

Texas Instruments Robotics System Learning Kit

 Module 12
Lab 12: DC motors

 Lab: DC motors

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP121

12.0 Objectives

The purpose of this lab is to build the electronics needed to spin the motors. The
TI-RSLK chassis board includes an H-bridge motor driver using the TI DRV8838
driver that allows the software to spin each motor forward or backward. The
software can vary the electrical power delivered to each motor using pulse
width modulation (PWM). In this module,

1. You will learn the electromagnetic aspects of the motor.
2. You will use the TI-RSLK chassis board to interface the motors to the

microcontroller.
3. You will measure the voltage and current to the motors.
4. You will perform an analysis of the behavior of the motor, plotting motor

speed versus duty cycle.

Good to Know: Even though you will measure motor speed as a function of duty
cycle, this relationship depends on many factors that can change over time, such
as motor efficiency, battery voltage, voltage drop in the H-bridge, mechanical
forces, and friction. For all practical purposes, without sensors, the software
can only choose to go faster or to go slower, but it cannot set the motor speed.
On this robot, there are two motors in differential drive configuration. This means
even the simplest operation such as moving in a straight line will require sensor
feedback. There are three such sensors available in this course: the line
sensor (Module 6), the IR distance sensors (Module 15), and the tachometer
(Module 16).

12.1 Getting Started

12.1.1 Software Starter Projects
Look at these two projects:
Lab09_SysTick (your solution to Lab 9)
Lab12_Motors (starter project for this lab)

Note: Please do not use the voltmeter, oscilloscope or logic analyzer created by
TExaS for this lab. Voltages applied to inputs of the MSP432 must remain
between 0 and 3.3V. Voltages outside this range will damage the MSP432.

12.1.2 Student Resources (in datasheet directory)

 ti-rslk-chassis-board-v1.0-schematic.pdf Circuit diagram for TI-RSLK board
 drv8838.pdf Data sheet for the H-bridge driver

12.1.3 Reading Materials
Chapter 12, “Embedded Systems: Introduction to Robotics"

12.1.4 Components needed for this lab
All components needed for this lab are included in the TI-RSLK Max kit (TIRSLK-
EVM). Batteries will be needed to power your robot.

Quantity Description Manufacturer Mfg P/N

1 TI-RSLK MAX kit TI TIRSLK-EVM

12.1.5 Lab equipment needed

Oscilloscope (one or two channels at least 10 kHz sampling)
Voltmeter, ohmmeter, and current meter

12.2 System Design Requirements

The goal of this lab is write software to activate the two motors on the robot. The
TI-RSLK chassis board (main board) used in Module 5 lab also includes two H-
bridge drivers (TI DRV8838) that provide the voltage and current needed to spin
the motors.

First, you will use the PWM software from Lab 9 to adjust the delivered power to
the two wheels.

The second part of this lab is to study the behavior of the motor. You will
measure voltage (volts), current (amps), average power (watts), and rotational
speed (rpm) of the DC motor as a function of duty cycle.

The outcome of this lab is to build a system that drives in more or less a straight
line until one of the bump sensors detects a collision.

12.3 Experiment set-up

Details on how to connect the chassis, TI-RSLK chassis board, motors, and
wheels were presented as part of Lab 5, see Figure 1. The first step is to review
the circuit diagram for the TI-RSLK chassis board and compare it to the simplified
version drawn as Figure 2. Look up the data sheet for the TI DRV8838 for
operation and details, and determine current path from +BAT, through the

 Lab: DC motors

 3 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP121

DRV8838, across the motor, through the DRV8838 again, and then back to –
BAT (ground). Note: If you stall your motor you will draw a large current which
could damage your motor and TI-RSLK chassis board. See datasheet for the
motor assembly on www.Pololu.com.

Warning: Please remove the +5V jumper on the MSP432 LaunchPad. Not
removing this jumper will cause permanent damage to the LaunchPad and the
TI-RSLK chassis board.

Figure 1. Motor, encoder, wheel assembly.

LaunchPad TI-RSLK
chassis board DRV8838 Description

P5.5 DIRR PH Right Motor Direction

P3.6 nSLPR nSLEEP Right Motor Sleep

P2.6 PWMR EN Right Motor PWM

P5.4 DIRL PH Left Motor Direction

P3.7 nSLPL nSLEEP Left Motor Sleep

P2.7 PWML EN Left Motor PWM

Figure 2. Motor interface circuit.

PH EN nSleep Motor

0 0 1 Stop

1 0 1 Stop

0 1 1 Forward

1 1 1 Back

To go forward, set nSleep=1, PH=0, and activate EN with a PWM signal.

Motor

Clip

Encoder (Note A)

 Lab: DC motors

 4 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP121

12.4 System Development Plan
12.4.1 Low-level software driver
You will start with creating a suite of software functions that control the two
wheels on the robot. The frequency of the PWM signal sent to both motors
should be 100 Hz (10ms). In this lab, we will keep the duty cycle the same for
both motors as well. In the next module, we will use the hardware timer so each
motor will have its own duty cycle. To stop the motors you will stop the PWM and
set the nSleep signal to 0. Use the simple approach of Lab 9 to create the PWM
signals. The prototypes for the driver are:

void Motor_InitSimple(void);
 Initializes the 6 GPIO lines and puts DRV8838 drivers to sleep
 Returns right away

void Motor_StopSimple(void);
 Stops both motors, puts DRV8838 drivers to sleep
 Returns right away

void Motor_ForwardSimple(uint16_t duty, uint32_t time)
 Drives both motors forward at duty (100 to 9900)

Runs for time duration (units=10ms), and then stops
Stop the motors and return if any bumper switch is active

 Returns after time*10ms or if a bumper switch is hit

void Motor_BackwardSimple(uint16_t duty, uint32_t time)
 Drives both motors backward at duty (100 to 9900)

Runs for time duration (units=10ms), and then stops
Stop the motors and return if any bumper switch is active

 Returns after time*10ms or if a bumper switch is hit

void Motor_LeftSimple(uint16_t duty, uint32_t time)
 Drives just the left motor forward at duty (100 to 9900)
 Right motor is stopped (sleeping)

Runs for time duration (units=10ms), and then stops
Stop the motor and return if any bumper switch is active

 Returns after time*10ms or if a bumper switch is hit

void Motor_RightSimple(uint16_t duty, uint32_t time)
 Drives just the right motor forward at duty (100 to 9900)
 Left motor is stopped (sleeping)

Runs for time duration (units=10ms), and then stops
Stop the motor and return if any bumper switch is active

 Returns after time*10ms or if a bumper switch is hit

12.4.2 Control of the motor

In this part of the lab you will implement the functions to test the motors. Place
voltmeters on the VSW line (+7.2) and on 5V line (+5V) the first time you power
up the wheeled robot. Place the robot on blocks, so the wheels do not touch the
ground, and test the low-level motor functions, using a program like
Program12_1. This allows the motors to spin without the robot moving. With the
wheels off the ground, there will be minimal friction, the fastest rotation, and the
smallest current.

// Driver test
void Pause(void){
 while(LaunchPad_Input()==0); // wait for touch
 while(LaunchPad_Input()); // wait for release
}
int Program12_1(void){
 Clock_Init48MHz();
 LaunchPad_Init(); // built-in switches and LEDs
 Bump_Init(); // bump switches
 Motor_InitSimple(); // your function
 while(1){
 Pause();
 Motor_ForwardSimple(5000,2000); // your function
 Pause();
 Motor_BackwardSimple(5000,2000); // your function
 Pause();
 Motor_LeftSimple(5000,2000); // your function
 Pause();
 Motor_RightSimple(5000,2000); // your function
 }
}

Use an oscilloscope to observe the motor signals motor board (MR+, MR-, ML+,
ML-) during operation. You should see voltage versus time. The voltage
difference between MR+ and MR- is the applied voltage to the motor.

Note: As mentioned in Lab 9, using software delays to create PWM consumes all
of the processor time. In the next module, we will use the hardware timers on the
microcontroller to create the two PWM outputs. In this way, software needs to
execute only when it wishes to change the duty cycle or change direction.

 Lab: DC motors

 5 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP121

12.4.3 Behavior

From an electrical standpoint the motor has three components, resistance
(caused by the long wires), inductance (caused by the coiled wires) and electro
motive force (emf -voltage caused by the coupling between mechanical and
electrical forces). Begin by measuring the resistance of the motor when all power
is turned off and the motor is not spinning. Let R be this static resistance.
Assuming a voltage of 7V, use Ohm’s Law to calculate the expected current.

In this section, you will measure actual voltage (V in volts), current (I in amps),
and speed (s in rpm) as a function of the duty parameter (2000 to 8000). If you
place the robot on blocks and attach string/yard/tape to a wheel you can both see
and hear the wheel turn. First you will use a stopwatch to count the number of
rotations in a fixed time (e.g., 60 seconds).

There are two approaches to measuring motor current (I). One approach is to
remove the batteries and connect a bench supply (which allows you to set the
voltage to 7.2V and measure the current) to power the robot. The second
approach is to place a current meter in the loop between the batteries and the
robot. For example, you can tape one wire to the + side of a battery and tape
another wire to the – side of a second battery, see Figure 3. You then place
these taped ends together into the battery compartment of the TI-RSLK chassis.

Figure 3. One mechanism to measure current.

Close the compartment. You then can place the current meter on the two wires.
The current meter between the wires completes the battery circuit. You can
measure motor voltage (V) with the oscilloscope and verify which duty cycle is
active. You will first measure current to the robot with the motors stopped, and
then you will measure voltage, current, speed required to spin one motor. The
difference in these two current measurements is the current to the motor. You
can use a program like Program12_2 to collect data.

// Voltage current and speed as a function of duty cycle
int Program12_2(void){ uint16_t duty;
 Clock_Init48MHz();
 LaunchPad_Init(); // built-in switches and LEDs
 Bump_Init(); // bump switches
 Motor_InitSimple(); // initialization
 while(1){
 for(duty=2000; duty<=8000; duty=duty+2000){
 Motor_StopSimple(); // measure current
 Pause();
 Motor_LeftSimple(duty,6000); // measure current
 }
 }
}

Make a table and graphs of voltage, current, power, emf, and speed as a function
of duty cycle. Calculate emf as

 emf = V – I*R

where V is the measured motor voltage, I is the measured motor current, and R
is the static resistance of the motor. Under normal operating conditions, emf will
be negative, meaning it draws more current than predicted using the static
resistance. Calculate power as

 P = V * I * duty/10000

Describe the general behavior of the motor.

Perform a maximum speed test using Program12_3. First measure the rotational
speed of the motors when the robot is on blocks, and then repeat the
measurement when the robot is on the ground.

int Program12_3(void){
 Clock_Init48MHz();
 LaunchPad_Init(); // built-in switches and LEDs
 Bump_Init(); // bump switches
 Motor_InitSimple(); // initialization
 while(1){
 Pause();
 Motor_ForwardSimple (9900,1500); // max speed 15 s
 }
}

 Lab: DC motors

 6 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP121

12.5 Troubleshooting

Motors not do spin or gets hot:

• Remove power and double check the connections.
• Review steps in Lab 5.
• Recharge the batteries.
• Verify the six signals from the LaunchPad to the motor board using a

voltmeter, an oscilloscope or a logic analyzer.

One motor spins faster than the other:

• It is normal for the motor speeds to be ±20% of each other
• Check for friction on the slower motor

12.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to experience voltage, current, and power as
they relate to DC motors.

• How does friction affect motor current?
• In this lab, we do not set the speed or the current. Rather, we set just

the voltage and duty cycle. Why is it difficult in this lab for the robot to go
straight?

• How does the two H-bridges allow the robot to turn, to back up?
• How does the software adjust power delivered to the motors?
• In what two ways could software cause the robot to turn?

12.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• If you do not have the TI-RSLK main board, you could build your own H-
bridge circuits to control the motors on the robot. In particular, you could
build two H-bridges described in lecture using the L293. If you build your

own H-bridge please test it before attaching the motors and before
attaching the microcontroller.

• An impossible challenge would be to try to write software that makes the
robot travel in a square pattern. Basically, repeat this two-step process:
1) go straight for a fixed amount of time; 2) turn left 90 degrees. It will
not be possible. However, it will be instructive to determine why the
effort fails.

12.8 Which modules are next?

There are two major limitations to the robot conceived in this lab. 1) the software
consumes all the processor time, and 2) the speed of the motors depends on
many factors most of which cannot be predicted in advance. Over the remaining
labs we will solve these limitations.

Module 13) Use timers to create PWM signals, and use interrupts to

manage multiple software tasks
Module 15) Use the ADC to interface distance sensors. Two distance

sensors can be used to drive the robot at a fixed distance and fixed
angle to the wall.

Module 16) Interface tachometers (Romi Encoder Pair Kit) and use timer capture
to measure the speeds of each wheel directly.

Module 17) You can combine modules 12, 13, and 16 to create a control system
that does spin the motors at a desired speed.

12.9 Things you should have learned

In this section, we review the important concepts you should have learned in
this module:

• Understand voltage, current, and power to a motor.
• Be able to use PWM output to adjust power to the motors.
• Understand basic operation and purpose of an H-bridge.
• Know how to write and test a low-level software driver.

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	12_Motors_Lab_NEW
	12.0 Objectives
	12.1 Getting Started
	12.1.1 Software Starter Projects
	12.1.2 Student Resources (in datasheet directory)
	12.1.3 Reading Materials
	12.1.4 Components needed for this lab
	12.1.5 Lab equipment needed

	12.2 System Design Requirements
	12.3 Experiment set-up
	12.4 System Development Plan
	12.4.1 Low-level software driver
	12.4.2 Control of the motor
	12.4.3 Behavior

	12.5 Troubleshooting
	12.6 Things to think about
	12.7 Additional challenges
	12.8 Which modules are next?
	12.9 Things you should have learned

	TI-RSLKMax_Cover

