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9.0 Objectives 
 
The purpose of this lab is to learn how to use the SysTick timer to manage time. 

1. You will first implement an accurate time delay. 
2. You will then use the time delay to create a PWM output. 
3. With a hardware low pass filter, you will use the PWM to implement a 

DAC. 
 
Good to Know: Timers, like SysTick, are used in the robot to manage time. 
SysTick will be used to execute tasks on a periodic basis. The line sensors used 
in the robot determine white or black by measuring the time it takes for the IR 
sensor to receive enough light to discharge its capacitor. The concept of PWM 
will be used to apply a variable power to the robot motors. 
 
9.1 Getting Started  
 
9.1.1 Software Starter Projects  
Look at these two projects:  
SysTick (example use of the SysTick timer),  
Lab09_SysTick (starter project for this lab) 

 
9.1.2 Student Resources (in datasheets directory)  
    
   MSP432P4xx Technical Reference Manual (SLAU356) 
   Meet the MSP432 LaunchPad (SLAU596) 
   MSP432 LaunchPad User’s Guide (SLAU597) 
   MSP432P401R Datasheet, msp432p401m.pdf (SLAS826) 
   CarbonFilmResistor.pdf, resistor datasheet 
   CeramicCapacitor.pdf, capacitor data sheet 
     
 
9.1.3 Reading Materials  
Chapter 9, “Embedded Systems: Introduction to Robotics" 
, 
 

9.1.4 Components needed for this lab  
All the components needed in the lab are included in the TI-RSLK Max  
kit (TIRSLK-EVM kit). For this lab you will need, just the MSP432-LauncPad. 
You will need to just unplug your LaunchPad carefully from the robot. 
 

Quantity Description Manufacturer Mfg P/N 

1 
MSP-
EXP432P401R 
LaunchPad 

TI MSP-EXP432P401R 

1 
Ceramic 
capacitor, 0.47 
µF  

Multicomp MC0805N470J500A2.54mm 

1 Carbon 1/6W, 
5%, 470 Ω Yageo 

 
CFR-12JB-470R 
  

1 solderless 
breadboard Pololu   

  #4000 

 
9.1.5 Lab equipment needed 
Voltmeter 
Oscilloscope (one channel at least 10 kHz sampling) 
Logic Analyzer (4 channels at least 10 kHz sampling 
 
 
9.2 System Design Requirements 
 
In the first part of the lab you will generate a heartbeat wave using the red LED 
on the TI Launchpad Development kit. You will then use the concept and 
generate a PWM DAC. 

 
The LED will oscillate from bright to dim to-off to dim almost exhibiting a sine 
wave, so the LED “looks” like it is breathing. This lab will use the two switches on 
the LaunchPad to activate and deactivate the heartbeat. 
 

• The heartbeat activates when the operator pushes SW1 and continues 
indefinitely until SW2 is pushed 

• The heartbeat deactivates when the operator pushes SW2 and remains 
off until SW1 is pushed 
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The operator may push the switches multiple times, and the heartbeat should 
start and stop as described above. If you can ignore the start button while the 
heartbeat is active, and ignore the stop button while the heartbeat is inactive. 
The basic idea is to use your SysTick wait function to create a digital output 
signal on P1.0. When active, the period of this signal should be fixed at 10,000 
µs. However, software will adjust the duty cycle as a means to control the 
brightness of the LED.  Let H be the time the LED is on and L be the time the 
LED is off. The software will guarantee that H+L is always 10000 µs. However, 
when active, H will vary from 100 to 9900. The duty cycle is defined as 
 

Duty = H/(H+L) = H/10000 
 
The brightness of the LED is linearly related to the duty cycle.  To give your 
heartbeat flair, you will oscillate the duty cycle sinusoidally, as illustrated in 
Figure 1. When the duty cycle is large the LED will be bright, when the duty cycle 
is 50% the LED will be dim, and when the duty cycle is low the LED will be off. 
 

 
 
Figure 1. Plot of Duty=H/10000 as a function of time. 
 
Figure 2 shows the MSP432 LaunchPad. 
  
Note: If you are using the TI-RSLK MAX kit (TIRSLK-EVM) you will have the 
modified TI’S MSP432 LaunchPad development board with headers soldered 
onto J5 and with the 5V jumper disconnected. This can be used in all labs. 
 
You will use the red LED connected to P1.0. You will use switch 1 (SW1) 
connected to P1.1 and switch 2 (SW2) connected to P1.4.  
 
 
 

 
 
 
Figure 2. The LaunchPad without external circuits are used for this lab. 
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9.3 Experiment set-up  
9.3.1 Hardware for periodic heartbeat 
 
The LED breathing will be implemented with the MSP432 LaunchPad, without 
need for additional circuits, see Figure 3. 
 
 
 

 
 

Figure 3. Create the periodic heartbeat on P1.0. 

 
9.3.2 Hardware for PWM DAC 
To implement the PWM DAC, you will need to build an analog low pass filter.  
The voltmeter and oscilloscope should be connected across the capacitor,  
see Figure 4. There is a wide range of values than could be used for the PWM 
DAC. The cutoff frequency for the LPF is fc=1/(2πRC). You may use any resistor 
larger than 3.3kΩ and any capacitor such that fc is smaller than the frequency of 
the PWM wave, and fc is larger than the frequency of the analog signal generated 
by the DAC. 

 
Figure 4. Use an external passive 10 Hz analog low pass filter to convert the 
PWM signal (P2.6 in this case) into a DAC analog output voltage. 
 
9.4 System Development Plan 
 
9.4.1 SysTick Wait 

The first step is to write, develop and test the SysTick wait function. The following 
is a software driver function that initializes SysTick. In this lab, we will not use 
interrupts. This initialization function is called once at the beginning of the main 
program, but before the software uses SysTick. 

The prototype for this function is:  

void SysTick_Wait1us(uint32_t delay); 

where delay is the prescribed time to wait in µs. You may assume delay is 
greater than 2 µs and less than 349,000 µs.  

 

// SysTick Initialization 
void SysTick_Init(void){ 
  SysTick->LOAD = 0x00FFFFFF;  // maximum reload value 
  SysTick->CTRL = 0x00000005;  // enable, no interrupts 
} 

 

MSP432 P1.4
P1.1

SW1 SW2P2.0
P2.1
P2.2

RedBlue Green

EL-19-337

JP4
P1.2/RxD
P1.3/TxD

P3.4/CTS

Serial
P3.1/RTS

P1.0

JP9
JP10

JP11

JP8
LTST-C190CKT
1.65V3.5mA

470 

26 24 110 
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The sequence of steps for the SysTick wait function are: 
1. Write a desired value into the SysTick LOAD register 
2. Clear the VAL counter value, which also clears the COUNT bit 
3. Wait for the COUNT bit in the SysTick CTRL register to be set 

 

Program9_1 shows how to test the wait function by creating a 75% duty cycle 
digital output. Use a logic analyzer or oscilloscope to verify the proper timing of 
the wait function. The signal should be high for about 7.5 ms, and low for 2.5 ms. 

 
 
int Program9_1(void){   
  Clock_Init48MHz();  // makes bus clock 48 MHz 
  SysTick_Init(); 
  LaunchPad_Init();   // buttons and LEDs 
  TExaS_Init(LOGICANALYZER_P1); 
  while(1){ 
    P1->OUT |= 0x01;   // red LED on 
    SysTick_Wait1us(7500); 
    P1->OUT &= ~0x01;  // red LED off 
    SysTick_Wait1us(2500); 
  } 
} 
 
 
9.4.2 Generate a PWM Output 
 
The second step is to extend the operation to implement digital waves with a 
sinusoidally-varying duty cycle. For example, if H = 5000, then L will be 5000, 
and the LED will have 50% brightness. Alternately, if H = 100, then L will be 
9900, and the LED will have 1% brightness. To output a wave with fixed 
frequency and with fixed duty cycle, the main loop will implement these four 
steps in this order, over and over 
 

1. Set P1.0 high 
2. Wait H µs using your SysTick_Wait1us function 
3. Clear P1.0 low 
4. Wait L µs using your SysTick_Wait1us function 

 

PulseBuf is a ROM-based table consisting of 100 pulse-times, in units of µs, 
which constitute a sinusoidally-varying duty cycle. Because 100*10 ms is one 
second, one way to create the sinusoidally-varying heartbeat is execute the 
following sequence over and over. If you execute steps 1 – 7 over and over 
again, each time through the loop using a new H value, the LED will flash  
at 1 Hz. 
 

1. Look up a new H= PulseBuf [i] value  
2. Calculate L = 10000-H 
3. Set P1.0 high 
4. Wait H µs using your SysTick_Wait1us function 
5. Clear P1.0 low 
6. Wait L µs using your SysTick_Wait1us function 
7. i = i +1, if i ==100, roll back to i =0 
8.  
 

// Array used in this lab to create sine wave 
const uint32_t PulseBuf[100]={ 
    5000, 5308, 5614, 5918, 6219, 6514, 6804, 7086, 
    7361, 7626, 7880, 8123, 8354, 8572, 8776, 8964, 
    9137, 9294, 9434, 9556, 9660, 9746, 9813, 9861, 
    9890, 9900, 9890, 9861, 9813, 9746, 9660, 9556, 
    9434, 9294, 9137, 8964, 8776, 8572, 8354, 8123, 
    7880, 7626, 7361, 7086, 6804, 6514, 6219, 5918, 
    5614, 5308, 5000, 4692, 4386, 4082, 3781, 3486, 
    3196, 2914, 2639, 2374, 2120, 1877, 1646, 1428, 
    1224, 1036,  863,  706,  566,  444,  340,  254, 
     187,  139,  110,  100,  110,  139,  187,  254, 
     340,  444,  566,  706,  863, 1036, 1224, 1428, 
    1646, 1877, 2120, 2374, 2639, 2914, 3196, 3486, 
    3781, 4082, 4386, 4692}; 

Use an oscilloscope or logic analyzer to test your solution. 

Notice, however, that this method of creating a PWM output will require all of the 
processor’s attention. Once we start putting the modules together on the robot, 
we will create PWM outputs using hardware timers (in the Timers module) so the 
PWM generation will not require exclusive attention of the software. For now, 
however, the goal is to simply understand PWM. 
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9.4.3 Add Switch Functionality 

The third step is to add the switch functionality; such that one switch starts the 
heartbeat and another switch stops the heartbeat. Switch bouncing does not 
matter in this lab, because you can ignore the start button while the heartbeat is 
active, and ignore the stop button while the heartbeat is inactive. 

9.4.4 Create PWM DAC 

The fourth step is to design a digital to analog converter using the PWM output. 
There are two motivations for this section. First, a DAC is inherently useful 
device, and using PWM to implement a DAC provides for low-cost, high-
resolution implementation for signals less than 1 kHz. Second, the RC circuit in 
this section mimics the behavior of the motor, so we can consider the voltage 
output of this circuit to be analogous to the power delivered to the motor. 

Recall the frequency of the digital wave is 100 Hz. In the PWM method, the 
frequency will be fixed. The LED is indeed fast enough to respond on and off to 
this wave that we have created. Look in the data sheet for the HLMP-4700 LED. 
You will find it has a response time of 90 ns. So, while running at 100 Hz, the 
LED will completely turn on and completely turn off. 

However, our eyes cannot detect waves at 100 Hz, which is why our eyes 
perceive the 75% duty wave as 75% brightness. We can use PWM to control 
other devices that respond slowly as compared to the 100 Hz wave. If the time 
constant of the device is slow compared to the PWM frequency, the device 
responds to the average signal (H/(H+L)) and not the instantaneous on and off. 
To see this powerful method of PWM in another example, we need to move the 
output to an unused pin, so the pin is not connected to any LED circuits. An 
example of a slow device is an analog low pass filter implemented with a resistor 
and capacitor, as shown in Figure 4. The cutoff frequency of the filter will be  

 fc = 1/(2πRC) 

To make this work, we need 1 Hz < fc < 100 Hz, so the circuit passes the 1 Hz 
wave and rejects (or smooths) the 100 Hz wave. In fact, our eyes have a cutoff at 
about 10 Hz. So, we will choose  

 RC = 1/(2π10Hz) ≈ 0.016 sec. 

One possible combination is R=33 kΩ, and C = 0.47 µF. It also works at R = 3.3 
kΩ, and C = 4.7 µF. 

 Warning:  Choose a resistor value larger than 3.3 kΩ, in order to restrict the 
current below 3.3V/3.3 kΩ = 1 mA. Furthermore, we suggest choosing a resistor 
value much less than the input impedance of your oscilloscope probe. 

The static test of your PWM-implemented digital to analog converter uses a 
voltmeter. Connect the voltmeter across the capacitor in Figure 3. Program9_2 
implements a 100-Hz wave with known duty cycle, (H/(H+L)) on P2.6. 

int Program9_2(void){  
     uint32_t H,L; 
  Clock_Init48MHz();  // makes bus clock 48 MHz 
  SysTick_Init(); 
  TExaS_Init(SCOPE); 
  P2->SEL0 &= ~0x40; 
  P2->SEL1 &= ~0x40; // 1) configure P2.6 as GPIO 
  P2->DIR |= 0x40;   // P2.6 output 
  H = 7500; 
  L = 10000-H; 
  while(1){ 
    P2->OUT |= 0x40;   // on 
    SysTick_Wait1us(H); 
    P2->OUT &= ~0x40;  // off 
    SysTick_Wait1us(L); 
  } 
} 

Run this program for five different duty cycles and plot the DC voltage as a 
function of duty cycle. Your data should look similar to Figure 5.  
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Figure 5.  Example measurement data showing DAC linearity. 

The above graph shows the relationship between DAC output voltage and duty 
cycle. Given this implementation of PWM the number of different duty cycles you 
can create is called the precision (with units of alternatives). Typically we define 
precision in bits. 

Bits = log2(Alternatives) 

Theoretically, if there are 10,000 alternatives, the equivalent number of bits of 
this DAC is approximately 13. 

Resolution is the smallest change in DAC voltage that can be created. If the H 
were to increment by 1, In this case, if the H is incremented by 1, then the DAC 
analog output be (theoretically) increase by 3.3V/10000 = 0.33 mV.  

Range is the maximum voltage (3.3V) minus the minimum voltage (0V). Notice 
that the range (in V), precision (in bits), and resolution (in V) are related. 

 Range = 2Precision * Resolution 

Next, let’s measure the actual system performance of the circuit built from Figure 
4 and compare actual to theoretical value.   

Test (i) Using Program9_2, set H=9000 and L=1000. This will set the duty cycle 
to 90%. Then using a voltmeter measure the DC voltage of the DAC. The voltage 
on the capacitor should be about 0.9*3.3V. Let S (signal) be this DC voltage 
measurement.  

Next, without changing the duty cycle, change the voltmeter setting and measure 
the AC voltage of the DAC. Let N (noise) be this measurement in volts. Calculate 
signal to noise ratio as SNR = S/N. In this measurement, we define the RMS AC 
voltage as the resolution of the DAC. Similarly, we approximated DAC range as 
the value at 90%.Therefore, the equivalent number of bits considering noise is 

 Precision (bits) = log2 S/N 
 
Test (ii) For the same circuit as shown in Figure 4, we will use an oscilloscope. 
Connect the scope probe across the capacitor. Now run your sinusoidally-varying 
duty system and observe the output on the scope.  Figure 6 shows a typical 
analog output, measured with the TExaS oscilloscope. Figure 6 shows the filter 
does not remove all the 100 Hz components; it does pass the 1 Hz, but also 
passes some of the 100 Hz. There is a large 100-Hz component in the signal 
arising from the PWM signal. If your scope has a spectrum analyzer function, you 
can use it to see the amplitude at 100 Hz, caused by the PWM frequency.  

 

Figure 6. Example analog output of the PWM DAC. 
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9.5 Troubleshooting  

Can’t program LaunchPad:  

• Check the cables, jumpers on the LaunchPad development board. 
• Check the Windows driver to see if the board is recognized by the 

operating system.  
• Try another LaunchPad on this computer. Try this LaunchPad on 

another computer 

SysTick delay is not correct:  

• Make sure the MSP432 clock is running at 48 MHz.  
• Make sure all the integers used in the SysTick functions all fit into 24 

bits (less than 16,777,216). 

LED doesn’t DIM:  

• Measure the port output on the scope or logic analyzer. Make sure the 
frequency is fixed, but the duty cycle varies. 

• Echo the output onto two pins of the microcontroller (output same value 
to two pins). Your port pin may be damaged. 

DAC isn’t analog:  

• Verify the resistor and capacitor values. Calculate f=1/(2πRC), f should 
be between 1 and 100 Hz. 

 
9.6 Things to think about    

In this section, we list thought questions to consider after completing this lab. 
These questions are meant to test your understanding of the concepts in this lab. 

• Precision is the number of different PWM outputs that can be 
generated. This lab describes a system capable of creating about 
10,000 different PWMs, which is equivalent to about 13 bits. What could 
you do to increase the precision? 

• What is the relationship between the PWM period (10ms), the resolution 
of your SysTick timer wait (1us) and the PWM precision?  Give an 
equation for this relationship. 

• What would happen in your implementation if you tried to set the PWM 
period larger than 350ms? 

• In what way does the RC circuit model (represent) the behavior of the 
visual processing of our eyes and brain? 

• Why is the RC circuit classified as an analog low pass filter? 

How would you experimentally determine the frequency response of 
your visual system? One of the early Pokémon anime shows had a 5-
sec 12 Hz scene that caused neurological responses in children (search 
“Pokémon induced seizures”).  

9.7 Additional challenges  

In this section, we list additional activities you could do to further explore the 
concepts of this module. You could extend the system or propose something 
completely different. For example, 

• Improve the precision by reducing the units of the timer wait function 
(e.g., go from 13 bits to 15 bits by reducing timer wait from 1us to 
250ns) 

• Remove the noise in the PWM DAC (100 Hz ripple in Figure 5), by 
switching from 100 Hz PWM to 1000 Hz PWM (precision will drop from 
13 bits to 10 bits) 

• Implement this lab using the hardware timer (we will eventually switch 
PWM to use the timer) 

• Change the R and C in Figure 4 so the cutoff frequency is in the range 
of 1 to 2 kHz. Attach headphones in parallel with the capacitor. Change 
the H and L so the PWM frequency is 20 kHz, period of 50 µs. The 
PWM DAC will have more bits if you change the SysTick wait parameter 
to be bus cycles (1/48 µs), instead of 1 µs. Adjust your sinusoidally-
varying duty system so the sinusoidal wave is between 100 and 500 Hz, 
and listen to the sounds generated by the DAC. Reducing R will 
increase the current, and hence the loudness of the sound. You could 
add switches so the frequency is selected by the switch, making an 
electronic piano. 
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9.8 Which modules are next? 

It turns out the motors using the robot also have a time constant of about 10 Hz. 
We will use PWM outputs to allow the software to set the power delivered to the 
motors. However, we cannot use 100% of the processor time to implement the 
PWMs for our robot. Therefore, we will use hardware timers built into the 
MSP432 microcontroller, so the software will be free to perform other tasks, while 
the hardware generates the PWMs automatically. The software will however set 
the period once, and adjust the duty cycle dynamically to control the behavior of 
the robot. These are future modules that build on the concepts learned in this 
module. 

Module 10) Use software arrays to verify proper functionality of the system 
Module 12) Use this PWM output to adjust power to the DC motor on the robot 
Module 13) Use periodic interrupts to create PWM output in hardware 
 

9.9 Things you should have learned 

In this section, we review the important concepts you should have learned in this 
module how to: 

• Measure resistance and voltage  
• Measure time with a logic analyzer and an oscilloscope 
• Create accurate time delays  
• Implement PWM output  
• Use PWM output to create time-varying behavior  
• Create a simple analog low pass filter 
• Balance the tradeoffs between range, resolution, and precision 
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