

PGA309 Quick Start System Reference Guide

by Art Kay High-Precision Linear Products

SBOA103C Jan 2006

PGA309 Quick Start

time, and sensor non-repeatability.

Emulator-EVM to quickly emulate a repeatable sensor at your desk.

PGA309 Quick Start Contents

4
5-12
.13
14-17
18-21
.22-31
32-38
39-59
60-86
.87-95
96-100

Required items for Quick Start INSTRUMENTS

Hardware

- **PGA309EVM** This is an evaluation kit that allows you to communicate with and interface to the PGA309. It contains a PC Interface Board and a Sensor Interface Board combined with a PGA309 and EEPROM.
- **Sensor-Emulator-EVM** This is an evaluation kit that uses rotary switches and trim potentiometers to generate voltage excited bridge sensor output signals and temperature sensor output signals.
- +/-12V supply Any low noise dc supply for the sensor emulator.
- **Precision DVM** Any five or six digit meter that can read into microvolts (e.g., HP3458, HP34401). .
- Slotted Jeweler's Screwdriver The best tool to quickly adjust the potentiometer.

Software

- PGA309DK Board Interface This software is used to communicate with the PGA309EVM. See http://focus.ti.com/docs/toolsw/folders/print/pga309evm-eu.html under support software for free download.
- **PGA309 Calculator** This software is used to do initial gain scaling and verify that the design does not violate any ٠ PGA309 specifications. Software is bundled with PGA309DK Board Interface software.
- PGA309 Calibration Spreadsheet This spreadsheet uses PGA309 / Sensor readings over temperature and at different applied stimulus levels to generate the calibration table used to correct for the sensor errors. Software is bundled with PGA309DK Board Interface software.
- Generate_Emulator_Values.xls This spreadsheet translates sensor specifications into voltage settings for the ٠ Sensor-Emulator-EVM. See http://focus.ti.com/docs/toolsw/folders/print/sensor-emulator-evm.html under support software for free download.

SBOA103C Jan 2006

Specifications

There are several key specifications that are used throughout our literature. The mathematical definitions are listed below.

- **Offset** the normalized output of a sensor (in V/V) with no applied stimulus.
- OffsetTC1 The linear drift of the sensors' offset given in % of span/°C.
- **NonlinOffsetDrift** The second order (quadratic) drift of the offset. This coefficient is in % of span at room temperature.
- OffsetTC2 The second order (quadratic) drift of the offset. This coefficient is in % of span/°C² at room temperature.
- **Span** the amount of change in normalized output voltage (in V/V) of the sensor over the entire range of applied stimulus.
- **SpanTC1** The linear drift of the sensors' span given in % of span/°C.
- **NonlinSpanDrift** The second order (quadratic) drift of the offset. This coefficient is in % of span at room temperature.
- **SpanTC2** The second order (quadratic) drift of the span. This coefficient is in % of span/°C² at room temperature.
- **PressureNonlinearity** The second order (quadratic) nonlinearity versus applied signal given in % of span.

6

Span – the amount of change in normalized output voltage (in V/V) of the sensor over the entire range of applied stimulus.

Offset – the normalized output of a sensor (in V/V) with no applied stimulus.

OffsetTC1 =
$$\frac{(Offset_3 - Offset_1)}{Span_2(T_3 - T_1)}$$

The linear drift of the sensor's offset given in % of span/°C.
OffsetTC1 = $\frac{\left[2.963 \times 10^{-6} - \left(-1.624 \times 10^{-4}\right)\right]}{3.673 \times 10^{-3} \cdot [85 - (-40)]} = 3.602 \times 10^{-4}$ % of span/°C
Bridge Sensitivity vs Temp
 $\frac{4.0E-03}{3.6E-04}$ (72, Offset2)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offset1)
 $\frac{2.6E-03}{1.6E-03}$ (72, Offset2)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offset1)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offset2)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offset2)
 $\frac{1.6E-03}{1.6E-03}$ (71, Offset2)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offset2)
 $\frac{1.6E-03}{1.6E-03}$ (71, Offset2)
 $\frac{1.6E-03}{1.6E-04}$ (71, Offs

PGA309 Quick Start System Reference Guide

7

SBOA103C Jan 2006

NonlinOffsetDrift OffsetTC2

NonLinOffsetDrift =
$$\frac{\left[\frac{Offset_2 - \frac{(Offset_1 + Offset_3)}{2}\right]}{Span_2}$$

NonLinOffsetDrift =
$$\frac{1.02310^{-4} - \frac{\left[\left(-1.62410^{-4}\right) + \left(2.96310^{-6}\right)\right]}{2}}{2} = 4.956 \times 10^{-2} \quad \% \text{ of span}$$

 3.673×10^{-3}

NonLinOffsetDrift =

NonlinOffsetDrift:

The second order (quadratic) drift of the offset. This coefficient is in % of span at room temperature.

OffsetTC2:

The second order (quadratic) drift of the offset. This coefficient is in % of span/°C² at room temperature.

SBOA103C Jan 2006

SpanTC1

 $SpanTC1 = \frac{(Span_3 - Span_1)}{Span_2 \cdot (T_3 - T_1)}$

TEXAS INSTRUMENTS

The linear drift of the sensors' span given in % of span/°C.

SBOA103C

Jan 2006

SpanTC1 =
$$\frac{(3.728410^{-3} - 3.441210^{-3})}{3.6734 \times 10^{-3} \cdot [85 - (-40)]} = 6.255 \times 10^{-4}$$
 % of span/°C

PGA309 Quick Start System Reference Guide

NonlinSpanDrift SpanTC2

NonlinSpanDrift:

The second order (quadratic) drift of the offset. This coefficient is in % of span at room temperature.

SpanTC2:

SBOA103C

Jan 2006

The second order (quadratic) drift of the span. This coefficient is in % of span/°C² at room temperature.

Pressure Nonlinearity

The second order (quadratic) nonlinearity versus applied signal given in % of span.

Note: These readings were all taken at room temperature. So, **real_sensor100** is the span of the sensor at room temperature.

ideal_sensor (stim) = slope \cdot stim

deal_sensor (50) =
$$(3.67 \times 10^{-5}) \cdot 50 = 1.835 \times 10^{-3}$$

PresureNonlinearity =
$$\frac{(\text{real_sensor } 50^{-} \text{ ideal_sensor } 50)}{\text{real_sensor } 100} \cdot 100 = \frac{(1.66 \times 10^{-3} - 1.835 \times 10^{-3})}{(3.67 \times 10^{-3})} \cdot 100 = -4.768\%$$

PGA309 Quick Start System Reference Guide

SBOA103C Jan 2006

The equations use the constants defined on the previous slides. These equations are used in the *generate_emu_settings.xls* spreadsheet* to compute the voltage settings for the Sensor-Emulator-EVM.

$$P_{\text{nonlin}}(P) = P + 4 \cdot \text{Nonlinearity_pct} \cdot 100 \left[\frac{P}{100} - \left(\frac{P}{100} \right)^2 \right]$$

$$\text{Span}_{\text{TC}}(T) = \text{Span}_{\text{TC}}(T - T_{\text{room}}) - \text{Span}_{\text{TC}}(T - T_{\text{room}})^2$$

Offset_TC(T) = OffsetTC1
$$\cdot$$
 $(T - T_{room}) - OffsetTC2 \cdot (T - T_{room})^2$

SensorOutput (P,T) =
$$\left[Offset_{room} + Span_{room} Offset_TC(T) + Span \cdot \left[\frac{Nonlinearity_pct}{100} \cdot (1 + Span_TC(T))\right]\right]$$

* Available for download at <u>www.ti.com</u> as SBOC065

PGA309 Absolute Calibration Example

For this quick start example the specifications below and the example hardware configuration will be used. The Sensor-Emulator-EVM will create an equivalent for the illustrated Real World Inputs.

Step 1: Will the PGA309 work for my sensor?

- Use your sensor's specifications with the PGA309 Calculator software tool (SLVC073) to see if the PGA309 has the gain and offset adjustment range required to accommodate your sensor.
- Use the PGA309 Calculator software tool to verify that your design does not violate any of the most critical PGA309 specifications (internal or external nodes).

Enter your sensor parameters and your PGA309 configuration parameters to get the gain scaling.

	PGA309 Calculator Rev. 1.4.1	
Enter information here. For example, enter the values shown.	✓ PGA309 Calculator Rev. 1.4.1 Reference Select ✓ Enable Internal Vref Ref Val: 4.096 Bridge Excitation ✓ Enable Vexc Internal Vexc: 3.4 Bridge Resistance Rbridge 1.000K Rt 0 Rt 0	Press Compute Constants and the resulting gain settings will be displayed here. If your design generates values
	Desired PGA Output Swing Zero DAC (V) 2.102 PGA Zero Scale 0.5 Discrete DAC (V)	for gain and offset
	Output Gain DAC (V/V) 727.588m PGA Full Scale 4.5 Output Amp Gain (V/V) 3.6 Output Set Additional Simulate	PGA309's range, the software will flag the problem.
SBOA103C Jan 2006	PGA309 Quick Start System Reference Guide	15

The program selects values to allow the Gain DAC and Zero DAC to have the maximum adjustable range. The *Set Additional Constraints* button is a way to force the front end gain or coarse offset to a constant. For this example, set the coarse offset zero to minimize noise. Click *Apply Constraints* and then click *Compute Constants*. In this case the range of adjustment for the Zero DAC is reduced but is still adequate to correct for the sensor drift.

🖉 PGA309 Calculator Rev. 1.4.1

Reference Select	Sensor Output
Enable Internal Vref	 Normalized Sensor Data
Ref Val: 4 096	Offset in V/V -294.500u
	Span in V/V 3.509m
Bridge Excitation	C Measured Sensor Data
Enable Vexc	Offset in V -1.001m
Internal Vexc: 3.4	Full Scale Output in V 10.929m
Bridge Resistance	
Rbridge 1.000K	Vsa (PGA analog supply) 5
Rt+ 0	Calculated PGA Settings
Rt / Note	Coarse Offset (mV) 0.000
	Front End PGA (V/V) 128
Desired PGA Output Swing	Zero DAC (V) 319.056m
PGA Zero Scale 0.5 Output	Gain DAC (V/V) 727.588m
PGA Full Scale 4.5 Output	Output Amp Gain (V/V) 3.6
Compute Set Add Constants Constr	ditional Simulate aints Device
Quick Start	 16

PGA309 Quick Start System Reference Guide

RUMENTS

-

Step 2: Connect the hardware INSTRUMENTS

Example of a Typical Engineering Bench Setup Using the Sensor Emulator

This diagram illustrates an example of how the Sensor-Emulator-EVM would be used in an engineering bench setup. The PGA309 is a programmable sensor signal conditioning chip. The Sensor-Emulator-EVM can be used in conjunction with the PGA309EVM (both versions) to facilitate the development of the PGA309 application.

SBOA103C
Jan 2006

Required Electrical Connections to Sensor-Emulator-EVM

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

Sensor-Emulator-EVM Jumper Setup

Step 3: Do initial setup of the PGA309 using the PGA309 DK

- Copy the PGA309 Calculator results into the PGA309DK software.
- Configure the PGA309 Temp ADC
- Calibrate the ADS1100 (ADC on PGA309EVM-xx PC Interface Board Used to read the PGA309 output; read via software).

. ... Start the PGA309 Control Program. a message box w to load from the E No). Another box "the PGA309 EV using the One-W If the PGA309EVI properly, refer to Users Guide.

Detecting

A309 Designer's Kit	Kit Control Drogram
ram. When it starts,	
ox will ask if you want	Detect Write PGA309 Read PGA309 Write EEPROM Read EEPROM Set PreCal EE
box will indicate that EVM was detected ne-Wire interface. " 9EVM does not work or to the PGA309EVM	PGA Settings Coarse Offset (mV): 0.000 Enable Internal Vref: rails FrontEnd PGA Gain (V/V): 4.000 Vref Value : 5.0 Binary Output Amp Gain (V/V): 0.000 Detect Internal Saturation: Detect Internal Saturation: 0000_0000_0000 Output Amp Gain (V/V): 2.000 Vout high on internal fault: PGA309 Temp ADC 0000_0000_0000 Overscale Limit: 4.854 DegC
0111 OutEnbl Counter PGA309 Des 1000 AlarmStatus(RO) Config Checksum Config Checksum Image: Config Checksum Image: Config Checksum Lookup Table The Do to the Do tot the Do to the Do to the Do tot the Do t	0000_000_000 000 000 000 000 igner's Kit Image: Convert in the image: Convert image: C
,	Checksums Setup
EEPROM Lookup Table Bitmap of a register	r]
Detecting PGA309 board. Please stand by.	
	PGA309 Quick Start

SBOA103C Jan 2006

PGA309 QUICK Start System Reference Guide

For this example, we will measure the PGA309 output voltage using an delta-sigma A/D converter on the PGA309 PC Interface Board (the ADS1100). For optimal accuracy the ADS1100 should be calibrated. To calibrate the ADS1100, measure the supply voltage Vs on the PGA309 PC Interface Board (this should be close to 5V).

Texas Instruments PGA309 Designer's Kit Control Program	
File Edit Board Setup	Press the <i>Board</i>
Image: Construction Image: Construction Imag	Settings button to
PRG pin shorted to Vout PGA309 Test Pin HIGH Coarse Offset (mV): Fnable Internal Vief:	enter the calibration
PGA309 Registers Vief Value : 4.096 Vief Value : 4.096	factors. Enter the
Fault Detection Detect External Fault	measured value for
OutputVoltage/Ref Set Detect Internal Sature Vout high on external	Vs then click
Volt 2.88895 Vs = 5.0 Single Shot Calibrate ADS1100 Vout high on internal	Pood ADS1100
Hex 49F5 PGA309 Temp ADC-	Reau ADS 1100.
Decimal 18953 Continuously Continuously Dec 12409	
ADS Output Register Hex 3079 h	ADC Config
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Convert	
	d ADS1100
MSB LSB Supply Vcc (V):	5.0
ADS1100 Configuration/Status Register EVM (PCF8574A) Volt 2.88895	пилот
OS D6 D5 SC R1 R0 G1 G0 pin nLED1 Cal P3 nVSen Dec 18933	
1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 Hex 49F5	Foard
MSB LSB MSB LSB Update Vout	Settings
Keep comm alive	PGA Interface
Instant Update	Iwo-Wire C
Show 1kBit Autocale Chksum 🔽	<u>O</u> ne-Wire ©
EEPROM Update	COM Port
	Setup
EEPROM Lookup Table Bitmap of a register	
Board Communcation Idle	

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

PGA309 Quick Start System Reference Guide

Texas Instruments PGA309 Designer's Kit Control Program	
Reset Open File Save File Detect Write PGA309 Read PGA309 Write EEPROM Read I	EEPROM Set PreCal EE
Reset Open Hile Save Hile Detect Write HgA309 Read PGA309 Write EEPROM Read PGA309 PRG pin shorted to Vout PGA309 Test Pin HIGH PGA Settings Coarse Offset (mV): 0.000 • Image: PGA309 Interface Board (ADS1100 and PCF8574A Status) Image: PGA309 Read ADS1100 Image: PGA309 Image: PGA309 <thi< td=""><td>Enable Internal V Press calibrate Viet Value: 4.09 Fault Detection Detect Sternal Detect Internal ADS 1100. This will short Vout high on ex Vout high on ex Vout high on int Detect Internal PegC The calibration will take a few seconds. When it is complete close the window. window. Interface Board and ADS1100 Supply Vec (V): Vot 288895 Vot 1.00 When this step is done, plug the two PGA309EVM boards back together. At this point the calibration</td></thi<>	Enable Internal V Press calibrate Viet Value: 4.09 Fault Detection Detect Sternal Detect Internal ADS 1100. This will short Vout high on ex Vout high on ex Vout high on int Detect Internal PegC The calibration will take a few seconds. When it is complete close the window. window. Interface Board and ADS1100 Supply Vec (V): Vot 288895 Vot 1.00 When this step is done, plug the two PGA309EVM boards back together. At this point the calibration
Show 1kBit EEPROM	Update COM Port Checksums Setup
EEPROM Lookup Table Bitmap of a register Board Communcation Idle	
SBOA103CPGA309 Quick StJan 2006System Reference C	Guide 27

Initial Configuration for the PGA309

PGA309 Quick Start System Reference Guide

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

Step C: i. Kit Control Program Press Write PGA309 to copy all the information entered in 唦 the program into the registers Write PGA309 Read PGA309 Detect Write EEPROM Read EEPROM Set PreCal EE **PGA Settings** of the PGA309. 🐺 Temp. ADC Config t Pin HIGH 🛛 🔽 Coarse Offset (m) (Move your mouse cursor over the choices to see -Step A: FrontEnd F fit the value and see the details corresponding register bits Zero DAC Hex Binary Г aults: Configure the OK 0x3079 0x0011_0000_0111_1001 Gain DAC RO) Г aturation: Select Signal Source: 0x13F0 0x0001 0011 1111 0000 Г temperature ADC by rnal fault: Output Am Apply 0x1001_0111_0110_0011 0x9763 External (TEMPin pin) 📀 nal fault: pressing the ADC 0x0500 0x0000 0101 0000 0000 Enable Ov Internal on-chip temp Cfg 0x3700 0x0011 0111 0000 0000 Cancel Config button. The 0x0000 0x0000 0000 0000 0000 Under \mathbf{H} Resolution, without sign example settings Continuous conv : 🔽 11b 13b 14b 15b Step B: Enable Se shown are good for a ADC Config Single Shot conv : 🔽 œ C diode measurement. Enter the example Linearizatio Enable Itemp (~7uA): settings shown for a Interface Board and ADS1100 Display Mode diode temperature Supply Vcc (V): 5.0 ADC Configuration with External Source Binary Œ Hex Enable ADC 2x Turbo: ADC Pre-gain measurement. Press Volt 2.88895 liolipoic Decimal 1000 1VM C 18933 Dec OK when done. Ref select Select 2VN C ADC input Hex 49F5 ADC built-in 2.048V: 4 V /V 🕥 gain. Board Settings Update Vout Vref pin: Œ 8V/V C Vexcipin: C PGA Interface Diff input Keep comm alive Vsa pin: C Two-Wire C Reserved: C TEMPin - GNDa . 🗭 Instant Update Vexc - TEMPin One-Wire 🔅 Autocale Chksum 🔽 Note: Bits RV[1:0] do not Show 1kBit (*) Vout - GNDA have effect when the EEPROM Update Vref - TEMPin COM Port built-in Vref is selected Checksums Setup (*) Vout-GNDA input is not compatible with the stand-Bitmap of a register alone look-up table PGA309 mode. Pull Test pin high.

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

Step 4: Configure Sensor-Emulator-EVM to Emulate the Bridge Sensor

- In order to use the Sensor-Emulator-EVM, you have to adjust a number of trim potentiometers to configure the Sensor-Emulator-EVM so that it acts like your sensor. If the sensor's raw output characteristics are known, this step is simple: you adjust the Sensor-Emulator-EVM output to mimic your sensor.
- 2. In the case where you want to use a sensor data sheet to configure the Sensor-Emulator-EVM, you can use the *generate_emu_settings.xls* to translate your specifications to Sensor-Emulator-EVM settings. Unfortunately, sensor manufacturers may have specifications that do not conform to a standard, and sometimes the specifications are difficult to understand. For our tools we will mathematically define the specifications. You may have to translate your particular specifications to our format.

Configuring the Emulator to Emulate a Real World Sensor

If the raw output of the sensor is not known, the "Generate_Sim_Values.xls" spreadsheet can be used to translate the specifications of your bridge sensor and temperature sensor to system voltage levels. The spreadsheet contains five sections (Offset and Span, Diode Vo, Rt-, Rt+, PGA309 Error, Ratiometric Error):

- 1. Offset and Span: Generates the bridge output voltages.
- 2. Diode Vo: Generates the temperature sensor output voltages for the diode method.
- 3. Rt-: Generates the temperature sensor voltages for the Rt- method.
- 4. Rt+: Generates the temperature sensor voltages for the Rt- method.
- 5. PGA309 Error: Allows you to read the PGA309 via the ADS1100 (The ADS1100 is the delta-sigma A/D converter that is a part of the PGA309EVM-xx).
- 6. PGA309 RatioMetric Error: Allows you to read and compute error for a ratiometric PGA309 setup.

The temperature measurement methods, Diode, Rt-, and Rt+ are described in detail in the Sensor-Emulator-EVM System Reference Guide (SBOA102) and the PGA309 Users Guide (SBOU024).

Offset and Span:

Generates the bridge output voltages from sensor specifications ("Generate_Sim_Values.xls")

All the areas shown in light blue are either sensor specifications or system requirements. Enter these values and the spreadsheet will generate output voltage settings for each channel on the sensor emulator. The next several pages will show how the voltages listed in the spreadsheet are used to program the Sensor-Emulator-EVM.

		Enter these		В	С	D	E	F	G	H		J
1	Temp	for our		degC								
2	Tmin=	ovomnlo		-45.00		Precalibration Sensor Simulator Settings (LinDac = 0)						
3	Tmax	example		90.00				Cold				
4	Troom	=		22.50		Pressure In	put	0%	50%	100%		
5						Sensor Out	put (mV)	-0.215	5.379	11.939		
6	Vexc (V)		3.400E+00				Ī				
7								Room				
8	Span (V/V)		3.509E-03		Pressure In	put	0%	25%	50%	75%	100%
9	Offset	(V/V)		-2.945E-04		Sensor Out	put (mV)	-1.001	1.626	4.490	7.591	10.929
10												
11								Hot				
12						Pressure In	put	0%	50%	100%		
13	Nonlin	SpanDrift (% of Span)		-5.031E-02		Sensor Out	put (mV)	-1.053	4.887	11.855		
14	Nonlin	OffsetDrift (% of Span)		-3.077E-02								
15	Pressu	ureNonlin (% of Span)		-3.976E-02								
16							T					
17	GainT	C1 (% of Span/C)		4.682E-04								
18	Offset	FC1 (% of Span/C)		-5.205E-04								
19	GainT	CNonlin(TC2) (% of Span/	(C ²)	-1.104E-05								
20	Offset	CNonlin(TC2) (% of Spar	n/C ²)	-6.753E-06		Set Sensor-Emulator-EVM						
21						potentiometers to generate these						
22	2 Note: % of Span is representated as a decimal number			F	Volto	voltagos os detailed in pagos 25.26						
23	3 i.e. OffsetTC1 (% of Span) = 0.1 is 10%				volta	iyes as dei	aneu in pa	ayes so	-30			
24												
25												
26												

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

Each channel on the top section of the sensor emulator represents a applied stimulus and temperature combination for the sensor. Adjust the potentiometers coarse first, then fine, to match the values computed by the *Generate_Sim_Values.xls* spreadsheet for cold (0%. 50%, 100%), room (0%, 25%, 50%, 75%, 100%), and hot (0%, 50%, 100%). For example, the sensor output at cold temperature and 0% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D101 will light to indicate that the correct channel is selected.

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

Bridge Censitivity vs Temp 4.5E-03 4.0E-03 3.5E 03 3.0E 2 5E-03 Kbridge, VN 2.0E-03 ------span 1.5E-03 1.0E-03 5.0E-04 0.0E+00 -5.0E-04 -1.0E-03 -50 0 50 100 150 Temp, degC

This is another example illustrating how a particular channel on the sensor emulator represents an applied stimulus and temperature combination for the sensor. In this example, the sensor output at cold temperature and 100% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D103 will light to indicate that the correct channel is selected.

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

Diode Vo: Generate Diode Voltages based on Operating Temperature Range

The second tab in the *Generate_Sim_Values.xls* spreadsheet allows the user to enter the temperature range and room temperature diode voltage (light blue areas). The spreadsheet calculates the diode voltages and displays the results in the yellow areas. Note that the *Temp ADC* areas are specific to the PGA309 sensor signal conditioning chip. The Temp ADC values will be used in the computation of the *Counts* for the temp ADC. The next several pages will show how the diode voltages are used to program the sensor Sensor-Emulator-EVM.

PGA309 Quick Start System Reference Guide 38

EXAS

RUMENTS

Step 5: Use the PGA309 Calibration Spreadsheet

- Select the calibration algorithm
- Copy the PGA309 registers into the spreadsheet
- Use the Sensor-Emulator-EVM to generate the sensor outputs over temperature.
- Store calibration results into a file. Load this into the PGA309 external EEPROM.
- Measure the post-calibration error. Perform a second calibration to improve accuracy.

For this example, use the PGA309 Calibration Spreadsheet. This tool uses measured data (pressure and temperature) to create a lookup table that the PGA309 will use to compensate for offset and gain drift. The spreadsheet will also generate a coefficient that the PGA309 will use to correct for nonlinearity verses applied pressure. Note: you will need to enable macros and load the analysis toolpack to get this Excel sheet to work properly. Information regarding configuration of Excel is detailed in the PGA309EVM Users' Guide.

8 5 * Cfg	2,OverUnder 00	00_1010_0000_0111	
9 6 * Cfg	3 (ADC) 00	01_0100_0000_1011	When you bring up the spreadsheet, it will
10 7 OutE	nbl Counter 00	00_0000_0000_0000	
11 8 Alarr	nStatus(RO) 00	00_0000_0000_0000	ask you if you want to start the program.
12 Confi	g Checksum 01	10_1111_0100_1010	Proce No because the program should
13			Fless NO, because the program should
14			already be up from Step 2
15 Load Regis	ters from File		
16			13 67D5 0000 0000
17			
18 Load Registe	rs From PGA309		PGA309 DK
19			Welcome to the DCA 200 celibration approach bet
20			velcome to the PGASO9 calibration spreads eet.
21 Prepare Ca	ibration Sheet		Please use the control buttons on the Main worksheet to load and
22			save the PGA309 configuration files and choose the calibration type.
23			This Spreadsheet can obtain the data directly from the PGA309 DK Control Program.
24 Save Registe	rs+l ookun Table		Would you like to start the program?
25	S-Lookup Tuble		If you shall Consider you will not be called a sub time.
26			If you dick Cancel you will not be asked next time.
27 PGA309DK Calib	ration Spreadshe	et	
28 Version 1.2.4			Tes No Cancel
29 © 2004 Texas Ins	truments		
30			
	PGA309 Ca	libration	
	Spreadshee	t, Main Tab 🦯 i	PGA309 Quick Start A
	-		
Jan 2006		Sy	stem Reference Guide
			INSTRUMENTS

1 PGA309 Configuration Registers		PGA309 C	alibrated L	ookup Tab	ole		
2 Reg. Addr Name	Binary value	Position	Тетр	ZM	GM		
3 0 ADC Out(RO) 01	11_1000_0100_1100	0	47E8	70A4	4000		
4 1 ZeroDAC 01	11_0000_1010_0100	1	4A5C	0000	0000		
5 2 GainDAC 010	0000_0000_0000	2	4CD1	0000	0000		
6 3 * Ref&Lin 000	00_0111_0101_1010	3	4F46	0000	0000		Dragaland
7 4 * Gain, Vos, Cfg1 000	01_0111_0000_0000	4	51BB	0000	0000		Press Load
8 5 * Cfg2,OverUnder 000	00_1010_0000_0111	5	542F	0000	0000		rogistors from
9 6 * Cfg3 (ADC) 000	01_0100_0000_1011	6	56A4	0000	0000		registers nom
10 7 OutEnbl Counter 000	0000_0000_0000	7	5919	0000	0000		PGA300 to conv
11 8 AlarmStatus(RO) 000	0000_0000_0000	8	5B8E	0000	0000		7 OA000 to copy
12 Config Checksum 017	10_1111_0100_1010	9	5E02	0000	0000		the registers
13		10	6077	0000	0000		
14		11	62EC	0000	0000		from the
Load Registers from File		12	6560	0000	0000		
10		13	6705	0000	0000		evaluation
12		14	6CRE	0000	0000		first we into the
Load Registers From PGA309		10	6E33	0000	0000		fixture into the
20		ChSum	7FFF	0000	BAE6		aproadabaat
21		onoum		· ·	Di la O		spreausneet.
22 Prepare Calibration Sheet							
23							
24							
25 Save Registers+Lookup Table							
26							
27 PGA309DK Calibration Spreadshe	et						
28 Version 1.2.4							
29 © 2004 Texas Instruments							
30							
31							
32							
PGA309 Calibra	tion						
Spreadsheet M	ain Tab		1	1		1	1
				- rrt			
BUA IU3C		GA309 G	UICK Sta	316			41
an 2006	Svs	stem Refe	rence G	iuide			

Press *Prepare Calibration Sheet* to select the algorithm. In this example, we will do a *3 temperature 3 pressure* calibration.

		▼	🕯 © 2004 "	Texas Instruments			
	A	E		С	D	E	F
1	PGA309 Co	nfiguratio	Register	ſS		PGA309 C	alibrated l
2	Reg. Addr	Name		Binary value		Position	Temp
3	0	ADC Out(lO)	0101_0000_0001_0011		0	4ECB
4	1	ZeroDAC		0001_0100_0000_1111		1	50F3
5	2	GainDAC		1001_1000_0001_1011		2	531A
6	3	* Ref&Lin		0000_0101_0000_0000		3	5541
7	4	* Gain,Vo	s,Cfg1	0011_0111_0000_0000		4	5768
8	5	* Cfg2,Ov	rUnder	0000_0000_0000_0000		5	598F
9	6	* Cfg3 (Al	C)	0001_0100_0000_1011		6	5BB6
10	7	OutEnbl (ounter	0000_0000_0000_0000		7	5DDE
11	8	AlarmSta	us(RO)	0000_0000_0000_0000		8	6005
12		Config Cl	ecksum	0101_1011_1010_1011		9	622C
13						10	6453
14						11	667A
15	Load F	Registers r	om File			12	68A1
16		toglotolo I				13	6AC9
17						14	6CF0
18	Load Re	aisters Fa	m Bench			15	6F17
19						16	713E
20						ChSum	7FFF
21	Prepare	e Calibrati	on Sheet				
22	<u></u>						
23							
24	Save Rec	aisters+Loo	kup Table				
25							
26							

PGA309 Calibration

Please select the calibration algorithm:

One of the following three templates can be used for the pressure sensor calibration

3 Temperatures and 3 Pressures

Select this when you do not know the 2nd order non-linearities of output vs. pressure and of temperature drifts of span and offset. The module output must be measured at three different temperatures with min and fulll-scale pressure applied plus mid-scale pressure at one of the temperatures.

Press **OK** after you have selected 3 Temperature 3 Pressure calibration.

C

pressure applied plus the mid-scale pressure at one of the temperatures.

2 Temperatures and 2 Pressures

All 2nd order coefficients are entered based on pre-characterization, only the positions of curves must be fitted.

The output must be measured at only two temperatures, each with min and full-scale pressure applied.

PGA309 Calibration

Spreadsheet, Main Tab

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

42

X

OK

Cancel

6 Fill out the rype of Temperature Measurement Method you want to use. For this example, we use the diode method. e (during calibration) settings: Control of the Fine Adjust DACs: Control of the Fine Adj	4	Kbridge(P	Na	at the prop			T+ko6*	T^2]							
Image: Second	5	Fill out the hi	ive	kt the prog	fram will a	ask what	o (durin	a aalihratia.							
1 Testarte via 37 Anticast and a straining of the Anjord Angola and a straining of the Anjord Angola and Angola ango	0	Prossure va	type	e of <i>Temp</i>	erature		e (aurin	g calibratio	of the Fine	Adjust DAC	e.		lleor		
Image: Note as unrement in the assurement in the intervent of the intervent o	8	Pressure val			+ Mathad	vouvent	2 500	V		GainDAC1=	4000	hey ==>>	5. 0.5000	VA	Evtr
Insert TempADC reading in active cell Insert TempADC reading in active cell Insert 10 Insert TempADC reading in active cell Insert Insert <td>9</td> <td>Pmax=</td> <td>ivie</td> <td>asuremen</td> <td>tivietnoa</td> <td>you want</td> <td>0.830</td> <td>V/V</td> <td></td> <td>ZeroDAC1=</td> <td>70A4</td> <td>hex ==>></td> <td>1 1000</td> <td>V</td> <td>Extr</td>	9	Pmax=	ivie	asuremen	tivietnoa	you want	0.830	V/V		ZeroDAC1=	70A4	hex ==>>	1 1000	V	Extr
11 Temp range Truin= 10 00	10	- mux	tοι	ise. For th	is exampl	e, we use	128	V/V		201007101	10/14	100, 22	1.1000	•	EAth
12 Tmin= The Cloce Method. 00E+00 V 13 Tmax= 20 Vexc= 2.075 V, with LinDAC=0 14 Troom= 22.5 Vexc= 2.075 V, with LinDAC=0 15 Insert TempADC reading in active cell Insert V Choose Temperature Measurement Method 16 Insert TempADC Readinge Temperature Measurement Method Insert V Use Internal, or Diode Temperature Measurement 16 Insert TempADC Readinge Temperature Measurement with Quadratic fit Use Rt Temperature Measurement with Quadratic fit I.0E-02 17 Measured Data (assuming the sensor directly): 20 24744 decimal Use Rt Temperature measurement with 1/(aT^2 + bT + c) fit I.0E-02 20 Tempa Pressure VoutMeas RTI Kpr v 0k 8.0E-03 21 22 0 5.00E-01 2.57E-03 0.0E-03 4.0E-03 22 40 0 5.00E-01 2.57E-03 0.0E+00 9.98E-03 0.0E+00 -50 23 40 0 5.00E-01 2.57E-03 0.0E+00 -50 -2.0E-03 -2.0E-03 -2.0E-03 -2.0E-03 -2.0E-03 -2.0E-03	11	Temp range					2.4	V/V							
13 Tmax= 30 14 Troom= 22.5 15 Vexc= 2.075 V, with LinDAC=0 16 Insert TempADC reading in active cell Insert V 16 Insert TempADC reading in active cell Insert V 17 Measurement Temperatures: TempADC Reading Tempas 19 Tmeas3 (cold)= 20 20 24744 decimal 20 24744 decimal 20 24744 decimal 20 24744 decimal 20 20498 decimal 20 24744 decimal 20 Tmeas3 (cold)= 40 21 Use Rt Temperature Measurement with 1/(aT^2 + bT + c) fit 1.0E-02 23 Measurement Conditions Measured Data (assuming the sensor directly): 0k 25 20 0 5.00E-01 -2.57E-03 26 20 5.00E-01 -2.57E-03 2.0E-03 27 20 100 4.0E-03 2.0E-03 29 85 0 5.00E-01 -2.57E-03 0.0E+00	12	Tmin=	the	diode me	thod.		.00E+00	V							
14 Troom= 22.5 Vexc= 2.075 V, with LinDAC=0 15 Insert TempADC reading in active cell Insert V Insert V Insert V 16 Insert TempADC reading in active cell Insert V Insert V Insert V 17 Measurement Temperatures: TempADC Reading Tmeas TempADC Reading Tmeas 1.4E-02 18 Tmeas1 (room)= 20 24744 decimal Use Rt Tempature Measurement with Quadratic fit 1.2E-02 19 Tmeas2 (hot)= 85 20498 decimal Use Rt Tempature Measurement with 1/(aT^2 + bT + c) fit 1.0E-02 21 Measurement Conditions Measured Data (assuming the sensor directly): Use Rt Temperature measurement with 1/(aT^2 + bT + c) fit 1.0E-02 24 Temp Pressure VoutMeas RTI Korg v 0k 4.0E-03 26 20 50 2.50E+00 3.70E-03 100 2.0E-03 2.0E-03 28 0 5.00E-01 -2.57E-03 0.0E+00 9.98E-03 0.0E+00 50 29 85 100 4.50E+00 9.98E-03 0.0E+00 50 -2.0E-03 50	13	Tmax=		30											
15 Choose Temperature Measurement Method 16 Insert TempADC reading in active cell Insert V 17 Measurement Temperatures: TempADC Reading Temes 18 Timeas1 (norm)= 20 20 24744 decimal 19 Timeas2 (hot)= 85 20 24744 decimal 21 Use Rt Tempature Measurement with Quadratic fit 21 Use Rt Tempature measurement with 1/(aT^2 + bT + c) fit 22 Measured Data (assuming the sensor directly): 23 Measured Conditions 24 Temp 20 5.00E-01 2.57E-03 0 27 20 100 4.0E-03 28 0 29 85 0 30 85 100 31 0 0.0E+00 32 4.0 0 33 -4.0 1.00 33 -4.0 1.00 34 0 0.0E+00	14	Troom=		22.5		Vexc=	2.075	V, with LinD	AC=0						
Insert TempADC reading in active cell Insert V 16 Insert TempADC Reading Image 17 Measurement Temperatures: TempADC Reading Image 19 Tmeas2 (hot)= 85 20 Tmeas3 (cold)= 40 21 Use Rt Temperature Measurement with Quadratic fit 1.2E-02 21 Use Rt Temperature measurement with 1/(aT^2 + bT + c) fit 1.0E-02 23 Measurement Conditions Measured Data RTISpan, V 24 Temp Pressure VoutMeas RTI Kbrg.w 25 20 0 5.00E-01 -2.57E-03 28 0 5.00E-01 -2.57E-03 0.0E+00 29 85 0 5.00E-01 -2.57E-03 0.0E+00 31 0 0.0E+00 9.98E-03 0.0E+00 -50 33 -40 0 5.00E-01 -2.57E-03 -50 -50 33 -40 0 9.98E-03 0.0E+00 -50 -50 33 -40 100 -50Fe-03	15					Cho	ose Temne	rature Measi	irement Me	thod					
Insert TempADC reading in active cell Insert V 16						CIIO	ose tempe	atare meas	in enneme me	inod					
16		Insert TempA	ADC read	ding in active cell		Insert V									
17 Measurement Temperatures: TempADC Reading Temes 18 Timeas1 (room)= 20 24744 decimal C Use Rt Tempature Measurement with Quadratic fit 1.2E-02 19 Timeas3 (cold)= 40 28668 Use Rt Temperature measurement with 1/(aT^2 + bT + c) fit 1.0E-02 21 Use Rt Temperature measurement with 1/(aT^2 + bT + c) fit 0k 8.0E-03 23 Measurement Conditions Measured Data RTISpan, V 0k 24 Temp Pressure VoutMeas RTI Kbrg,w 25 20 0 5.00E-01 -2.57E-03 6.0E-03 28 0 5.00E-01 -2.57E-03 4.0E-03 4.0E-03 29 85 0 5.00E-01 -2.57E-03 0.0E+00 9.98E-03 31	16							al or Diode Tem	perature Meas	urement			1.4E-02	1	
18 Tmeas1 (room)= 20 24744 decimal	17	Measurement	Temper	atures:	TempADC Read	ling@Tmeas	ose intern	al, of Diode Tell	perature meas	urement					
19 Tmeas2 (not)= 85 20498 decimal Ose RT rempade Pressure 1.0E-02 20 Tmeas3 (cold)= -40 28668 21	18	Tmeas1 (room	n)=	20	24744	decimal	C Lice Dt Ten	nature Measure	ment with Ou:	dratic fit			1.2E-02		
20 Imeas3 (cold)= 40 28668 21	19	Tmeas2 (hot)=	=	85	20498	decimal '	USE KUTER	ipatule Measure	anierit wiur Qua	uraue ne					
21 Construction Measured Data RTISpan, V Ok 8.0E-03 23 Measurement Conditions Measured Data RTISpan, V 0k 6.0E-03 8.0E-03 24 Temp Pressure VoutMeas RTI Kbrg,vi 0k 6.0E-03 8.0E-03 26 20 50 2.50E+00 3.70E-03 0 4.0E-03 4.0E-03 27 20 100 4.50E+00 9.98E-03 100 0 4.0E-03 28 0 5.00E-01 -2.57E-03 0.0E+00 9.98E-03 0.0E+00 30 85 100 4.50E+00 9.98E-03 0.0E+00 9.98E-03 31	20	Tmeas3 (cold))=	-40	28668			poraturo moad	rement with 1	(-TA2 + bT + c)	6+		1.0E-02	-	
22 Measured Data (assuming the sensor directly): 0k 8.0E-03 23 Measurement Conditions Measured Data RTISpan, V 0k 8.0E-03 24 Temp Pressure VoutMeas RTI Kbrg,v 0k 6.0E-03 26 20 50 2.50E+00 3.70E-03 0 6.0E-03 26 20 50 2.50E+00 3.70E-03 0 4.0E-03 28 0 5.00E-01 -2.57E-03 0 4.0E-03 29 85 0 5.00E-01 -2.57E-03 0.0E+00 31 0 4.50E+00 9.98E-03 0.0E+00 0.0E+00 32 -40 0 5.00E-01 -2.57E-03 0.0E+00 -50 33 -40 100 4.50E+00 9.98E-03 0.0E+00 -50 34 Comparison Temp Gain Error: 1 PGA Min Output Room -2.0E-03 -2.0E-03	21	Manager d Dat	- /				Use Kt Ten	iperature measi	Irement with I	(a1 2 + D1 + C)		×0			
23 Inteastrement condutors Inteastree Data RTI Kbrg,vi 24 Temp Pressure VoutMeas RTI Kbrg,vi 25 20 0 5.00E-01 -2.57E-03 26 20 50 2.50E+00 3.70E-03 6.0E-03 27 20 100 4.50E+00 9.98E-03 100 4.0E-03 28	22	Measured Dat	a (assur	ning the sensor a	rectly): Measured Data	DTISpap V				1		S S	8.0E-03		
24 remp rressure volumeas RrrRdg,M 25 20 0 5.00E-01 -2.57E-03 26 20 50 2.50E+00 3.70E-03 4.0E-03 27 20 100 4.50E+00 9.98E-03 100 4.0E-03 28	23	Tomp	rement	Drossuro	VoutMoas	DTI Khra v			Ok				0.02.00		
25 20 0 3.00E-01 -2.37E-03 26 20 50 2.50E+00 3.70E-03 4.0E-03 27 20 100 4.50E+00 9.98E-03 100 4.0E-03 28 - - - - - - 4.0E-03 29 85 0 5.00E-01 -2.57E-03 - - - - - 30 85 100 4.50E+00 9.98E-03 - - - 0.0E+00 - - 31 - 0.0E+00 - 0.0E+00 - - - - - - - - - -	24	20		n	5 00F 01	-2 57E-03						ğ	6 0E-03		
27 20 100 4.0E-03 4.0E-03 28	26	20		50	2.50E+00	3 70E-03						<u>i</u>	0.02-00		
28	27	20		100	4.50E+00	9.98E-03	100					2	1 OF 02		
29 85 0 5.00E-01 -2.57E-03	28											ō	4.0E-03		
30 85 100 4.50E+00 9.98E-03	29	85		0	5.00E-01	-2.57E-03						5	2 05 02		
31 32 -40 0 5.00E-01 -2.57E-03 33 -40 100 4.50E+00 9.98E-03 34	30	85		100	4.50E+00	9.98E-03						é	2.0E-03		
32 -40 0 5.00E-01 -2.57E-03 -2.57E-03 33 -40 100 4.50E+00 9.98E-03 -50 34	31											dg	0.05.00		
33 -40 100 4.50E+00 9.98E-03 ¥ -50 34	32	-40		0	5.00E-01	-2.57E-03						pri P	0.0E+00		
34 Room Temp Gain Error: 1 PGA Min Output Room -2.0E-03	33	-40		100	4.50E+00	9.98E-03						×		-50	
	34					Room Temp Gain E	Error:	1	PGA_Min_	Output_Room			-2.0E-03		
35 PGA309 Calibration Temp Cor Gain Dac: 1 PGA_Max_Output_Room	35		/	PGA309	Calibration	Temp Cor G	ain Dac:	1	PGA Max	Output_Room					
(Spreadsheet, Sensor)	36	1	(Spreadsh	eet, Sensor) PLR I Khrai	Pin min1:	-0.0053386	Gam 14(° (orrection.	1		4 OE 02		
CDCA102C Curvefit Tab DCA200 Quick Stort 12				Curve	efit Tab				1		1			40	
SBUATUSU PGASUS QUICK START V TEXAS 43		2BOA10	030			- PGA	309 QU	ICK Star			TFY	AS		43	
Jan 2006 System Reference Guide INSTRUMENTS		Jan 200	6			System	Refere	ence Gui	de	IN	STRIM	MENT	2		

-45 90 20	When calibra this b Press	the ter ation al ox will p OK .		Z	eroDAC1=	A3D	hex,	==>>	0.1638			
										-		
e cell		Insert \	/out_reading	in act	ive cell							
		F	GA309 Ca	ibrati	on							4.0E-03
	TempADC Rea	ding@Tme	The workshe	et temp	late has been o	nied						
20	24744 20498	decimal	Please enter	the dat	ta in the colored	fields on t	the Ser	nsor Curvefit v	vorksheet,		-	3.5E-03
-40	28668	decimal	verify that the Calibration R	ne resul esults s	ting sensor ourv heet to finish ye	es are res eating the	onable	and go to the table				
						y					XC	3.0E-03
nsor di	rectly):					o <mark>k</mark>					No.	
	Measured Data	RTISpan,									e	2.5E-03
re	VoutMeas	RTI Kbrg,v	V Pres	sure	VoutMeas						dg	
	5.00E-01	5.88E-05		0							bri	2.0E-03
	2.50E+00	1.80E-03	3								2	
	4.50E+00	3.54E-03		100							0	1 55 00
	5.00E-01	5.88E-05	5								Š	1.5E-03

5												
6	Fill out the highlighted	l cells		PGA309 non-var	riable (durin	g calibration) settings:					
7	Pressure values:							Initial settings	s of the Fine	Adjust DAC	Cs:	
8	Pmin=	0		Vref=	4.096	V		GainDAC1=	9762	hex, ==>>	0.7276	V/V
9	Pmax=	100		Kexc=	0.830	V/V		ZeroDAC1=	13F0	hex, ==>>	0.3190	V
10				FrontEnd PGA=	128	V/V						
11	Temp range:			Output Amp=	3.6	V/V						
12	Tmin=	-45		Coarse Offset=	0.00E+00	V						
13	Tmax=	90										
14	Troom=	22.5		Vexc=	3.400	V, with LinD/	AC=0					
15												
16 Insert TempADC reading in active cell Insert Vout reading in active cell 4.0E-03												
17	Measurement Temper	atures:	TempADC Rea	ding@Tmeas								
18	Tmeas1 (room)=	20	24744	decimal	: @ this Tem	np 3 pressure	levels are a	applied			3 5E-03	
19	Tmeas2 (hot)=	85	20498	decimal							0.02-00	
20	Tmeas3 (cold)=	-40	28668									
21						🗌 \//h	on th	$ \frown I \cap a $	d roa	ictorc	fron	า
22	Measured Data (assur	ming the sensor di	rectly):		Post First Ca	al VVII		C LUU	urcyi	31013		'
23	Measurement (Conditions	Measured Data	RTISpan, V/V			1200	hutto	n on f	ho M	lain	
24	Temp	Pressure	VoutMeas	RTI Kbrg,v/v	Pressure		7009				alli	
25	20	0	5.00E-01	-2.94E-04	0	- oho	ot we		d	tha		
26	20	50	2.50E+00	1.46E-03				as pies	55eu,	uie		
27	20	100	4.50E+00	3.22E-03	100		^ ^ ^ ^		La		! -	
28						PG/	4309	regisi	iers w	vere (copie	a
29	85	0	5.00E-01	-2.94E-04		L • .		<u> </u>	6 (1		•	
30	85	100	4.50E+00	3.22E-03		🔲 into	this	sectio	n of ti	ne Se	enso	r
31												
32	-40	0	5.00E-01	-2.94E-04		📙 Cur	vefit	sheel				
33	-40	100	4.50E+00	3.22E-03					••			
34				Room Temp Gain	n Error:	1	PGA_Min_	Output_Room			0.0E+00	
35				Room Temp Cor	Gain Dac:	1	PGA_Max	_Output_Room			-	50
36				Post Cal RTI Kbr	g(Pin_min):	-0.0010008	GainDAC (Correction:	1		-5.0E-04	
37				Post Cal RTI Kbr	g(Pin_max):	0.01093026	ZeroDAC C	Correction:	0			
38	Set Press PC	A309 Calib	ration									
39	Matriv ¹ SDI	readsheet. S	Sensor)	Recult/Jecto	r1		Solution (coe	fe vale):			
)A	103C	Curvent 1a		PGA3	309 Qui	ck Start				-		
~~				Curcharra	Deferre		مام	-	II Y	EXAS		
an 2006 System Reference Guide INSTRI IMENT								NTS				
	INSIRUMENTS											

	A		В	C	L)	E	F	G	H		
3	Uses 2nd-order (o	quadr	rature) equations for	or pressure non-	inearity ar	nd temp (drifts of offset	and span				
4	Kbridge(P,T):	=ko	0+ko1*T+ko2*	T^2+(ko3*p+	ko4*p^2	?)* <mark>[1+k</mark>	o5*T+ko6*	T^2]				
5								• 4				
6	Fill out the highlig	hted	cells		PGA309	n Ir	ne appr	opriate	values	s need t	o be	
7	Pressure values	:					storod r	nonuall	v for th	o tomo	oroturc	`
8	Pmin=		0		Vref=	e	ilered i	nanuan	y ioi ti	ie temp	erature	;
9	Pmax=		100		Kexc=	l ra	nge T	his is th	e ranc	e that t	he curv	ve fit
10					FrontEnd		inge. i					
11	Temp range:				Output A	is 🗠	done o	ver. Er	nter the	e values	s show	n for
12	Tmin=		-45		Coarse (Dff:						
13	Tmax=		90			0	ır exam	ipie.				
14	Troom=		27		Vexc=			-				
15]							
					-1							
	Insert TempADC	read	ding in active cell		Ins	ert Vout	reading in act	tive cell				
16												
17	Measurement Te		auues	TempADC Rea	ding@Tn	neas						
18	Tmeas1=		22 5	1983	decimal		• @ this Terr	n 3 pressure	levels are a	pplied		
19	Tmeas2=		90	1552	decimal		. G					
20	Tmeas3=		-45	9416								
21						The	e appro	oriate v	alues r	need to	be	
22	Measured Data (a	assur	ming the sensor di	rectly):								
23	Measurem	ent (Conditions	Measured Data	RTISp.	ente	ered ma	anually	for the	measu	remen	t 📘
24	Temp		Pressure	VoutMeas	RTI K	10.000	no rotuu	raa Th	~ ~ ~ ~		-	
25	22.5		0	3.55E-01	-2.89	len	iperatui	es. In	e mea	sureme	nt	
26	22.5		50	2.19E+00	1.32	tom	noratu	are are	tha tar	nnaratu	iros the	t
27	22.5		100	4.33E+00	3.20	ten	iperatu	c 5 arc		nperatu		
28						the	calibra	tion me	asurer	nents a	re mac	le
29	90		0	3.38E-01	-3.04							
30	90		100	4.64E+00	3.47	at.						
31							1		1			
32	-45		0	6.19E-01	-5.73	E-05						
33	-45		100	4.67E+00	3.49	E-03						
34					Room Te	emp Gair	Error	1				
35		_			Room Te	emp Cor	Gain Dac:	1				
36	/		GA300 Calibra	tion	Post Cal	RTI Khr	a(Pin min)	-0.0009647	GainDAC C	orrection.	1	
37					Post Cal	RTI Khr	g(Pin_max)	0.00912834	ZeroDAC C	orrection:		
01	<u> </u>	Sp	breadsneet, Se	nsor	1 001 04		strin_max).	0.00012004		erroouon.		
SF	30A103C 📉		Curvefit Tab		PGA3	09 Qu	ick Start		, Liz ,	Tarre		46
10	2006					Doforo			, V	IEXAS		
Ja				5	ystemr	veiele	Gulu		INST	RUMEN	ITS	

After the calibration measurements are complete look at the graphs located on the sensor Curvefit sheet. These graphs are an easy way to check for gross problems. The graphs shown are indicative of typical results for example.

PGA309 Calibration Spreadsheet, Sensor

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

Enter the output voltage scale, the number of points in the table, and the look up table temperature range. For our example, enter the values shown.

Jan 2006

Note about the temperature ranges

Range1: This is the range of the mathematical model of the sensor that is developed by the spreadsheet.

Range3: This is the range of measurements made during calibration. This range must be a subset of Range1. It is OK for range 1 and range 3 to be equivalent.

> PGA309 Calibration Spreadsheet, Sensor Curvefit Tab

Range2: This is the range that the look up table is developed over. This range must be a subset of Range1. It is ok for Range2 and Range3 to be equivalent. This range over which the calibrated sensor will correct for temperature drift.

PGA309 Quick Start System Reference Guide

PGA

Press the Save Registers + Lookup Table button. This will store the lookup table into a file that can be loaded into the fx © 2 -B А PGA309 EEPROM. PGA309 Configuration Reg 1 2 Reg. Addr Name 4ECB 0101 0000 0001 0011 3 0 ADC Out(RO) 0 12F6 B10C 4 1 ZeroDAC 0001 0100 0000 1111 1 50F3 0014 01EE 5 2 GainDAC 1001 1000 0001 1011 2 531A 000B 01CB 6 3 * Ref&Lin 0000 0101 0000 0000 3 01A4 5541 0001 7 4 * Gain, Vos, Cfg1 0011 0111 0000 0000 4 017B 5768 FFF8 8 5 * Cfg2, OverUnder 0000 0000 0000 0000 5 598F 014E FFEF 0001 0100 0000 1011 6 * Cfg3 (ADC) 9 6 5BB6 FFE6 0120 0000 0000 0000 0000 10 7 OutEnbl Counter 5DDE FFDD 00EE 7 0000 0000 0000 0000 11 8 AlarmStatus(RO) 8 6005 FFD4 00BB 12 Config Checksum 0101 1011 1010 1011 9 622C FFCA 0086 6453 FFC1 0050 13 10 14 11 667A FFB8 001A 15 12 68A1 FFAF FFE3 Load Registers from File 16 13 6AC9 FFA6 FFAC **FF77** 17 14 6CF0 FF9D 18 **FF94** FF42 15 6F17 Load Registers From Bench 19 FF8A 16 713E FF0F 20 ChSum 7FFF 0 5586 21 Prepare Calibration Sheet 22 23 24 Save Registers+Lookup Table 25 26 PGA309 Calibration Spreadsheet, Main Tab SBOA103C

Jan 2006

⁷ PGA309 Quick Start System Reference Guide

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

The *PGA309 Error* tab on the *generate_sim_values.xls* is a convenient way to do a post calibration error analysis. To use it select the blue cell corresponding to the current setup, and press the *Insert Vout reading in active cell* button. This will insert the PGA309 output reading from the ADS1100.

The initial post calibration results will typically have errors ranging from 0.1% to 0.3%.

SBOA103C Jan 2006

-						
6						
7	Insert V	out reading	in active cell			
8						
9	Post First	Calibrati	on Results	3		
10	Temperature	Pressure	Ideal Result	Measured Result	Error	
11	cold	0%	0.5	0.49684	0.03	
12	cold	50%	2.5	2.50072	0.02	
13	cold	100%	4.5	4.5049	0.12	
14	Room	0%	0.5	0.4982	-0.05	
15	Room	25%	1.5	1.49445	-0.14	
16	Room	50%	2.5	2.50087	0.02	
17	Room	75%	3.5	3.50835	0.21	
18	Room	100%	4.5	4.50687	0.17	
19	Hot	0%	0.5	0.49941	-0.01	
20	Hot	50%	2.5	2.50229	0.06	
21	Hot	100%	4.5	4.50748	0.19	
22						
23				stdev=	0.11	
24				average=	0.06	
25						
26						
27						
28						
29	Insert V	out reading	in active cell			
30		-	1			
31	Post Seco	nd Calib	ration Res	ults		
32	Temperature	Pressure	Ideal Result	Measured Result	Error	
33	cold	0%	0.5	0.49886	-0.03	
34	cold	50%	2.5	2.49859	-0.04	
35	cold	100%	4.5	4.49859	-0.04	
36	Room	0%	0.5	0.49959	-0.01	
37	Room	25%	1.5	1.49445	-0.14	
38	Room	50%	2.5	2.49905	-0.02	
39	Room	75%	3.5	3.5044	0.11	
10	Room	100%	4.5	4.50111	0.03	
11	Hot	0%	0.5	0.50026	0.01	
12	Hot	50%	2.5	2.50026	0.01	
13	Hot	100%	4.5	4.50096	0.02	
14						
15				stdev=	0.06	
16				average=	-0.01	
			1	~		

PGA309 Quick Start System Reference Guide

After making the secondary calibration measurements, store the calibration results into a file and load them into the PGA309 as with the first calibration. The file for this example calibration is saved on the PGA309 Quick Start **Disk** and is called quick start second.txt. Your results should be similar to this file.

14

15

16

17

18

19

20

21

22

23

24

25

The secondary calibration can be done to significantly reduce the error. Postsecondary calibration errors are typically on the order of 0.05%. The secondary calibration involves making two measurements at room temperature.

generate_sim_values.xls, PGA309 Error Tab

SBOA103C Jan 2006

6					
7	Insert V	out reading	in active cell		
8					
9	Post First	Calibrati	on Results	3	
10	Temperature	Pressure	Ideal Result	Measured Result	Error
11	cold	0%	0.5	0.49684	0.03
12	cold	50%	2.5	2.50072	0.02
13	cold	100%	4.5	4.5049	0.12
14	Room	0%	0.5	0.4982	-0.05
15	Room	25%	1.5	1.49445	-0.14
16	Room	50%	2.5	2.50087	0.02
17	Room	75%	3.5	3.50835	0.21
18	Room	100%	4.5	4.50687	0.17
19	Hot	0%	0.5	0.49941	-0.01
20	Hot	50%	2.5	2.50229	0.06
21	Hot	100%	4.5	4.50748	0.19
22					
23				stdev=	0.11
24				average=	0.06
25					
26					
27					
28					
29	Insert V	out reading	in active cell		
30					
31	Post Seco	nd Calib	ration Res	ults	
32	Temperature	Pressure	Ideal Result	Measured Result	Error
33	cold	0%	0.5	0.49886	-0.03
34	cold	50%	2.5	2.49859	-0.04
35	cold	100%	4.5	4.49859	-0.04
30	Room	0%	0.5	0.49959	-0.01
37	Room	25%	1.5	1.49445	-0.14
38	Room	50%	2.5	2.49905	-0.02
39	Room	75%	3.5	3.5044	0.11
40	Room	100%	4.5	4.50111	0.03
41	Hot	0%	0.5	0.50026	0.01
42	Hot	50%	2.5	2.50026	0.01
43	Hot	100%	4.5	4.50096	0.02
44					
45				stdev=	0.06
46				average=	-0.01
47				_	

PGA309 Quick Start System Reference Guide

PGA309 Ratiometric Calibration Example

This example walks through the PGA309 ratiometric calibration technique. The PGA309 Absolute Calibration example is a more detailed description of a calibration, and so, it is recommended that you review this example first. This document describes the key elements that are required in a ratiometric calibration, but does not fully explain how to use the PGA309 Gain Calculator, Sensor-Emulator-EVM, or the Designers Kit Control Program.

For information on these development tools, please see the PGA309 Product Folder on the TI website, at <u>www.ti.com</u>.

PGA309 Ratiometric Example

This is the hardware configuration that this ratiometric calibration example details. In this example, the Sensor-Emulator-EVM is used to emulate the bridge sensor and the Diode. Note that the device power supply is used to provide excitation for the sensor. So for this configuration, the Vexc pin on the PGA309 is not used and consequently, the PGA309 cannot correct for nonlinearity verses applied stimulus. Temperature nonlinearities of span and offset will still be corrected.

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

This diagram illustrates PGA309EVM jumper settings for a ratiometric system. Sensor-Emulator-EVM connections and power connections are also shown.

Required Electrical Connections to Sensor-Emulator-EVM

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

Sensor-Emulator-EVM Jumper Setup

INSTRUMENTS

The PGA309 Calculator can be used to compute the gain and offset settings for the PGA309. These are the values used for this ratiometric example configuration.

😻 PGA309 Calculator Rev. 1.4.1	
Reference Select Enable Internal Vref Ref Val: 5	Sensor Output Normalized Sensor Data Offset in V/V Span in V/V 3.500m
Bridge Excitation Enable Vexc External Vbridge: 5	C Measured Sensor Data Offset in V -1.450m Full Scale Output in V 16.050m
Bridge Resistance Rbridge 1.000K Rt Rt+ 0 Rt Rt+ 0 Rt- 0 Desired PGA Output Swing PGA Zero Scale 0.5	Vsa (PGA analog supply) 5 Calculated PGA Settings Coarse Offset (mV) 0.000 Front End PGA (V/V) 128 Zero DAC (V) 465.600m
Output JAC PGA Full Scale 4.5 Output Set Add Compute Set Add Constants Construction	Gain DAC (V/V) 744.048m Output Amp Gain (V/V) 2.4 Itional aints Simulate Device

PGA309 Quick Start System Reference Guide

In the ratiometric configuration, the power supply (Vs) is being used as the reference. Thus, it is very important that the supply is measured during calibration.

Configure the initial settings of the PGA309

Step A

During calibration, the PGA309 Test Pin High must be checked to prevent the PGA309 from reading the EEPROM during calibration.

0010

0011

Board Communcation Idle

* Ref&Lin

Step B

The gain and offset values computed by the calculator need to be written into the PGA309 using the PGA309 Designer's Kit Control Program.

Step C

The value measured for Vs must be typed in here. After all the values are entered, press Write PGA309.

PGA309 Quick Start System Reference Guide

Set up the PGA309 Temperature ADC

Configure the Temp ADC as shown and click **OK**. From the main window, press *Write PGA309*.

The configuration shown was selected for this example (diode measurement using the built-in 2.048V reference). It is important to use the built in ADC reference because the diode measurement is absolute and all the other references are relative to the power supply for this configuration. The sensor specifications are entered here. The definitions of the different parameters is described earlier in this document. The sensor's raw output is computed and displayed here. These values are used to setup the sensor emulator. The sensor emulator EVM will need to be adjusted to these levels.

		•••••	•	<u> </u>				U U					
1	Temp range:	degC											
2	Tmin=	-40.00			Precalibrati	ion Sensor Si	mulator Sett	ings (LinD	ac = 0)				
3	Tmax=	85.00	:		Cold								
4	Troom=	22.50	:		Pressure Input 0% 50% 100%								
5			:	Sensor Output (mV) -0.362 8.595 17.552									
6	Vexc (V)	5.000E+00											
7	Enter these for our		<u> </u>				Room						
8		3.509E-03			Pressure In	put	0%	25%	50%	75%	100%		
9	example.	-2.945E-04	: \		Sensor Out	put (mV)	-1.473	2.914	7.300	11.686	16.07		
1.			: \										
11							Hot						
12					Pressure In	put	0%	50%	100%				
13	NonlinSpanDrift (% of Span)	-5.031E-02			Sensor Out	put (mV)	-1.503	7.967	17.438				
14	NonlinOffsetDrift (% of Span)	-3.077E-02		<u> </u>									
15	5 PressureNonlin (% of Span) 0.000E+00 Note that Vexc - Vs for												
16	Note that vexc = vs for												
17	GainTC1 (% of Span/C)	4.682E-04		ratio	ometric.								
18	OffsetTC1 (% of Span/C)	-5.205E-04				P							
19	GainTCNonlin(TC2) (% of Span/C ²)	-1.288E-05											
20	OffsetTCNonlin(TC2) (% of Span/C ²)	-7.877E-06		Not	e that P	ressure l	Nonlin is	s zero.	The se	ensor			
21				mu	st ha lind	or for thi	c configu	irotion	haaau	co tho			
22	Note: % of Span is representated as a	decimal numb	per	mu			s connge	JIation	Decau				
23	i.e. OffsetTC1 (% of Span) = 0.1 is 10%	6		sen	sor exci	tation is t	he powe	r supp	ly and a	so the 📋			
24				non	linoarity	corroctio	n n circuit	canno	tha ue	od 📕			
25	25 Rev B, Dec 10, 2004 Hornin earity correction circuit cannot be used.												
20	generate_sim_values.xls,												
	SBOA103C Offset and Span Tab PGA309 Quick Start												
				r GA				- 4 13 -	F EVAC	C	53		
	Jan 2006		S	ystem	Reference	ce Guide		V INCT	IEXAS				
								INST	KUME	NIS			

For this ratiometric example adjust the potentiometer on the Sensor-Emulator-EVM to the bridge section to produce the respective voltages shown. Each channel on the top section of the sensor emulator represents a applied stimulus and temperature combination for the sensor. Adjust the potentiometers coarse first, then fine, to match the values computed by the **Generate_Sim_Values.xls** spreadsheet for cold (0%. 50%, 100%), room (0%, 25%, 50%, 75%, 100%), and hot (0%, 50%, 100%). For example, the sensor output at cold temperature and 0% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D101 will light to indicate that the correct channel is selected.

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

¢₽₫

	Α	В	С	D	E		F		Each channel on the bottom section of the Sensor-
10									Emulator-EVM represents the output of the
11	Temp range:	degC		Temp(degC)	Diode Vbe	(V)	Counts		emulated temperature sensor. Using the Temp
12	Tmin=	-40.00		-40.00	0.	.745	23840		DVM adjust the respective potentiometers, coarse
13	Troom=	22.50		22.50		0.62	19840		first the fine to match the values computed by the
14	Tmax=	85.00		85.00	0.	.495	15840		Compared a Sime Values was arread about for
15									Generate_Sim_values.xis spreadsneet for
16	Diode	Volts							Diode/Cold, Diode/Room, and Diode/Hot. For this
17	Room Temp Vbe=	0.62							example, the temperature output signal at cold
18									temperature (-45°C) is emulated by this channel.
19	Temp ADC		+				-N _ M	-4	The rotary switch S2 is used to select this channel
20	Vref (in V) =	2.048			÷128	Ŷ		× ₩ 8 ¥	• When the channel is selected 1 ED D201 will light
21	Numb Bits	15	bits (sign bit	not included	- 5 -	Ωr		in S	to indicate that the correct channel is selected
22	Gain=	2	, ŭ			20			
23					S S .	1		•	
24						• R20	R40	• 800	Note when emulating Diada
05			i	1	t <u>e</u>		• • • •	•	to the protocol the Dt
22 23 24	Gain=				Ine Coarse	• • •	303 R302	• 803 B602	Note when emula

This is the Diode Vo tab on the Generate_Sim_Values.xls spreadsheet.

It is used to compute diode voltages that are used to set up the Sensor-Emulator-EVM.

For this ratiometric example, adjust the potentiometer on the Sensor-Emulator-EVM to the diode temperature section to product the respective counts shown for temperature.

this channel. ct this channel. D201 will light s selected.

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

72
For this ratiometric example, use the *PGA309 Calibration Spreadsheet*. This tool uses measured data (pressure and temperature) to create a lookup table that the PGA309 will use to compensate for offset and gain drift. The spreadsheet will also generate a coefficient that the PGA309 will use to correct for nonlinearity verses applied pressure. Note: you will need to enable macros and load the analysis toolpack to get this Excel sheet to work properly. Information regarding configuration of Excel is detailed in the *PGA309EVM Users Guide*.

	- Horden						0.01					
7	4 * Gain,Vos,Cfg1	0011_0111_0000_0000		4	4510	FFF2	0197	Duran Land				
8	5 * Cfg2,OverUnder	0000_0000_0000_0000		5	472B	FFE9	016A	Press Load				
9	6 * Cfg3 (ADC)	0001_0100_0000_1011		6	4947	FFDF	013B	ragistars from				
10	7 OutEnbl Counter	0000_0000_0000_0000		7	4B63	FFD6	0109	registers nom				
11	8 AlarmStatus(RO)	0000_0000_0000_0000		8	4D7F	FFCD	00D5	PGA309 to conv				
12	Config Checksum	0101_1011_1010_1011		9	4F9B	FFC4	0005					
13				10	51B7	FEDA	0068	the registers				
14				11	5303	FFB1	0030	from the				
15	Load Registers from File			12	55EF	FFA8	FFF8	nom the				
16				13	580A	FF9E	FFC0	evaluation				
1/				14	5A26	FF95	FF88					
18	Load Registers From PGA3	09		15	5042	FF8C	FF52	fixture into the				
19				16	5555	FF83	FFID					
20				ChSum	IFFF	0	OEEU	spreadsneet.				
21	Prepare Calibration Shee	t										
22												
23												
24	Save Registers+Lookup Tal	ole										
26												
27	PGA309DK Calibration Spread	sheet										
28	Version 1.1.0											
29	© 2004 Texas											
30	PGA309 C	Calibration										
	Spreadshee	et, Main Tab										
SB	SBOA103C PGA309 Quick Start 5-											
lan	2006	Svete		forence	Guido			FYAS				
Jal	an 2000 System Reference Guide TIEAAS											

Press *Prepare Calibration Sheet* to select the algorithm. In this example, we will do a *3 pressure 3 temperature* calibration.

		• 1	🕯 © 2004 "	Texas	Instrun	nents				
	Α				(0		D	E	F
1	PGA309 Co	nfiguratio	Register	S					PGA309 C	alibrated I
2	Reg. Addr	Name			Binary	value	9		Position	Тетр
3	0	ADC Out(RO)	0101	_0000_	0001_	0011		0	4ECB
4	1	ZeroDAC		0001	0100_	0000_	1111		1	50F3
5	2	GainDAC		1001	1000_	0001_	1011		2	531A
6	3	* Ref&Lin		0000	_0101_	0000_	0000		3	5541
7	4	* Gain,Vo	s,Cfg1	0011	_0111_	0000_	0000		4	5768
8	5	* Cfg2,Ov	rUnder	0000	_0000_	0000_	0000		5	598F
9	6	* Cfg3 (Al	C)	0001	_0100_	0000_	1011		6	5BB6
10	7	OutEnbl (ounter	0000	_0000_	0000_	0000		7	5DDE
11	8	AlarmSta	us(RO)	0000	_0000_	0000_	0000		8	6005
12		Config Cl	ecksum	0101	1011_	1010_	1011		9	622C
13									10	6453
14									11	667A
15	Load F	Registers	om File						12	68A1
16		toglotolo i							13	6AC9
17									14	6CF0
18	Load Re	aisters F	m Bench						15	6F17
19									16	713E
20									ChSum	7FFF
21	Prepare	Calibrati	on Sheet							
22	<u>.</u>									
23				_						
24	Save Red	gisters+Lo	okup Table							
25										
26						~	_			
		/								

PGA309 Calibration

Please select the calibration algorithm:

One of the following three templates can be used for the pressure sensor calibration

3 Temperatures and 3 Pressures

Select this when you do not know the 2nd order non-linearities of output vs. pressure and of temperature drifts of span and offset. The module output must be measured at three different temperatures with min and fulll-scale pressure applied plus mid-scale pressure at one of the temperatures.

Press **OK** after you have selected 3 Temperature 3 Pressure calibration.

C

pressure applied plus the mid-scale pressure at one of the temperatures.

2 Temperatures and 2 Pressures

All 2nd order coefficients are entered based on pre-characterization, only the positions of curves must be fitted.

The output must be measured at only two temperatures, each with min and full-scale pressure applied.

PGA309 Calibration Spreadsheet, Main Tab

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

74

OK

Cancel

2 The target sensor a	approximation eq	uation:	This are contains the PGA309 settings. These settings									
3 Uses 2nd-order (qua	drature) equations f	for pressure non-li	are loaded	into these	e cells when	the Load Reg	isters From					
The terms ending	00+ko1*T+ko2	*T^2+(ko3*p+l	<i>PGA309</i> b	PGA309 button was pressed from the main tab.								
I ne temperature			D.0.4.000									
ranges and pressure	d cells		PGA309 non-va	PGA309 non-variable (during calibration) settings:								
ranges need to be			Vrof-	4 963	V	GainDAC1-						
entered by hand	100	ľ	Kexc=	4.903	V	ZeroDAC1=	1804 hex					
			FrontEnd PGA=	128	V/V	20100/101	1004 1107,					
11 Temp range:			Output Amp=	2.4	V/V	Temperature	ADC Settings.					
12 Tmin=	-45	5	Coarse Offset=	0.00E+00	V	Rt=	Leave this cell bla					
13 Tmax=	90	<mark>)</mark>				No. of Bits=	15					
14 Troom=	22.5	5	Vexc=	4.963	V, with LinDAC=0	AdcGain=	2					
15						AdcVref=	2.048					
Insert TempADC re	ading in active cell		Insert Vout	reading in act	ive cell							
The TempADC	intares:	TempADC Rea	ding@Tmeas									
readings and	22,5	19839	decimal	: @ this Tem	p 3 pressure level	s are applied						
VoutMoos valuos	85	15839	decimal									
	-4(23838										
need to be				D	10 5							
measured. This can	uming the sensor a	rectly): Measured Data		Post First Ca	Mono Data							
be done using the	Proceuro	VoutMoas	DTI Khra v/v	Drossuro	VoutMoas							
Insert TemnADC	lessure	5 25F_01	-2 70F-04	1 Classice 0	Voulmeas							
	50	2.53E+00	1.49E-03									
reading in active cell	100	4.53E+00	3.26E-03	100								
and Insert Vout												
reading in active cell	0	5.04E-01	-2.88E-04									
buttons	100	4.84E+00	3.53E-03									
Sattorio.												
32 -40	0	7.89E-01	-3.71E-05									
33 -40	100	4.86E+00	3.55E-03									
PG	A309 Calibration	n 🔪	Room Temp (20)	P FILOL.	1	I						
	adsheet. Senso	or)										
SBOA103C	Curvefit Tab	PG	A309 Quick	Start		2-	76					
lan 2006		Sveto	m Reference	Guide		TEXAS						
Jan 2000		Oysie			IN		TC					

Note will co to be correc gener	that the 3 pressur ompute values for very small for this ction is not used. ate the calibration	re 3 temperat nonlinearity configuratio This value w n tables in the	fure calibration error. This with n because n will not be use e EEPROM.	s	ults\	The value of Klin stored in the EEPROM will be zero for this mode because Vexc is disabled.						
5) 1	85	7225	3	8.828	E-03		3.51E-03				
5	1 1	-40	1600			3	3.59E	E-03		-1.29E-07	kr5=	-3.681E-05
5	2 1	22.5	506.25			3	3.53	E-03		4.41E-08	.	1.256E-05
5	3											
54	Calculated value:											
5	5 Sensor Pressure non-	inearity @Troom:										
5	6 Bv=	-0.000737266	=>>	-	0.073726625	% =	=>>	>	Klin=	0		
5	7 TempADC linear paran	neters:										
5	3 ktemp=	-64										
- 59	etemp=	21279										
6) GainDAC correction fa											
6	1 Gdac_factor=											
6	2 ZeroDAC correction fa	ctor										
6	3 Zdac_factor=	0										
64	1											
G	Colculated gain per lin	a a ritu										

PGA309 Calibration Spreadsheet, Sensor Curvefit Tab

SBOA103C Jan 2006 77

5 Fill out the highlighted cells PGA309 non-variable (during calibration) settings: 7 Pressure values: 0 Vref= 4.963 V GainDAC1= 90B5 hes, == 9 Pmax= 100 Kexc= 1.000 V/V Zer0AC1= 90B5 hes, == 10 FrontEnd PGA= 128 V/V Temperature ADC Settings. 11 Temp range:	5 6				04 p 2) [1.k	05 1 + 100	1									
6 Fill out the highlighted cells PGA309 non-variable (during calibration) settings: 7 Pressure values: Initial settings of the Fine Adjust I 8 Pmin= 0 Vref= 4.963 V GainDAC1= 9DB5 hex, == 9 Pmax= 100 Kexc= 1.000 V/V ZeroDAC1= 100 hex, == 10 FrontEnd PGA= 28 V/V Temperature ADC Settings. 100 hex, == 12 Train= .45 Coarse Offset= 0.00E+00 V/V Rt= Leave this cell blank 12 Train= .45 Coarse Offset= 0.00E+00 V/V Rt= Leave this cell blank 12 Train= .45 Coarse Offset= 0.00E+00 V/V Rt= Leave this cell blank 14 the secondary calibration is not necessary. The secondary calibration is section is left blank. Insert Vour reading in active cell AdcVref= 2.048 21 Measurent Conditions Measurend Data (assuming the sensor directly): Post Mst Cal Correction Measurent Conditions Measurent Conditions Rts pan, V/V Measurent Conditions Post Mst Cal Correction Measurent Conditions Post Cal Correction Post Cal Correction	6															
7 Pressure values: 0 Vref= 4.963 V Initial settings of the Fine Adjust 1 9 Pmax= 100 Kexc= 1.000 V/V ZeroDAC1= 90Bb hex, == 10 ForntEnd PGA= 120 V/V Temperature ADC Settings. 11 Temp range: .000 V/V ZeroDAC1= 1804 hex, == 12 Train= .45 Coarse Offset= 0.00E+00 V Rt= Leave this cell blank For the ratiometric calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. Inset Vout reading in active cell AdcVref= 2.045 21 Measured Data (assuming the sensor directly): Post Pist Cal Correction Inset Vout Meas Inset Vout Meas 22 22.5 0 5.25E-01 2.70E-40 0 Inset VoutMeas 23 Measurement Conditions Measured Data (assuming the sensor directly): Post Pist Cal Correction Inset VoutMeas 24 Temp Pressure VoutMeas Intervelope Intervelope Intervelope 23 Measurement Conditions Measurement Conditions Measurement Conditions		Fill out the highlighted	cells		PGA309 non-va	riable (durin	g calibration)	settings:								
8 Pmin= 0 Vref= 4.963 V GainDAC1= 9DB6 hex, == 10 Kexc= 100 Kexc= 100 V/V ZeroDAC1= 1804 hex, == 10 Int Temp range: Output Amp= 2.4 V/V Temperature ADC Settings. 11 Temp range: .45 Coarse Offset= 0.00E+00 V Nt Rt Events .45 Coarse Offset= 0.00E+00 V Nt Rt Leave this cell blant For the ratiometric calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. Insert Vour reading in active cell Insert Vour reading in active cell Insert Vour reading in active cell Insert Vour feasure 21 Measured Data (assuming the sensor directly): Post First Cal Correction Insert Vour Meas Insert Vour Meas 22 Measurement Conditions Measured Data RTI Krg, W Fressure VourMeas Insert Vour Meas Insert VourMeas Insert Vour	7	Pressure values:							Initial settings	s of the Fine Adjust I						
9 Pmax= 100 Kexc= 100 V/V ZeroDAC1= 1804 hex, == 10 FrontEnd PGA= 128 V/V Temperature ADC Settings. 12 Temp range:	8	Pmin=	0		Vref=	4.963	V		GainDAC1=	9DB5 hex, ==						
10 FromEnd PGA= 128 V/V Temperature ADC Settings. 11 Temp range: 45 Coarse Offset= 0.00E+00 V Rt= Leave this cell blank For the ratiometric calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. Insert Vout reading in active cell Insert Vout reading in active cell Insert Vout reading in active cell 21 Measured Data (assuming the sensor directly): Post Prist Cal Correction Insert Vout Meas Insert Vout Meas 22 Measurement Conditions Measured Data (assuming the sensor directly): Post Prist Cal Correction Insert VoutMeas 23 Measurement Conditions Measured Data (assuming the sensor directly): Post Prist Cal Correction Insert VoutMeas 24 Temp Pressure VoutMeas RTI Kbrg,W/V Measured Data Insert VoutMeas 25 2.5 5.0 2.53E+00 3.26E-03 100 Insert VoutMeas Insert VoutMeas 29 85 0 5.04E-01 2.88E-04 Insert VoutMeas Insert VoutMeas Insert VoutMeas 29 85 0 5.04E-01 3.53E-03	9	Pmax=	100		Kexc=	1.000	V/V		ZeroDAC1=	1804 [*] hex, ==						
11 Temperange: 0utput Amp= 2.4 V/V Temperature ADC Settings. 12 Timin= 45 Coarse Offset= 0.00E+00 V Rt= Leave this cell blank For the ratiometric calibration method, the secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. 4.963 V, with LinDAC=0 AdcGain= 2 4dcGain=	10				FrontEnd PGA=	128	V/V									
12 Time 45 Coarse Offset= 0.00E+00 V Rt= Leave this cell blant For the ratiometric calibration method, the secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. 13 4.963 V, with LinDAC=0 AdcGain= 2 21 Measured Data (assuming the sensor directly): Post pressure 20000 20000 20000 20000 22 Measured Data (assuming the sensor directly): Post pressure VoutMeas 10 149E-03 100 15E-03	11	Temp range:			Output Amp=	2.4	V/V		Temperature	ADC Settings.						
For the ratiometric calibration method, the secondary calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. 21 22 23 24 24 25 25 25 25 25 25 25 25 25 25	12	Tmin=	-45		Coarse Offset=	0.00E+00	V		Rt=	Leave this cell blank						
the secondary calibration included, the secondary calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank.	Fr	or the ratiomet	ric calibratio	n method					No. of Bits=	15						
the secondary calibration is not necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank.					=	4.963	V, with LinDA	C=0	AdcGain=	2						
necessary. The secondary calibration is used to correct for errors introduced by the LinDac. So, for this example, this section is left blank.	the	e secondary ca	alibration is	not					AdcVref=	2.048						
Insert Vout reading in active cell used to correct for errors introduced by the LinDac. So, for this example, this section is left blank. Insert Vout reading in active cell Insert Vout reading in active cell <td col<="" td=""><td>ne</td><td colspan="14">necessary. The secondary calibration is</td></td>	<td>ne</td> <td colspan="14">necessary. The secondary calibration is</td>	ne	necessary. The secondary calibration is													
the LinDac. So, for this example, this section is left blank. 21 Measured Data (assuming the sensor directly): 22 Measurement Conditions Measured Data RTISpan, V/V Bessure VoutMeas 24 Temp Pressure VoutMeas RTI Kbrg, W Bressure VoutMeas 25 22.5 0 5.25E-01 -2.70E-04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		used to correct for errors introduced by														
the LinDac. So, for this example, this section is left blank. 21 22 Measured Data (assuming the sensor directly): 23 Measurement Conditions Measured Data 24 Temp Pressure VoutMeas 25 22.5 0 5.25E.01 -2.70E-04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	u5	usea to correct for errors introduced by														
section is left blank. 21 Interest of the sensor directly): 22 Measured Data (assuming the sensor directly): 23 Measurement Conditions Measured Data 24 Temp Pressure VoutMeas RTI Kbrg, // Fressure VoutMeas 25 22.5 0 5.25E.01 2.70E.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	the	the LinDac. So, for this example, this														
Section is left blank. The assuming the sensor directly: 21 Post Pirst Cal Correction 23 Measurement Conditions Measured Data RTI Span, V/V Meas Data 24 Temp Pressure VoutMeas RTI Kbrg, v/v Fressure VoutMeas 24 Temp Pressure VoutMeas RTI Kbrg, v/v Fressure VoutMeas 25 22.5 0 5.25E-01 -2.70E-04 0	<u>م</u>	anotion in left blonk														
21 10 200	56		alik.		nal											
21 Measured Data (assuming the sensor directly): Post First Cal Correction Image: Corection Image: C	21	Theast-	-40	23030												
22 Interstitie Call Conditions Measured Data RTISpan, V/V Measure VoutMeas 24 Temp Pressure VoutMeas RTI Kbrg, v/V Fressure VoutMeas Image: Condition of the conditis of the condition of the condition of the conditis of	21	Measured Data (accur	ming the concer di	roethy):		Doct First C	al Correction									
23 Measurement containing Measure VoutMeas RTI Kbrg, v/v Fressure VoutMeas 24 Temp Pressure VoutMeas RTI Kbrg, v/v Fressure VoutMeas 25 22.5 0 5.25E-01 -2.70E-04 0 0 26 22.5 50 2.53E+00 1.49E-03 100 0 27 22.5 100 4.53E+00 3.26E-03 100 0 0 28 0 5.04E-01 -2.88E-04 0 0 0 0 29 85 0 5.04E-01 -2.88E-04 0 0 0 0 30 85 100 4.84E+00 3.53E-03 0 0 0 7.89E-01 -3.71E-05 0 0 0 7.89E-01 -3.55E-03 0 0 78 31 0 0 7.89E-01 -3.71E-05 0 0 78 SBOA103C 0 0 78 Yet mode Yet mark Yet mark Yet mark Yet mark 78 Ja	22	Measureu Data (assur	Conditions	Moscured Data	DTISpan V/V	FUST HIST CA	Moas Data									
24 Hemp Hessure Volumeds R/H rang, W Hessure Volumeds	20	Weasurement	Conditions	Measureu Data	Khopan, w/v		Ivicas Dala									
26 22.5 50 2.53E+00 1.49E-03 27 22.5 100 4.53E+00 3.26E-03 100 28 0 5.04E-01 -2.88E-04 0 100 29 85 0 5.04E-01 -2.88E-04 0 100 30 85 100 4.84E+00 3.53E-03 0 1.49E-05 100 31 0 7.89E-01 -3.71E-05 0 1.49E-03 100 1.49E-03 100 32 -40 0 7.89E-01 -3.71E-05 100 1.49E-03 1.49E-0		Temn	Proseuro	VoutMeas	RTI Khra v/v	Prossure	VoutMeas									
20 22.5 30 2.00 ± 00 1.40± 03 100 27 22.5 100 4.53E+00 3.26E-03 100 28 0 5.04E-01 -2.88E-04 100 100 29 85 0 5.04E-01 -2.88E-04 100 100 30 85 100 4.84E+00 3.53E-03 100 100 100 31 0 7.89E-01 -3.71E-05 3.55E-03 100 1.55E-03 100 1.55E	24	22.5	Pressure	VoutMeas	RTI Kbrg,v/v -2 70E-04	Fressure	VoutMeas									
21 21.5 100 1.00 0.00 <t< td=""><td>25</td><td>22.5</td><td>Pressure 0 50</td><td>VoutMeas 5.25E-01 2.53E+00</td><td>RTI Kbrg,v/v -2.70E-04 1.49E-03</td><td>Fressure 0</td><td>VoutMeas</td><td></td><td></td><td></td></t<>	25	22.5	Pressure 0 50	VoutMeas 5.25E-01 2.53E+00	RTI Kbrg,v/v -2.70E-04 1.49E-03	Fressure 0	VoutMeas									
29 85 0 5.04E-01 -2.88E-04 30 85 100 4.84E+00 3.53E-03 31 0 7.89E-01 -3.71E-05 0 32 -40 0 7.89E-01 -3.71E-05 0 33 -40 PGA309 Calibration Spreadsheet, Sensor PGA309 Quick Start 78 SBOA103C Curvefit Tab PGA309 Quick Start Yet Texas 78	24 25 26 27	Temp 22.5 22.5 22.5	Pressure 0 50 100	VoutMeas 5.25E-01 2.53E+00 4.53E+00	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03	Fressure 0	VoutMeas									
30 85 100 4.84E+00 3.53E-03 31 0 7.89E-01 -3.71E-05 32 -40 0 7.89E-01 33 -40 PGA309 Calibration Spreadsheet, Sensor Spreadsheet, Sensor Curvefit Tab PGA309 Quick Start Jan 2006 System Reference Guide	24 25 26 27 28	22.5 22.5 22.5 22.5	Pressure 0 50 100	VoutMeas 5.25E-01 2.53E+00 4.53E+00	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03	Fressure 0 100	VoutMeas									
31 0 7.89E-01 -3.71E-05 32 -40 0 7.89E-01 -3.71E-05 33 -40 PGA309 Calibration SBOA103C PGA309 Calibration Spreadsheet, Sensor Curvefit Tab Jan 2006 PGA309 Quick Start System Reference Guide Frexas	24 25 26 27 28 29	Temp 22.5 22.5 22.5 22.5	Pressure 0 50 100	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2 88E-04	Fressure 0 100	VoutMeas)								
32 -40 0 7.89E-01 -3.71E-05 33 -40 PGA309 Calibration Spreadsheet, Sensor Spreadsheet, Sensor PGA309 Quick Start Jan 2006 PGA309 PGA309 Quick Start 78	24 25 26 27 28 29 30	Temp 22.5 22.5 22.5 85 85	Pressure 0 50 100 0 100	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03	Fressure 0 100	VoutMeas)								
33 -40 PGA309 Calibration Spreadsheet, Sensor Spreadsheet, Sensor Curvefit Tab PGA309 Quick Start Jan 2006 System Reference Guide	24 25 26 27 28 29 30 31	Temp 22.5 22.5 22.5 85 85	Pressure 0 50 100 0 100	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03	Fressure 0 100	VoutMeas									
BOA103C PGA309 Calibration Spreadsheet, Sensor Curvefit Tab PGA309 Quick Start Jan 2006 System Reference Guide 78	24 25 26 27 28 29 30 31 31	Temp 22.5 22.5 22.5 85 85 -40	Pressure 0 50 100 0 100 0	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05	Fressure 0 100	VoutMeas									
SBOA103C Spreadsheet, Sensor Jan 2006 PGA309 Quick Start 78 System Reference Guide TEXAS	24 25 26 27 28 29 30 31 32 33	Temp 22.5 22.5 22.5 85 85 -40	Pressure 0 50 100 0 100 0	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05 3.55E-03	Fressure 0 100	VoutMeas									
SBOA103C Curvefit Tab PGA309 Quick Start 78 Jan 2006 System Reference Guide TEXAS	24 25 26 27 28 29 30 31 32 33	Temp 22.5 22.5 22.5 85 85 -40 -40	Pressure 0 50 100 0 100 PGA309 Calibu	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01 5+00 ration	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05 3.55E-03	Fressure 0 100	VoutMeas									
Jan 2006 System Reference Guide TEXAS	24 25 26 27 28 29 30 31 32 33	Temp 22.5 22.5 22.5 85 85 -40 -40	Pressure 0 50 100 0 100 PGA309 Calibu Spreadsheet, S	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01 cation ensor	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05 3.55E-03	Fressure 0 100	VoutMeas									
	24 25 26 27 28 29 30 31 32 33	Temp 22.5 22.5 22.5 85 85 -40 -40 -40 -40 SBOA103C	Pressure 0 50 100 0 PGA309 Calibu Spreadsheet, S Curvefit Ta	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01 cation ensor b	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05 3.55E-03 PGA309 Qu	Fressure 0 100	VoutMeas			78						
	24 25 26 27 28 29 30 31 32 33	Temp 22.5 22.5 22.5 85 85 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40	Pressure 0 50 100 0 100 PGA309 Calibre Spreadsheet, S Curvefit Ta	VoutMeas 5.25E-01 2.53E+00 4.53E+00 5.04E-01 4.84E+00 7.89E-01 ration ensor b	RTI Kbrg,v/v -2.70E-04 1.49E-03 3.26E-03 -2.88E-04 3.53E-03 -3.71E-05 3.55E-03 PGA309 Qu (stem Refere	Fressure 0 100	VoutMeas			78						

-

Select the desired post-calibration output range.		Select the temperature ra the look-up-tab	nge of le.	Make sure	the Re	esult		
				County City		0.070747		0.404077
4 Vout_max: 4.5 V	Ntemp=	1/		1	90	0.679747	0.00422	0.484677
5 Vout_min= 0.5 V	Optional:	45 Jac		2	01.5025	0.090900	-0.00133	0.40753
7		-45 egC		3	64 6875	0.701420	-0.00124	0.400401
8	LOT_IIIAA	Ju dego		4	56.25	0.719539	-0.00113	0.40725
9				6	47 8125	0.713333	-0.00089	0.404130
10 Result Sanity Ch	eck:			7	39 375	0.733423	-0.00076	0.472063
11 ZeroDAC is OK: v	alues are in Ra	inge		8	30 9375	0.738603	-0.00061	0.463024
12 GainDAC is OK: y	alues are in Ra	ange.		9	22.5	0 742534	-0 00047	0 452002
13 TempADC is OK:	values are asc	ending and in Range.		10	14 0625	0 745175	-0.00031	0 438998
14				11	5 625	0 746498	-0.00016	0 424012
15				12	-2 8125	0 746489	1 11E-06	0 407043
16				13	-11.25	0 745147	0 000159	0.388093
17				14	-19.6875	0.742488	0.000315	0.367161
18				15	-28,125	0.738539	0.000468	0.344246
19				16	-36.5625	0.733342	0.000616	0.319349
20				17	-45	0.726949	0.000758	0.292471
21				18	-45	0.726949	0	0.292471
PGA309 Calibration Spreadsheet, Calibratio Results Tab								
SBOA103C		PGA309	Quick Start					79

Jan 2006

System Reference Guide

The *PGA309 RatioMetric Error* tab on the *generate_sim_values.xls* is a convenient way to do a post-calibration error analysis. To use it, select the blue cell corresponding to the current setup, and press the *Insert Vout reading in active cell* button. This will insert the PGA309 output reading from the ADS1100. This spreadsheet page provides for error calculations at two different power supply voltages. The initial supply is Vs= 4.963V (you need to enter your measured Vs).

> The post-calibration results will typically have errors less than 0.1%.

	A B		С	D	E	F				
1										
2										
3		Ins	sert Vout re	ading in act	tive cell					
4										
5										
6			Ideal Output	ut Min=	0.5	V				
7			Ideal Output	ut Max=	4.5	V				
8			Initial Vsup	oply=	4.963	V				
9		Temperatu	Pressure	Ideal Resu	Measured	Error				
10		cold	0%	0.5	0.49739	-0.07				
11		cold	50%	2.5	2.49543	-0.11				
12		cold	100%	4.5	4.49636	-0.09				
13		Room	0%	0.5	0.49921	-0.02				
14		Room	25%	1.5	1.4949	-0.13				
15		Room	50%	2.5	2.49619	-0.10				
16		Room	75%	3.5	3.49567	-0.11				
17		Room	100%	4.5	4.49878	-0.03				
16		Hot	0%	0.5	0.49997	0.00				
19		Hot	50%	2.5	2.49998	0.00				
20		Hot	100%	4.5	4.49954	-0.01				
21										
22					stdev=	0.05				
23					average=	-0.06				
24										

generate_sim_values.xls, PGA309 Ratiometric Error Tab

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

For the ratiometric calibration method it is useful to adjust the power supply to see how PSR affects the PGA309 calibrated accuracy. A 10% power supply deviation is used in this example because it is a typical worst case deviation for ratiometric systems. Connecting a $53k\Omega$ resistor between the 3V pin and the center pin on JA will cause the power supply to shift from 5V to 4.5V. You can adjust the value of the shunt resistance to get more or less power supply deviation. A short will cause the power supply to deviate from 5V to 3V.

PGA309 Quick Start System Reference Guide

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

84

Measure the PGA309 post calibration error at a different supply voltage to see the affect of PSR on error. For this example, the supply was changed from Vs= 4.963Vto Vs=4.457V and the average error changed from -0.06% to -0.03%.

supply was changed from Vs	s= 4.963∖	/	_					
s=4.457V and the average e	error							
nged from -0.06% to -0.03%			nsei	rt Vout read	ing in active	e cell		
	30							
	31							
	32			Different Vsupply=		4.457		
	33	Temp		Pressure	Ideal Resu	Measured	Error	
	34	cold		2%	0.449023	0.44872	-0.01	
	35	cold		50%	2.245114	2.24305	-0.06	
	6	cold		100%	4.041205	4.0412	0.00	
Make sure that you		Room		0%	0.449023	0.44967	0.02	
measure the supply voltage		Room		25%	1.347068	1.34385	-0.09	
	1	Room		50%	2.245114	2.24292	-0.06	
(Vs) and enter it into the	2	Room		75%	3.143159	3.14022	-0.08	
PGA309 Designer's Kit	<u> </u>	Room		100%	4.041205	4.03858	-0.07	
	<u> </u>	Hot		0%	0.449023	0.44967	0.02	
Control Program.	5	Hot		50%	2.245114	2.2455	0.01	
	45	HOT		100%	4.041205	4.04065	-0.02	
	45					stdev=	0.04	
	40					average=	-0.03	
	48					average-	-0.05	
	49							
	50							

generate_sim_values.xls, PGA309 Ratiometric Error Tab

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

PGA309 With Output Scaling (0 to 10V)

In many applications an external gain stage is used to get an output swing beyond the range of the PGA309. The circuit shown below is a typical example of gain scaling with an offset shift. The PGA309 calibration spreadsheet can accommodate external gain and offset scaling. Doing the calibration by measuring the output of the external gain stage will calibrate out errors caused by resistor tolerance in the external stage.

Jan 2006

System Reference Guide

PGA309 With Output Scaling (0 to 10V)

PGA309 With Output Scaling (0 to 10V)

PGA309 With Output Scaling (0 to 10V)

PGA 309 Desired output and 2 3 Enter Output Scale: 4 Vput_max: 10 V 5 Vuut_min: 0 V 6 7 8	Its look-up table Lookup Table Parameters: # of points: Ntemp= 17 Optional: LUT_Tmin= -45 LUT_Tmax 90 degC	Other then these few minor changes, the calibration method is the same as the other examples.
9 10 Result Sanity Ch	eck:	
11 ZeroDAC is OK: v	alues are in Range.	The output range must be
12 GainDAC is OK: v	values are in Range.	include the scaling stage
13 TempADC is OK:	values are ascending and in Range.	
14		
15		
17		
18		
19		
20		
21		
22 23 24 25 26 0.52	Vout max and m	in calibrated
PGA309 Calibra Spreadsheet, Cali Results Tab	ation bration	
SBOA103C	PGA309	Quick Start 90

PGA309 With Output Scaling (4mA to 20mA)

The spreadsheet can also be used to calibrate a system using a PGA309 with a 4mA to 20mA output scaling.

PGA309 With Output Scaling

(4mA to 20mA)

SBOA103C Jan 2006 PGA309 Quick Start System Reference Guide

PGA309 With Output Scaling (4mA to 20mA)

settings of the Fine Adjust DACs: Used For Additional Gain Sc 8000 hex, ==>>)AC1= 0.6667 V/V ExtraGain 4.00E-03 8000 hex. ==>> AC1= 2.5000 V ExtraOffset 8.00E-04 erature ADC Settings -- Used For Rt Calc Only Leave this cell blank -- Rt is not used in this configuration The "ExtraGain" and f Bits= 11 "ExtraOffset" factor are ain= ref= entered here on the Bridge sensiti spreadsheet. Normally these are set to ExtraGain = 1.0 and 2.0E-01 ExtraOffset = 0.0.1.5E-01 ridge@Vexc=1V 1.0E-01 PGA309 Calibration Spreadsheet, Sensor Curvefit Tab SBOA103C PGA309 Quick Start Jan 2006 System Reference Guide

PGA309 With Output Scaling

(4mA to 20mA)

PGA309 With Output Scaling

(4mA to 20mA)

In many cases the PGA309 is connected in a configuration referred to as a three wire connection. In this configuration the only wires that need to connect to the sensor module are power, ground, and Vout. In this configuration the One-Wire digital communication line is connected to the Vout pin. When the PGA309 is initially powered up, the Vout pin is placed in a high impedance mode for 15mS. If communication is established using the One-Wire during this time, the PGA309 will keep Vout in high impedance until the communications is complete. After the communication is complete the PGA309 Vout pin will become active and remain active until power is cycled again. While using the EVM to communicate in Three Wire Mode, the EVM will cycle power before each One-Wire communication.

If the "Set PreCal EE" feature is used the test pin is normally grounded (leave "PGA309 Test Pin HIGH" box unchecked).

Versas Instruments PGA309 Designer's Kit Control Program											
<u>File</u> <u>E</u> dit	t <u>B</u> oard <u>S</u> etup										
C Rese	t Open File	Save File	Detect Write	ф GA3	809 Read PGA309 Write	EEPROM Read EEF	PROM Set PreCal EE				
PRG pi - PGA30 Click on	in shorted to Yout 9 Registers the register to edit the va	PGA:	809 Test Pin HIGH		PGA Settings Coarse Offset (mV) : FrontEnd PGA Gain (V/V)	0.000 • 128.000 •	Enable Internal Vref:				
Addr	Name	Hex	Binary		Zero DAC (V):	496.216m	Detect External Faults:				
0000	ADC Out(RO)	0x3DE1	0x0011_1101_1110_0001		Gain DAC (V/V):	691.721m	Detect Internal Saturation	n: 🗖			
0001	ZeroDAC	0x1968	0x0001_1001_0110_1000		Output Amp Gain (VA) -	-	Vout high on external fau	ilt: 🔽			
0010	GainDAC	0x899F	0x1000_1001_1001_1111		output Amp dain (*/*).	2.400	Vout high on internal faul	ե 🗖 🗌			
0011	* Ref&Lin	0x0000	0x0000_0000_0000_0000		Enable Over/Under-Scale	e Limits : 👘 👘	PGA309 Temp ADC				
0100	* Gain, Vos, Cfg1	0x1700	0x0001_0111_0000_0000		Overscale Limit	4.854 💌	DeaC				
0101	* Cfg2,OverUnder	0x0A07	0x0000_1010_0000_0111		Underscale Limit :	202.500					
0110	* Cfg3 (ADC)	0x1507	0x0001_0101_0000_0111		C. ADITODIO EINIC.	302.500m	Dec 15841	1			
0111	OutEnbl Counter	0x0000	0x0000 0000 0000 0000		Enable Sensor Excitation	:	Hey 3DE1 h				

A key technique used in calibration is to use the test pin on the PGA309. The test pin is typically used during calibration to place the PGA309 into test mode. The main benefit of test mode is that the Gain DAC and Offset DAC are forced to remain at the last values written to their respective registers.

In the case of three wire mode the test pin is grounded and cannot be used. In this case, an EEPROM table can be built that will force that Gain DAC and Offset DAC to be constant. The PGA309 Designers Kit Control Program "Set Precal EE" feature simplifies the creation of this table.

V Texas Instruments PGA309 Designer's Kit Control Program													
E	ile <u>E</u> dit	<u>Board</u> Setup				\frown							
	Rese	t Open File	Save File	Detect Write PGA	A3(09 Read PGA309 Write EEPROM Read EEPRON Set PreCal EE							
	PRG pin shorted to Vout F PGA309 Test Pin HIGH F Coarse Offset (mV):												
-	PGA30 : Click on	9 Registers the register to edit the va	lue and se	e the details	1	FrontEnd PGA Gain (V/V): 128.000 Viet Viet Value : 4.096 Viet Viet Value : 4.096 Viet Viet Viet Viet Viet Viet Viet Viet							
	Addr	Name	Hex	Binary		Zero DAC (V): 319.000m Detect External Faults:							
	0000	ADC Out(RO)	0x3078	0x0011_0000_0111_1000		Gain DAC (V/V): 727.559m Detect Internal Saturation	n: 🗖						
	0001	ZeroDAC	0x13F0	0x0001_0011_1111_0000		Output Arra Cain 0 (A0)	it: 🗖 🗌						
	0010	GainDAC	0x9762	0x1001_0111_0110_0010		Vout high on internal faul	t 🗖 🗌						
	0011	* Ref&Lin	0x0500	0x0000_0101_0000_0000		Enable Over/Under-Scale Limits :							
	0100	* Gain,Vos,Cfg1	0x3700	0x0011_0111_0000_0000		Overscale Limit : 3.976							
	0101	* Cfg2,OverUnder	0x0007	0x0000_0000_0000_0111									
	0110	\$ Cfa2 (ADC)	0v144P	0~0001 0100 0100 1011		247.000m V Dec 12408							

When using this feature, first set all the registers to values your application requires. Then press the "Set PreCal EE" button.

😻 Tex								
<u>File</u> <u>E</u> d	lit <u>B</u> oard <u>S</u> etup							Step 2
Best	et Open File	Save File	Detect Write P	d GA3	09 Read PGA 309 Write	FEPROM Read FE	PROM St PreCal FE	
				una	PGA Continue			
PRG p	oin shorted to Yout	PGA	309 Test Pin HIGH		Coarse Offset (mV) :	0.000 -	Enable Internal Vref: 🔽	
-PGA30	09 Registers				FrontEnd PGA Gain (V/V)	128.000 -	Vref Value : 4.096 💌	
Click or	the register to edit the va	alue and se	e the details		Zere DAC MO	120.000	Fault Detection	
Addr	Name	Hex	Binary		Zero DAC (V):	319.000m	Detect External Faults:	Ston 1
0000	ADC Out(RO)	0x3078	0x0011_0000_0111_1000		Gain DAC (V/V):	727.559m	Detect Internal Saturation:	Olep 1
0001	ZeroDAC	0x13F0	0x0001_0011_1111_0000		Output Amp Gain (V/V) :	2 600 -	Vout high on external fault:	
0010	GainDAC	0x9762	0x1001_0111_0110_0010			3.000	Vout high on internal fault:	
0011	* Ref&Lin	0x0500	0x0000_0101_0000_0000		Enable Over/Under-Scale	e Limits :	PGA309 Temp ADC	
0100	* Gain, Vos, Ctg1	0x3/00	0x0011_0111_0000_0000		Uverscale Limit	3.976 🔻	DegC	
0101	* Cfg2, OverUnder	0x0007	0x0000_0000_0000_0111		Underscale Limit :	247.808m 🔻	Dec 12408	
0110	- CIG3 (ADC)	0x144B	0x0001_0100_0100_1011		Enable Sensor Excitation	. I	11-11 2070 h	
1000	AlarmStatue(BO)	0×0000	0x0000_0000_0000_0000		Vexc:	3 400	ADC Config	
1000	Config Checksum	0x5864	0x0101 1011 0110 0100		Linearization Cool 0 (A ()		Convert	
	comy chooksam	0,0004			Linealization Coel (V7V).	0.000		
_ Looki	up Table						☐ Interface Board and ADS1100 —	
0800	13F0 9761				~	Display Mode	Supply (co. 0.0)	
7FFF	0000 CCAF					Binary C	Supply vcc (v). 4.963	
						Hex (•	Volt 3.03986	
						Decimal	Dec 19922	
						Apply		
						Changes	Board	

After Pressing the "Set PreCal EE" a dialogue box will pop up that verifies the value of the Zero DAC and Gain Dac you want in your EEPROM configuration. After creating the EEPROM table, the PGA309 Designer's Kit Control Program is ready for to be used with the calibration spreadsheet.

	5	🖗 Texas	Instruments PG	A309 Desi	gner's Kit Contro	ol Program					
	1	<u>File E</u> dit	<u>B</u> oard <u>S</u> etup								
		C Reset	Open File	Save File	Detect	Write PGA309 Re	ad PGA309	Write EEPROM	Read EEPROM	Set PreCal EE	
After pressing Generate and		PRG pin PGA309 Click on th	shorted to Vout Registers e register to edit the	PGA3 value and set	109 Test Pin HIGH e the details	Pre Cal EE	PROM Setup)		Internal Vref: 🔽	
Write EEPROM		Addr	Name	Hex 0x3078	Binary	Zero Dao:	010.000			Detection ct External Faults:	Ē
Table, the lookup		0001	ZeroDAC	0x13F0	0x0001_0000_011		319.000m			ct Internal Saturation: high on external fault:	
table will be		0010	* Ref&Lin	0x0500	0x0000_0101_0000	Gain Dac:	727.559m			high on internal fault: 309 Temp ADC	
constant Gain		0100	* Cfg2,OverUnder * Cfg3 (ADC)	0x0007 0x144B	0x0000_0000_0000	Generate A	And			12408	
Dac and Zero Dac		0111 1000	OutEnbl Counter AlarmStatus(RO)	0x0000 0x0000	0x0000_0000_0000 0x0000_0000_0000	Write EEPF	ROM		Help	3078 h ADC	Config
for PreCal			Config Checksum	0x5B64	0x0101_1011_0110		anzadon coer (v	· • • • • • • • • • • • • • • • • • • •		Convert	
settings.	[Lookup	Table 13F0 9762					Display M	1ode	terface Board and AD	S1100 —
		7FFF	0000 CCAE	Ξ	J			Binary Hex Decimal Chang Discar Chang		Volt 3.03986 Volt 3.03986 Dec 19922 Hex 1.508680 Update Vout Set	3 ITOIJOOIC Mard tings

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

SBOA103C Jan 2006

PGA309 Quick Start System Reference Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated