TI Designs: TIDA-01587 ブラシレスDCサーボ・ドライブ用の10.8V/30W、効率95%超、 4.3cm²の電力段のリファレンス・デザイン

TEXAS INSTRUMENTS

概要

この15W、16mm×27mm電力段のリファレンス・デザイン は、3~4セルのリチウムイオン・バッテリで動作するブラシレ スDC (BLDC)モータを駆動し、その位置を制御します。こ の高効率ソリューションは、モータ内部への取り付けが容易 で高精度モータ位置制御をサポートする超小型フォーム・ ファクタで提供されます。また、このリファレンス・デザインは 位置フィードバックによりモータの高速駆動が可能です。過 電流と短絡に対する保護機能を備えており、オンボード MCUがUART接続を提供することから、任意の外部コント ローラによる制御が可能です。

リソース

TIDA-01587	デザイン・フォルダ
DRV8304	プロダクト・フォルダ
CSD87502Q2	プロダクト・フォルダ
MSP430FR5949	プロダクト・フォルダ
TPS709	プロダクト・フォルダ
TVS3300	プロダクト・フォルダ

E2E™エキスパートに質問

特長

- BLDCサーボ・ドライブは6V~16.8Vの電圧範囲で動作 (3~4セルのリチウムイオン・バッテリ)
- 連続2.5A_{RMS}、ピーク5Aのモータ巻線電流に対応
- 永久磁石モータの台形波および正弦波制御をサポート
- BLDCモータ向けデジタル・ホール・センサ・フィード バックによる閉ループ60°電気的位置制御
- アナログ・ホール・フィードバックを通じた正弦波励起に よる位置制御をサポート
- 16mm×27mmの超小型PCBフォーム・ファクタ
- ヒート・シンクなしで、95%を超える電力段効率
- 高効率の電力段、低消費電力のMCU、静止電流の低いLDOによりバッテリ駆動時間を延長
- 過電流、貫通電流、および低電圧保護
- UART有線通信をサポート
- 動作時周囲温度: -20℃~+55℃

アプリケーション

- ヒューマノイド(ヒト型ロボット)
- ロボット掃除機
- ロボット芝刈り機

使用許可、知的財産、その他免責事項は、最終ページにあるIMPORTANT NOTICE(重要な注意事項)をご参照くださいますようお願いいたします。英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

System Description

1 System Description

A humanoid robot is a type of service robot used in wide-end applications such as research applications where human access is risky, high-end toys used for teaching, dancing, and speaking, and more. Multiple motors are present in a typical humanoid depending upon the features and application requirement. The commonly used motors are brushed DC (BDC), brushless DC (BLDC), and sometimes stepper types. I shows the examples of motor drive locations in a typical humanoid. The high-end or high-power motors are typically present in the neck, legs, shoulders, and so on. Low-end or low-power motors are used in other locations such as elbows, knees, fingers, and so on. The electronic drive used in these motors has the following requirements:

- Must be small enough to fit with the motor
- Must support accurate position and torque control
- Must have the sufficient holding torque capability

図 1. Typical Humanoid—Motor Drive Locations

Vacuum robots are another service robot widely used in consumer applications for cleaning. The motors used in vacuum robots have different requirements like high-speed rotation, high torque-slow speed operation, or position control depending on the functionality these motors support (for example, suction, wheel, side brush, position control of the robotic vision control motor, and so on). BDC, BLDC, or stepper motors are typically used. The electronic drives have similar requirements as said in the case of humanoids.

This three-phase BLDC power stage reference design can support the position control in a humanoid or the motor control in a vacuum robot. The design demonstrates the BLDC motor servo drive power stage in a very small form factor using the highly-integrated three-phase gate driver DRV8304 featuring a high level of integration and protection, reducing the overall BOM to a large extend.

The very small form factor and higher efficiency is also achieved by using the CSD87502Q2 offering two independent 30-V N-channel MOSFET in a SON 2×2 mm plastic package, having a low drain-to-source on-resistance ($R_{DS(on)}$) of 27 m Ω . The TPS709 LDO features a low-quiescent current (< 1 μ A) and generates the low-noise, stable, 3.3-V power supply for the MCU. The MSP430FR5949 runs the position control algorithm by taking the position feedback signals from the motor, and offers trapezoidal and sinusoidal motor control. The TVS3300 provide surge voltage protection on input voltage supply.

The test report evaluates the board power capability, efficiency, overcurrent protection, peak current capability, and the position control with sufficient hold-up torque.

1.1 Key System Specifications

PARAMETERS	SPECIFICATIONS
Input voltage	10.8-V DC (6-V minimum to 16.8-V maximum)
Rated output power	30 W
RMS winding current	2.5 A
Peak winding current	5 A
Inverter switching frequency	20 kHz (adjustable from 5 kHz to 100 kHz)
Feedback signals	DC bus voltage, analog or digital position feedback, low-side inverter leg currents
Protections	Overcurrent, input undervoltage, over temperature, shoot- through
Cooling	Natural cooling only, no heat sink
Operating ambient	-20°C to +55°C
Board specification	16 mm × 27 mm, 2-layer, 1-oz copper, 1.6-mm board thickness
Efficiency	> 95%

表 1. Key System Specifications

2 System Overview

2.1 Block Diagram

2. TIDA-01587 Block Diagram

2.2 Highlighted Products

2.2.1 DRV8304

The key requirements in selecting the gate driver are:

- Small form factor, three-phase gate driver with high level of integration and protection
- · Support the operating voltage range with sufficient gate current
- Support the required minimum DC input voltage, still provides sufficient gate voltage for the external FET to operate at the minimum R_{DS(on)}
- Low power consumption

The reference design uses the three-phase gate driver DRV8304, which is specified for 6 V to 38 V, providing a maximum gate current of 150-mA source and 300-mA sink. The DRV8304 can support applications including field-oriented control (FOC), sinusoidal current control, and trapezoidal current control of BLDC motors. The DRV8304 device integrates three current-sense amplifiers (CSA) for sensing the phase currents of BLDC motors for optimum FOC and current-control system implementation. An AUTOCAL feature automatically calibrates the CSA offset error for accurate current sensing.

The DRV8304 device is based on smart gate-drive (SGD) architecture to eliminate the need of any external gate components (resistors and Zener diodes) while fully protecting the external FETs. The SGD architecture optimizes dead time to avoid any shoot-through conditions, provides flexibility in reducing electromagnetic interference (EMI) by gate slew-rate control and protects against any gate-short conditions. Strong pulldown current also prevent any dv/dt gate turnon. The gate driver provide overcurrent and short-circuit protection by MOSFET V_{DS} monitoring.

TEXAS INSTRUMENTS

System Overview

www.tij.co.jp

2.2.2 CSD87502Q2

The key requirements in selecting the power stage MOSFETs are:

- Low R_{DS(on)} and gate charge for high efficiency operation
- Small form factor
- · Low thermal resistance and provision for heat dissipation to PCB

The reference design uses the CSD87502Q2, which is a 30-V, 27-m Ω N-channel device with dual independent MOSFETs in a SON 2×2-mm plastic package. The dual FETs feature a low R_{DS(on)} that minimizes losses and offers low component count for space-constrained applications. The low junction-to-ambient thermal resistance with the help of thermal pads on the package allows easy heat dissipation.

2.2.3 MSP430FR5949

The MSP430[™] ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing innovators to increase performance at lowered energy budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at much lower power.

The MSP430 ULP FRAM portfolio consists of a diverse set of devices featuring FRAM, the ULP 16-bit MSP430 CPU, and intelligent peripherals targeted for various applications. The ULP architecture showcases seven low-power modes, optimized to achieve extended battery life in energy-challenged applications.

The device has a 16-bit RISC architecture supporting up to a 16-MHz clock. The device has five 16-bit timers with up to seven capture/compare registers each. The seven capture/compare registers helps to realize six PWM signals for three-phase sine control with a single time base. The device has 32-bit hardware multiplier and a 12-bit analog-to-digital converter (ADC) with internal reference and sample-and-hold and up to 16 external input channels. The enhanced serial communication allows easy communication with master controller in different service robots.

2.2.4 TPS709

The TPS70933 linear regulator is an ultra-low, quiescent current device designed for power-sensitive applications. The LDO can work up to a 30-V input voltage, which makes it ideal for up to six-cell Li-ion battery supply application. A precision band-gap and error amplifier provides 2% accuracy over temperature. A quiescent current of only 1 μ A makes this LDO ideal for battery-powered, always-on systems that require very little idle-state power dissipation. This device has thermal-shutdown, current limit, and reverse-current protections for added safety. The TPS70933 linear regulator is available in WSON-6 and SOT-23-5 packages.

2.2.5 TVS3300

The TVS3300 is a transient voltage suppressor that provides robust protection for electronic circuits exposed to high transient voltage events. Unlike a traditional TVS diode, the TVS3300 precision clamp triggers at a lower breakdown voltage and regulates to maintain a flat clamping voltage throughout a transient overvoltage event. The lower clamping voltage combined with a low dynamic resistance enables a unique TVS protection solution that can lower the voltage a system is exposed during a surge event by up to 30% in unidirectional configuration and up to 20% in bidirectional configuration when compared to traditional TVS diodes.

ブラシレスDCサーボ・ドライブ用の10.8V/30W、効率95%超、4.3cm²の電力段のリ ファレンス・デザイン

The TVS3300 is a unidirectional precision surge protection clamp with a 33-V working voltage designed specifically to protect systems with mid-voltage rails in industrial, communication, and factory automation applications. The TVS3300 has a fast response time when surge current is applied so there is no overshoot voltage during clamping, making it ideal to replace traditional TVS and Zener diodes.

The TVS3300 is available in two small footprint packages which, when used in place of an industry standard SMB package, can reduce footprint by 94% (WCSP package) and 79% (SON package) for space constrained applications. Both package options robustly dissipate the surge power and provide up to 58% lower leakage current compared to traditional TVS diodes in SMA and SMB package.

2.3 System Design Theory

2.3.1 DC Voltage Input to the Board

The board gets the DC input voltage through the jumper J5 as shown in 🗵 3. The TVS3300 is a surge protection clamp provided at the input to protect the circuit from input voltage surges. The design is optimized for a three-cell Li-ion battery and can support up to four-cell applications, having a maximum voltage of 16.8 V.

Copyright © 2018, Texas Instruments Incorporated

図 3. Schematic of Battery Power Input Section

The input supply voltage PVDD is scaled using the resistive divider network, which consists of R1, R4, and C3, and fed to the MCU. Considering the maximum voltage for the MCU ADC input as 3.3 V, the maximum DC input voltage measurable by the MCU is calculated as in \neq 1.

$$V_{DC}^{max} = V_{ADC_{DC}}^{max} \times \frac{(619 \, k\Omega + 2000 \, k\Omega)}{619 \, k\Omega} = 3.3 \times \frac{(619 \, k\Omega + 2000 \, k\Omega)}{619 \, k\Omega} = 13.96 \, V \tag{1}$$

Considering a 10% headroom for this value, the maximum recommended voltage input to the system is $13.96 \times 0.9 = 12.56$ V. So for a power stage operating from three-cell Li-ion, having a maximum operating voltage of 12.6 V, this voltage feedback resistor divider is ideal. Also, this choice gives optimal ADC resolution for a system operating from 6 V to 12.6 V.

2.3.2 Power Stage Design: Three-Phase Inverter

The three-phase inverter is realized using three dual MOSFET blocks CSD87502Q2, as shown in \boxtimes 4. Each CSD87502Q2 block consists of two independent 30-V, 27-m Ω N-channel MOSFETs in a SON 2×2-mm plastic package.

2 4. Schematic of Three-Phase Inverter

The resistors R6, R7, and R8 are used for inverter leg current sensing. The voltage across the sense resistor is fed to the MCU through the current shunt amplifiers in the DRV8304.

2.3.3 Selecting the Sense Resistor

The selection of sense resistor depends on different factors as follows:

- · Power dissipation in the sense resistor
- · Offset error voltage and gain of the current sense amplifier
- Peak current to be sensed

The sense resistors are designed to carry a continuous nominal RMS current of 2.5 A and a peak current of 5 A. A high sense resistance value increases the power loss in the resistors. A low sense resistor value increases the error due to input offset voltage of the current sense amplifier at high gain. If the current-sense amplifier is used without offset calibration, select the sense resistor value such that the sense voltage across the resistor is sufficiently higher than the op-amp input offset voltage to reduce the effect of the offset error. The TLV9061 has a maximum input offset error voltage of 1.5 mV. The reference design uses a 0.006- Ω sense resistor, and the power loss in sense resistor can be calculated using \neq 2: Power loss in the resistor = $I_{RMS}^2 \times R_{SENSE} = 2.5^2 \times 0.006 = 0.0375$ W (2)

At a 5-A peak current, using \neq 2, the power loss in the resistor = 0.15 W.

2.3.4 Power Stage Design: Three-Phase Gate Driver

☑ 5 shows the schematic of the DRV8304 gate driver. C17 is the DVDD decoupling capacitor that must be placed close to DRV8304. C6 and C7 are the charge pump capacitors. These capacitors are selected to provide a stable charge pump voltage with minimum ripple. VM is the DC supply input; in this case, it is the battery voltage of 10.8 V. C1 and C4 are the bulk ceramic capacitor placed near the inverter bridge.

The gate drive circuit is designed, and the different resistors are selected to meet the specification as per \pm 2.

表 2. Design Specification of DRV8304 Gate Driver

PARAMETER	DEFAULT VALUE	CIRCUIT DESCRIPTION
MODE (PWM mode)	6× PWM control mode	MODE pin tied to AGND
I _{DRIVE} (gate source and sink current)	15-mA source, 30-mA sink	IDRIVE pin tied to AGND
V _{DS} (monitor reference voltage)	0.15 V	VDS pin tied to AGND
GAIN (current sense amplifier gain)	40 V/V	GAIN pin tied to 3.3 V (DVDD)
V _{REF}	3.3 V	Support bidirectional current sensing
CAL	Controllable through MCU	Amplifier calibration through MCU

☑ 5. Schematic of DRV8304 Gate Driver

System Overview

2.3.5 **Current Sense Amplifier**

The SOx pin on the DRV8304 outputs an analog voltage equal to the voltage seen across the SPx and SNx pin multiplied by the gain setting (CSA_GAIN). The gain setting is adjustable between four different levels (5, 10, 20, and 40 V/V). The amplifier as shown in $\boxtimes 6$ can be used to monitor the current through the half-bridges and the current is approximately calculated using ± 3 .

$$I_{\text{SENSE}} = \frac{\frac{V_{\text{REF}}}{2} - SO_{X}}{CSA_{\text{GAIN}} \times R_{\text{SENSE}}}$$
(3)

Image: Second Second

The sense amplifier gains on the DRV8304 and sense resistor value are selected based on the target current range, V_{REF}, sense resistor power rating, and temperature. In bidirectional operation of the sense amplifier, the dynamic range at the output is approximately:

$$V_{O} = \left(V_{REF} - 0.25 \text{ V}\right) - \frac{V_{REF}}{2}$$

where

10

(4)

The required current sense range for the reference design is from -5 A to +5 A. The DRV8304 has an SOx output linear range of 0.25 V to $V_{REF} - 0.25$ V (from the V_{LINEAR} specification). The differential range of the sense amplifier input is -0.3 V to +0.3 V (V_{SP,DIF}).

$$R_{SENSE} = \frac{1.4 \text{ V}}{\text{A}_{\text{V}} \times \text{I}_{\text{SENSE}}}$$

$$V_{\text{O}} = (3.3 \text{ V} - 0.25 \text{ V}) - \left(\frac{3.3 \text{ V}}{2}\right) = 1.4 \text{ V}$$
(5)

With $R_{SENSE} = 0.006 \Omega$ and an amplifier gain of 40 V/V, using ± 5 , the design allows a current sensing from -5.8 A to +5.8 A, which means 15% over rated from the required rated peak current of 5 A.

Copyright © 2018, Texas Instruments Incorporated

2.3.6 MSP430FR5949 MCU

⊠ 7 shows the configuration of MSP430FR5949 MCU. The reference design uses 4.7-µF decoupling capacitors (C2, C12) at AVCC and DVCC pins. A 0.1-µF capacitor has been added to obtain the best performance at a high frequency. The Timer B module of the MCU is used for PWM generation. The seven capture/compare registers helps to realize six PWM signals for three-phase sine control, with a single time base. The six PWM signals are generated at TB0.1 to TB0.6 pins. The digital Hall signals are connected to port 1 of the MCU. For an analog position signal interface, configure the pins as analog pins. The MCU is configured for sensing different analog signals like the inverter leg currents, DC bus voltage, position reference signals, and so on. The provision for UART communication is also provided.

図 7. Schematic of MSP430FR5949

2.3.7 Motor Position Feedback

⊠ 8 shows the position feedback interface from the motor to the reference design board. By default, the reference design is configured to sense digital Hall sensor output, which is connected to port 1 of MCU. The reference design can support analog position feedback also; in that case, connect the sensor output to same port pins and configure the pins as an analog input pin of the MCU ADC.

The position reference signal can be connected to J7 by connecting an external potentiometer (POT).

8. Schematic of Position Feedback

System Overview

System Overview

2.3.8 LDO

The reference design uses the ultra-low quiescent current, LDO linear regulator TPS70933 to generate the 3.3-V power supply for the MCU from the input voltage of 10.8 V. 🗵 9 shows the schematic of the LDO circuit.

図 9. Schematic of 3.3-V LDO

The selection of LDO depends on the wide input voltage support (in this design, from 6 V to 16.8 V), the load current, and power dissipation. Power dissipation depends on input voltage and load conditions. Power dissipation (P_{DISS}) is equal to the product of the output current and the voltage drop across the output pass element, as given in $\neq 6$.

$$P_{DISS} = (V_{IN} - V_{OUT}) \times I_{OUT}$$

(6)

Assuming a nominal LDO load current of 20 mA, the power dissipation at V_{IN} = 16.8 V can be calculated as:

 $P_{DISS} = (16.8 - 3.3) \times 0.02 = 0.27 \text{ W}$

 $\frac{1}{8}$ 3 shows the specifications of the LDOs used in this reference design. At lower input voltage, the power dissipation in the LDO reduces. This reference design assumes a maximum LDO output current of 30 mA when operating from a three-cell Li-ion battery.

PARAMETER	DESIGN SPECIFICATION		
Input voltage	6 V to 16.8 V (10.8-V nominal)		
Output voltage	3.3 V		
Maximum output current	30 mA (at 10.8-V input voltage)		

Copyright © 2018, Texas Instruments Incorporated

表 3. Specification of Buck Converter

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 Hardware

3.1.1.1 Connector Configuration of TIDA-01587

☑ 10 shows the connector configuration of this reference design, which features:

- Two-terminal input for power supply (J5): This pin is used to connect the input DC supply from the battery. The positive and negative terminals can be identified as shown in 🗵 10.
- Three-terminal output for motor winding connection: The phase output connections for connecting to the BLDC motor winding marked as Phase A, Phase B, and Phase C as shown in ⊠ 10.
- Three-pin connector J3: This connector is used for external UART communication interface. The RX and TX pins enable the communication with external master controller. The FAULT pin of this connector gives indication on FAULT signal from gate driver DRV8304.
- Two-pin connector J1: This is the programming connector for the MSP430FR5949 MCU, along with the 3.3-V lines at connector J2. The two-wire Spy-Bi-Wire protocol is used to program the MSP430FR5949. See the MSP430FR5949 development tools for programming options with an external JTAG interface.
- Three-pin connector J7: This connector interfaces the position reference from external potentiometer. A 20k POT can be used.
- Three-pin connector J4: This connector interfaces hall senor position signal from the motor.

Copyright © 2018, Texas Instruments Incorporated

図 10. PCB Connectors

3.1.1.2 Procedure for Board Bring-up and Testing

Follow this procedure for board bring-up and testing:

- 1. Remove the motor connections from the board and power on the input DC supply. Make sure that a minimum of a 8-V DC input is applied and the 3.3 V is generated in the board.
- 2. Program the MCU. Make sure that the configuration in the program is done as per 3.1.2.
- 3. Remove the programmer, and switch off the DC input supply.
- 4. Connect the phase outputs from the board to the motor winding terminals.
- 5. Use a DC power supply with current limit protection and apply 8-V DC to the board. The motor starts rotating and stops at the position mentioned by the position reference.
- 6. To change direction, switch off the DC input, and correct the logic in the program and re-load the same in to the MCU.

3.1.2 Software

3.1.2.1 High-Level Description of Application Firmware

The reference design firmware offers the following features and user controllable parameters:

- 60° electrical position control using digital hall sensor position feedback
- BLDC motor speed control using trapezoidal control

 $\frac{1}{8}$ 4 lists the firmware system components.

SYSTEM COMPONENT	DESCRIPTION
Development and emulation	Code Composer Studio™ (CCS) version 7
Target controller	MSP430FR5949
PWM frequency	20-kHz PWM (default), programmable for higher and lower frequencies
Interrupts	Port 1 Interrupts enabled on P1.0, P1.1, and P1.2 corresponds to digital hall sensor interface
PWM generation—Timer configuration	PWMs: TB0.1–TB0.6 ; CLOCK = 16 MHz, PWM frequency set for 20 kHz
Position feedback—Hall sensor signals	$\begin{array}{l} P1.0 \rightarrow HALL \ A \\ P1.1 \rightarrow HALL \ B \\ P1.2 \rightarrow HALL \ C \end{array}$
ADC channel assignment	$A7 \rightarrow DC$ bus voltage feedback $A8 \rightarrow Position$ reference from potentiometer $A13 \rightarrow Phase C$ inverter leg current $A14 \rightarrow Phase A$ inverter leg current $A15 \rightarrow Phase B$ inverter leg current
MCU digital inputs/output and communication	P2.5 → ENABLE signal for DRV8304 P2.0 → UART TXD P2.1 → UART RXD P4.1 → CAL pin of DRV8304

表 4. TIDA-01587 Firmware System Components

3.1.2.2 Customizing the Reference Code

Select the main.c file. Parameters exist at the top of the file that can be optimized and are included as the configuration variables. The following section of code shows these parameters:

#define PWM_PERIOD 400 // PWM Frequency (Hz) = 16MHz / ((2*PWM_PERIOD) - 1)
#define DUTY_CYCLE 70 // Input Duty Cycle inversely relative to PWM_PERIOD
#define POLES 8 // Number of poles in motor
#define Gear_Ratio 1 // Gear ratio in the Motor

3.1.2.2.1 **PWM_PERIOD**

The PWM_PERIOD parameter sets the value in capture and compare register 0 of Timer_B0. The Timer_B0 is initialized to operate at a 16-MHz clock. Use \neq 7 to calculate the PWM frequency. The TIMER_A0 PWM is configured in up-down mode.

 $PWM Frequency (Hz) = \frac{16 \text{ MHz}}{((2 \times PWM_PERIOD) - 1)}$

(7)

For example, with PWM_PERIOD = 400, PWM frequency \approx 20 kHz.

3.1.2.2.2 DUTY_CYCLE

Adjust this parameter to control the speed of the motor. This parameter is inversely related to PWM_PERIOD.

3.1.2.2.3 POLES

This parameter is the number of magnetic poles in the rotor of motor. The algorithm sets the 60° electrical position control using BLDC trapezoidal control, which means the resolution accuracy is 60° electrical.

The equivalent mechanical position resolution accuracy can be calculated from the number of magnetic poles in the rotor (p).

Mechanical Angle $(\theta_m) = \frac{\text{Electrical Angle}(\theta_e)}{\left(\frac{p}{2}\right)}$

(8)

For example, with p = 8, Mechanical resolution angle from motor = 15°. If the motor has a gear with 10:1 gear ratio, then:

Equivalent mechanical position resolution = $\frac{\text{Mechanical resolution angle from motor}}{\text{Gear ratio}} = 1.5^{\circ}$

3.2 Testing and Results

3.2.1 Test Setup

The test is performed with a BLDC motor at 10.8-V DC with trapezoidal and sinusoidal control. \boxtimes 11 shows the test setup.

Copyright © 2018, Texas Instruments Incorporated

図 11. Load Test Setup

3.2.2 Test Results

3.2.2.1 3.3-V Power Supply Generated by the LDO

☑ 12 shows the 3.3 V generated from the LDO. The ripple in the 3.3-V rail is less than 15 mV.

図 12. 3.3 V Generated by TPS70933

3.2.2.2 DRV8304 Gate Driver Output Voltage

☑ 13 shows the high-side and low-side gate drive output voltage of DRV8304 at a DC bus voltage of 10.8-V DC. The gate drive voltage is approximately 9.5 V, which means effective gate driving of standard MOSFETs. ☑ 14 shows the gate drive voltage of the DRV8304 at a lower DC bus voltage of 6 V. The gate drive output voltage is approximately 4.5 V. ☑ 15 shows the gate drive voltage of the DRV8304 at a higher DC bus voltage of 17 V. The gate drive output voltage is approximately 9.5 V.

☑ 13. Low-Side and High-Side Gate Drive Voltage at 10.8-V DC

☑ 14. Low-Side and High-Side Gate Drive Voltage at 6-V DC

☑ 15. Low-Side and High-Side Gate Drive Voltage at 17-V DC

3.2.2.3 Dead Time From DRV8304

The dead time (t_{DEAD}) is measured as the time between turning off one of the half bridge MOSFETs and turning on the other. The hardware version of DRV8304 inserts a fixed dead time of 120 ns. \boxtimes 16 and \boxtimes 17 shows the high-side and low-side gate source voltage from the DRV8304, which shows the dead time inserted by the DRV8304 at both the edges of the PWM.

 \blacksquare 16. Dead Time at Rising Edge of Low-Side V_{GS}

 \blacksquare 17. Dead Time at Trailing Edge of Low-Side V_{GS}

3.2.2.4 MOSFET Switching Waveforms

 \boxtimes 18 to \boxtimes 21 show the V_{DS} and V_{GS} waveforms of the low-side and high-side MOSFETs at a gate current of the DRV8304 (I_{DRIVE}) is set at a 15-mA source (the low gate charge of the CSD87502Q2 allows low source current) and a 30-mA sink current. Switching waveforms are clean without much overvoltage ringing due to the following:

- Small size CSD87502Q2 with two FETs in same package allows reduced PCB parasitic and hence reduces the phase node voltage ringing.
- The current controlled gate driver with slew rate control helps to optimize the switching.
- The I_{DRIVE} and T_{DRIVE} features of the gate driver helps to shape the gate current to optimize the switching.

 \blacksquare 18. Low-Side FET Turnon: Low-Side $V_{\rm GS}$ and $V_{\rm DS}$ at 2-A Winding Current

 \blacksquare 19. Low-Side FET Turnoff: Low-Side V_{GS} and V_{DS} at 2-A Winding Current

 \blacksquare 20. High-Side FET Turnon: High-Side $V_{\rm GS}$ and $V_{\rm DS}$ at 2-A Winding Current

 \blacksquare 21. High-Side FET Turnoff: High-Side V_{GS} and V_{DS} at 2-A Winding Current

3.2.2.5 Load Test

The load test is done with test setup as shown in \boxtimes 11. $\underset{RMS}{\pm}$ 5 lists the load test results. \boxtimes 22 shows the test results with trapezoidal control at 2.28-A_{RMS} winding current and 100% duty cycle, and \boxtimes 23 shows the results thermal image of the board after 10 minutes of continuous running. The maximum temperature observed on the MOSFET is 81.4°C. \boxtimes 24 shows the test results with sinusoidal control at 2.37-A_{RMS} winding current, and \boxtimes 25 shows the thermal image of the board after 10 minutes of continuous running. The maximum temperature observed on the MOSFET is 85.9°C.

24 shows the test results with sinusoidal control at 2.5-A winding current.

CONTROL METHOD	VDC (V)	IDC (A)	WINDING CURRENT (RMS) (A)	INPUT POWER (W)	MAXIMUM IC TEMPERATURE (°C)
Trapezoidal control	10.8	2.70	2.28	29.16	81.4
Sinusoidal control	10.8	2.72	2.37	29.4	85.9

表	5.	Load	Test	Results	at	10.8-V	DC
---	----	------	------	---------	----	--------	----

☑ 22. Load Test Results With Trapezoidal Control at 2.28-A_{RMS} Winding Current, 100% Duty Cycle

 FLUKE
 46.9°C
 Auto 1

 MAX
 MAX
 MIN

 81.4
 MIN
 3.7

 ● 29.9
 ● 29.9
 E=0.95

 BG=24.0
 F=100%
 22.4

23. Thermal Image of Board With Trapezoidal Control at 2.28-A_{RMS} Winding Current, 100% Duty Cycle

24. Load Test Results With Sinusoidal Control at 2.37-A_{RMS} Winding Current

☑ 25. Thermal Image of Board With Sinusoidal Control at 2.37-A_{RMS} Winding Current

3.2.2.6 Power Stage Efficiency Test

The reference design board power stage efficiency is experimentally tested with a test setup as shown in \boxtimes 11. \pm 6 lists the test results without heat sink at a 100% duty cycle. \pm 7 lists the test results without heat sink at a 95% duty cycle.

INPUT DC VOLTAGE (V)	INPUT DC CURRENT (A)	INPUT DC POWER (W)	MOTOR WINDING RMS CURRENT (A)	BOARD OUTPUT POWER (W)	EFFICIENCY (%)
10.63	0.859	9.13	0.792	8.93	97.73
10.81	1.031	11.15	0.932	10.89	97.66
10.78	1.207	13.02	1.074	12.70	97.56
10.75	1.411	15.17	1.239	14.78	97.44
10.91	1.678	18.31	1.460	17.79	97.13
10.87	1.965	21.35	1.698	20.65	96.73
10.80	2.378	25.67	2.039	24.70	96.21
10.73	2.785	29.87	2.362	28.62	95.80
10.69	2.989	31.95	2.507	30.51	95.51

表 6. Inverter Efficiency Test Results at 100% Duty Cycle Without Heat Sink and Without Airflow

表 7. Inverter Efficiency Test Results at 95% Duty Cycle Without Heat Sink and Without Airflow

INPUT DC VOLTAGE (V)	INPUT DC CURRENT (A)	INPUT DC POWER (W)	MOTOR WINDING RMS CURRENT (A)	BOARD OUTPUT POWER (W)	EFFICIENCY (%)
10.91	0.667	7.27	0.661	7.02	96.47
10.87	0.886	9.63	0.845	9.28	96.41
10.83	1.156	12.52	1.070	12.03	96.13
10.78	1.448	15.61	1.325	14.96	95.85
10.90	1.813	19.76	1.634	18.85	95.36
10.81	2.191	23.69	1.959	22.48	94.88
10.77	2.490	26.81	2.215	25.35	94.53
10.69	3.002	32.10	2.657	30.21	94.12

☑ 26 shows the efficiency curve of these test conditions.

☑ 26. Power Stage Efficiency versus Output Power

The low $R_{DS(on)}$ of the CSD87502Q2 MOSFET power blocks along with clean MOSFET switching by the DRV8304 smart gate driver enable maximum three-phase inverter efficiency. The thermal pads on the MOSFET power blocks help to extract the heat to the PCB.

3.2.2.7 Overcurrent Limit Results

The gate driver DRV8304 implement adjustable V_{DS} monitors to detect overcurrent or short conditions on the external MOSFETs. The high-side V_{DS} monitors measure the voltage between the VDRAIN and SHX pins. In configuration with three current shunt amplifiers, the low-side V_{DS} monitors measure the voltage between the VDRAIN and SHX pins.

When the voltage monitored is greater than the V_{DS} trip point ($V_{DS,OCP}$) after the V_{DS} deglitch time ($t_{DS,OCP}$) has expired, the DRV8304 detects an OCP condition and takes action according to the fault setting. In the hardware version of the DRV8304, the V_{DS} monitor acts in automatic retry mode with a 4-ms retry time.

 \boxtimes 27 shows the V_{DS} overcurrent action with the V_{DS} reference voltage set to 0.15 V.

Assuming the junction temperature of 75°C, the $R_{DS(on)}$ at 75°C \approx 34 m Ω (approximately 1.26 times the $R_{DS(on)}$ at 25°C, from the CSD87502Q2 data sheet).

where:

- V_{DS} deglitch time (t_{DS,OCP}) = 4.5 μs
- Current limit threshold = V_{DS} threshold / R_{DS(on)} = 4.41 A

 \boxtimes 27 shows that the current is limited at 4.6 A. \boxtimes 28 shows the zoomed view where the PWM shuts off when the current hits the over current threshold and the fault is created. The fault resets after 4 ms.

図 27. Overcurrent Protection With MOSFET V_{DS} Monitoring

Hardware, Software, Testing Requirements, and Test Results

図 28. Zoomed View of Overcurrent Protection With MOSFET V_{DS} Monitoring

3.2.2.8 BLDC Motor 60° Electrical Position Control With Trapezoidal Excitation

Position control algorithm on the MSP430FR5949 is implemented using port interrupts capability of the MSP430 MCU. The testing is done on the BLDC motor that has three digital Hall position sensors.

 \boxtimes 29 and \boxtimes 30 show the position control test results with a BLDC motor having four pole pairs and no gear assembly. \boxtimes 29 shows the position control at 105° mechanical (420° electrical) with a holding torque equivalent to 2 A.

⊠ 30 shows the test result with step change in mechanical position reference from 37.5° mechanical to 82.5° mechanical with a 1.5-A holding current.

29. Test Results for Position Control at 105° Mechanical

図 30. Test Results for Position Control With a Step Change in Position Reference

Design Files

4 Design Files

4.1 Schematics

To download the schematics, see the design files at TIDA-01587.

4.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDA-01587.

4.3 PCB Layout Recommendations

4.3.1 Layout Prints

To download the layer plots, see the design files at TIDA-01587.

4.4 Altium Project

To download the Altium project files, see the design files at TIDA-01587.

4.5 Gerber Files

To download the Gerber files, see the design files at TIDA-01587.

4.6 Assembly Drawings

To download the assembly drawings, see the design files at TIDA-01587.

5 Software Files

To download the software files, see the design files at TIDA-01587.

6 Related Documentation

- 1. Texas Instruments, Field Oriented Control (FOC) Made Easy for Brushless DC (BLDC) Motors Using TI Smart Gate Drivers Application Brief
- 2. Texas Instruments, DRV8304 38-V 3-Phase Smart Gate Driver Data Sheet

6.1 商標

E2E, MSP430, Code Composer Studio are trademarks of Texas Instruments. すべての商標および登録商標はそれぞれの所有者に帰属します。

7 Terminology

- BLDC— Brushless DC
- **ESD** Electrostatic discharge
- MCU— Microcontroller unit
- PWM— Pulse width modulation

8 About the Authors

MANU BALAKRISHNAN is a systems engineer at Texas Instruments, where he is responsible for developing subsystem design solutions for the Industrial Motor Drive systems. Manu brings to this role his experience in power electronics and analog and mixed signal designs. He has system level product design experience in permanent magnet motor drives. Manu earned his bachelor of technology in electrical and electronics engineering from the University of Kerala and his master of technology in power electronics from National Institute of Technology Calicut, India.

VARAD JOSHI is a project trainee in the Industrial Systems team at Texas Instruments, where he is learning and developing reference design solutions with a focus on motor drive systems. Varad is a final-year student pursuing a bachelor of engineering (B.E. hons) in electrical and electronics engineering from Birla Institute of Technology & Sciences (BITS), Pilani, Goa.

JASRAJ DALVI is an end equipment lead with Industrial Systems team at Texas Instruments, where he is responsible for defining reference design solutions and control algorithms for motor control systems. He completed his bachelors of engineering degree in electrical engineering from University of Pune, India and his post-graduate diploma in marketing management at S.I.B.M. in Pune, India.

TIの設計情報およびリソースに関する重要な注意事項

Texas Instruments Incorporated ("TI")の技術、アプリケーションその他設計に関する助言、サービスまたは情報は、TI製品を組み込んだア プリケーションを開発する設計者に役立つことを目的として提供するものです。これにはリファレンス設計や、評価モジュールに関係する 資料が含まれますが、これらに限られません。以下、これらを総称して「TIリソース」と呼びます。いかなる方法であっても、TIリソース のいずれかをダウンロード、アクセス、または使用した場合、お客様(個人、または会社を代表している場合にはお客様の会社)は、これら のリソースをここに記載された目的にのみ使用し、この注意事項の条項に従うことに合意したものとします。

TIによるTIリソースの提供は、TI製品に対する該当の発行済み保証事項または免責事項を拡張またはいかなる形でも変更するものではな く、これらのTIリソースを提供することによって、TIにはいかなる追加義務も責任も発生しないものとします。TIは、自社のTIリソースに 訂正、拡張、改良、およびその他の変更を加える権利を留保します。

お客様は、自らのアプリケーションの設計において、ご自身が独自に分析、評価、判断を行う責任がお客様にあり、お客様のアプリケー ション(および、お客様のアプリケーションに使用されるすべてのTI製品)の安全性、および該当するすべての規制、法、その他適用される 要件への遵守を保証するすべての責任をお客様のみが負うことを理解し、合意するものとします。お客様は、自身のアプリケーションに関 して、(1) 故障による危険な結果を予測し、(2) 障害とその結果を監視し、および、(3) 損害を引き起こす障害の可能性を減らし、適切な対 策を行う目的での、安全策を開発し実装するために必要な、すべての技術を保持していることを表明するものとします。お客様は、TI製品 を含むアプリケーションを使用または配布する前に、それらのアプリケーション、およびアプリケーションに使用されているTI製品の機能 性を完全にテストすることに合意するものとします。TIは、特定のTIリソース用に発行されたドキュメントで明示的に記載されているもの 以外のテストを実行していません。

お客様は、個別のTIリソースにつき、当該TIリソースに記載されているTI製品を含むアプリケーションの開発に関連する目的でのみ、使 用、コピー、変更することが許可されています。明示的または黙示的を問わず、禁反言の法理その他どのような理由でも、他のTIの知的所 有権に対するその他のライセンスは付与されません。また、TIまたは他のいかなる第三者のテクノロジまたは知的所有権についても、いか なるライセンスも付与されるものではありません。付与されないものには、TI製品またはサービスが使用される組み合わせ、機械、プロセ スに関連する特許権、著作権、回路配置利用権、その他の知的所有権が含まれますが、これらに限られません。第三者の製品やサービスに 関する、またはそれらを参照する情報は、そのような製品またはサービスを利用するライセンスを構成するものではなく、それらに対する 保証または推奨を意味するものでもありません。TIリソースを使用するため、第三者の特許または他の知的所有権に基づく第三者からのラ イセンス、もしくは、TIの特許または他の知的所有権に基づくTIからのライセンスが必要な場合があります。

TIのリソースは、それに含まれるあらゆる欠陥も含めて、「現状のまま」提供されます。TIは、TIリソースまたはその仕様に関して、明示 的か暗黙的かにかかわらず、他のいかなる保証または表明も行いません。これには、正確性または完全性、権原、続発性の障害に関する保 証、および商品性、特定目的への適合性、第三者の知的所有権の非侵害に対する黙示の保証が含まれますが、これらに限られません。

TIは、いかなる苦情に対しても、お客様への弁護または補償を行う義務はなく、行わないものとします。これには、任意の製品の組み合わ せに関連する、またはそれらに基づく侵害の請求も含まれますが、これらに限られず、またその事実についてTIリソースまたは他の場所に 記載されているか否かを問わないものとします。いかなる場合も、TIリソースまたはその使用に関連して、またはそれらにより発生した、 実際的、直接的、特別、付随的、間接的、懲罰的、偶発的、または、結果的な損害について、そのような損害の可能性についてTIが知らさ れていたかどうかにかかわらず、TIは責任を負わないものとします。

お客様は、この注意事項の条件および条項に従わなかったために発生した、いかなる損害、コスト、損失、責任からも、TIおよびその代表 者を完全に免責するものとします。

この注意事項はTIリソースに適用されます。特定の種類の資料、TI製品、およびサービスの使用および購入については、追加条項が適用されます。これには、半導体製品(http://www.ti.com/sc/docs/stdterms.htm)、評価モジュール、およびサンプル(http://www.ti.com/sc/docs/sampterms.htm)についてのTIの標準条項が含まれますが、これらに限られません。

Copyright © 2018, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社