SN54SC6T17-SEP Production Flow and Reliability Report

ABSTRACT

This report presents the reliability and qualification results for the Texas Instruments SN54SC6T17-SEP. The SN54SC6T17-SEP device is a radiation tolerant, hex Schmitt trigger buffer with integrated translation in space enhanced plastic (SEP). The SN54SC6T17-SEP is manufactured with a controlled baseline that features the following:

- · An extended product life cycle
- · One assembly and test site
- · Product traceability

Table of Contents

1 Texas Instruments Enhanced Product Qualification and Reliability Report	2
2 Space Enhanced Plastic Production Flow.	
2.1 Device Introduction.	3
2.2 SN54SC6T17-SEP Space Enhanced Plastic Production Flow	3
3 Device Qualification	4
4 Outgas Test Report	5
List of Figures Figure 2-1. SN54SC6T17-SEP Space Enhanced Plastic Production Flow Chart	3
List of Tables	
Table 3-1. Space Enhanced Products New Device Qualification Matrix	4
Table 4-1. Outgas Test Results	

Trademarks

All trademarks are the property of their respective owners.

1 Texas Instruments Enhanced Product Qualification and Reliability Report

TI qualification testing is a risk mitigation process that is engineered to assure device longevity in customer applications. Wafer fabrication process and package level reliability are evaluated in a variety of ways that may include accelerated environmental test conditions with subsequent derating to actual use conditions. Manufacturability of the device is evaluated to verify a robust assembly flow and provide continuity of supply to customers. TI Enhanced Products are qualified with industry standard test methodologies performed to the intent of Joint Electron Device Engineering Council (JEDEC) standards and procedures. Texas Instruments Enhanced Products are certified to meet GEIA-STD-0002-1 Aerospace Qualified Electronic Components.

2 Space Enhanced Plastic Production Flow

2.1 Device Introduction

SN54SC6T17-SEP is a radiation hardened device in a plastic package which allows the device to be used in space applications. The device was verified immune to 43 MeV × cm² / mg at 125°C for single event latch-up (SEL). Each fabrication lot was tested according to MIL-STD-883 for Radiation Lot Acceptance Tested (RLAT) up to 30 krad(Si) and each assembly and test lot follows the process flow shown in SN54SC6T17-SEP Space Enhanced Plastic Production Flow Chart. To maintain the quality of SN54SC6T17-SEP, the device is qualified with Space EP requirements. See Section 3 for further details.

2.2 SN54SC6T17-SEP Space Enhanced Plastic Production Flow

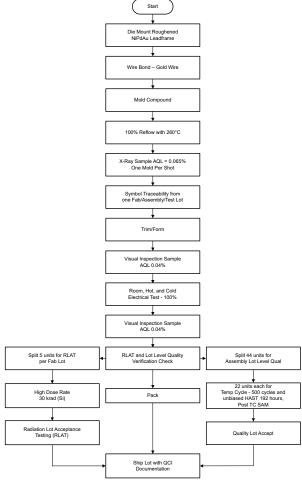


Figure 2-1. SN54SC6T17-SEP Space Enhanced Plastic Production Flow Chart

3 Device Qualification

The following is the device qualification summary.

Qualification by Similarity (Qualification Family)

A new device can be qualified either by performing full scale quality and reliability tests on the actual device or using previously qualified devices through *Qualification by Similarity* (QBS) rules. By establishing similarity between the new device and those qualified previously, repetitive tests are eliminated, allowing for timely production release. When adopting QBS methodology, the emphasis is on qualifying the differences between a previously qualified product and the new product under consideration.

The QBS rules for a technology, product, test parameters, or package shall define which attributes are required to remain fixed for the QBS rules to apply. The attributes which are expected and allowed to vary is reviewed and a QBS plan is developed, based on the reliability impact assessment above, specifying what subset of the full complement of environmental stresses is required to evaluate the reliability impact of those variations. Each new device is reviewed for conformance to the QBS rule sets applicable to that device. See JEDEC JESD47 for more information.

Table 3-1. Space Enhanced Products New Device Qualification Matrix

Note that qualification by similarity ("qualification family") per JEDEC JESD47 is allowed.					
Description	Condition	Sample Size Used and Rejects	Lots Required	Test Method	
Electromigration	Maximum recommended operating conditions	N/A	N/A	Per TI Design rules	
Wire bond life	Maximum recommended operating conditions	N/A	N/A	Per TI Design rules	
Electrical characterization	TI data sheet	10	3	N/A	
Electrostatic discharge	НВМ	Three units / voltage	4	EIA/JESD22-A114	
sensitivity	CDM		1	EIA/JESD22-C101	
Latch-up	Per technology	3/0	1	EIA/JESD78	
Physical dimensions	TI data sheet	5/0	1	EIA/JESD22- B100	
Thermal impedance	Theta-JA on board	Per pin-package	N/A	EIA/JESD51	
Bias life test	125°C / 1000 hours or equivalent	77/0	3	JESD22-A108*	
Biased HAST	130°C / 85% / 96 hours	77/0	3	JESD22-A110*	
Extended biased HAST	130°C / 85% / 250 hours (for reference)	77/0	1	JESD22-A110*	
Unbiased HAST	130°C / 85% / 192 hours	77/0	3	JESD22-A118*	
Temperature cycle	-65°C to +150°C non-biased for 500 cycles	77/0	3	JESD22-A104*	
Solder heat	260°C for 10 seconds	22/0	1	JESD22-B106	
Resistance to solvents	Ink symbol only	12/0	1	JESD22-B107	
Solderability	Condition A (steam age for 8 hours)	22/0	1	ANSI/J-STD-002-92	
Flammability	Method A or Method B	5/0	1	UL-1964	
Bond shear	Per wire size	Five units × 30/0 bonds	3	JESD22-B116	
Bond pull strength	Per wire size	Five units × 30/0 bonds	3	ASTM F-459	
Die shear	Per die size	5/0	3	TM 2019	
High temperature storage	150°C / 1000 hours	15/0	3	JESD22-A103-A*	
Moisture sensitivity	Surface mount only	12	1	J-STD-020-A*	
Radiation response characterization	Total ionization dose, single-event latch-up	Five units / dose level	1	MIL-STD-883/Method 1019	
Outgassing characterization	TML (Total Mass Lost), CVCM (Collected Volatile Condensable material)	5	1	ASTM E595	

^{1. *}Precondition performed per JEDEC Std. 22, Method A112 and A113.

www.ti.com Outgas Test Report

4 Outgas Test Report

Outgassing test was performed on die attach and mold compound used for the SN54SC6T17-SEP. A total mass loss (TML) of 1% and collected volatile condensable material (CVCM) of 0.1% were used as screening levels for rejection of spacecraft materials. The outgas test was performed in a vacuum environment of less than 5×10^{-5} Torr according to ASTM E 595, for a duration of 24 hours, at 125°C. The TML and CVCM were measured after the test.

Table 4-1. Outgas Test Results

Device	TML Less Than 1%	CVCM Less Than 0.1%
SN54SC6T17MPWTSEP	Pass	Pass

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated