmem). Therefore, the dynamic memory pool size may be limited only
by the amount of memory in your system. To conserve space in the .bss section, you can allocate large arrays
from the heap instead of defining them as global or static. For example, instead of a definition such as:

struct big table[100];

Use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc (100*sizeof (struct big));

When allocating from a heap, make sure the size of the heap is large enough for the allocation. This is
particularly important when allocating variable-length arrays.

6.2 Object Representation

For general information about data types, see Section 5.5. This section explains how various data objects are
sized, aligned, and accessed.

6.2.1 Data Type Storage
Table 6-2 lists register and memory storage for various data types:

Table 6-2. Data Representation in Registers and Memory
Register Storage Memory Storage
Bits 0-7 of register(!)
Bits 0-7 of register
Bits 0-15 of register(")

Data Type

char, signed char 8 bits aligned to 8-bit boundary

8 bits aligned to 8-bit boundary

16 bits aligned to 16-bit (halfword) boundary
16 bits aligned to 16-bit (halfword) boundary
32 bits aligned to 32-bit (word) boundary

32 bits aligned to 32-bit (word) boundary

32 bits aligned to 32-bit (word) boundary

32 bits aligned to 32-bit (word) boundary

unsigned char, bool

short, signed short

unsigned short, wchar_t Bits 0-15 of register
int, signed int Bits 0-31 of register
unsigned int Bits 0-31 of register
long, signed long Bits 0-31 of register
unsigned long Bits 0-31 of register

long long Even/odd register pair

unsigned long long
float

double

long double

struct

array

pointer to data member

Even/odd register pair
Bits 0-31 of register
Register pair

Register pair

Members stored as individual types require.

Members stored as individual types require.

Bits 0-31 of register

64 bits aligned to 32-bit (word) boundary(®
32 bits aligned to 32-bit (word) boundary

64 bits aligned to 32-bit (word) boundary®
64 bits aligned to 32-bit (word) boundary(®

Members are stored as their individual types
require; aligned according to the member with the
most restrictive alignment requirement.

)
)
)
64 bits aligned to 32-bit (word) boundary(@
)
)
)

Members are stored as their individual types
require; aligned to 32-bit (word) boundary. All
arrays inside a structure are aligned according to
the type of each element in the array.

32 bits aligned to 32-bit (word) boundary

pointer to member function Components stored as individual types require 64 bits aligned to 32-bit (word) boundary

(1) Negative values are sign-extended to bit 31.
(2) 64-bit data is aligned on a 64-bit boundary.

For details about the size of an enum type, see Table 5-2.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

140 ARM Optimizing C/C++ Compiler
v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.2.1.1 char and short Data Types (signed and unsigned)

The char and unsigned char data types are stored in memory as a single byte and are loaded to and stored from
bits 0-7 of a register (see Figure 6-1). Objects defined as short or unsigned short are stored in memory as two
bytes at a halfword (2 byte) aligned address and they are loaded to and stored from bits 0-15 of a register (see
Figure 6-1).

Figure 6-1. Char and Short Data Storage Format
Signed 8-bit char

MS LS

S§s S S S S 8§ S 8§ S 8§ S S S 8 S S S8 S S S S S S s s{s o o I 1 1 1

31 7 0

Unsigned 8-bit char

MS LS

o o0 o o o o o o o0 o o0 0 0 0O 0000000 ©O0O©O0OW©ODOIUUYUUUUUwuyu

31 7 0

Signed 16-bit short

MS LS

s §$ S S8 S8 S 8 s s sS S S sSsS s s s|{s I o o o 1o o o | | 1 11

31 15 0

Unsigned 16-bit short

MS LS

0o o 0 0 0 O0OOOOOOOTOODODOOIUUUVUUUUUUUUU U U VU Uuwu

31 15 0

LEGEND: S = sign, | = signed integer, U = unsigned integer, MS = most significant, LS = least significant

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 141
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.2.1.2 float, int, and long Data Types (signed and unsigned)

The int, unsigned int, float, long and unsigned long data types are stored in memory as 32-bit objects at word (4
byte) aligned addresses. Objects of these types are loaded to and stored from bits 0-31 of a register, as shown
in Figure 6-2. In big-endian mode, 4-byte objects are loaded to registers by moving the first byte (that is, the
lower address) of memory to bits 24-31 of the register, moving the second byte of memory to bits 16-23, moving
the third byte to bits 8-15, and moving the fourth byte to bits 0-7. In little-endian mode, 4-byte objects are loaded
to registers by moving the first byte (that is, the lower address) of memory to bits 0-7 of the register, moving the
second byte to bits 8-15, moving the third byte to bits 16-23, and moving the fourth byte to bits 24-31.

Figure 6-2. 32-Bit Data Storage Format

Single-precision floating char

MS LS

‘S‘EEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

31 23 0

Signed 32-bit integer or long char

MS LS
‘ S ‘ I e e e e e e e e
31 0

Unsigned 32-bit integer or long

MS LS

u uuvuuvuuvuuvuvuvuvuuvuvuuvuuvuuvuuvuuvuuvuuvuuvuuvuuvUuyvuuyvUuyvuuvUuuuuyuuyuuuuUuuu Uy

31 0

LEGEND: S = sign, M = Mantissa, U = unsigned integer, E = exponent, | = signed integer, MS = most significant, LS = least significant

142 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.2.1.3 double, long double, and long long Data Types (signed and unsigned)

Double, long double, long long and unsigned long long data types are stored in memory in a pair of registers and
are always referenced as a pair. These types are stored as 64-bit objects at word (4 byte) aligned addresses.
For FPA mode, the word at the lowest address contains the sign bit, the exponent, and the most significant part
of the mantissa. The word at the higher address contains the least significant part of the mantissa. This is true
regardless of the endianness of the target. For VFP mode, the words are ordered based upon the endianness of

the target.

Objects of this type are loaded into and stored in register pairs, as shown in the following figure. The most
significant memory word contains the sign bit, exponent, and the most significant part of the mantissa. The least
significant memory word contains the least significant part of the mantissa.

Figure 6-3. Double-Precision Floating-Point Data Storage Format
Address x

MS

‘S‘EEEEEEEEEEEEMMMMMMMMMMMMMMMMMMM

31 20 0

Address x+ 4

LS

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

31 0

LEGEND: S = sign, M = mantissa, E = exponent, MS = most significant, LS = least significant

6.2.1.4 Pointer to Data Member Types

Pointer to data member objects are stored in memory like an unsigned int (32 bit) integral type. Its value is the
byte offset to the data member in the class, plus 1. The zero value is reserved to represent the NULL pointer to

the data member.
6.2.1.5 Pointer to Member Function Types
Pointer to member function objects are stored as a structure with three members, and the layout is equivalent to:

struct {
short int d;
short int i;
union {
void (f) ();
long 0; 1}

bi

The parameter d is the offset to be added to the beginning of the class object for this pointer. The parameter |

is the index into the virtual function table, offset by 1. The index enables the NULL pointer to be represented. Its
value is -1 if the function is non-virtual. The parameter f is the pointer to the member function if it is non-virtual,
when | is 0. The 0 is the offset to the virtual function pointer within the class object.

6.2.1.6 Structure and Array Alignment

Structures are aligned according to the member with the most restrictive alignment requirement. Structures are
padded so that the size of the structure is a multiple of its alignment. Arrays are always word aligned. Elements
of arrays are stored in the same manner as if they were individual objects.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 143
Submit Document Feedback v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.2.2 Bit Fields

Bit fields are the only objects that are packed within a byte. That is, two bit fields can be stored in the same byte.
Bit fields can range in size from 1 to 32 bits, but they never span a 4-byte boundary.

For big-endian mode, bit fields are packed into registers from most significant bit (MSB) to least significant bit
(LSB) in the order in which they are defined. Bit fields are packed in memory from most significant byte (MSbyte)
to least significant byte (LSbyte). For little-endian mode, bit fields are packed into registers from the LSB to the
MSB in the order in which they are defined, and packed in memory from LSbyte to MSbyte.

Here are some details about how bit fields are handled:

» Plain int bit fields are unsigned. Consider the following C code:

struct st

{

int a:5;

foo ()
{
if (S.a < 0)
bar();

}

In this example, bar () is never called as bit field 'a’ is unsigned. Use signed int if you need a signed bit field.
« Bit fields of type long long are supported.
» Bit fields are treated as the declared type.
* The size and alignment of the struct containing the bit field depends on the declared type of the bit field. For
example, consider the struct:

struct st {int a:4};

This struct uses up 4 bytes and is aligned at 4 bytes.
* Unnamed bit fields affect the alignment of the struct or union. For example, consider the struct:

struct st{char a:4; int :22;};

This struct uses 4 bytes and is aligned at a 4-byte boundary.
« Bit fields declared volatile are accessed according to the bit field's declared type. A volatile bit field reference
generates exactly one reference to its storage; multiple volatile bit field accesses are not merged.

144 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Run-Time Environment

Figure 6-4 illustrates bit-field packing, using the following bit field definitions:

struct{
int
int
int
int
int
yx;

0

HO QW

27
01
:3
12
:9

A0 represents the least significant bit of the field A; A1 represents the next least significant bit, etc. Again,
storage of bit fields in memory is done with a byte-by-byte, rather than bit-by-bit, transfer.

Figure 6-4. Bit-Field Packing in Big-Endian and Little-Endian Formats

Big-endian register

MS

LS

31 0
Big-endian memory
Byte 0 Byte 1 Byte 2 Byte 3
A B B B B c C D E E|E E E E E E X
6 5 4 3 2 1 0 8 7 6 5 4 1 0 1 0 8 7|6 5 4 3 2 0 X
Little-endian register
MS LS
X E D C B A A
X 8 7 6 5 4 3 0o 1 0 2 6 5 4 3 2 0 6 5 4 3 2 1 0
31 0
Little-endian memory
Byte 0 Byte 1 Byte 2 Byte 3
A A A A D D C C C X E

LEGEND: X = not used, MS = most significant, LS = least significant

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

ARM Optimizing C/C++ Compiler 145
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.2.3 Character String Constants

In C, a character string constant is used in one of the following ways:

To initialize an array of characters. For example:

"

char s[] = "abc";

When a string is used as an initializer, it is simply treated as an initialized array; each character is a separate
initializer. For more information about initialization, see Section 6.10.
In an expression. For example:

‘ strcpy (s, "abc");

When a string is used in an expression, the string itself is defined in the .const section with the .string
assembler directive, along with a unique label that points to the string; the terminating 0 byte is included.
For example, the following lines define the string abc, and the terminating 0 byte (the label SL5 points to the
string):

.sect ".const"
SL5: .string "abc",0

String labels have the form SLn, where n is a number assigned by the compiler to make the label unique.
The number begins at 0 and is increased by 1 for each string defined. All strings used in a source module are
defined at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler uses this label to reference the
string expression.

Because strings are stored in the .const section (possibly in ROM) and shared, it is bad practice for a
program to modify a string constant. The following code is an example of incorrect string use:

const char *a = "abc"
all] = "x'; /* Incorrect! undefined behavior */
146 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.3 Register Conventions

Strict conventions associate specific registers with specific operations in the C/C++ environment. If you plan to
interface an assembly language routine to a C/C++ program, you must understand and follow these register
conventions.

The register conventions dictate how the compiler uses registers and how values are preserved across function
calls. The following table shows the types of registers affected by these conventions. The "Register Usage"
table summarizes how the compiler uses registers and whether their values are preserved across calls. For
information about how values are preserved across calls, see Section 6.4.

Table 6-3. How Register Types Are Affected by the Conventions

Register Type Description

Argument register Passes arguments during a function call

Return register Holds the return value from a function call

Expression register Holds a value

Argument pointer Used as a base value from which a function's parameters (incoming
arguments) are accessed

Stack pointer Holds the address of the top of the software stack

Link register Contains the return address of a function call

Program counter Contains the current address of code being executed

Table 6-4. Register Usage

Register Alias Usage Preserved by Function’

RO A1 Argument register, return register, expression register Parent

R1 A2 Argument register, return register, expression register Parent

R2 A3 Argument register, expression register Parent

R3 A4 Argument register, expression register Parent

R4 V1 Expression register Child

R5 V2 Expression register Child

R6 V3 Expression register Child

R7 V4, AP Expression register, argument pointer Child

R8 V5 Expression register Child

R9 V6 Expression register Child

R10 V7 Expression register Child

R11 V8 Expression register Child

R12 V9, 1P Expression register, instruction pointer Parent

R13 SP Stack pointer Child?

R14 LR Link register, expression register Child

R15 PC Program counter N/A

CPSR Current program status register Child

SPSR Saved program status register Child
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 147
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Run-Time Environment

13 TEXAS
INSTRUMENTS

www.ti.com

Table 6-5. VFP Register Usage

32-Bit Register 64-Bit Register Usage

Preserved by Function’

FPSCR Status register N/A
SO DO Floating-point expression, return values, pass arguments N/A
S1
S2 D1 Floating-point expression, return values, pass arguments N/A
S3
S4 D2 Floating-point expression, return values, pass arguments N/A
S5
S6 D3 Floating-point expression, return values, pass arguments N/A
S7
S8 D4 Floating-point expression, pass arguments N/A
S9
S10 D5 Floating-point expression, pass arguments N/A
S11
S12 D6 Floating-point expression, pass arguments N/A
S13
S14 D7 Floating-point expression, pass arguments N/A
S15
S16 D8 Floating-point expression Child
S17
S18 D9 Floating-point expression Child
S19
S20 D10 Floating-point expression Child
S21
S22 D11 Floating-point expression Child
S23
S24 D12 Floating-point expression Child
S25
S26 D13 Floating-point expression Child
S27
S28 D14 Floating-point expression Child
S29
S30 D15 Floating-point expression Child
S31
D16-D31 Floating-point expression
148 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I3 TEXAS
INSTRUMENTS
www.ti.com Run-Time Environment
Table 6-6. Neon Register Usage
64-Bit Register Quad Register Usage Preserved by Function’
DO Qo0 SIMD register N/A
D1
D2 Q1 SIMD register N/A
D3
D4 Q2 SIMD register N/A
D5
D6 Q3 SIMD register N/A
D7
D8 Q4 SIMD register Child
D9
D10 Q5 SIMD register Child
D11
D12 Q6 SIMD register Child
D13
D14 Q7 SIMD register Child
D15
D16 Q8 SIMD register N/A
D17
D18 Q9 SIMD register N/A
D19
D20 Q10 SIMD register N/A
D21
D22 Qn SIMD register N/A
D23
D24 Q12 SIMD register N/A
D25
D26 Q13 SIMD register N/A
D27
D28 Q14 SIMD register N/A
D29
D30 Q15 SIMD register N/A
D31
FPSCR Status register N/A

6.4 Function Structure and Calling Conventions

The C/C++ compiler imposes a strict set of rules on function calls. Except for special run-time support functions,
any function that calls or is called by a C/C++ function must follow these rules. Failure to adhere to these rules
can disrupt the C/C++ environment and cause a program to fail.

The following sections use this terminology to describe the function-calling conventions of the C/C++ compiler:

Argument block. The part of the local frame used to pass arguments to other functions. Arguments are
passed to a function by moving them into the argument block rather than pushing them on the stack. The
local frame and argument block are allocated at the same time.

Register save area. The part of the local frame that is used to save the registers when the program calls the
function and restore them when the program exits the function.

Save-on-call registers. Registers R0-R3 and R12 (alternate names are A1-A4 and V9). The called function
does not preserve the values in these registers; therefore, the calling function must save them if their values
need to be preserved.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 149
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

+ Save-on-entry registers. Registers R4-R11 and R14 (alternate names are V1-V8 and LR). It is the called
function's responsibility to preserve values in these registers. If the called function modifies these registers, it
saves them when it gains control and preserves them when it returns control to the calling function.

For details on the calling conventions in EABI mode or when using a VFP coprocessor, refer to the EABI
documentation located in the ARM Information Center.

Figure 6-5 illustrates a typical function call. In this example, arguments are passed to the function, and the
function uses local variables and calls another function. The first four arguments are passed to registers R0O-R3.
This example also shows allocation of a local frame and argument block for the called function. Functions that
have no local variables and do not require an argument block do not allocate a local frame.

Move arguments to

argument block; Allocate new frame and

Before call call function argument block
Low Low Low
Callee’s +— gp
argument
block
Callee’s
local variables
Register
save area
Caller’s ¢ SP +—Sp «— ap
argument Argument 5.1 Argument 1 - register RO | Argument 5...
block argument n Argument 2 > register R1 | argument n
} , Argument 3 - register R2)
CaIIe_rs Callelrs Argument 4 - register R3 Callelrs
local variables local variables local variables
) Register) Register) Register
High | save area High | save area High save area

Legend: AP: argumentpointer
SP: stack pointer

Figure 6-5. Use of the Stack During a Function Call

6.4.1 How a Function Makes a Call
A function (parent function) performs the following tasks when it calls another function (child function).

1. The calling function (parent) is responsible for preserving any save-on-call registers across the call that are
live across the call. (The save-on-call registers are R0-R3 and R12 (alternate names are A1-A4 and V9).)

2. If the called function (child) returns a structure, the caller allocates space for the structure and passes the
address of that space to the called function as the first argument.

3. The caller places the first arguments in registers R0-R3, in that order. The caller moves the remaining
arguments to the argument block in reverse order, placing the leftmost remaining argument at the lowest
address. Thus, the leftmost remaining argument is placed at the top of the stack.

4. |If arguments were stored onto the argument block in step 3, the caller reserves a word in the argument block
for dual-state support. (See Section 6.11 for more information.)

150 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

I

TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.4.2 How a Called Function Responds

A called function (child function) must perform the following tasks:

1.

oo s

If the function is declared with an ellipsis, it can be called with a variable number of arguments. The called
function pushes these arguments on the stack if they meet both of these criteria:

» The argument includes or follows the last explicitly declared argument.

+ The argument is passed in a register.

The called function pushes register values of all the registers that are modified by the function and that
must be preserved upon exit of the function onto the stack. Normally, these registers are the save-on-entry
registers (R4-R11 and R14 (alternate names are V1 to V8 and LR)) and the link register (R14) if the function
contains calls. If the function is an interrupt, additional registers may need to be preserved. For more
information, see Section 6.7.

The called function allocates memory for the local variables and argument block by subtracting a constant
from the SP. This constant is computed with the following formula:

size of all local variables + max = constant

The max argument specifies the size of all parameters placed in the argument block for each call.

The called function executes the code for the function.

If the called function returns a value, it places the value in RO (or RO and R1 values).

If the called function returns a structure, it copies the structure to the memory block that the first argument,
RO, points to. If the caller does not use the return value, RO is set to 0. This directs the called function not to
copy the return structure.

In this way, the caller can be smart about telling the called function where to return the structure. For
example, in the statement s = f(x), where s is a structure and f is a function that returns a structure, the
caller can simply pass the address of s as the first argument and call f. The function f then copies the return
structure directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures, both at the point where they are
called (so the caller properly sets up the first argument) and at the point where they are declared (so the
function knows to copy the result).

The called function deallocates the frame and argument block by adding the constant computed in Step 3.
The called function restores all registers that were saved in Step 2.

The called function (_f) loads the program counter (PC) with the return address.

The following example is typical of how a called function responds to a call:

; called function entry point

STMFD SP!, {V1, V2, V3, LR} ; save V1, V2, V3, and LR

SUB SP, SP, #16 ; allocate frame

e ; body of the function

ADD SP, SP, #16 ; deallocate frame

LDMFD SP!, {V1, V2, V3, PC} ; restore V1, V2, V3, and store LR

; in the PC, causing a return

6.4.3 C Exception Handler Calling Convention

If a C exception handler calls other functions, the following must take place:

The handler must set its own stack pointer.

The handler saves all of the registers not preserved by the call: R0O-R3, R-12, LR (R8-R12 saved by hardware
for FIQ)

Re-entrant exception handlers must save SPSR and LR.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 151
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.4.4 Accessing Arguments and Local Variables

A function accesses its local nonregister variables indirectly through the stack pointer (SP or R13) and its stack
arguments indirectly through the argument pointer (AP). If all stack arguments can be referenced with the SP,
they are, and the AP is not reserved. The SP always points to the top of the stack (the most recently pushed
value) and the AP points to the leftmost stack argument (the one closest to the top of the stack). For example:

LDR A2 [SP, #4] ; load local var from stack
LDR Al [AP, #0] ; load argument from stack

Since the stack grows toward smaller addresses, the local and argument data on the stack for the C/C++
function is accessed with a positive offset from the SP or the AP register.

6.5 Accessing Linker Symbols in C and C++

See the section on "Linker Symbols" in the ARM Assembly Language Tools User's Guide for information about
referring to linker symbols in C/C++ code.

6.6 Interfacing C and C++ With Assembly Language
The following are ways to use assembly language with C/C++ code:

» Use separate modules of assembled code and link them with compiled C/C++ modules (see Section 6.6.1).
» Use assembly language variables and constants in C/C++ source (see Section 6.6.3).

» Use inline assembly language embedded directly in the C/C++ source (see Section 6.6.5).

* Modify the assembly language code that the compiler produces (see Section 6.6.6).

6.6.1 Using Assembly Language Modules With C/C++ Code

Interfacing C/C++ with assembly language functions is straightforward if you follow the calling conventions
defined in Section 6.4, and the register conventions defined in Section 6.3. C/C++ code can access variables
and call functions defined in assembly language, and assembly code can access C/C++ variables and call
C/C++ functions.

Follow these guidelines to interface assembly language and C:

* You must preserve any dedicated registers modified by a function. Dedicated registers include:

— Save-on-entry registers (R4-R11 (alternate names are V1 to V8 and LR))
— Stack pointer (SP or R13)

If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly function is
free to use the stack as long as anything that is pushed onto the stack is popped back off before the function
returns (thus preserving SP).

Any register that is not dedicated can be used freely without first being saved.

» Interrupt routines must save all the registers they use. For more information, see Section 6.7.

* When you call a C/C++ function from assembly language, load the designated registers with arguments and
push the remaining arguments onto the stack as described in Section 6.4.1.

Remember that a function can alter any register not designated as being preserved without having to restore
it. If the contents of any of these registers must be preserved across the call, you must explicitly save them.

» Functions must return values correctly according to their C/C++ declarations. Double values are returned
in RO and R1, and structures are returned as described in Step 2 of Section 6.4.1. Any other values are
returned in RO.

* No assembly module should use the .cinit section for any purpose other than autoinitialization of global
variables. The C/C++ startup routine assumes that the .cinit section consists entirely of initialization tables.
Disrupting the tables by putting other information in .cinit can cause unpredictable results.

» The compiler assigns linknames to all external objects. Thus, when you write assembly language code, you
must use the same linknames as those assigned by the compiler. See Section 5.15 for details.

152 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Run-Time Environment

* Any object or function declared in assembly language that is accessed or called from C/C++ must be

declared with the .def or .global directive in the assembly language modifier. This declares the symbol as

external and allows the linker to resolve references to it.

Likewise, to access a C/C++ function or object from assembly language, declare the C/C++ object with
the .ref or .global directive in the assembly language module. This creates an undeclared external reference

that the linker resolves.

6.6.2 Accessing Assembly Language Functions From C/C++

Functions defined in C++ that will be called from assembly should be defined as extern "C" in the C++ file.
Functions defined in assembly that will be called from C++ must be prototyped as extern "C" in C++.

Example 6-1 illustrates a C++ function called main, which calls an assembly language function called asmfunc,

Example 6-2. The asmfunc function takes its single argument, adds it to the C++ global variable called gvar, and

returns the result.

Example 6-1. Calling an Assembly Language Function From a C/C++ Program

extern "C" {
extern int asmfunc(int a); /* declare external asm function */
int gvar = 0; /* define global variable */
}
void main ()
{

int T = 5;

I = asmfunc(I); /* call function normally */

Example 6-2. Assembly Language Program Called by Example 6-1

.global asmfunc
.global gvar

asmfunc:
LDR rl, gvar_a
LDR r2, [rl, #0]
ADD r0, r0, r2
STR r0, [rl, #0]
MOV pc, 1lr
gvar_a .field gvar, 32

In the C++ program in Example 6-1, the extern "C" declaration tells the compiler to use C naming conventions

(that is, no name mangling). When the linker resolves the .global _asmfunc reference, the corresponding

definition in the assembly file will match.

The parameter i is passed in RO, and the result is returned in RO. R1 holds the address of the global gvar. R2

holds the value of gvar before adding the value i to it.

6.6.3 Accessing Assembly Language Variables From C/C++

It is sometimes useful for a C/C++ program to access variables or constants defined in assembly language.
There are several methods that you can use to accomplish this, depending on where and how the item is
defined: a variable defined in the .bss section, a variable not defined in the .bss section, or a linker symbol.

6.6.3.1 Accessing Assembly Language Global Variables

Accessing variables from the .bss section or a section named with .usect is straightforward:

1. Use the .bss or .usect directive to define the variable.
2. Use the .def or .global directive to make the definition external.
3. Use the appropriate linkname in assembly language.
4. In C/C++, declare the variable as extern and access it normally.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

153

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

Example 6-4 and Example 6-3 show how you can access a variable defined in .bss.

Example 6-3. Assembly Language Variable Program

.bss var,4,4 ; Define the wvariable
.global var ; Declare the variable as external

Example 6-4. C Program to Access Assembly Language From Example 6-3

extern int var; /* External variable */
var = 1; /* Use the variable */

6.6.3.2 Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set directive in combination with either
the .def or .global directive, or you can define them in a linker command file using a linker assignment statement.
These constants are accessible from C/C++ only with the use of special operators.

For variables defined in C/C++ or assembly language, the symbol table contains the address of the value
contained by the variable. When you access an assembly variable by name from C/C++, the compiler gets the
value using the address in the symbol table.

For assembly constants, however, the symbol table contains the actual value of the constant. The compiler
cannot tell which items in the symbol table are addresses and which are values. If you access an assembly (or
linker) constant by name, the compiler tries to use the value in the symbol table as an address to fetch a value.
To prevent this behavior, you must use the & (address of) operator to get the value (_symval). In other words, if x
is an assembly language constant, its value in C/C++ is &x. See the section on "Using Linker Symbols in C/C++
Applications" in the ARM Assembly Language Tools User's Guide for more examples that use _symval.

For more about symbols and the symbol table, refer to the section on "Symbols" in the ARM Assembly
Language Tools User's Guide.

You can use casts and #defines to ease the use of these symbols in your program, as in Example 6-5 and
Example 6-6.

Example 6-5. Accessing an Assembly Language Constant From C

extern int table size; /*external ref */
#define TABLE SIZE ((int) (&table size))
/* use cast to hide address-of */

for (I=0; i<TABLE SIZE; ++I) /* use like normal symbol */

Example 6-6. Assembly Language Program for Example 6-5

_table size .setl10000 ; define the constant
.global table size ; make it global

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared type is
unimportant. In Example 6-5, int is used. You can reference linker-defined symbols in a similar manner.

154 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.6.4 Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes between
C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations will cause
suitable assembly to be generated automatically, allowing you to reference the C/C++ constructs in assembly
code. For more information, see the C/C++ header files chapter in the ARM Assembly Language Tools User's
Guide.

6.6.5 Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into the
assembly language file created by the compiler. A series of asm statements places sequential lines of assembly
language into the compiler output with no intervening code. For more information, see Section 5.10.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly code string
with a semicolon (;) as shown below:

asm(";*** this is an assembly language comment");

Note

Using the asm Statement: Keep the following in mind when using the asm statement:

* Be extremely careful not to disrupt the C/C++ environment. The compiler does not check or
analyze the inserted instructions.

* Avoid inserting jumps or labels into C/C++ code because they can produce unpredictable results
by confusing the register-tracking algorithms that the code generator uses.

» Do not change the value of a C/C++ variable when using an asm statement. This is because the
compiler does not verify such statements. They are inserted as is into the assembly code, and
potentially can cause problems if you are not sure of their effect.

« Do not use the asm statement to insert assembler directives that change the assembly
environment.

* Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or -g) option.
The C environment’s debug information and the assembly macro expansion are not compatible.

6.6.6 Modifying Compiler Output

You can inspect and change the compiler's assembly language output by compiling the source and then editing
the assembly output file before assembling it. The C/C++ interlist feature can help you inspect compiler output.
See Section 2.12.

6.7 Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return to C/C++ code without disrupting
the C/C++ environment. When the C/C++ environment is initialized, the startup routine does not enable or
disable interrupts. If the system is initialized by way of a hardware reset, interrupts are disabled. If your system
uses interrupts, you must handle any required enabling or masking of interrupts. Such operations have no effect
on the C/C++ environment and are easily incorporated with asm statements or calling an assembly language
function.

6.7.1 Saving Registers During Interrupts

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers that
are used by the routine or by any functions called by the routine. With the exception of banked registers, register
preservation must be explicitly handled by the interrupt routine.

All banked registers are automatically preserved by the hardware (except for interrupts that are reentrant. If you
write interrupt routines that are reentrant, you must add code that preserves the interrupt's banked registers.)
Each interrupt type has a set of banked registers. For information about the interrupt types, see Section 5.11.16.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 155
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.7.2 Using C/C++ Interrupt Routines

When C/C++ code is interrupted, the interrupt routine must preserve the contents of all machine registers that
are used by the routine or by any functions called by the routine. Register preservation must be explicitly
handled by the interrupt routine.

__interrupt void example (void)

{

If a C/C++ interrupt routine does not call any other functions, only those registers that the interrupt handler
uses are saved and restored. However, if a C/C++ interrupt routine does call other functions, these functions
can modify unknown registers that the interrupt handler does not use. For this reason, the routine saves all the
save-on-call registers if any other functions are called. (This excludes banked registers.) Do not call interrupt
handling functions directly.

Interrupts can be handled directly with C/C++ functions by using the INTERRUPT pragma or the __interrupt
keyword. For information, see Section 5.11.16 and Section 5.7.2, respectively.

6.7.3 Using Assembly Language Interrupt Routines

You can handle interrupts with assembly language code as long as you follow the same register conventions the
compiler does. Like all assembly functions, interrupt routines can use the stack, access global C/C++ variables,
and call C/C++ functions normally. When calling C/C++ functions, be sure that any save-on-call registers are
preserved before the call because the C/C++ function can modify any of these registers. You do not need to
save save-on-entry registers because they are preserved by the called C/C++ function.

156 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Run-Time Environment

6.7.4 How to Map Interrupt Routines to Interrupt Vectors

This section does not apply to Cortex-M devices.

To map Cortex-A interrupt routines to interrupt vectors you need to include a intvecs.asm file. This file will

contain assembly language directives that can be used to set up the ARM's interrupt vectors with branches to
your interrupt routines. Follow these steps to use this file:

1. Using Example 6-7 as a guide, create intvecs.asm and include your interrupt routines. For each routine:

a. Atthe beginning of the file, add a .global directive that names the routine.

b. Modify the appropriate .word directive to create a branch to the name of your routine.
2. Assemble and link intvecs.asm with your applications code and with the compiler's linker control file

(Ink16.cmd or Ink32.cmd). The control file contains a SECTIONS directive that maps the .intvecs section

into the memory locations 0x00-0x1F.

For example, on an ARM v4 target, if you have written a C interrupt routine for the IRQ interrupt called c_intIRQ
and an assembly language routine for the FIQ interrupt called tim1_int, you should create intvecs.asm as in
Example 6-7.

Example 6-7. Sample intvecs.asm File

.if TI EABI ASSEMBLER
.asg c_intIRQ, C_INTIRQ
.else

.asg _c_intIRQ, C_INTIRQ
.endif

.global

c_int00

.global C_INTIRQ
.global timl int

.sect ".intvecs"

B c int00 ; reset interrupt

.word 0 ; undefined instruction interrupt
.word 0 ; software interrupt

.word 0 ; abort (prefetch) interrupt
.word 0 ; abort (data) interrupt

.word 0 ; reserved

B C_INTIRQ ; IRQ interrupt
B timl int ; FIQ interrupt

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

157

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.7.5 Using Software Interrupts

A software interrupt (SWI) is a synchronous exception generated by the execution of a particular instruction.
Applications use software interrupts to request services from a protected system, such as an operating system,
which can perform the services only while in a supervisor mode. Some ARM documentation uses the term
Supervisor Calls (SVC) instead of "software interrupt".

A C/C++ application can invoke a software interrupt by associating a software interrupt number with a function
name through use of the SWI_ALIAS pragma and then calling the software interrupt as if it were a function. For
information, see Section 5.11.29.

Since a call to the software interrupt function represents an invocation of the software interrupt, passing and
returning data to and from a software interrupt is specified as normal function parameter passing with the
following restriction:

All arguments passed to a software interrupt must reside in the four argument registers (R0-R3). No arguments

can be passed by way of a software stack. Thus, only four arguments can be passed unless:

* Floating-point doubles are passed, in which case each double occupies two registers.

» Structures are returned, in which case the address of the returned structure occupies the first argument
register.

For Cortex-M architectures, C SWI handlers cannot return values. Values may be returned by SWI handlers on
other architectures.

The C/C++ compiler also treats the register usage of a called software interrupt the same as a called function. It
assumes that all save-on-entry registers () are preserved by the software interrupt and that save-on-call registers
(the remainder of the registers) can be altered by the software interrupt.

6.7.6 Other Interrupt Information

An interrupt routine can perform any task performed by any other function, including accessing global variables,
allocating local variables, and calling other functions.

When you write interrupt routines, keep the following points in mind:

» ltis your responsibility to handle any special masking of interrupts.

* A C/C++ interrupt routine cannot be called directly from C/C++ code.

* In a system reset interrupt, such as c_int00, you cannot assume that the run-time environment is set up;
therefore, you cannot allocate local variables, and you cannot save any information on the run-time stack.

* In assembly language, remember to precede the name of a C/C++ interrupt with the appropriate linkname.
For example, refer to ¢c_int00 as _c_int00.

* When an interrupt occurs, the state of the processor (ARM or Thumb mode) is dependent on the device you
are using. The compiler allows interrupt handlers to be defined in ARM or Thumb-2 mode. You should ensure
the interrupt handler uses the proper mode for the device.

* The FIQ, supervisor, abort, IRQ, and undefined modes have separate stacks that are not automatically set
up by the C/C++ run-time environment. If you have interrupt routines in one of these modes, you must set up
the software stack for that mode. However, ARM Cortex-M processors have two stacks, and the main stack
(MSP), which is used by IRQ (the only interrupt type for Cortex-M), is automatically handled by the compiler.

» Interrupt routines are not reentrant. If an interrupt routine enables interrupts of its type, it must save a copy of
the return address and SPSR (the saved program status register) before doing so.

» Because a software interrupt is synchronous, the register saving conventions discussed in Section 6.7.1 can
be less restrictive as long as the system is designed for this. A software interrupt routine generated by the
compiler, however, follows the conventions in Section 6.7.1.

158 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Run-Time Environment

6.8 Intrinsic Run-Time-Support Arithmetic and Conversion Routines

The intrinsic run-time-support library contains a number of assembly language routines that provide arithmetic
and conversion capability for C/C++ operations that the 32-bit and 16-bit instruction sets do not provide. These
routines include integer division, integer modulus, and floating-point operations.

There are two versions of each of the routines:
» A 16-bit version to be called only from the 16-BIS (bit instruction set) state

» A 32-bit version only to be called from the 32-BIS state

These routines do not follow the standard C/C++ calling conventions in that the naming and register conventions
are not upheld. Refer to the ARM Information Center for information on the EABI naming conventions.

6.8.1 CPSR Register and Interrupt Intrinsics

The intrinsics in Table 6-7 enable you to get/set the CPSR register and to enable/disable interrupts. All but the
_call_swi() function are only available when compiling in ARM mode. Additional intrinsices for ARM assembly
instructions are provided in Section 5.14.

Table 6-7. CPSR and Interrupt C/C++ Compiler Intrinsics

Assembly
C/C++ Compiler Intrinsic Instruction Description
void _call_swi(unsigned int src); SWI $ src Call a software interrupt. The src must be an immediate.

unsigned int dst = _disable_FIQ() ;

Cortex-R4/A8:
MRS dst , FAULTMASK
CPSID f

Disable FIQ interrupts and return previous FAULTMASK
or CPSR setting.

unsigned int dst = _disable_interrupts() ;

Cortex-MO:

MRS dst, PRIMASK
CPSID i
Cortex-M3/M4/R4/A8:
MRS dst , FAULTMASK
CPSID f

Disable all interrupts and return previous PRIMASK
or FAULTMASK setting. The assembly instructions are
dependent on the architecture.

unsigned int dst = _disable_IRQ() ;

MRS dst, PRIMASK
CPSID i

Disable IRQ interrupts and return previous PRIMASK
setting.

unsigned int dst = _enable_FIQ() ;

Cortex-R4/A8:
MRS dst , FAULTMASK
CPSIE f

Enable FIQ interrupts and return previous FAULTMASK
or CPSR setting.

unsigned int dst = _enable_interrupts() ;

Cortex-MO0:

MRS dst, PRIMASK
CPSIE i
Cortex-M3/M4/R4/A8:
MRS dst , FAULTMASK
CPSIE f

Enable all interrupts and return previous PRIMASK
or FAULTMASK setting. The assembly instructions are
dependent on the architecture.

unsigned int dst = _enable_IRQ() ;

MRS dst, PRIMASK
CPSIE /

Enable IRQ interrupts and return previous PRIMASK
setting.

unsigned int dst = _get_CPSR() ;

MRS dst, CPSR

Get the CPSR register.

void _restore_interupts(unsigned int src);

Cortex-MO:

MSR PRIMASK src
Cortex-M3/M4:

MSR FAULTMASK src
Cortex-R4:

MSR CPSR_cf, src

Restores interrupts to state indicated by value returned
from _disable_interrupts. The assembly instructions are
dependent on the architecture.

void _set_CPSR(unsigned int src);

MSR CPSR, src

Set the CPSR register.

void _set_CPSR_flg(unsigned int src);

MSR dst, CPSR

Set the CPSR flag bits. The src is rotated by the intrinsic.

unsigned int dst =
_set_interrupt_priority(unsigned int src) ;

Cortex-M0/M3/M4 only:
MRS dst, BASEPRI
MSR BASEPRI, src

Set interrupt priority and return the previous setting.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler 159
v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.swdev.abi/index.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.9 Built-In Functions

Built-in functions are predefined by the compiler. They can be called like a regular function, but they do not
require a prototype or definition. The compiler supplies the proper prototype and definition.

The ARM compiler supports the following built-in functions:
* The _ _curpc function, which returns the value of the program counter where it is called. The syntax of the
function is:

‘ void * curpc(void); ‘

 The _ _run_address_check function, which returns TRUE if the code performing the call is located at its
run-time address, as assigned by the linker. Otherwise, FALSE is returned. The syntax of the function is:

‘ int _ run address_check(void); ‘

6.10 System Initialization

Before you can run a C/C++ program, you must create the C/C++ run-time environment. The C/C++ boot routine
performs this task using a function called c_int00 (or _c_int00). The run-time-support source library, rts.src,
contains the source to this routine in a module named boot.c (or boot.asm).

To begin running the system, the c_int00 function can be called by reset hardware. You must link the c_int00
function with the other object files. This occurs automatically when you use the --rom_model or --ram_model link
option and include a standard run-time-support library as one of the linker input files.

When C/C++ programs are linked, the linker sets the entry point value in the executable output file to the symbol
c_int00.

The c_int00 function performs the following tasks to initialize the environment:

1. Switches to the appropriate mode, reserves space for the run-time stack, and sets up the initial value of the
stack pointer (SP). The stack is aligned on a 64-bit boundary.
2. Calls the function _ _TI_auto_init to perform the C/C++ autoinitialization.

The _ _TI_auto_init function does the following tasks:
* Processes the binit copy table, if present.
» Performs C autoinitialization of global/static variables. For more information, see Section 6.10.3.
» Calls C++ initialization routines for file scope construction from the global constructor table. For more
information, see Section 6.10.3.6.
3. Calls the main() function to run the C/C++ program.

You can replace or modify the boot routine to meet your system requirements. However, the boot routine must
perform the operations listed above to correctly initialize the C/C++ environment.

6.10.1 Boot Hook Functions for System Pre-Initialization

Boot hooks are points at which you may insert application functions into the C/C++ boot process. Default boot
hook functions are provided with the run-time support (RTS) library. However, you can implement customized
versions of these boot hook functions, which override the default boot hook functions in the RTS library if they
are linked before the run-time library. Such functions can perform any application-specific initialization before
continuing with the C/C++ environment setup.

Note that the TI-RTOS operating system uses custom versions of the boot hook functions for system setup, so
you should be careful about overriding these functions if you are using TI-RTOS.

The following boot hook functions are available:

__mpu_init(): This function provides an interface for initializing the MPU, if MPU support is included. The
__mpu_init() function is called after the stack pointer is initialized but before any C/C++ environment setup is
performed. This function should not return a value.

160 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

_system_pre_init(): This function provides a place to perform application-specific initialization. It is invoked after
the stack pointer is initialized but before any C/C++ environment setup is performed. For targets that include
MPU support, this function is called after __mpu_init(). By default, _system_pre_init() should return a non-zero
value. The default C/C++ environment setup is bypassed if _system_pre_init() returns 0.

_system_post_cinit(): This function is invoked during C/C++ environment setup, after C/C++ global data is
initialized but before any C++ constructors are called. This function should not return a value.

The _c_int00() initialization routine also provides a mechanism for an application to perform the setup (set I/O
registers, enable/disable timers, etc.) before the C/C++ environment is initialized.

6.10.2 Run-Time Stack

The run-time stack is allocated in a single continuous block of memory and grows down from high addresses to
lower addresses. The SP points to the top of the stack.

The code does not check to see if the run-time stack overflows. Stack overflow occurs when the stack grows
beyond the limits of the memory space that was allocated for it. Be sure to allocate adequate memory for the
stack.

The stack size can be changed at link time by using the --stack_size link option on the linker command line and
specifying the stack size as a constant directly after the option.

The C/C++ boot routine shipped with the compiler sets up the user/thread mode run-time stack. If your program
uses a run-time stack when it is in other operating modes, you must also allocate space and set up the run-time
stack corresponding to those modes.

EABI requires that 64-bit data (type long long and long double) be aligned at 64-bits. This requires that the stack
be aligned at a 64-bit boundary at function entry so that local 64-bit variables are allocated in the stack with
correct alignment. The boot routine aligns the stack at a 64-bit boundary.

6.10.3 Automatic Initialization of Variables

Any global variables declared as preinitialized must have initial values assigned to them before a C/C++ program
starts running. The process of retrieving these variables' data and initializing the variables with the data is called
autoinitialization. Internally, the compiler and linker coordinate to produce compressed initialization tables. Your
code should not access the initialization table.

6.10.3.1 Zero Initializing Variables

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program execution.
The C/C++ compiler supports preinitialization of uninitialized variables by default. This can be turned off by
specifying the linker option --zero_init=off.

Zero initialization takes place only if the --rom_model linker option, which causes autoinitialization to occur, is
used. If you use the --ram_model option for linking, the linker does not generate initialization records, and the
loader must handle both data and zero initialization.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 161
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.10.3.2 Direct Initialization

The compiler uses direct initialization to initialize global variables. For example, consider the following C code:

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };
The compiler allocates the variables 'i' and 'a[] to .data section and the initial values are placed directly.
.global i
.data
.align 4
i:
.field 23,32 ;ieo
.global a
.data
.align 4
a:
.field 1,32 ; af0] @ o
.field 2,32 ; alll @ 32
.field 3,32 ; al2] @ 64
.field 4,32 ; al3] @ 96
.field 5,32 ; al4] @ 128

Each compiled module that defines static or global variables contains these .data sections. The linker treats
the .data section like any other initialized section and creates an output section. In the load-time initialization
model, the sections are loaded into memory and used by the program. See Section 6.10.3.5.

In the run-time initialization model, the linker uses the data in these sections to create initialization data and an
additional compressed initialization table. The boot routine processes the initialization table to copy data from
load addresses to run addresses. See Section 6.10.3.3.

6.10.3.3 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke the
linker with the --rom_model option.

Using this method, the linker creates a compressed initialization table and initialization data from the direct
initialized sections in the compiled module. The table and data are used by the C/C++ boot routine to initialize
variables in RAM using the table and data in ROM.

Figure 6-6 illustrates autoinitialization at run time. Use this method in any system where your application runs
from code burned into ROM.

Object file Memory
C auto init C auto init
table and data
(ROM) table and data
(-.cinit section) ()
Boot
routine
.data
uninitialized
(RAM)
Figure 6-6. Autoinitialization at Run Time
162 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.10.3.4 Autoinitialization Tables

The compiled object files do not have initialization tables. The variables are initialized directly. The linker, when
the --rom_model option is specified, creates C auto initialization table and the initialization data. The linker
creates both the table and the initialization data in an output section named .cinit.

The autoinitialization table has the following format:
_TI_CINIT_Base:

32-bit load address 32-bit run address

. *

32-bit load address 32-bit run address

_TI_CINIT_Limit:

The linker defined symbols __ TI_CINIT_Base and __TI_CINIT_Limit point to the start and end of the table,
respectively. Each entry in this table corresponds to one output section that needs to be initialized. The
initialization data for each output section could be encoded using different encoding.

The load address in the C auto initialization record points to initialization data with the following format:

8-bit index Encoded data

The first 8-bits of the initialization data is the handler index. It indexes into a handler table to get the address of a
handler function that knows how to decode the following data.

The handler table is a list of 32-bit function pointers.

_TI_Handler_Table_Base:

32-bit handler 1 address

32-bit handler n address

_TI_Handler_Table_Limit:

The encoded data that follows the 8-bit index can be in one of the following format types. For clarity the 8-bit
index is also depicted for each format.

6.10.3.4.1 Length Followed by Data Format

8-bit index 24-bit padding ‘32-bit length (N) ‘N byte initialization data (not compressed)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes
the length of the initialization data in bytes (N). N byte initialization data is not compressed and is copied to the
run address as is.

The run-time support library has a function __TI_zero_init() to process this type of initialization data. The first
argument to this function is the address pointing to the byte after the 8-bit index. The second argument is the run
address from the C auto initialization record.

6.10.3.4.2 Zero Initialization Format

8-bit index 24-bit padding 32-bit length (N)

The compiler uses 24-bit padding to align the length field to a 32-bit boundary. The 32-bit length field encodes
the number of bytes to be zero initialized.

The run-time support library has a function __ TI_zero_init() to process the zero initialization. The first argument
to this function is the address pointing to the byte after the 8-bit index. The second argument is the run address
from the C auto initialization record.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 163
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.10.3.4.3 Run Length Encoded (RLE) Format

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using Run Length Encoded (RLE) format. uses a simple run
length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).
2. Read the next byte (B).
3. IfB!=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).
a. IfL==0,then length is either a 16-bit, a 24-bit value, or we’ve reached the end of the data, read next
byte (L).
i. IfL==0,lengthis a 24-bit value or the end of the data is reached, read next byte (L).
1. IfL == 0, the end of the data is reached, go to step 7.
2. Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
i. ElseL <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
b. ElseifL >0 andL <4, copy D to the output buffer L times. Go to step 2.
c. Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.

The run-time support library has a routine __Tl_decompress_rle24() to decompress data compressed using
RLE. The first argument to this function is the address pointing to the byte after the 8-bit index. The second
argument is the run address from the C auto initialization record.

Note
RLE Decompression Routine

The previous decompression routine, __ TI_decompress_rle(), is included in the run-time-support
library for decompressing RLE encodings generated by older versions of the linker.

6.10.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format

8-bit index ‘ Initialization data compressed using LZSS

The data following the 8-bit index is compressed using LZSS compression. The run-time support library has

the routine __ Tl _decompress_lzss() to decompress the data compressed using LZSS. The first argument to this
function is the address pointing to the byte after the 8-bit index. The second argument is the run address from
the C auto initialization record.

164 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.10.3.4.5 Sample C Code to Process the C Autoinitialization Table

The run-time support boot routine has code to process the C autoinitialization table. The following C code
illustrates how the autoinitialization table can be processed on the target.

typedef void (*handler fptr) (const unsigned char *in,
unsigned char *out);
#define HANDLER TABLE _ TI Handler Table Base
#pragma WEAK (HANDLER TABLE)
extern unsigned int HANDLER TABLE;
extern unsigned char * TI CINIT Base;
extern unsigned char * TI CINIT Limit;
void auto initialize()
{
unsigned char **table ptr;
unsigned char **table limit;

/* __ */
/* Check if Handler table has entries. */
/* __ */
if (&_TI Handler Table Base >= & TI Handler Table Limit)
return;

/* ___ */
/* Get the Start and End of the CINIT Table. */
/* ___ */
table ptr = (unsigned char **)& TI CINIT Base;

table limit = (unsigned char **)& TI CINIT Limit;

while (table ptr < table limit)
{

/* ___ */
/* 1. Get the Load and Run address. */
/* 2. Read the 8-bit index from the load address. */
/* 3. Get the handler function pointer using the index from */
/* handler table. */
/* ___ */
unsigned char *load addr = *table ptr++;
unsigned char *run_addr = *table ptr++;
unsigned char handler idx = *load addr++;

handler fptr handler
(handler fptr) (¢HANDLER TABLE) [handler idx];

/* ___ */
/* 4. Call the handler and pass the pointer to the load data */
/* after index and the run address. */
/* ___ */

(*handler) ((const unsigned char *)load addr, run addr);

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 165
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

6.10.3.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot time and by saving the memory
used by the initialization tables. To use this method, invoke the linker with the --ram_model option.

When you use the --ram_model link option, the linker does not generate C autoinitialization tables and data. The
direct initialized sections (.data) in the compiled object files are combined according to the linker command file to
generate initialized output sections. The loader loads the initialized output sections into memory. After the load,
the variables are assigned their initial values.

Since the linker does not generate the C autoinitialization tables, no boot time initialization is performed.
Figure 6-7 illustrates the initialization of variables at load time.

Object file Memory

.data
section w

.data section
(initialized)
(RAM)

Figure 6-7. Initialization at Load Time

6.10.3.6 Global Constructors

All global C++ variables that have constructors must have their constructor called before main(). The compiler
builds a table of global constructor addresses that must be called, in order, before main() in a section

called .init_array. The linker combines the .init_array section form each input file to form a single table in

the .init_array section. The boot routine uses this table to execute the constructors. The linker defines two
symbols to identify the combined .init_array table as shown below. This table is not null terminated by the linker.

SHT$SINIT_ARRAY$$Base:

Address of constructor 1

Address of constructor 2

Address of constructor n

SHT$SINIT_ARRAYS$SLimit:

Figure 6-8. Constructor Table

166 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.10.4 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records. Each variable that must be
autoinitialized has a record in the .cinit section. Figure 6-9 shows the format of the .cinit section and the
initialization records.

.cinit section

Initialization record 1

Initialization record 2 | ™.

~ Initialization record
Initialization record 3 | .
N Size in Pointer to Initialization
I] : S| bytes | bssarea data
|

Initialization record n

Figure 6-9. Format of Initialization Records in the .cinit Section

The fields of an initialization record contain the following information:

» The first field of an initialization record contains the size (in bytes) of the initialization data.The width of this
field is one word (32-bit).

» The second field contains the starting address of the area within the .bss section where the initialization data
must be copied.The width of this field is one word.

» The third field contains the data that is copied into the .bss section to initialize the variable.The width of this
field is variable.

Each variable that must be autoinitialized has an initialization record in the .cinit section.

The following example shows initialized global variables defined in C.

The corresponding initialization table is as follows. The section .cinit:c is a subsection in the .cinit section that
contains all scalar data. The subsection is handled as one record during initialization, which minimizes the
overall size of the .cinit section.

.sect ".cinit" ; Initialization section
* Initialization record for variable i
.align 4 ; align on word boundary
.field 4,32 ; length of data (1 word)
.field _i+0,32 ; address of i
.field 23,32 ; 1@0
* Initialization record for variable a
.sect ".cinit"
.align 4 ; align on word boundary
.field IR1,32 ; Length of data (5 words)
.field _a+0,32 ; Address of al[]
.field 1,32 ; _al0] @ 0
.field 2,32 ; _all]l @ 32
.field 3,32 ; _al2] @ 64
.field 4,32 ; _al3] @ 96
.field 5,32 ; _al4] @ 128
IR1l: .set 20 ; set length symbol

The .cinit section must contain only initialization tables in this format. When interfacing assembly language
modules, do not use the .cinit section for any other purpose.

The table in the .pinit section simply consists of a list of addresses of constructors to be called (as shown in the
following figure). The constructors appear in the table after the .cinit initialization.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 167
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

.pinit section

Address of constructor 1

Address of constructor 2

Address of constructor 3

[

Address of constructor n

Figure 6-10. Format of Initialization Records in the .pinit Section

When you use the --rom_model or --ram_model option, the linker combines the .cinit sections from all the C/C++
modules and appends a null word to the end of the composite .cinit section. This terminating record appears as
a record with a size field of 0 and marks the end of the initialization tables.

Likewise, the --rom_model or --ram_model link option causes the linker to combine all of the .pinit sections from
all C/C++ modules and append a null word to the end of the composite .pinit section. The boot routine knows the
end of the global constructor table when it encounters a null constructor address.

The const-qualified variables are initialized differently; see Section 5.7.1.

168 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Environment

6.11 Dual-State Interworking Under TIABI (Deprecated)

The ARM is a unique processor in that it gives you the performance of a 32-bit architecture with the code density
of a 16-bit architecture. It supports a 16-bit instruction set and a 32-bit instruction set that allows switching
dynamically between the two sets.

The instruction set that the ARM processor uses is determined by the state of the processor. The processor
can be in 32-BIS (bit instruction set) state or 16-BIS state at any given time. The compiler allows you to specify
whether a module should be compiled in 32- or 16-BIS state and allows functions compiled in one state to call
functions compiled in the other state.

6.11.1 Level of Dual-State Support

By default, the compiler allows dual-state interworking between functions. However, the compiler allows you to
alter the level of support to meet your particular needs.

In dual-state interworking, it is the called function's responsibility to handle the proper state changes required
by the calling function. It is the calling function's responsibility to handle the proper state changes required to
indirectly call a function (call it by address). Therefore, a function supports dual-state interworking if it provides
the capability for functions requiring a state change to directly call the function (call it by name) and provides the
mechanism to indirectly call functions involving state changes.

If a function does not support dual-state interworking, it cannot be called by functions requiring a state change
and cannot indirectly call functions that support dual-state interworking. Regardless of whether a function
supports dual-state interworking or not, it can directly or indirectly call certain functions:

» Directly call a function in the same state
» Directly call a function in a different state if that function supports dual-state interworking
* Indirectly call a function in the same state if that function does not support dual-state interworking

Given this definition of dual-state support, the ARM C/C++ compiler offers three levels of support. Use Table 6-8
to determine the best level of support to use for your code.

Table 6-8. Selecting a Level of Dual-State Support

If your code... Use this level of support ...
Requires few state changes Default

Requires many state changes Optimized

Requires no state changes and has frequent indirect calls None

Here is detailed information about each level of support:

» Default. Full dual-state interworking is supported. For each function that supports full dual-state interworking,
the compiler generates code that allows functions requiring a state change to call the function, whether it
is ever used or not. This code is placed in a different section from the section the actual function is in. If
the linker determines that this code is never referenced, it does not link it into the final executable image.
However, the mechanism used with indirect calls to support dual-state interworking is integrated into the
function and cannot be removed by the linker, even if the linker determines that the mechanism is not
needed.

» Optimized. Optimized dual-state interworking provides no additional functionality over the default level but
optimizes the dual-state support code (in terms of code size and execution speed) for the case where a state
change is required. It does this optimization by integrating the support into the function. Use the optimized
level of support only when you know that a majority of the calls to this function require a state change. Even
if the dual-state support code is never used, the linker cannot remove the code because it is integrated into
the function. To specify this level of support, use the DUAL_STATE pragma. See Section 5.11.9 for more

information.
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 169
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

* None. Dual-state interworking is disabled. This level is invoked with the -md shell option. Functions with this
support can directly call the following functions:
— Functions compiled in the same state
— Functions in a different state that support dual-state interworking

Functions with this support level can indirectly call only functions that do not require a state change and
do not support dual-state interworking. Because functions with this support level do not provide dual-state
interworking, they cannot be called by a function requiring a state change.

Use this support level if you do not require dual-state interworking, have frequent indirect calls, and cannot
tolerate the additional code size or speed incurred by the indirect calls supporting dual-state interworking.

When a program does not require any state changes, the only difference between specifying no support and
default support is that indirect calls are more complex in the default support level.

6.11.2 Implementation

Dual-state support is implemented by providing an alternate entry point for a function. This alternate entry point
is used by functions requiring a state change. Dual-state support handles the change to the correct state and, if
needed, changes the function back to the state of the caller when it returns. Also, indirect calls set up the return
address so that once the called function returns, the state can be reliably changed back to that of the caller.

6.11.2.1 Naming Conventions for Entry Points

The ARM compiler reserves the name space of all identifiers beginning with an underscore (_) or a dollar sign
($). In this dual-state support scheme, all 32-BIS state entry points begin with an underscore, and all 16-BIS
state entry points begin with a dollar sign. All other compiler-generated identifiers, which are independent of the
state of the processor, begin with an underscore. By this convention, all direct calls within a 16-bit function refer
to the entry point beginning with a dollar sign and all direct calls within a 32-bit function refer to the entry point
beginning with an underscore.

6.11.2.2 Indirect Calls

Addresses of functions taken in 16-BIS state use the address of the 16-BIS state entry point to the function (with
bit 0 of the address set). Likewise, addresses of functions taken in 32-BIS state use the address of the 32-BIS
state entry point (with bit O of the address cleared). Then all indirect calls are performed by loading the address
of the called function into a register and executing the branch and exchange (BX) instruction. This automatically
changes the state and ensures that the code works correctly, regardless of what state the address was in when it
was taken.

The return address must also be set up so that the state of the processor is consistent and known upon return.
Bit 0 of the address is tested to determine if the BX instruction invokes a state change. If it does not invoke a
state change, the return address is set up for the state of the function. If it does invoke a change, the return
address is set up for the alternate state and code is executed to return to the function's state.

Because the entry point into a function depends upon the state of the function that takes the address, it is more
efficient to take the address of a function when in the same state as that function. This ensures that the address
of the actual function is used, not its alternate entry point. Because the indirect call can invoke a state change

itself, entering a function through its alternate entry point, even if calling it from a different state, is unnecessary.

Example 6-8 shows sum() calling max() with code that is compiled for the 16-BIS state and supports dual-state
interworking. The sum() function is compiled with the -code_state=16 option, which creates 16-bit instructions
for pre-UAL assembly code. (Refer to the ARM Assembly Language Tools User's Guide for information on

UAL syntax.) Example 6-11 shows the same function call with code that is compiled for the 32-BIS state and
supports dual-state interworking. Function max() is compiled without the -code_state=16 option, creating 32-bit
instructions.

170 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Run-Time Environment

Example 6-8. C Code Compiled for 16-BIS State: sum()

int total = 0;

sum(int vall, int val2)

{
int val = max(vall, val2);
total += val;

Example 6-9. 16-Bit Assembly Program for Example 6-8

R R R R R
7

;* FUNCTION VENEER: sum *

ok kok ok ok ok ko ok ko kK ko k k ko ok ok k ok ok k ko ok k ko ok k ks ko kK ok k kK ok ko k k ok kK k ok ok ok ok ok ok
’

_sum:
.state32
STMFD sp!, {1lr}
ADD lr, pc, #1
BX 1r
.statelé6
BL $Ssum
BX pc
NOP
.state32
LDMFD sp!, {pc}
.statelé6
.sect ".text"
.global sum

s R Ak Ak kA Ak Ak Ak Ak Ak kA Ak k ok ok k&
’

;* FUNCTION DEF: $sum *

;‘k************************

Ssum:
PUSH {LR}
BL Smax
LDR A2, CON1 ; {_total+0}
LDR A3, [A2, #0]
ADD Al, Al, A3
STR Al, [A2, #0]
POP {PC}

;‘k************************

;* CONSTANT TABLE *
,-***
.sect ".text"
.align 4
CONl: .field total, 32

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler 171
v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Run-Time Environment www.ti.com

Example 6-10. C Code Compiled for 32-BIS State: sum()

int max(int a, int b)
{

return a < b ? b : a;

}

Example 6-11. 32-Bit Assembly Program for Example 6-10

;‘k************************

;* FUNCTION VENEER: S$max *
;***
Smax:

.statelé6

BX pc

NOP

.state32

B _max

.text

.global max

R R R o R R
7

;* FUNCTION DEF: max *

ek okok ok ok ok ok ok ok ok k kK ko kK ok ok ok k ks ok k ko ok k ko ok k ko Kk ok kK Kk k kK ok kK ok ok ok k ok ok ok ok ok ok ok
7

max:
CMP Al, A2
MOVLE Al, A2
BX LR

Since sum() is a 16-bit function, its entry point is $sum. Because it was compiled for dual-state interworking, an
alternate entry point, _sum, located in a different section is included. All calls to sum() requiring a state change
use the _sum entry point.

The call to max() in sum() references $max, because sum() is a 16-bit function. If max() were a 16-bit function,
sum() would call the actual entry point for max(). However, since max() is a 32-bit function, $max is the
alternate entry point for max() and handles the state change required by sum().

172 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 7
Using Run-Time-Support Functions and Building
Libraries

i3 TEXAS INSTRUMENTS

Some of the features of C/C++ (such as I/O, dynamic memory allocation, string operations, and trigonometric
functions) are provided as an ANSI/ISO C/C++ standard library, rather than as part of the compiler itself. The

Tl implementation of this library is the run-time-support library (RTS). The C/C++ compiler implements the ISO
standard library except for those facilities that handle exception conditions, signal and locale issues (properties
that depend on local language, nationality, or culture). Using the ANSI/ISO standard library ensures a consistent
set of functions that provide for greater portability.

In addition to the ANSI/ISO-specified functions, the run-time-support library includes routines that give you
processor-specific commands and direct C language I/O requests. These are detailed in Section 7.1 and Section
7.2.

A library-build utility is provided with the code generation tools that lets you create customized run-time-support
libraries. This process is described in Section 7.4.

7.1 C and C++ Run-Time Support LIbraries..............c.ooo i 174

T2 The C 1O FUNCHIONS.........ooiiiiiii ittt ettt et e ekttt eeat et oo bttt e h bt e e at et e e as et e 4a b e e e et e e e nne e e aabe e e anne e e ennee 178

7.3 Handling Reentrancy (_register_lock() and _register_unlock() FUnctions)...............cccccoceiiiiiiiiiniiiie i, 190

T4 LIiBrary-BUild ProCeSS.oooo ittt e e ettt et e oot bttt e e e e b e bt e e e e e bnte e e e e e annneeeeeean 191
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 173
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.1 C and C++ Run-Time Support Libraries

ARM compiler releases include pre-built run-time support (RTS) libraries that provide all the standard
capabilities. Separate libraries are provided for each mode, big and little endian support, each ABI (compiler
version 4.1.0 and later), various architectures, and C++ exception support. See Section 7.1.9 for information on
the library-naming conventions.

The run-time-support library contains the following:

* ANSI/ISO C/C++ standard library

+ C /O library

* Low-level support functions that provide 1/O to the host operating system

* Fundamental arithmetic routines

» System startup routine, _c_int00

» Compiler helper functions (to support language features that are not directly efficiently expressible in C/C++)

The run-time-support libraries do not contain functions involving signals and locale issues.

The C++ library supports wide chars, in that template functions and classes that are defined for char are
also available for wide char. For example, wide char stream classes wios, wiostream, wstreambuf and so on
(corresponding to char classes ios, iostream, streambuf) are implemented. However, there is no low-level file
I/O for wide chars. Also, the C library interface to wide char support (through the C++ headers <cwchar> and
<cwctype>) is limited as described in Section 5.1.

TI does not provide documentation that covers the functionality of the C++ library. Tl suggests referring to one of
the following sources:

» The Standard C++ Library: A Tutorial and Reference, Nicolai M. Josuttis, Addison-Wesley, ISBN
0-201-37926-0

» The C++ Programming Language (Third or Special Editions), Bjarne Stroustrup, Addison-Wesley, ISBN
0-201-88954-4 or 0-201-70073-5

7.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the linker input files so that references
to the I/0 and run-time-support functions can be resolved. You can either specify the library or allow the compiler
to select one for you. See Section 4.3.1 for further information.

When a library is linked, the linker includes only those library members required to resolve undefined references.
For more information about linking, see theARM Assembly Language Tools User's Guide.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support functions
and variables that can be called and referenced from both C and C++ will have the same linkage.

If you want to link object files created with the TI CodeGen tools with object files generated by other compiler
tool chains, the ARM standard specifies that you should define the _AEABI_PORTABILITY_LEVEL preprocessor
symbol as follows before #including any standard header files, such as <stdlib.h>.

#define AEABI PORTABILITY LEVEL 1

This definition enables full portability. Defining the symbol to 0 specifies that the "C standard" portability level will
be used.

7.1.2 Header Files

You must use the header files provided with the compiler run-time support when using functions from C/C++
standard library. Set the TI_ARM_C_DIR environment variable to the include directory where the tools are
installed.

174 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

The following header files provide Tl extensions to the C standard:

* cpy_tbl.h -- Declares the copy_in() RTS function, which is used to move code or data from a load location to
a separate run location at run-time. This function helps manage overlays.

« file.h -- Declares functions used by low-level I/O functions in the RTS library.

* _lock.h -- Used when declaring system-wide mutex locks. This header file is deprecated; use
_reg_mutex_api.h and _mutex.h instead.

* memory.h -- Provides the memalign() function, which is not required by the C standard.

* _mutex.h -- Declares functions used by the RTS library to help facilitate mutexes for specific resources that
are owned by the RTS. For example, these functions are used for heap or file table allocation.

» _pthread.h -- Declares low-level mutex infrastructure functions and provides support for recursive mutexes.

« _reg_mutex_api.h -- Declares a function that can be used by an RTOS to register an underlying lock
mechanism and/or thread ID mechanism that is implemented in the RTOS but is called indirectly by the RTS’
_mutex.h functions.

« _reg_synch_api.h -- Declares a function that can be used by an RTOS to register an underlying
cache synchronization mechanism that is implemented in the RTOS but is called indirectly by the RTS’
_data_synch.h functions.

« strings.h -- Provides additional string functions, including bcmp(), bcopy(), bzero(), ffs(), index(), rindex(),
strcasecmp(), and strncasecmp().

7.1.3 Modifying a Library Function

You can inspect or modify library functions by examining the source code in the lib/src subdirectory of the
compiler installation. For example, C:\ti\ccsv7\tools\compiler\arm #.#.#\1lib\src.

One you have located the relevant source code, change the specific function file and rebuild the library.

You can use this source tree to rebuild the rtsv4_A_be_eabi.lib library or to build a new library. See Section 7.1.9
for details on library naming and Section 7.4 for details on building

7.1.4 Support for String Handling

The RTS library provides the standard C header file <string.h> as well as the POSIX header file <strings.h>,
which provides additional functions not required by the C standard. The POSIX header file <strings.h> provides:

* bcmp(), which is equivalent to memecmp()

* bcopy(), which is equivalent to memmove()

* bzero(), which is equivalent to memsef(.., 0, ...);

» ffs(), which finds the first bit set and returns the index of that bit

* index(), which is equivalent to strchr()

» rindex(), which is equivalent to strrchr()

» strcasecmp() and strncasecmp(), which perform case-insensitive string comparisons

In addition, the header file <string.h> provides one additional function not required by the C standard.

» strdup(), which duplicates a string by dynamically allocating memory (as if by using malloc) and copying the
string to this allocated memory

7.1.5 Minimal Support for Internationalization

The library includes the header files <locale.h>, <wchar.h>, and <wctype.h>, which provide APIs to support
non-ASCII character sets and conventions. Our implementation of these APIs is limited in the following ways:

* The library has minimal support for wide and multibyte characters. The type wchar_t is implemented as int.
The wide character set is equivalent to the set of values of type char. The library includes the header files
<wchar.h> and <wctype.h> but does not include all the functions specified in the standard. See Section 5.6
for more information about extended character sets.

» The C library includes the header file <locale.h> but with a minimal implementation. The only supported
locale is the C locale. That is, library behavior that is specified to vary by locale is hard-coded to the behavior
of the C locale, and attempting to install a different locale via a call to setlocale() will return NULL.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 175
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.1.6 Support for Time and Clock Functions
The compiler RTS library supports two low-level time-related standard C functions in time.h:

* clock t clock(void);
* time t time(time t *timer);

The time() function returns the wall-clock time. The clock() function returns the number of clock cycles since the
program began executing; it has nothing to do with wall-clock time.

The default implementations of these functions require that the program be run under CCS or a similar tool that
supports the CIO System Call Protocol. If CIO is not available and you need to use one of these functions, you
must provide your own definition of the function.

The clock() function returns the number of clock cycles since the program began executing. This information
might be available in a register on the device itself, but the location varies from platform to platform. The
compiler's RTS library provides an implementation that uses the CIO System Call Protocol to communicate with
CCS, which figures out how to compute the right value for this device.

If CCS is not available, you must provide an implementation of the clock() function that gathers clock cycle
information from the appropriate location on the device.

The time() function returns the real-world time, in terms of seconds since an epoch.

On many embedded systems, there is no internal real-world clock, so a program needs to discover the time
from an external source. The compiler's RTS library provides an implementation that uses the CIO System Call
Protocol to communicate with CCS, which provides the real-world time.

If CCS is not available, you must provide an implementation of the time() function that finds the time from some
other source. If the program is running under an operating system, that operating system should provide an
implementation of time().

The time() function returns the number of seconds since an epoch. On POSIX systems, the epoch is defined

as the number of seconds since midnight UTC January 1, 1970. However, the C standard does not require any
particular epoch, and the default T1 version of time() uses a different epoch: midnight UTC-6 (CST) Jan 1, 1900.
Also, the default Tl time_t type is a 32-bit type, while POSIX systems typically use a 64-bit time_t type.

The RTS library provides a non-default implementation of the time() function that uses the midnight UTC January
1, 1970 epoch and the 64-bit time_t type, which is then a typedef for __ type64 t.

If your code works with raw time values, you can handle the epoch issue in one of the following ways:

* Use the default time() function with the 1900 epoch and 32-bit time_t type. A separate __time64_t type is
available in this case.

* Define the macro __TI_TIME_USES_64. The time() function will use the 1970 epoch and the 64-bit time_t
type, in which case time_t is a typedef for __type64 _t.

Table 7-1. Differences between __time32_t and __time64_t

__time32_t _ time64_t
Epoch (start) Jan. 1, 1900 CST-0600 Jan. 1, 1970 UTC-0000
End date Feb. 7, 2036 06:28:14 year 292277026596
Sign Unsigned, so cannot represent dates before the epoch. | Signed, so can represent dates before the
epoch.
176 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

7.1.7 Allowable Number of Open Files

In the <stdio.h> header file, the value for the macro FOPEN_MAX has the value of the macro _NFILE, which
is set to 10. The impact is that you can only have 10 files simultaneously open at one time (including the
pre-defined streams - stdin, stdout, stderr).

The C standard requires that the minimum value for the FOPEN_MAX macro is 8. The macro determines the
maximum number of files that can be opened at one time. The macro is defined in the stdio.h header file and can
be modified by changing the value of the _NFILE macro and recompiling the library.

7.1.8 Nonstandard Header Files in the Source Tree

The source code in the lib/src subdirectory of the compiler installation contains these non-ANSI include files that
are used to build the library:

* The values.h file contains the definitions necessary for recompiling the trigonometric and transcendental math
functions. If necessary, you can customize the functions in values.h.

» The file.h file includes macros and definitions used for low-level I/O functions.

* The format.h file includes structures and macros used in printf and scanf.

» The 470cio.h file includes low-level, target-specific C I/O macro definitions. If necessary, you can customize
470cio.h.

» The rtti.h file includes internal function prototypes necessary to implement run-time type identification.

* The vibl.h file contains the definition of a class's virtual function table format.

7.1.9 Library Naming Conventions

By default, the linker uses automatic library selection to select the correct run-time-support library (see Section
4.3.1.1) for your application. If you select the library manually, you must select the matching library using a
naming scheme like the following:

rtsArchVersion_mode_endian[_n][_vn]_abi[_eh].lib
ArchVersion The version of the ARM architecture that the library was built for. This can be one of the following: v4, v5, v6, v6MO,
V7A8, v7R4, V7R5, or v7IM3.
mode Indicates compilation mode:
T Thumb mode
A ARM mode
endian Indicates endianness:
le Little-endian library
be Big-endian library
n Indicates the library contains NEON support.
vn Indicates the library has VFP support. n designates the version. Current values are:
2 VFPv2
3 VFPv3
3D16 VFPv3D16

abi Indicates the application binary interface (ABI) used. Although the TI_ARM9_ABI and TIARM ABIls are no longer
supported, the library filename still contains "_eabi" to distinguish the EABI libraries from older libraries.

eh Indicates the library has exception handling support

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 177
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.2 The C 1/0 Functions

The C I/O functions make it possible to access the host's operating system to perform 1/0. The capability to
perform I/O on the host gives you more options when debugging and testing code.

The 1/0O functions are logically divided into layers: high level, low level, and device-driver level.

With properly written device drivers, the C-standard high-level I/O functions can be used to perform I/O on
custom user-defined devices. This provides an easy way to use the sophisticated buffering of the high-level I/O
functions on an arbitrary device.

The formatting rules for long long data types require Il (lowercase LL) in the format string. For example:

printf ("$11d", 0x0011223344556677) ;
printf ("11x", 0x0011223344556677);

Note

Debugger Required for Default HOST: For the default HOST device to work, there must be a
debugger to handle the C I/O requests; the default HOST device cannot work by itself in an embedded
system. To work in an embedded system, you will need to provide an appropriate driver for your
system.

Note

C 1/0 Mysteriously Fails: If there is not enough space on the heap for a C I/O buffer, operations on
the file will silently fail. If a call to printf() mysteriously fails, this may be the reason. The heap needs to
be at least large enough to allocate a block of size BUFSIZ (defined in stdio.h) for every file on which
I/O is performed, including stdout, stdin, and stderr, plus allocations performed by the user's code,
plus allocation bookkeeping overhead. Alternately, declare a char array of size BUFSIZ and pass it

to setvbuf to avoid dynamic allocation. To set the heap size, use the --heap_size option when linking
(refer to the Linker Description chapter in the ARM Assembly Language Tools User's Guide).

Note

Open Mysteriously Fails: The run-time support limits the total number of open files to a small
number relative to general-purpose processors. If you attempt to open more files than the maximum,
you may find that the open will mysteriously fail. You can increase the number of open files by
extracting the source code from rts.src and editing the constants controlling the size of some of the

C /0O data structures. The macro _NFILE controls how many FILE (fopen) objects can be open at

one time (stdin, stdout, and stderr count against this total). (See also FOPEN_MAX.) The macro
_NSTREAM controls how many low-level file descriptors can be open at one time (the low-level files
underlying stdin, stdout, and stderr count against this total). The macro _NDEVICE controls how many
device drivers are installed at one time (the HOST device counts against this total).

178 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

7.2.1 High-Level I/0 Functions

The high-level functions are the standard C library of stream 1/O routines (printf, scanf, fopen, getchar, and
so on). These functions call one or more low-level I/0 functions to carry out the high-level I/O request. The
high-level I/O routines operate on FILE pointers, also called streams.

Portable applications should use only the high-level I/O functions.

To use the high-level 1/O functions:

* Include the header file stdio.h for each module that references a function.

» Allow for 320 bytes of heap space for each I/O stream used in your program. A stream is a source or
destination of data that is associated with a peripheral, such as a terminal or keyboard. Streams are buffered
using dynamically allocated memory that is taken from the heap. More heap space may be required to
support programs that use additional amounts of dynamically allocated memory (calls to malloc()). To set the
heap size, use the --heap_size option when linking; see Table 2-22.

For example, given the following C program in a file named main.c:

#include <stdio.h>
void main ()
{
FILE *fid;
fid = fopen("myfile","w");
fprintf (fid, "Hello, world\n");
fclose (fid) ;
printf ("Hello again, world\n");
}

Issuing the following compiler command compiles, links, and creates main.out from the run-time-support library:

armcl main.c --run linker --heap size=400 --library=rtsv4 A be eabi.lib --output file=main.out ‘

Executing main.out results in

‘Hello, world

being output to a file and

‘Hello again, world

being output to your host's stdout window.
7.2.1.1 Formatting and the Format Conversion Buffer

The internal routine behind the C I/O functions—such as printf(), vsnprintf(), and snprintf()—reserves stack
space for a format conversion buffer. The buffer size is set by the macro FORMAT_CONVERSION_BUFFER,
which is defined in format.h. Consider the following issues before reducing the size of this buffer:

» The default buffer size is 510 bytes. If MINIMAL is defined, the size is set to 32, which allows integer values
without width specifiers to be printed.

« Each conversion specified with %xxxx (except %s) must fit in FORMAT_CONVERSION_BUFSIZE. This
means any individual formatted float or integer value, accounting for width and precision specifiers, needs
to fit in the buffer. Since the actual value of any representable number should easily fit, the main concern is
ensuring the width and/or precision size meets the constraints.

» The length of converted strings using %s are unaffected by any change in
FORMAT_CONVERSION_BUFSIZE. For example, you can specify printf ("$s value is %d",
some really long string, intval) withouta problem.

» The constraint is for each individual item being converted. For example a format string of $d iteml %f
item2 %e item3 does not need to fit in the buffer. Instead, each converted item specified with a % format
must fit.

* There is no buffer overrun check.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 179
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.2.2 Overview of Low-Level /0 Implementation

The low-level functions are comprised of seven basic I/O functions: open, read, write, close, Iseek, rename,
and unlink. These low-level routines provide the interface between the high-level functions and the device-level
drivers that actually perform the 1/O command on the specified device.

The low-level functions are designed to be appropriate for all I/O methods, even those which are not actually
disk files. Abstractly, all I/O channels can be treated as files, although some operations (such as Iseek) may not
be appropriate. See Section 7.2.3 for more details.

The low-level functions are inspired by, but not identical to, the POSIX functions of the same names.

The low-level functions operate on file descriptors. A file descriptor is an integer returned by open, representing
an opened file. Multiple file descriptors may be associated with a file; each has its own independent file position
indicator.

open
Open File for I/O
Syntax #include <file.h>
int open (const char * path , unsigned flags , int file_descriptor);
Description The open function opens the file specified by path and prepares it for I/O.
+ The path is the filename of the file to be opened, including an optional directory path
and an optional device specifier (see Section 7.2.5).
* The flags are attributes that specify how the file is manipulated. The flags are specified
using the following symbols:
O RDONLY (0x0000) /* open for reading */
O_WRONLY (0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O CREAT (0x0200) /* open with file create */
O_TRUNC (0x0400) /* open with truncation */
O BINARY (0x8000) /* open in binary mode */
Low-level I/O routines allow or disallow some operations depending on the flags used
when the file was opened. Some flags may not be meaningful for some devices,
depending on how the device implements files.
+ The file_descriptor is assigned by open to an opened file.
The next available file descriptor is assigned to each new file opened.
Return Value The function returns one of the following values:
non-negative file descriptor if successful
-1 on failure
180 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using Run-Time-Support Functions and Building Libraries
close
Close File for I/O
Syntax #include <file.h>
int close (int file_descriptor);
Description The close function closes the file associated with file_descriptor.

The file_descriptor is the number assigned by open to an opened file.

Return Value The return value is one of the following:
0 if successful
-1 on failure

read

Read Characters from a File

Syntax #include <file.h>

int read (int file_descriptor , char * buffer , unsigned count);

Description The read function reads count characters into the buffer from the file associated with
file_descriptor.

« The file_descriptor is the number assigned by open to an opened file.
« The buffer is where the read characters are placed.
« The count is the number of characters to read from the file.

Return Value The function returns one of the following values:

0 if EOF was encountered before any characters were read
number of characters read (may be less than count)
-1 on failure

write
Write Characters to a File
Syntax #include <file.h>
int write (int file_descriptor , const char * buffer , unsigned count);
Description The write function writes the number of characters specified by count from the buffer to
the file associated with file_descriptor.
« The file_descriptor is the number assigned by open to an opened file.
« The buffer is where the characters to be written are located.
« The count is the number of characters to write to the file.
Return Value The function returns one of the following values:
number of characters written if successful (may be less than count)
-1 on failure
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 181
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

Iseek

Syntax for C

Description

Return Value

unlink

Syntax

Description

Return Value

Set File Position Indicator

#include <file.h>

off_t Iseek (int file_descriptor , off_t offset , int origin);

The Iseek function sets the file position indicator for the given file to a location relative to
the specified origin. The file position indicator measures the position in characters from
the beginning of the file.

» The file_descriptor is the number assigned by open to an opened file.

» The offset indicates the relative offset from the origin in characters.

» The origin is used to indicate which of the base locations the offset is measured from.
The origin must be one of the following macros:

SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file

The return value is one of the following:

new value of the file position indicator if successful
(off_t)-1 on failure
Delete File

#include <file.h>

int unlink (const char * path);

The unlink function deletes the file specified by path. Depending on the device, a deleted
file may still remain until all file descriptors which have been opened for that file have
been closed. See Section 7.2.3.

The path is the filename of the file, including path information and optional device prefix.
(See Section 7.2.5.)

The function returns one of the following values:

0 if successful
-1 on failure
182 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

rename

Rename File

Syntax for C #include {<stdio.h> | <file.h>}

int rename (const char * o/ld_name , const char * new_name);
Syntax for C++ #include {<cstdio> | <file.h>}

int std::rename (const char * o/ld_name , const char * new_name);
Description The rename function changes the name of a file.

» The old_name is the current name of the file.
* The new_name is the new name for the file.

Note

The optional device specified in the new nhame must match the device of the
old name. If they do not match, a file copy would be required to perform the
rename, and rename is not capable of this action.

Return Value The function returns one of the following values:
0 if successful
-1 on failure
Note

Although rename is a low-level function, it is defined by the C standard and can
be used by portable applications.

7.2.3 Device-Driver Level I/O Functions

At the next level are the device-level drivers. They map directly to the low-level I/O functions. The default device
driver is the HOST device driver, which uses the debugger to perform file operations. The HOST device driver is
automatically used for the default C streams stdin, stdout, and stderr.

The HOST device driver shares a special protocol with the debugger running on a host system so that the host
can perform the C I/O requested by the program. Instructions for C I/O operations that the program wants to
perform are encoded in a special buffer named _CIOBUF _ in the .cio section. The debugger halts the program at
a special breakpoint (C$$10$$), reads and decodes the target memory, and performs the requested operation.
The result is encoded into _CIOBUF_, the program is resumed, and the target decodes the result.

The HOST device is implemented with seven functions, HOSTopen, HOSTclose, HOSTread, HOSTwrite,
HOSTIseek, HOSTunlink, and HOSTrename, which perform the encoding. Each function is called from the
low-level I/0 function with a similar name.

A device driver is composed of seven required functions. Not all function need to be meaningful for all devices,
but all seven must be defined. Here we show the names of all seven functions as starting with DEV, but you may
choose any name except for HOST.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler =~ 183
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

DEV_open

Syntax

Description

Return Value

Open File for I/O

int DEV_open (const char * path , unsigned flags , int llv_fd);

This function finds a file matching path and opens it for I/0 as requested by flags.

» The path is the filename of the file to be opened. If the name of a file passed to open
has a device prefix, the device prefix will be stripped by open, so DEV_open will not
see it. (See Section 7.2.5 for details on the device prefix.)

» The flags are attributes that specify how the file is manipulated. The flags are specified
using the following symbols:

O_RDONLY (0x0000 /* open for reading */
O _WRONLY (0x0001 /* open for writing */
O_RDWR (0x0002 /* open for read & write */

)
)
)
O APPEND (0x0008) /* append on each write */
)
)
)

O_CREAT (0x0200 /* open with file create */
O_TRUNC (0x0400 /* open with truncation */
O BINARY (0x8000 /* open in binary mode */

See POSIX for further explanation of the flags.

» The llv_fdis treated as a suggested low-level file descriptor. This is a historical artifact;
newly-defined device drivers should ignore this argument. This differs from the low-
level 1/0 open function.

This function must arrange for information to be saved for each file descriptor, typically
including a file position indicator and any significant flags. For the HOST version, all the
bookkeeping is handled by the debugger running on the host machine. If the device uses
an internal buffer, the buffer can be created when a file is opened, or the buffer can be
created during a read or write.

This function must return -1 to indicate an error if for some reason the file could not be
opened; such as the file does not exist, could not be created, or there are too many

files open. The value of errno may optionally be set to indicate the exact error (the

HOST device does not set errno). Some devices might have special failure conditions; for
instance, if a device is read-only, a file cannot be opened O_WRONLY.

On success, this function must return a non-negative file descriptor unique among all
open files handled by the specific device. The file descriptor need not be unique across
devices. The device file descriptor is used only by low-level functions when calling the
device-driver-level functions. The low-level function open allocates its own unique file
descriptor for the high-level functions to call the low-level functions. Code that uses only
high-level I/O functions need not be aware of these file descriptors.

184 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Using Run-Time-Support Functions and Building Libraries
DEV close
Close File for I/O
Syntax int DEV_close (int dev_fd);
Description This function closes a valid open file descriptor.

Return Value

DEV _read

Syntax

Description

Return Value

DEV_write

Syntax

Description

Return Value

On some devices, DEV_close may need to be responsible for checking if this is the last
file descriptor pointing to a file that was unlinked. If so, it is responsible for ensuring that
the file is actually removed from the device and the resources reclaimed, if appropriate.

This function should return -1 to indicate an error if the file descriptor is invalid in some
way, such as being out of range or already closed, but this is not required. The user
should not call close() with an invalid file descriptor.

Read Characters from a File

int DEV_read (int dev_fd, char * buf, unsigned count);

The read function reads count bytes from the input file associated with dev_fd.

* The dev_fd is the number assigned by open to an opened file.
» The bufis where the read characters are placed.
» The count is the number of characters to read from the file.

This function must return -1 to indicate an error if for some reason no bytes could be read
from the file. This could be because of an attempt to read from a O_WRONLY file, or for
device-specific reasons.

If count is 0, no bytes are read and this function returns 0.

This function returns the number of bytes read, from 0 to count. 0 indicates that EOF was
reached before any bytes were read. It is not an error to read less than count bytes; this
is common if the are not enough bytes left in the file or the request was larger than an
internal device buffer size.

Write Characters to a File

int DEV_write (int dev_fd , const char * buf, unsigned count);

This function writes count bytes to the output file.

* The dev_fd is the number assigned by open to an opened file.
» The buffer is where the write characters are placed.
* The count is the number of characters to write to the file.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. This could be because of an attempt to read from a O_RDONLY file, or
for device-specific reasons.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler 185
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Using Run-Time-Support Functions and Building Libraries

13 TEXAS
INSTRUMENTS

www.ti.com

DEV Iseek

Syntax

Description

Return Value

DEV _unlink

Syntax

Description

Return Value

DEV_rename

Syntax

Description

Return Value

Set File Position Indicator

off_t DEV_lIseek (int dev_fd , off_t offset, int origin);
This function sets the file's position indicator for this file descriptor as Iseek.

If Iseek is supported, it should not allow a seek to before the beginning of the file, but it
should support seeking past the end of the file. Such seeks do not change the size of the
file, but if it is followed by a write, the file size will increase.

If successful, this function returns the new value of the file position indicator.

This function must return -1 to indicate an error if for some reason no bytes could be
written to the file. For many devices, the Iseek operation is nonsensical (e.g. a computer
monitor).

Delete File

int DEV_unlink (const char * path);

Remove the association of the pathname with the file. This means that the file may no
longer be opened using this name, but the file may not actually be immediately removed.

Depending on the device, the file may be immediately removed, but for a device which
allows open file descriptors to point to unlinked files, the file will not actually be deleted
until the last file descriptor is closed. See Section 7.2.3.

This function must return -1 to indicate an error if for some reason the file could not be
unlinked (delayed removal does not count as a failure to unlink.)

If successful, this function returns 0.

Rename File

int DEV_rename (const char * o/d_name , const char * new_name);

This function changes the name associated with the file.

» The old_name is the current name of the file.
» The new_name is the new name for the file.

This function must return -1 to indicate an error if for some reason the file could not be
renamed, such as the file does not exist, or the new name already exists.

Note

It is inadvisable to allow renaming a file so that it is on a different device. In
general this would require a whole file copy, which may be more expensive than
you expect.

If successful, this function returns 0.

186 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

7.2.4 Adding a User-Defined Device Driver for C I/0

The function add_device allows you to add and use a device. When a device is registered with add_device, the
high-level I/O routines can be used for I/O on that device.

You can use a different protocol to communicate with any desired device and install that protocol using
add_device; however, the HOST functions should not be modified. The default streams stdin, stdout, and stderr
can be remapped to a file on a user-defined device instead of HOST by using freopen() as in Example 7-1. If the
default streams are reopened in this way, the buffering mode will change to _IOFBF (fully buffered). To restore
the default buffering behavior, call setvbuf on each reopened file with the appropriate value (_IOLBF for stdin
and stdout, IONBF for stderr).

The default streams stdin, stdout, and stderr can be mapped to a file on a user-defined device instead of HOST
by using freopen() as shown in Example 7-1. Each function must set up and maintain its own data structures as
needed. Some function definitions perform no action and should just return.

Note
Use Unique Function Names

The function names open, read, write, close, Iseek, rename, and unlink are used by the low-level
routines. Use other names for the device-level functions that you write.

Use the low-level function add_device() to add your device to the device_table. The device table is a statically
defined array that supports n devices, where n is defined by the macro NDEVICE found in stdio.h/cstdio.

The first entry in the device table is predefined to be the host device on which the debugger is running. The
low-level routine add_device() finds the first empty position in the device table and initializes the device fields
with the passed-in arguments. For a complete description, see the add_device function.

Example 7-1. Mapping Default Streams to Device

#include <stdio.h>
#include <file.h>
#include "mydevice.h"
void main ()
{
add device ("mydevice", MSA,
MYDEVICE open, MYDEVICE close,
MYDEVICE read, MYDEVICE write,
MYDEVICE lseek, MYDEVICE unlink, MYDEVICE rename);

2 ———————~ */
/* Re-open stderr as a MYDEVICE file */
2 */
if (!freopen("mydevice:stderrfile", "w", stderr))

puts ("Failed to freopen stderr");

exit (EXIT FAILURE);
}
2 ———————— */
/* stderr should not be fully buffered; we want errors to be seen as */
/* soon as possible. Normally stderr is line-buffered, but this example */
/* does not buffer stderr at all. This means that there will be one call */
/* to write() for each character in the message. */
2 */
if (setvbuf (stderr, NULL, IONBF, 0))
{

puts ("Failed to setvbuf stderr");

exit (EXIT_ FAILURE);

}

/ K o * /

/* Try it out! */

/ K e * /

printf ("This goes to stdout\n");

fprintf (stderr, "This goes to stderr\n"); }
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 187
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.2.5 The device Prefix

A file can be opened to a user-defined device driver by using a device prefix in the pathname. The device prefix
is the device name used in the call to add_device followed by a colon. For example:

FILE *fptr = fopen ("mydevice:filel"™, "r");
int fd = open("mydevice:file2, O RDONLY, 0);

If no device prefix is used, the HOST device will be used to open the file.

add_device

Syntax for C

Defined in

Description

Return Value

Add Device to Device Table

#include <file.h>

int add_device(char * name,

unsigned flags ,

int (* dopen)(const char * path , unsigned flags , int liv_fd),

int (* dclose)(int dev_fd),

int (* dread)(int dev_fd, char * buf, unsigned count),

int (* dwrite)(int dev_fd , const char * buf , unsigned count),

off_t (* dIseek)(int dev_fd, off_t ioffset, int origin),

int (* dunlink)(const char * path),

int (* drename)(const char * old_name , const char * new_name)));

lowlev.c (in the lib/src subdirectory of the compiler installation)

The add_device function adds a device record to the device table allowing that device

to be used for I/O from C. The first entry in the device table is predefined to be the

HOST device on which the debugger is running. The function add_device() finds the first
empty position in the device table and initializes the fields of the structure that represent a
device.

To open a stream on a newly added device use fopen() with a string of the format
devicename : filename as the first argument.

+ The name is a character string denoting the device name. The name is limited to 8
characters.
+ The flags are device characteristics. The flags are as follows:

_SSA Denotes that the device supports only one open stream at a time
_MSA Denotes that the device supports multiple open streams

More flags can be added by defining them in file.h.

* The dopen, dclose, dread, dwrite, diseek, dunlink, and drename specifiers are function
pointers to the functions in the device driver that are called by the low-level functions
to perform 1/0O on the specified device. You must declare these functions with the
interface specified in Section 7.2.2. The device driver for the HOST that the ARM
debugger is run on are included in the C I/O library.

The function returns one of the following values:

0 if successful
-1 on failure
188 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS

Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

add_device (continued)

Add Device to Device Table

Example Example 7-2 does the following:

* Adds the device mydevice to the device table

» Opens a file named test on that device and associates it with the FILE pointer fid
» Writes the string Hello, world into the file

* Closes the file

Example 7-2 illustrates adding and using a device for C I/O:

Example 7-2. Program for C I/O Device

finclude <file.h>
#include <stdio.h>
/‘k***********************/

/* Declarations of the user-defined device drivers */
/**/
extern int MYDEVICE open (const char *path, unsigned flags, int fno);
extern int MYDEVICE close (int fno);
extern int MYDEVICE read(int fno, char *buffer, unsigned count);
extern int MYDEVICE write(int fno, const char *buffer, unsigned count);
extern off t MYDEVICE lseek(int fno, off t offset, int origin);
extern int MYDEVICE unlink(const char *path);
extern int MYDEVICE rename (const char *old name, char *new name);
main ()
{
FILE *fid;
add_device ("mydevice", MSA, MYDEVICE open, MYDEVICE close, MYDEVICE read,
MYDEVICE write, MYDEVICE lseek, MYDEVICE unlink, MYDEVICE rename);
fid = fopen("mydevice:test","w");
fprintf (fid, "Hello, world\n");

fclose (fid);
}
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 189
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)

The C standard assumes only one thread of execution, with the only exception being extremely narrow support
for signal handlers. The issue of reentrancy is avoided by not allowing you to do much of anything in a signal
handler. However, SYS/BIOS applications have multiple threads which need to modify the same global program
state, such as the CIO buffer, so reentrancy is a concern.

Part of the problem of reentrancy remains your responsibility, but the run-time-support environment does provide
rudimentary support for multi-threaded reentrancy by providing support for critical sections. This implementation
does not protect you from reentrancy issues such as calling run-time-support functions from inside interrupts;
this remains your responsibility.

The run-time-support environment provides hooks to install critical section primitives. By default, a single-
threaded model is assumed, and the critical section primitives are not employed. In a multi-threaded system
such as SYS/BIOS, the kernel arranges to install semaphore lock primitive functions in these hooks, which are
then called when the run-time-support enters code that needs to be protected by a critical section.

Throughout the run-time-support environment where a global state is accessed, and thus needs to be protected
with a critical section, there are calls to the function _lock(). This calls the provided primitive, if installed, and
acquires the semaphore before proceeding. Once the critical section is finished, _unlock() is called to release the
semaphore.

Usually SYS/BIOS is responsible for creating and installing the primitives, so you do not need to take any action.
However, this mechanism can be used in multi-threaded applications that do not use the SYS/BIOS locking
mechanism.

You should not define the functions _lock() and _unlock() functions directly; instead, the installation functions are
called to instruct the run-time-support environment to use these new primitives:

void _register lock (void (*lock) ());
void register unlock(void (*unlock) ());

The arguments to _register_lock() and _register_unlock() should be functions which take no arguments and
return no values, and which implement some sort of global semaphore locking:

extern volatile sig atomic t *sema = SHARED SEMAPHORE LOCATION;

static int sema depth = 0;

static void my lock(void)

{
while (ATOMIC TEST AND SET (sema, MY UNIQUE ID) != MY UNIQUE ID);
sema_depth++;

}

static void my unlock(void)

{
if (!--sema_depth) ATOMIC_CLEAR (sema) ;

}

The run-time-support nests calls to _lock(), so the primitives must keep track of the nesting level.

190 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Using Run-Time-Support Functions and Building Libraries

7.4 Library-Build Process

When using the C/C++ compiler, you can compile your code under a large number of different configurations
and options that are not necessarily compatible with one another. Because it would be infeasible to include

all possible run-time-support library variants, compiler releases pre-build only a small number of very commonly-
used libraries.

To provide maximum flexibility, the run-time-support source code is provided as part of each compiler release.
You can build the missing libraries as desired. The linker can also automatically build missing libraries. This
is accomplished with a new library build process, the core of which is the executable mklib, which is available
beginning with CCS 5.1.

7.4.1 Required Non-Texas Instruments Software

To use the self-contained run-time-support build process to rebuild a library with custom options, the following
are required:

* sh (Bourne shell)
» gmake (GNU make 3.81 or later)

More information is available from GNU at http://www.gnu.org/software/make. GNU make (gmake) is also
available in earlier versions of Code Composer Studio. GNU make is also included in some UNIX support
packages for Windows, such as the MKS Toolkit, Cygwin, and Interix. The GNU make used on Windows
platforms should explicitly report "This program build for Windows32" when the following is executed from the
Command Prompt window:

gmake -h

All three of these programs are provided as a non-optional feature of CCS 5.1. They are also available as part of
the optional XDC Tools feature if you are using an earlier version of CCS.

The mklib program looks for these executables in the following order:
in your PATH

in the directory getenv("CCS_UTILS_DIR")/cygwin

in the directory getenv("CCS_UTILS DIR")/bin

in the directory getenv("XDCROOT")

in the directory getenv("XDCROOT")/bin

If you are invoking mklib from the command line, and these executables are not in your path, you must set the
environment variable CCS_UTILS DIR such that getenv("CCS_UTILS_DIR")/bin contains the correct programs.

agbrON -~

7.4.2 Using the Library-Build Process

You should normally let the linker automatically rebuild libraries as needed. If necessary, you can run mklib
directly to populate libraries. See Section 7.4.2.2 for situations when you might want to do this.

7.4.2.1 Automatic Standard Library Rebuilding by the Linker

The linker looks for run-time-support libraries primarily through the TI_ARM_C_DIR environment variable.
Typically, one of the pathnames in TI_ARM_C_DIR is your install directoryllib, which contains all of the pre-built
libraries, as well as the index library libc.a. The linker looks in TI_ARM_C_DIR to find a library that is the

best match for the build attributes of the application. The build attributes are set indirectly according to the
command-line options used to build the application. Build attributes include things like CPU revision. If the library
name is explicitly specified (e.g. -library=rtsv4_A_be_eabi), run-time support looks for that library exactly. If the
library name is not specified, the linker uses the index library libc.a to pick an appropriate library. If the library is
specified by path (e.g. —library=/foo/rtsv4_A_be_eabi), it is assumed the library already exists and it will not be
built automatically.

The index library describes a set of libraries with different build attributes. The linker will compare the build
attributes for each potential library with the build attributes of the application and will pick the best fit. For details
on the index library, see the archiver chapter in the ARM Assembly Language Tools User's Guide.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 191
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

http://www.gnu.org/software/make
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

Now that the linker has decided which library to use, it checks whether the run-time-support library is present in
TI_ARM_C_DIR. The library must be in exactly the same directory as the index library libc.a. If the library is not
present, the linker invokes mklib to build it. This happens when the library is missing, regardless of whether the
user specified the name of the library directly or allowed the linker to pick the best library from the index library.

The mklib program builds the requested library and places it in 'lib' directory part of TI_ARM_C_DIR in the same
directory as the index library, so it is available for subsequent compilations.

Things to watch out for:

* The linker invokes mklib and waits for it to finish before finishing the link, so you will experience a one-time
delay when an uncommonly-used library is built for the first time. Build times of 1-5 minutes have been
observed. This depends on the power of the host (number of CPUs, etc).

* In a shared installation, where an installation of the compiler is shared among more than one user, it is
possible that two users might cause the linker to rebuild the same library at the same time. The mklib
program tries to minimize the race condition, but it is possible one build will corrupt the other. In a shared
environment, all libraries which might be needed should be built at install time; see Section 7.4.2.2 for
instructions on invoking mklib directly to avoid this problem.

» The index library must exist, or the linker is unable to rebuild libraries automatically.

» The index library must be in a user-writable directory, or the library is not built. If the compiler installation
must be installed read-only (a good practice for shared installation), any missing libraries must be built at
installation time by invoking mklib directly.

* The mklib program is specific to a certain version of a certain library; you cannot use one compiler version's
run-time support's mklib to build a different compiler version's run-time support library.

7.4.2.2 Invoking mklib Manually

You may need to invoke mklib directly in special circumstances:

* The compiler installation directory is read-only or shared.

* You want to build a variant of the run-time-support library that is not pre-configured in the index library libc.a
or known to mklib. (e.g. a variant with source-level debugging turned on.)

7.4.2.2.1 Building Standard Libraries

You can invoke mklib directly to build any or all of the libraries indexed in the index library libc.a. The libraries
are built with the standard options for that library; the library names and the appropriate standard option sets are
known to mklib.

This is most easily done by changing the working directory to be the compiler run-time-support library directory
'lib" and invoking the mklib executable there:

mklib --pattern=rtsv4_A be eabi.lib

7.4.2.2.2 Shared or Read-Only Library Directory

If the compiler tools are to be installed in shared or read-only directory, mklib cannot build the standard libraries
at link time; the libraries must be built before the library directory is made shared or read-only.

At installation time, the installing user must build all of the libraries which will be used by any user. To build all
possible libraries, change the working directory to be the compiler RTS library directory 'lib" and invoke the mklib
executable there:

mklib --all

Some targets have many libraries, so this step can take a long time. To build a subset of the libraries, invoke
mklib individually for each desired library.

7.4.2.2.3 Building Libraries With Custom Options

You can build a library with any extra custom options desired. This is useful for building a version of the library
with silicon exception workarounds enabled. The generated library is not a standard library, and must not be
placed in the 'lib' directory. It should be placed in a directory local to the project which needs it. To build a

192 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Using Run-Time-Support Functions and Building Libraries

debugging version of the library rtsv4_A_be _eabi, change the working directory to the 'lib' directory and run the

command:

mklib --pattern=rtsv4 A be_eabi.lib --name=rtsv4_A be eabi_debug.lib
--install to=$Project/Debug --extra options="-g"

7.4.2.2.4 The mklib Program Option Summary

Run the following command to see the full list of options. These are described in Table 7-2.

mklib --help

Table 7-2. The mklib Program Options

Option

Effect

--index= filename

--pattern= filename

--all

--install_to= directory

--compiler_bin_dir=
directory

--name= filename

--options=" str"'

--extra_options=' str"'
--list_libraries

--log= filename
--tmpdir= directory
--gmake= filename
--parallel= N
--query= filename
--help or --h

--quiet or --q

--verbose or --v

The index library (libc.a) for this release. Used to find a template library for custom builds, and to find the source
files (in the lib/src subdirectory of the compiler installation). REQUIRED.

Pattern for building a library. If neither --extra_options nor --options are specified, the library will be the standard
library with the standard options for that library. If either --extra_options or --options are specified, the library is a
custom library with custom options. REQUIRED unless --all is used.

Build all standard libraries at once.

The directory into which to write the library. For a standard library, this defaults to the same directory as the
index library (libc.a). For a custom library, this option is REQUIRED.

The directory where the compiler executables are. When invoking mklib directly, the executables should be in
the path, but if they are not, this option must be used to tell mklib where they are. This option is primarily for use
when mklib is invoked by the linker.

File name for the library with no directory part. Only useful for custom libraries.

Options to use when building the library. The default options (see below) are replaced by this string. If this
option is used, the library will be a custom library.

Options to use when building the library. The default options (see below) are also used. If this option is used,
the library will be a custom library.

List the libraries this script is capable of building and exit. ordinary system-specific directory.
Save the build log as filename.

Use directory for scratch space instead of the ordinary system-specific directory.
Gmake-compatible program to invoke instead of "gmake"

Compile N files at once ("gmake -j N").

Does this script know how to build FILENAME?

Display this help.

Operate silently.

Extra information to debug this executable.

Examples:

To build all standard libraries and place them in the compiler's library directory:

‘mklib --all --index=$C_DIR/lib ‘

To build one standard library and place it in the compiler's library directory:

‘ mklib --pattern=rtsv4_A be eabi.lib --index=$C_DIR/1lib ‘

To build a custom library that is just like rtsv4_A_be_eabi.lib, but has symbolic debugging support enabled:

mklib --pattern=rtsl6.lib --extra options="-g" --index=$C_DIR/lib --install_ to=$Project/Debug
--name=rtsv4_A be eabi_debug.lib

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler 193
v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

Using Run-Time-Support Functions and Building Libraries www.ti.com

7.4.3 Extending mklib

The mklib API is a uniform interface that allows Code Composer Studio to build libraries without needing to
know exactly what underlying mechanism is used to build it. Each library vendor (e.g. the Tl compiler) provides
a library-specific copy of 'mklib' in the library directory that can be invoked, which understands a standardized
set of options, and understands how to build the library. This allows the linker to automatically build application-
compatible versions of any vendor's library without needing to register the library in advance, as long as the
vendor supports mklib.

7.4.3.1 Underlying Mechanism

The underlying mechanism can be anything the vendor desires. For the compiler run-time-support libraries,
mklib is just a wrapper that knows how to use the files in the lib/src subdirectory of the compiler installation

and invoke gmake with the appropriate options to build each library. If necessary, mklib can be bypassed and
the Makefile used directly, but this mode of operation is not supported by T, and you are responsible for any
changes to the Makefile. The format of the Makefile and the interface between mklib and the Makefile is subject
to change without notice. The mklib program is the forward-compatible path.

7.4.3.2 Libraries From Other Vendors

Any vendor who wishes to distribute a library that can be rebuilt automatically by the linker must provide:
* Anindex library (like 'libc.a’, but with a different name)

* A copy of mklib specific to that library

* A copy of the library source code (in whatever format is convenient)

These things must be placed together in one directory that is part of the linker's library search path (specified
either in TI_ARM_C_DIR or with the linker --search_path option).

If mklib needs extra information that is not possible to pass as command-line options to the compiler, the vendor
will need to provide some other means of discovering the information (such as a configuration file written by a
wizard run from inside CCS).

The vendor-supplied mklib must at least accept all of the options listed in Table 7-2 without error, even if they do
not do anything.

194 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Chapter 8
C++ Name Demangler

i3 TEXAS INSTRUMENTS

The C++ compiler implements function overloading, operator overloading, and type-safe linking by encoding
a function's prototype and namespace in its link-level name. The process of encoding the prototype into the
linkname is often referred to as name mangling. When you inspect mangled names, such as in assembly
files, disassembler output, or compiler or linker diagnostic messages, it can be difficult to associate a mangled
name with its corresponding name in the C++ source code. The C++ name demangler is a debugging aid that
translates each mangled name it detects to its original name found in the C++ source code.

These topics tell you how to invoke and use the C++ name demangler. The C++ name demangler reads in input,
looking for mangled names. All unmangled text is copied to output unaltered. All mangled names are demangled
before being copied to output.

8.1 Invoking the C++ Name DemM@aNnGIer..............cc.ooi ittt e e e st e e et snn e e s snneeeanneeenans 196
8.2 Sample Usage of the C++ Name DemanGIer...............oooiiiiiiiiiiiiii ettt nnes 197
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 195

Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

C++ Name Demangler www.ti.com

8.1 Invoking the C++ Name Demangler

The syntax for invoking the C++ name demangler is:
armdem [options] [filenames]

armdem Command that invokes the C++ name demangler.

options Options affect how the name demangler behaves. Options can appear anywhere on the command line.

filenames Text input files, such as the assembly file output by the compiler, the assembiler listing file, the disassembly file, and the

linker map file. If no filenames are specified on the command line, armdem uses standard input.

By default, the C++ name demangler outputs to standard output. You can use the -o file option if you want to
output to a file.

The following options apply only to the C++ name demangler:

--debug (--d) Prints debug messages.

--diag_wrap[=on,off] Sets diagnostic messages to wrap at 79 columns (on, which is the default) or not (off).
--help (-h) Prints a help screen that provides an online summary of the C++ name demangler options.
--output= file (-o) Outputs to the specified file rather than to standard out.

--quiet (-q) Reduces the number of messages generated during execution.

-u

Specifies that external names do not have a C++ prefix. (deprecated)

196 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

C++ Name Demangler

8.2 Sample Usage of the C++ Name Demangler

The examples in this section illustrate the demangling process.

This example shows a sample C++ program. In this example, the linknames of all the functions are mangled;

that is, their signature information is encoded into their names.

class banana {
public:

banana () ;
~banana () ;

banana x;

int calories(void);

int calories in a banana(void)

return x.calories();

The resulting assembly that is output by the compiler is as follows.

STMFD
MOV
BL

BL
MOV
MOV
BL
MOV
LDMFD
BX

_Z20calories_in a bananav:

Sp!, {A3, A4, V1, LR}
Al, SP
_ZNébananaClEv

_ZN6banana8caloriesEv
Vi, Al

Al, SP
__ZN6bananaDlEv
Al, V1

sp!, {A3, A4, V1, LR}
LR

Executing the C++ name demangler will demangle all names that it believes to be mangled. Enter:

armdem calories_in

_a banana.asm

The result after running the C++ name demangler is as follows. The linknames in _ZN6bananaC1Eyv,

_ZN6banana8caloriesEv, and _ZN6bananaD1Ev are demangled.

calories_in_a bana

STMFD
MOV
BL

BL
MOV
MOV
BL
MOV
LDMFD
BX

na():

SP!, {A3, A4, V1, LR}
Al, SP

banana: :banana ()
banana: :calories ()
V1, Al

Al, SP

banana: :~banana ()

Al, V1

SP!, {A3, A4, V1, LR}
LR

SPNU151W — JANUARY 1998
Submit Document Feedback

— REVISED MARCH 2023

Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler 197
v20.2.0.LTS

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

C++ Name Demangler www.ti.com
This page intentionally left blank.

198 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Appendix A
Glossary

A.1 Terminology

absolute lister

alias disambiguation

aliasing

allocation

ANSI

Application Binary
Interface (ABI)

archive library

archiver

assembler

assignment statement

autoinitialization

autoinitialization at
run time

i3 TEXAS INSTRUMENTS

A debugging tool that allows you to create assembler listings that contain absolute
addresses.

A technique that determines when two pointer expressions cannot point to the same
location, allowing the compiler to freely optimize such expressions.

The ability for a single object to be accessed in more than one way, such as when
two pointers point to a single object. It can disrupt optimization, because any indirect
reference could refer to any other object.

A process in which the linker calculates the final memory addresses of output
sections.

American National Standards Institute; an organization that establishes standards
voluntarily followed by industries.

A standard that specifies the interface between two object modules. An ABI specifies
how functions are called and how information is passed from one program component
to another.

A collection of individual files grouped into a single file by the archiver.

A software program that collects several individual files into a single file called an
archive library. With the archiver, you can add, delete, extract, or replace members of
the archive library.

A software program that creates a machine-language program from a source file
that contains assembly language instructions, directives, and macro definitions. The
assembler substitutes absolute operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic addresses.

A statement that initializes a variable with a value.

The process of initializing global C variables (contained in the .cinit section) before
program execution begins.

An autoinitialization method used by the linker when linking C code. The linker uses
this method when you invoke it with the --rom_model link option. The linker loads
the .cinit section of data tables into memory, and variables are initialized at run time.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 199

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
Glossary www.ti.com
big endian An addressing protocol in which bytes are numbered from left to right within a word.
More significant bytes in a word have lower numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also little endian
BIS Bit instruction set.
block A set of statements that are grouped together within braces and treated as an entity.
Yy
-bss section One of the default object file sections. You use the assembler .bss directive to reserve
a specified amount of space in the memory map that you can use later for storing
data. The .bss section is uninitialized.
byte Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler

code generator

COFF

command file

comment

compiler program

configured memory
constant

cross-reference listing

.data section

direct call

directives

disambiguation

dynamic memory

A software program that translates C source statements into assembly language
source statements.

A compiler tool that takes the file produced by the parser or the optimizer and
produces an assembly language source file.

Common object file format; a system of object files configured according to a standard
developed by AT&T. This ABI is no longer supported.

A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they
have no effect on the object file.

A utility that lets you compile, assemble, and optionally link in one step. The

compiler runs one or more source modules through the compiler (including the parser,
optimizer, and code generator), the assembler, and the linker.

Memory that the linker has specified for allocation.

A type whose value cannot change.

An output file created by the assembler that lists the symbols that were defined, what
line they were defined on, which lines referenced them, and their final values.

One of the default object file sections. The .data section is an initialized section
that contains initialized data. You can use the .data directive to assemble code into
the .data section.

A function call where one function calls another using the function's name.

Special-purpose commands that control the actions and functions of a software tool
(as opposed to assembly language instructions, which control the actions of a device).

See alias disambiguation

A technique used by several functions (such as malloc, calloc, and realloc) to

allocation dynamically allocate memory for variables at run time. This is accomplished by
200 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Glossary

defining a large memory pool (heap) and using the functions to allocate memory from
the heap.

ELF Executable and Linkable Format; a system of object files configured according to the
System V Application Binary Interface specification.

emulator A hardware development system that duplicates the ARM operation.

entry point

environment variable

epilog
executable object file

expression

external symbol

file-level optimization

function inlining

global symbol
high-level language
debugging

indirect call
initialization at load
time

initialized section

input section

integrated
preprocessor

interlist feature

A point in target memory where execution starts.

A system symbol that you define and assign to a string. Environmental variables are
often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

The portion of code in a function that restores the stack and returns.
A linked, executable object file that is downloaded and executed on a target system.

A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

A symbol that is used in the current program module but defined or declared in a
different program module.

A level of optimization where the compiler uses the information that it has about the
entire file to optimize your code (as opposed to program-level optimization, where the
compiler uses information that it has about the entire program to optimize your code).

The process of inserting code for a function at the point of call. This saves the
overhead of a function call and allows the optimizer to optimize the function in the
context of the surrounding code.

A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

The ability of a compiler to retain symbolic and high-level language information (such
as type and function definitions) so that a debugging tool can use this information.

A function call where one function calls another function by giving the address of the
called function.

An autoinitialization method used by the linker when linking C/C++ code. The linker
uses this method when you invoke it with the --ram_model link option. This method
initializes variables at load time instead of run time.

A section from an object file that will be linked into an executable object file.

A section from an object file that will be linked into an executable object file.

A C/C++ preprocessor that is merged with the parser, allowing for faster compilation.
Stand-alone preprocessing or preprocessed listing is also available.

A feature that inserts as comments your original C/C++ source statements into the
assembly language output from the assembler. The C/C++ statements are inserted
next to the equivalent assembly instructions.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023

Submit Document Feedback

v20.2.0.LTS
Copyright © 2023 Texas Instruments Incorporated

ARM Optimizing C/C++ Compiler 201

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
Glossary www.ti.com
intrinsics Operators that are used like functions and produce assembly language code that
would otherwise be inexpressible in C, or would take greater time and effort to code.

ISO International Organization for Standardization; a worldwide federation of national
standards bodies, which establishes international standards voluntarily followed by
industries.

K&R C Kernighan and Ritchie C, the de facto standard as defined in the first edition of The C
Programming Language (K&R). Most K&R C programs written for earlier, non-ISO C
compilers should correctly compile and run without modification.

label A symbol that begins in column 1 of an assembler source statement and corresponds
to the address of that statement. A label is the only assembler statement that can
begin in column 1.

linker A software program that combines object files to form an executable object file that
can be allocated into system memory and executed by the device.

listing file An output file, created by the assembler, which lists source statements, their line
numbers, and their effects on the section program counter (SPC).

little endian An addressing protocol in which bytes are numbered from right to left within a word.
More significant bytes in a word have higher numbered addresses. Endian ordering is
hardware-specific and is determined at reset. See also big endian

loader

loop unrolling

macro
macro call

macro definition

macro expansion

map file

memory map

name mangling

object file

object library

A device that places an executable object file into system memory.

An optimization that expands small loops so that each iteration of the loop appears
in your code. Although loop unrolling increases code size, it can improve the
performance of your code.

A user-defined routine that can be used as an instruction.

The process of invoking a macro.

A block of source statements that define the name and the code that make up a
macro.

The process of inserting source statements into your code in place of a macro call.
An output file, created by the linker, which shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the
symbols were defined for your program.

A map of target system memory space that is partitioned into functional blocks.

A compiler-specific feature that encodes a function name with information regarding
the function's arguments return types.

An assembled or linked file that contains machine-language object code.

An archive library made up of individual object files.

202 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Glossary

operand An argument of an assembly language instruction, assembler directive, or macro
directive that supplies information to the operation performed by the instruction or
directive.

optimizer A software tool that improves the execution speed and reduces the size of C
programs.

options

output section

Command-line parameters that allow you to request additional or specific functions
when you invoke a software tool.

A final, allocated section in a linked, executable module.

parser A software tool that reads the source file, performs preprocessing functions, checks
the syntax, and produces an intermediate file used as input for the optimizer or code
generator.

partitioning The process of assigning a data path to each instruction.

pop An operation that retrieves a data object from a stack.

pragma A preprocessor directive that provides directions to the compiler about how to treat a
particular statement.

preprocessor

program-level
optimization

A software tool that interprets macro definitions, expands macros, interprets header
files, interprets conditional compilation, and acts upon preprocessor directives.

An aggressive level of optimization where all of the source files are compiled into
one intermediate file. Because the compiler can see the entire program, several
optimizations are performed with program-level optimization that are rarely applied
during file-level optimization.

prolog The portion of code in a function that sets up the stack.

push An operation that places a data object on a stack for temporary storage.
quiet run An option that suppresses the normal banner and the progress information.
raw data Executable code or initialized data in an output section.

relocation

run-time environment

run-time-support

functions

run-time-support

library
section

A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

The run time parameters in which your program must function. These parameters
are defined by the memory and register conventions, stack organization, function call
conventions, and system initialization.

Standard ISO functions that perform tasks that are not part of the C language (such as
memory allocation, string conversion, and string searches).

A library file, rts.src, which contains the source for the run time-support functions.

A relocatable block of code or data that ultimately will be contiguous with other
sections in the memory map.

SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler ~ 203
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

Glossary www.ti.com

sign extend A process that fills the unused MSBs of a value with the value's sign bit.

simulator A software development system that simulates ARM operation.

source file A file that contains C/C++ code or assembly language code that is compiled or

assembled to form an object file.
stand-alone A software tool that expands macros, #include files, and conditional compilation as
preprocessor

static variable

storage class

string table

structure

subsection

symbol

symbolic debugging

target system

text section

trigraph sequence

trip count

unconfigured memory

uninitialized section

unsigned value

variable

an independent program. It also performs integrated preprocessing, which includes
parsing of instructions.

A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous
value is resumed when the function or program is reentered.

An entry in the symbol table that indicates how to access a symbol.

A table that stores symbol names that are longer than eight characters (symbol names
of eight characters or longer cannot be stored in the symbol table; instead they are
stored in the string table). The name portion of the symbol's entry points to the
location of the string in the string table.

A collection of one or more variables grouped together under a single name.

A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections
give you tighter control of the memory map.

A string of alphanumeric characters that represents an address or a value.

The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator or simulator.

The system on which the object code you have developed is executed.

One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text
section.

A 3-character sequence that has a meaning (as defined by the ISO 646-1983
Invariant Code Set). These characters cannot be represented in the C character set
and are expanded to one character. For example, the trigraph ??" is expanded to *.

The number of times that a loop executes before it terminates.

Memory that is not defined as part of the memory map and cannot be loaded with
code or data.

A object file section that reserves space in the memory map but that has no actual
contents. These sections are built with the .bss and .usect directives.

A value that is treated as a nonnegative number, regardless of its actual sign.

A symbol representing a quantity that can assume any of a set of values.

204 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Glossary
veneer A sequence of instructions that serves as an alternate entry point into a routine if a
state change is required.
word A 32-bit addressable location in target memory
SPNU151W — JANUARY 1998 — REVISED MARCH 2023 ARM Optimizing C/C++ Compiler 205
Submit Document Feedback v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Revision History

i3 TEXAS INSTRUMENTS

Changes from March 11, 2020 to March 31, 2023 (from Revision V (March 2020) to Revision W

(March 2023)) Page
» Updated the numbering format for tables, figures, and cross-references throughout the document................. 9
* Removed references to the Processors wiki throughout the document...............ccoo e, 9
» The --strict_compatibility linker option no longer has any effect and has been removed from the

(oo TeTN g aT=T o1 =1 i o] o FO PP PTPPPRP 25
* Documented predefined macros for ptrdiff t and size t types......cccoveviiieiiiiiiiiii e 35
» Corrected names of the --gen_cross_reference_listing and --asm_cross_reference_listing options wherever

LLATS VA= 0] 01 | S 45
» Clarified that --opt_level=4 must be placed before --run_linker option..............cccciiiiieiiii e, 59
» Corrected information about default for --gen_data_subsections option and its interaction with the

SET _DATA_SECTION Pragma.........uuuuieiiieiieeeeiiieiiiiiiee et e et e e e e e et e e st aeeeeeeaaeesessaasaatasseeeeeeaaaesessaaassnssssneeeeaaaes 76
» Updated information about the size of eNUM tYPES.........uviiiiiiiiiiii e 91
* Removed documentation for the CODE_ALIGN pragma, which is not supported. Use the aligned function

AttrIDULE INSTEAA.ttt e e e e e et r e e e e e e e e e s s nreeeeeeaeens 98
» Clarify interaction between --opt_level and FUNCTION_OPTIONS pragma.........cccccccvviiieeeeeeeeeeiccciinveeeeee. 105
* Documented C++ attribute syntax for attributes that correspond to the MUST_ITERATE pragma................ 107
* Added documentation for the PROB_ITERATE Pragma..........ccccoiiiiiiiiiiiiiieeeee et a e 112
* Documented C++ attribute syntax for attributes that correspond to the UNROLL pragma............ccccvveeeeenn... 116
* Added example using the location attribute.............ooo o 133
» Clarified information about string handling fUNCLONS..............cooiiiii e 175
* Added information about time and clock RTS fUNCHONS............coiiiiiiiiii e 176

The following table lists changes made to this document prior to changes to the document numbering format.
The left column identifies the first version of this document in which that particular change appeared.

Earlier Revisions
Version Added |Chapter Location Additions / Modifications / Deletions

Clarified that either --rom_model or --ram_model is required if only the
SPNU151V Linking Section 4.3.5 linker is being run, but --rom_model is the default if the compiler runs on
C/C++ files on the same command line.

SPNU151V C/C++ Language Section 5.11.22 The #pragma once is now documented for use in header files.
SPNU151V Run.-Tlme Section 6.10.3.1 Clalrlfle.d that zero |p|t|a||zat|on takes placg oqu if the --rom_model linker
Environment option is used, not if the --ram_model option is used.

The default file extensions for object files created by the compiler have
been changed in order to prevent conflicts when C and C++ files have the

SPNU151U -- throughout -- same names. Object files generated from C source files have the .c.obj
extension. Object files generated from C++ source files have the .cpp.obj
extension.

SPNU151T Using the Compiler Section 2.3.1 Added the --emit_references:file linker option.

SPNU151T Using the Compiler Section 2.5.1 Documented that C standard macros such as __STDC_VERSION__ are
supported.

SPNU151T C/C++ Language Section 5.11 Added documentation for the CODE_ALIGN pragma.

SPNU151T C/C++ Language Section 5.11.19 Clarify section placement for the NOINIT and PERSISTENT pragmas.

206 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023
v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Revision History
Earlier Revisions (continued)
Version Added |Chapter Location Additions / Modifications / Deletions
SPNU151T C/C++ Language Section 5.14 Corrected syntax for the _norm intrinsic.
SPNU151T C/C++ Language Section 5.16.1 Updated list of C99 non-supported run-time functions.
SPNU151T CIC++ Language Section 5.17.2 Adc_jed documentation for the aligned, calls, naked, and weak function
attributes.
SPNU151T C/C++ Language Section 5.17.4 Added documentation for the location and packed variable attributes.
SPNU151T ES:JLTS Support DEV_lIseek topic Corrected syntax documented for DEV_Iseek function.
Introduction, Section 1.3, Section
SPNU151S Using the Compiler, |2.3, Section 5.1, and |Added support for C11.
C/C++ Language Section 5.16.2
SPNU151S Using the Compiler Section 2.3.1 Added the --ecc=on linker option, which enables ECC generation. Note that
ECC generation is now off by default.
SPNU151S Using the Compiler | Section 2.5.1 The —TI—STRI.CT—ANSI.—MO.DE— ‘r?".]d —TLSTRICT_FP_MODE__
macros are defined as 0 if their conditions are false.
Revised the section on inline function expansion and its subsections to
SPNU151S Using the Compiler, |Section 2.11 and include new pragmas and changes to the compilers decision-making about
C/C++ Language Section 5.11 what functions to inline. The FORCEINLINE, FORCEINLINE_RECURSIVE,
and NOINLINE pragmas have been added.
C++11 features related to atomics are now supported. In addition, removed
SPNU151S C/C++ Language Section 5.2 several C++ features from the exception list because they have been
supported for several releases.
SPNU151S C/C++ Language Section 5.6 Added information about character sets and file encoding.
SPNU151S C/C++ Language Section 5.14 Corrected syntax for _smac intrinsic.
SPNU151S C/C++ Language Sect!on 5172 and Added "retain" as a function attribute and variable attribute.
Section 5.17.4
SPNU151S C/C++ Language Section 5.17.6 Clarlfled the availability of the __builtin_sqrt() and __builtin_sqrtf()
functions.
Using the Compiler, |Section 2.3 and .
SPNU151R CIC++ Language Section 5.2 The compiler now follows the C++14 standard.
SPNU151R C/C++ Language Section 5.17 The compiler now supports several Clang __has_ macro extensions.
SPNU151R C/C++ Language Section 5.17.1 The wrapper header file GCC extension (#include_next) is now supported.
Using the Compiler Table 2-31, Section
SPNU151Q 9 prer, 5.1, Section 5.14, ARM C Language Extensions (ACLE) are supported.
C/C++ Language :
Section 5.17.2
SPNU151Q Using the Compiler Section 2.14 Updated the list of settings for the --float_support option.
Preliminary changes have been made in order to support C++14 in a future
SPNU151Q C/C++ Language Section 5.2 release. These changes may cause linktime errors. Recompile object files
to resolve these errors.
SPNU151Q C/C++ Language Section 5.7.1 Clarified exceptions to const data storage set by the const keyword.
SPNU151Q CIC++ Language Section 5.14 Remove |pcqrrgct third parameter for the _smuad, _smuadx, _smusd, and
_smusdx intrinsics.
SPNU151P Optimization Section 3.7.1.4 Corrected error in command to process the profile data.
Using the Compiler,) Revised to state that --check_misra option is required even if the
SPNUTS10 |0/cvs Language | Section 2:3:3 CHECK_MISRA pragma is used.
Using the Compiler, Section 2.5.1
C/C++ Language, and . P _AEABI_PORTABILITY_LEVEL can be defined to enable full object file
SPNU1510) Section 5.16, and I))
Run-Time Support) portability when headers files are included.
} Section 7.1.1
Functions
SPNU1510 Using the Compiler Section 2.10 Corrected the document t_o (_jescrlbe_the ---gen_preprocessor_listing option.
The name --gen_parser_listing was incorrect.
SPNU151N Optimization Section 3.7.3 Corrected function names for _TI_start_pprof_collection() and
_TI_stop_pprof_collection().

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

207

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

Revision History

13 TEXAS
INSTRUMENTS

www.ti.com

Earlier Revisions (continued)

Version Added |Chapter Location Additions / Modifications / Deletions
. . . The default for --cinit_compression and --copy_compression has been
SPNU151M Using the Compiler | Section 2.3 changed from RLE to LZSS.
Several compiler options have been deprecated, removed, or renamed.
SPNU151M Using the Compiler - The compiler continues to accept some of the deprecated options, but they
are not recommended for use.
SPNU151M Using the Compiler Section 2.5.1 The __little_endian___ and __big_endian__ macros are preceded by two
underscores.
SPNU151M CIC++ Language Section 5.14 The following intrinsics are supported for Cortex-M3: __Idrex, __Idrexb,
__Idrexh, __strex, __strexb, and __strexh.
Run-Time The _enable_interrupts, _enable_IRQ, _enable_FIQ, _disable_interrupts,
SPNU151M Environment Section 6.8.1 _disable_IRQ, and _disable_FIQ intrinsics for Cortex-R4 and Cortex-A8
now use the CPSIE and CPSID instructions.
. . Section 2.3 and . .
SPNU151L Using the Compiler Section 4.2.2 The --gen_data_subsections option has been added.
. . . The --symdebug:dwarf_version option can be set to 4 to enable the use of
SPNU151L Using the Compiler Section 2.3.5 DWARF debugging format version 4.
SPNUA151L Optimization Sect!on 3.7 and Feedback directed optlml;atlon is described. This technique can be used
Section 3.8 for code coverage analysis.
A CALLS pragma has been added to specify a set of functions that can be
SPNU151L CIC++ Language Section 5.11.1 called_ |n<_:||rect|y from a spemﬂed c_:alllng functloq. Using this praglrr}a allo_ws
such indirect calls to be included in the calculation of a functions' inclusive
stack size.
SPNU151L CIC++ Language Section 5.14 Th:/lfr\(’)gowmg intrinsics have been added to the documentation: _ MCR,
SPNU151L Run_—Tlme Section 6.10.1 Addltlor_lal boot hoo_k_fgn_ctlo_ns are available. These can be customized for
Environment use during system initialization.
The COFF object file format and the TI_ARM9_ABI and TIARM ABIs are
no longer supported. The ARM Code Generation Tools now support only
the Embedded Application Binary Interface (EABI) ABI, which works only
with object files that use the ELF object file format and the DWARF debug
_) format. Sections of this document that referred to the COFF format have
SPNU151K Introduction Section 1.4 been removed or simplified. If you would like to produce COFF output files,
please use v5.2 of the ARM Code Generation Tools and refer to SPNU151J
for documentation.
The --abi=coff, --symdebug:profile_coff, --no_sym_merge, and --
diable_clink options have been deprecated.
SPNU151K Using the Compiler Section 2.3.4 ;I;]hsgl\r/lamfunc option has been added. If set, this option places all functions
SPNU151K CIC++ Language Section 5.14 The following mtrmsps have been added to the documentation: __nop,
__sqrt, __sqrtf, _ wfi, __wfe
SPNU151K CIC++ Language Section 5.17.2 The ramfunc funcFlon attribute has been added. It specifies that a function
should be placed in RAM.
SPNU151K Run-Tlme Support Section 7.1.2 Added information about header file extensions.
Functions
SPNU151J Introduction Section 1.3 Added support for C99 and C++03.
SPNU151J Using the Compiler Table 2-1 Added --endian=[big | little] option.
Table 2-6, Section
SPNU151J Using the Compiler 2.7, and Section Added the --gdwce.power and --advice:power_severity options for use with
the ULP Advisor.
233
SPNU151J Using the Compiler Table 2-8 Added support for_099_anc_i C++03. The -gcc option has been deprecated.
The --relaxed_ansi option is now the default.
SPNU151J Using the Compiler Table 2-8 Removed documentation of precompiled headers, which have been
deprecated.
. . Table 2-11 and
SPNU151J Using the Compiler Section 2.7.1 Added --section_sizes option for diagnostic reporting of section sizes.

208 ARM Optimizing C/C++ Compiler

v20.2.0.LTS

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spnu151J
https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Revision History
Earlier Revisions (continued)
Version Added |Chapter Location Additions / Modifications / Deletions
. . Table 2-28 and L . .
SPNU151J Using the Compiler Section 4.3.3 Added the —cinit_hold_wdt linker option.
SPNU151J Using the Compiler Section 2.5.1 Added __TlI_ ARM_V7M4__ predefined macro name for Cortex-M4.
SPNU151J Using the Compiler Section 2.5.3 Documented that the #warning and #warn preprocessor directives are
supported.
SPNU151J Using the Compiler Section 2.6 Added section on techniques for passing arguments to main().
. . . Documented that the inline keyword is now enabled in all modes except
SPNU151J Using the Compiler Section 2.11 C89 strict ANSI mode.
SPNU151J C/C++ Language Section 5.1.1 Added section documenting implementation-defined behavior.
SPNU151J C/C++ Language Section 5.4 Added support for the ULP Advisor
SPNU151J C/C++ Language Section 5.5.1 Added documentation on the size of enum types.
Section 5.11.3,
Section 5.11.12, Added the CHECK_ULP, FUNC_ALWAYS_INLINE,
SPNU151J C/C++ Language Section 5.11.13, FUNC_CANNOT_INLINE, NOINIT, PERSISTENT, and RESET_ULP
Section 5.11.19, and |pragmas.
Section 5.11.26
Section 5.11.16, Added C++ syntax for the INTERRUPT and RETAIN pragmas. Also
SPNU151J C/C++ Language Section 5.11.27, and |removed unnecessary semicolons from #pragma syntax specifications.
Section 5.17.2 Also the GCC interrupt and alias function attributes are now supported.
SPNU151J C/C++ Language Section 5.11.8 Added the diag_push and diag_pop diagnostic message pragmas.
SPNU151J CIC++ Language Section 5.14 Added _delay_(_:ycl_es,_ __get_PRIMASK, __set PRIMASK, __get_MSP,
and __set_MSP intrinsics.
SPNU151J CIC++ Language Section 5.14 Corrected argumen.ts for §mlalbb, smlalbt, smilaltb, smilaltt, smlabb, smlabt,
smlatb, and smlatt intrinsics.
Section 5.16, Section | Added support for C99 and C++03. The --relaxed_ansi option is now the
SPNU151J C/C++ Language 5.16.1, and Section |default and --strict_ansi is the other option; "normal mode" for standards
5.16.3 violation strictness is no longer available.
Run-Time . Added reference to section on accessing linker symbols in C and C++ in
SPNU151J Environment Section 6.5 the Assembly Language Tools User's Guide.
Run-Time . . .
SPNU151J . Section 6.7.5 Added information about allowable return values from SWI handlers.
Environment
Added instructions for several device families for _disable_interrupts,
Run-Time . _enable_interrupts, and _restore_interrupts intrinsics. Added Cortex-M
SPNU151J Environment Section 6.8.1 support for _enable_IRQ, _disable_IRQ, and _set_interrupt_priority
intrinsics.
SPNU151J Run_-Tlme Section 6.10.1 Added support for system pre-initialization.
Environment
Run-Time Support RTS source code is no longer provided in a rtssrc.zip file. Instead, it
SPNU151J ; PP Section 7.1.3 is located in separate files in the lib/src subdirectory of the compiler
Functions . ;
installation.
SPNU151J C++ Name Section 8.1 Corrected information about name demangler options.
Demangler
SPNU151J C++ Name Section 8.2 Corrected examples of resulting assembly output.
Demangler

SPNU151W — JANUARY 1998 — REVISED MARCH 2023
Submit Document Feedback

ARM Optimizing C/C++ Compiler
v20.2.0.LTS

Copyright © 2023 Texas Instruments Incorporated

209

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

13 TEXAS

INSTRUMENTS

Revision History www.ti.com
This page intentionally left blank.

210 ARM Optimizing C/C++ Compiler SPNU151W — JANUARY 1998 — REVISED MARCH 2023

v20.2.0.LTS Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPNU151
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPNU151W&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation
	Related Documentation From Texas Instruments
	Trademarks

	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Compiler Interface
	1.3 ANSI/ISO Standard
	1.4 Output Files
	1.5 Utilities

	2 Using the C/C++ Compiler
	2.1 About the Compiler
	2.2 Invoking the C/C++ Compiler
	2.3 Changing the Compiler's Behavior with Options
	2.3.1 Linker Options
	2.3.2 Frequently Used Options
	2.3.3 Miscellaneous Useful Options
	2.3.4 Run-Time Model Options
	2.3.5 Symbolic Debugging and Profiling Options
	2.3.6 Specifying Filenames
	2.3.7 Changing How the Compiler Interprets Filenames
	2.3.8 Changing How the Compiler Processes C Files
	2.3.9 Changing How the Compiler Interprets and Names Extensions
	2.3.10 Specifying Directories
	2.3.11 Assembler Options
	2.3.12 Deprecated Options

	2.4 Controlling the Compiler Through Environment Variables
	2.4.1 Setting Default Compiler Options (TI_ARM_C_OPTION)
	2.4.2 Naming One or More Alternate Directories (TI_ARM_C_DIR)

	2.5 Controlling the Preprocessor
	2.5.1 Predefined Macro Names
	2.5.2 The Search Path for #include Files
	2.5.2.1 Adding a Directory to the #include File Search Path (--include_path Option)

	2.5.3 Support for the #warning and #warn Directives
	2.5.4 Generating a Preprocessed Listing File (--preproc_only Option)
	2.5.5 Continuing Compilation After Preprocessing (--preproc_with_compile Option)
	2.5.6 Generating a Preprocessed Listing File with Comments (--preproc_with_comment Option)
	2.5.7 Generating Preprocessed Listing with Line-Control Details (--preproc_with_line Option)
	2.5.8 Generating Preprocessed Output for a Make Utility (--preproc_dependency Option)
	2.5.9 Generating a List of Files Included with #include (--preproc_includes Option)
	2.5.10 Generating a List of Macros in a File (--preproc_macros Option)

	2.6 Passing Arguments to main()
	2.7 Understanding Diagnostic Messages
	2.7.1 Controlling Diagnostic Messages
	2.7.2 How You Can Use Diagnostic Suppression Options

	2.8 Other Messages
	2.9 Generating Cross-Reference Listing Information (--gen_cross_reference_listing Option)
	2.10 Generating a Raw Listing File (--gen_preprocessor_listing Option)
	2.11 Using Inline Function Expansion
	2.11.1 Inlining Intrinsic Operators
	2.11.2 Inlining Restrictions

	2.12 Using Interlist
	2.13 Controlling Application Binary Interface
	2.14 VFP Support
	2.15 Enabling Entry Hook and Exit Hook Functions

	3 Optimizing Your Code
	3.1 Invoking Optimization
	3.2 Controlling Code Size Versus Speed
	3.3 Performing File-Level Optimization (--opt_level=3 option)
	3.3.1 Creating an Optimization Information File (--gen_opt_info Option)

	3.4 Program-Level Optimization (--program_level_compile and --opt_level=3 options)
	3.4.1 Controlling Program-Level Optimization (--call_assumptions Option)
	3.4.2 Optimization Considerations When Mixing C/C++ and Assembly

	3.5 Automatic Inline Expansion (--auto_inline Option)
	3.6 Link-Time Optimization (--opt_level=4 Option)
	3.6.1 Option Handling
	3.6.2 Incompatible Types

	3.7 Using Feedback Directed Optimization
	3.7.1 Feedback Directed Optimization
	3.7.1.1 Phase 1 -- Collect Program Profile Information
	3.7.1.2 Phase 2 -- Use Application Profile Information for Optimization
	3.7.1.3 Generating and Using Profile Information
	3.7.1.4 Example Use of Feedback Directed Optimization
	3.7.1.5 The .ppdata Section
	3.7.1.6 Feedback Directed Optimization and Code Size Tune
	3.7.1.7 Instrumented Program Execution Overhead
	3.7.1.8 Invalid Profile Data

	3.7.2 Profile Data Decoder
	3.7.3 Feedback Directed Optimization API
	3.7.4 Feedback Directed Optimization Summary

	3.8 Using Profile Information to Analyze Code Coverage
	3.8.1 Code Coverage
	3.8.1.1 Phase1 -- Collect Program Profile Information
	3.8.1.2 Phase 2 -- Generate Code Coverage Reports

	3.8.2 Related Features and Capabilities
	3.8.2.1 Path Profiler
	3.8.2.2 Analysis Options
	3.8.2.3 Environment Variables

	3.9 Accessing Aliased Variables in Optimized Code
	3.10 Use Caution With asm Statements in Optimized Code
	3.11 Using the Interlist Feature With Optimization
	3.12 Debugging and Profiling Optimized Code
	3.12.1 Profiling Optimized Code

	3.13 What Kind of Optimization Is Being Performed?
	3.13.1 Cost-Based Register Allocation
	3.13.2 Alias Disambiguation
	3.13.3 Branch Optimizations and Control-Flow Simplification
	3.13.4 Data Flow Optimizations
	3.13.5 Expression Simplification
	3.13.6 Inline Expansion of Functions
	3.13.7 Function Symbol Aliasing
	3.13.8 Induction Variables and Strength Reduction
	3.13.9 Loop-Invariant Code Motion
	3.13.10 Loop Rotation
	3.13.11 Instruction Scheduling
	3.13.12 Tail Merging
	3.13.13 Autoincrement Addressing
	3.13.14 Block Conditionalizing
	Example 3-1. Block Conditionalizing C Source
	Example 3-2. C/C++ Compiler Output for Example 3-1

	3.13.15 Epilog Inlining
	3.13.16 Removing Comparisons to Zero
	3.13.17 Integer Division With Constant Divisor
	3.13.18 Branch Chaining

	4 Linking C/C++ Code
	4.1 Invoking the Linker Through the Compiler (-z Option)
	4.1.1 Invoking the Linker Separately
	4.1.2 Invoking the Linker as Part of the Compile Step
	4.1.3 Disabling the Linker (--compile_only Compiler Option)

	4.2 Linker Code Optimizations
	4.2.1 Generate List of Dead Functions (--generate_dead_funcs_list Option)
	4.2.2 Generating Aggregate Data Subsections (--gen_data_subsections Compiler Option)

	4.3 Controlling the Linking Process
	4.3.1 Including the Run-Time-Support Library
	4.3.1.1 Automatic Run-Time-Support Library Selection
	Example 4-1. Using the --issue_remarks Option

	4.3.1.2 Manual Run-Time-Support Library Selection
	4.3.1.3 Library Order for Searching for Symbols

	4.3.2 Run-Time Initialization
	4.3.3 Initialization of Cinit and Watchdog Timer Hold
	4.3.4 Global Object Constructors
	4.3.5 Specifying the Type of Global Variable Initialization
	4.3.6 Specifying Where to Allocate Sections in Memory
	4.3.7 A Sample Linker Command File

	5 C/C++ Language Implementation
	5.1 Characteristics of ARM C
	5.1.1 Implementation-Defined Behavior

	5.2 Characteristics of ARM C++
	5.3 Using MISRA C 2004
	5.4 Using the ULP Advisor
	5.5 Data Types
	5.5.1 Size of Enum Types

	5.6 File Encodings and Character Sets
	5.7 Keywords
	5.7.1 The const Keyword
	5.7.2 The __interrupt Keyword
	5.7.3 The volatile Keyword

	5.8 C++ Exception Handling
	5.9 Register Variables and Parameters
	5.9.1 Local Register Variables and Parameters
	5.9.2 Global Register Variables

	5.10 The __asm Statement
	5.11 Pragma Directives
	5.11.1 The CALLS Pragma
	5.11.2 The CHECK_MISRA Pragma
	5.11.3 The CHECK_ULP Pragma
	5.11.4 The CODE_SECTION Pragma
	5.11.5 The CODE_STATE Pragma
	5.11.6 The DATA_ALIGN Pragma
	5.11.7 The DATA_SECTION Pragma
	Example 5-1. Using the DATA_SECTION Pragma C Source File
	Example 5-2. Using the DATA_SECTION Pragma C++ Source File
	Example 5-3. Using the DATA_SECTION Pragma Assembly Source File

	5.11.8 The Diagnostic Message Pragmas
	5.11.9 The DUAL_STATE Pragma
	5.11.10 The FORCEINLINE Pragma
	5.11.11 The FORCEINLINE_RECURSIVE Pragma
	5.11.12 The FUNC_ALWAYS_INLINE Pragma
	5.11.13 The FUNC_CANNOT_INLINE Pragma
	5.11.14 The FUNC_EXT_CALLED Pragma
	5.11.15 The FUNCTION_OPTIONS Pragma
	5.11.16 The INTERRUPT Pragma
	5.11.17 The LOCATION Pragma
	5.11.18 The MUST_ITERATE Pragma
	5.11.18.1 The MUST_ITERATE Pragma Syntax
	5.11.18.2 Using MUST_ITERATE to Expand Compiler Knowledge of Loops

	5.11.19 The NOINIT and PERSISTENT Pragmas
	5.11.20 The NOINLINE Pragma
	5.11.21 The NO_HOOKS Pragma
	5.11.22 The once Pragma
	5.11.23 The pack Pragma
	5.11.24 The PROB_ITERATE Pragma
	5.11.25 The RESET_MISRA Pragma
	5.11.26 The RESET_ULP Pragma
	5.11.27 The RETAIN Pragma
	5.11.28 The SET_CODE_SECTION and SET_DATA_SECTION Pragmas
	5.11.29 The SWI_ALIAS Pragma
	5.11.30 The TASK Pragma
	5.11.31 The UNROLL Pragma
	5.11.32 The WEAK Pragma

	5.12 The _Pragma Operator
	5.13 Application Binary Interface
	5.14 ARM Instruction Intrinsics
	5.15 Object File Symbol Naming Conventions (Linknames)
	5.16 Changing the ANSI/ISO C/C++ Language Mode
	5.16.1 C99 Support (--c99)
	5.16.2 C11 Support (--c11)
	5.16.3 Strict ANSI Mode and Relaxed ANSI Mode (--strict_ansi and --relaxed_ansi)

	5.17 GNU , Clang, and ACLE Language Extensions
	5.17.1 Extensions
	5.17.2 Function Attributes
	5.17.3 For Loop Attributes
	5.17.4 Variable Attributes
	5.17.5 Type Attributes
	5.17.6 Built-In Functions

	5.18 AUTOSAR
	5.19 Compiler Limits

	6 Run-Time Environment
	6.1 Memory Model
	6.1.1 Sections
	6.1.2 C/C++ System Stack
	6.1.3 Dynamic Memory Allocation

	6.2 Object Representation
	6.2.1 Data Type Storage
	6.2.1.1 char and short Data Types (signed and unsigned)
	6.2.1.2 float, int, and long Data Types (signed and unsigned)
	6.2.1.3 double, long double, and long long Data Types (signed and unsigned)
	6.2.1.4 Pointer to Data Member Types
	6.2.1.5 Pointer to Member Function Types
	6.2.1.6 Structure and Array Alignment

	6.2.2 Bit Fields
	6.2.3 Character String Constants

	6.3 Register Conventions
	6.4 Function Structure and Calling Conventions
	6.4.1 How a Function Makes a Call
	6.4.2 How a Called Function Responds
	6.4.3 C Exception Handler Calling Convention
	6.4.4 Accessing Arguments and Local Variables

	6.5 Accessing Linker Symbols in C and C++
	6.6 Interfacing C and C++ With Assembly Language
	6.6.1 Using Assembly Language Modules With C/C++ Code
	6.6.2 Accessing Assembly Language Functions From C/C++
	Example 6-1. Calling an Assembly Language Function From a C/C++ Program
	Example 6-2. Assembly Language Program Called by Example 6-1

	6.6.3 Accessing Assembly Language Variables From C/C++
	6.6.3.1 Accessing Assembly Language Global Variables
	Example 6-3. Assembly Language Variable Program
	Example 6-4. C Program to Access Assembly Language From Example 6-3

	6.6.3.2 Accessing Assembly Language Constants
	Example 6-5. Accessing an Assembly Language Constant From C
	Example 6-6. Assembly Language Program for Example 6-5

	6.6.4 Sharing C/C++ Header Files With Assembly Source
	6.6.5 Using Inline Assembly Language
	6.6.6 Modifying Compiler Output

	6.7 Interrupt Handling
	6.7.1 Saving Registers During Interrupts
	6.7.2 Using C/C++ Interrupt Routines
	6.7.3 Using Assembly Language Interrupt Routines
	6.7.4 How to Map Interrupt Routines to Interrupt Vectors
	Example 6-7. Sample intvecs.asm File

	6.7.5 Using Software Interrupts
	6.7.6 Other Interrupt Information

	6.8 Intrinsic Run-Time-Support Arithmetic and Conversion Routines
	6.8.1 CPSR Register and Interrupt Intrinsics

	6.9 Built-In Functions
	6.10 System Initialization
	6.10.1 Boot Hook Functions for System Pre-Initialization
	6.10.2 Run-Time Stack
	6.10.3 Automatic Initialization of Variables
	6.10.3.1 Zero Initializing Variables
	6.10.3.2 Direct Initialization
	6.10.3.3 Autoinitialization of Variables at Run Time
	6.10.3.4 Autoinitialization Tables
	6.10.3.4.1 Length Followed by Data Format
	6.10.3.4.2 Zero Initialization Format
	6.10.3.4.3 Run Length Encoded (RLE) Format
	6.10.3.4.4 Lempel-Ziv-Storer-Szymanski Compression (LZSS) Format
	6.10.3.4.5 Sample C Code to Process the C Autoinitialization Table

	6.10.3.5 Initialization of Variables at Load Time
	6.10.3.6 Global Constructors

	6.10.4 Initialization Tables

	6.11 Dual-State Interworking Under TIABI (Deprecated)
	6.11.1 Level of Dual-State Support
	6.11.2 Implementation
	6.11.2.1 Naming Conventions for Entry Points
	6.11.2.2 Indirect Calls
	Example 6-8. C Code Compiled for 16-BIS State: sum()
	Example 6-9. 16-Bit Assembly Program for Example 6-8
	Example 6-10. C Code Compiled for 32-BIS State: sum()
	Example 6-11. 32-Bit Assembly Program for Example 6-10

	7 Using Run-Time-Support Functions and Building Libraries
	7.1 C and C++ Run-Time Support Libraries
	7.1.1 Linking Code With the Object Library
	7.1.2 Header Files
	7.1.3 Modifying a Library Function
	7.1.4 Support for String Handling
	7.1.5 Minimal Support for Internationalization
	7.1.6 Support for Time and Clock Functions
	7.1.7 Allowable Number of Open Files
	7.1.8 Nonstandard Header Files in the Source Tree
	7.1.9 Library Naming Conventions

	7.2 The C I/O Functions
	7.2.1 High-Level I/O Functions
	7.2.1.1 Formatting and the Format Conversion Buffer

	7.2.2 Overview of Low-Level I/O Implementation
	7.2.3 Device-Driver Level I/O Functions
	7.2.4 Adding a User-Defined Device Driver for C I/O
	Example 7-1. Mapping Default Streams to Device

	7.2.5 The device Prefix
	Example 7-2. Program for C I/O Device

	7.3 Handling Reentrancy (_register_lock() and _register_unlock() Functions)
	7.4 Library-Build Process
	7.4.1 Required Non-Texas Instruments Software
	7.4.2 Using the Library-Build Process
	7.4.2.1 Automatic Standard Library Rebuilding by the Linker
	7.4.2.2 Invoking mklib Manually
	7.4.2.2.1 Building Standard Libraries
	7.4.2.2.2 Shared or Read-Only Library Directory
	7.4.2.2.3 Building Libraries With Custom Options
	7.4.2.2.4 The mklib Program Option Summary

	7.4.3 Extending mklib
	7.4.3.1 Underlying Mechanism
	7.4.3.2 Libraries From Other Vendors

	8 C++ Name Demangler
	8.1 Invoking the C++ Name Demangler
	8.2 Sample Usage of the C++ Name Demangler

	A Glossary
	A.1 Terminology

	B Revision History

